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Announcements

• Assignment 2 is due Nov 8, 11:59 PM
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Calibrated stereo

• Offline

– Calibration of stereo cameras

• Online

1. Acquire stereo images

2. Epipolar rectify stereo images

3. Establish correspondence 

4. Estimate depth
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Calibrated stereo

• Known intrinsic camera parameters and 

extrinsic relationship between cameras

• Results in reconstructed 3D scene points
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Uncalibrated stereo

• Unknown intrinsic camera parameters

• Unknown extrinsic relationship between 

cameras

• Results in reconstructed 3D scene points 

(up to 3D projective transformation)

(up to 3D projective transformation)
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The essential and fundamental matrices

• Epipolar constraint using the essential 

matrix E and points in normalized 

coordinates

• Epipolar constraint using the fundamental 

matrix F and points in pixel coordinates



CSE 252A, Fall 2023 Computer Vision I

The essential and fundamental matrices

• In calibrated stereo, the essential matrix E is 

calculated from the rotation R and 

translation t of the second camera relative to 

the first

• In uncalibrated stereo, the fundamental 

matrix F is calculated from point 

correspondences in pixel coordinates 

(covered next lecture)
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The fundamental matrix

• Maps a point (in pixel coordinates) in the first 
image to its corresponding epipolar line (in 
pixel coordinates) in the second image

• The epipolar line passes through the 
corresponding point in the second image

• Every epipolar line passes through the epipole

 

The epipolar constraint
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The fundamental matrix

• Maps a point (in pixel coordinates) in the 
second image to its corresponding epipolar line 
(in pixel coordinates) in the first image

• The epipolar line passes through the 
corresponding point in the first image

• Every epipolar line passes through the epipole

 

The epipolar constraint
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Example of using the fundamental matrix
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Image pair rectification

Apply projective transformation so that epipolar lines

correspond to horizontal scanlines

e

H should map epipole e to (1,0,0), a point at infinity on the x-axis

H should minimize image distortion

Note that rectified images are usually not rectangular
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See Hartley and Zisserman, 

section 11.12, for algorithm
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Epipolar rectification
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Uncalibrated stereo

• Intrinsic and extrinsic camera parameters are 
unknown

• Input: Two images (or video frames)

• Detect features in images

• Determine sparse feature correspondences

• Compute the fundamental matrix (covered next lecture)

• Retrieve the relative uncalibrated camera projection 
matrices (up to 3D projective transformation) from the 
fundamental matrix

• Optional: epipolar rectify images and perform dense 
stereo matching using recovered epipolar geometry

• Triangulate corresponding 2D image points to estimate 
3D scene points (up to 3D projective transformation)
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Fundamental matrix

• 7 degrees of freedom

– Two uncalibrated camera projection matrices 

(up to 3D projective transformation)

• 24 elements, but 22 degrees of freedom

– 3D projective transformation

• 16 elements, 15 degrees of freedom

• 22 – 15 = 7 degrees of freedom
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The essential and fundamental matrices

Essential Matrix E

• Calibrated

• Normalized coordinates

• Rank 2

• 5 degrees of freedom

– Camera rotation

– Camera translation

– Homogeneous matrix to scale

• Euclidean reconstruction

Fundamental Matrix F

• Uncalibrated

• Pixel coordinates

• Rank 2

• 7 degrees of freedom

– Homogeneous matrix to scale

– det F = 0

• Projective reconstruction
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Uncalibrated stereo

• Intrinsic and extrinsic camera parameters are 
unknown

• Input: Two images (or video frames)

• Detect features in images

• Determine sparse feature correspondences

• Compute the fundamental matrix (covered next lecture)

• Retrieve the relative uncalibrated camera projection 
matrices (up to 3D projective transformation) from the 
fundamental matrix

• Optional: epipolar rectify images and perform dense 
stereo matching using recovered epipolar geometry

• Triangulate corresponding 2D image points to estimate 
3D scene points (up to 3D projective transformation)
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Feature extraction

• Feature extraction is comprised of

– Feature detection

– Feature description

• A feature descriptor is

– Invariant with respect to a set of transformations if its 

value remains unchanged after the application of any 

transformation from the family

– Covariant with respect to a set of transformations if 

applying any transformation from the set produces the 

same result in the descriptor
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Detection of corner-like features

• Corner

– A rapid change of direction in a curve

– A highly effective feature

• Distinctive

• Reasonably invariant to viewpoint
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Detection of corner-like features
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Corner-like features

• Minor eigenvalues of a gradient matrix are 

position and orientation covariant, but they 

are not scale covariant due to fixed 

Gaussian filter standard deviation σ and the 

window size

• They are largely invariant to scaling of 

intensity, except for thresholding



CSE 252A, Fall 2023 Computer Vision I

The importance of scale

• The features of many objects in an image are only 
important over a certain spatial extent

• The image scale of the object is critical to recognizing 
the object
– However, the scale of objects in an image 

is typically unknown

Miniature model from True Lies (1994)
Seven Mile Bridge, Florida Keys

Smaller physical bridge,

but more image pixels 

than image of real bridge 

on the right
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The importance of scale

• The features of many objects in an image are only 
important over a certain spatial extent

• The image scale of the object is critical to recognizing 
the object
– However, the scale of objects in an image 

is typically unknown

Miniature model from Titanic (1997)
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The importance of scale

• The features of many objects in an image are only 
important over a certain spatial extent

• The image scale of the object is critical to recognizing 
the object
– However, the scale of objects in an image 

is typically unknown

• So, how do we get the image of the object to be at (or 
near) the expected image scale?
– Using multiscale image representations
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Multiscale image representations

• Gaussian image pyramid

• Scale space



CSE 252A, Fall 2023 Computer Vision I

Gaussian pyramid

• Earliest (early 1980s) 
multiscale image 
representation

• Different levels of 
pyramid approximate the 
original image at 
different scales

• Width and height of next 
level is width and height 
of current level divided 
by rate
– Typical rate is 2
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Gaussian pyramid

Level 0 is original image

Collectively, 

remaining 

levels are 

1/3 size of 

original 

image
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Gaussian pyramid implementation

• Binomial filter kernel approximates kernel of Gaussian with variance = 1

• Filter (convolve) each level with this binomial kernel, then sample resulting 
every other pixel in every other row to produce next pyramid level
– Convolution of two Gaussians is a Gaussian

– Convolution is associative
• Convolving Gaussian with image, subsampling, then convolving with result is equivalent 

to convolving two Gaussians (though with different variances), then convolving result 
with image

(divided by 16)

Pascal’s triangle



CSE 252A, Fall 2023 Computer Vision I

Scale space

• Pyramid representation is a predecessor to scale space representation

• Scale space theory is a formal theory for image structures at different scales
– Image is represented by a one-parameter family of Gaussian low pass filtered 

images

– A Gaussian filter meets all scale space axioms
• Linearity, shift invariance, semi-group structure, non-creation of local extrema (zero-

crossings), non-enhancement of local extrema, rotational symmetry, and scale invariance

• The scale parameter is the variance of the Gaussian filter
– Note: use border mirror padding on input image when applying filter

• Image details significantly smaller than (two times) the standard deviation 
(square root of variance) are removed from the image at that scale 
parameter
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Scale space vs Gaussian pyramid

Level 0Standard deviation = 0

1024 x 768 1024 x 768
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Scale space vs Gaussian pyramid

Level 1Standard deviation = 1

1024 x 768 512 x 384
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Scale space vs Gaussian pyramid

Level 2Standard deviation = 2

1024 x 768 256 x 192
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Scale space vs Gaussian pyramid

Level 3Standard deviation = 4

1024 x 768 128 x 96
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Scale space vs Gaussian pyramid

Level 4Standard deviation = 8

1024 x 768 64 x 48
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Scale space vs Gaussian pyramid

Level 5Standard deviation = 16

1024 x 768 32 x 24



CSE 252A, Fall 2023 Computer Vision I

Scale space vs Gaussian pyramid

Level 6Standard deviation = 32

1024 x 768 16 x 12
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Scale space vs Gaussian pyramid

Level 7Standard deviation = 64

1024 x 768 8 x 6
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Scale space vs Gaussian pyramid

Level 8Standard deviation = 128

1024 x 768 4 x 3
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Scale space vs Gaussian pyramid

Level 9Standard deviation = 256

1024 x 768 2 x 2
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Scale space vs Gaussian pyramid

Level 10Standard deviation = 512

1024 x 768 1 x 1
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Scale space vs Gaussian pyramid

• Note that Gaussian pyramid (of rate 2) levels 
corresponds to Gaussian kernel with standard 
deviations of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512

– Rate of Gaussian pyramid dictates standard deviations 
of levels

– Scale space does not have this imposition; all standard 
deviations available

• In scale space, since all images are the same size, 
features are precisely located in the coordinates of 
the original image

– Points in levels of Gaussian pyramid must be scaled up 
to coordinates of the original image, which is imprecise
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Multiscale image representations

• The features of many objects in an image 
are only important over a certain spatial 
extent

• The scale of objects in an image is typically 
unknown

• Use multiscale image representations to 
represent the image of the object at (or near) 
the expected image scale

– Gaussian pyramid

– Scale space
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Scale invariant feature transform (SIFT)

• SIFT features are called keypoints

• Keypoints are invariant to

– Scale

– Rotation

• Keypoints are robust to

– Changes in viewpoint

– Changes in illumination

– Noise
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Scale invariant feature transform (SIFT)

• SIFT feature descriptors are n-dimensional 

feature vectors

– Elements are invariant feature descriptors
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Scale invariant feature transform (SIFT)

• Steps

1. Construct the scale space

2. Obtain the initial keypoints

3. Improve the accuracy of the location of the 

keypoints

4. Delete unsuitable keypoints

5. Compute keypoint orientations

6. Compute keypoint descriptors
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SIFT, construct the scale space 

• Search for stable features across all possible 

scales

– Use a function of scale known as scale space

• Achieves scale invariance
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SIFT, construct the scale space 

• Each octave 

corresponds to 

doubling the 

standard deviation

– First image at each 

new octave is 

downsampled third 

image (octave image) 

from previous octave

Octave image

k2 = 2
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SIFT, construct the scale space 
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SIFT, obtain the initial keypoints

• First, difference two adjacent scale-space 

images in an octave
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SIFT, obtain the initial keypoints

• Second, detect extrema in the differences

The point (in black) is 

selected as an 

extremum point if its 

value is larger than 

the values of all its 

neighbors (in blue) or 

smaller than the 

values of all its 

neighbors (in blue)
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SIFT, obtain the initial keypoints
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SIFT, improve the accuracy of the 

location of the keypoints

• Interpolate the values of the difference 

images about extrema

• Determine subpixel coordinates of extrema 

using interpolated values
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SIFT, delete unsuitable keypoints

• Determine difference at subpixel keypoints

• Eliminate keypoints with low contrast and/or are 

poorly localized

• Additionally, delete keypoints associated with edges

– Only keep corner-like features

• Equivalent to thresholding the minor eigenvalue
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Scale invariant feature transform (SIFT)

• Steps
1. Construct the scale space

2. Obtain the initial keypoints

3. Improve the accuracy of the location of the 
keypoints

4. Delete unsuitable keypoints

– So far, we have computed the location of each 
keypoint in scale space (i.e., location and scale of 
each keypoint)

• Scale invariance

– Next is rotation invariance

5. Compute keypoint orientations

6. Compute keypoint descriptors
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SIFT, compute keypoint orientations

• For each keypoint

– At its scale, compute the gradient magnitude and 
orientation of the keypoint

– Form a histogram of orientations

• 36 bins (10 degrees each)

• Weight an orientation by its associated magnitude and a 
Gaussian, when adding it to an orientation bin

– Initial orientation is largest bin

• Create an additional keypoint for other bins within 80% 
the size of the largest bin

– Improve orientation estimate using interpolation

• Fit a parabola to values of the largest bin and its two 
neighboring bins
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SIFT, compute keypoint orientations

• Keypoints

– Location and scale (scale invariant)

– Orientation (rotation invariant)

• Length of arrow is histogram of orientations interpolated bin value

• (Useful in matching keypoints across images)
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Local regions

• The local region about each oriented 

keypoint is invariant to

– Scale, orientation, illumination, and image 

viewpoint
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SIFT, compute keypoint descriptors

• Feature descriptor
– 16x16 region about keypoint

• Gradient magnitude (Gaussian 
weighted) and direction at 
each point in region

• Quantize gradient directions in 
each 4x4 subregion to 45 
degree increments

– Interpolate each of the 16 
gradients directions to 
distribute it over all 8 bins (8 * 
45 degrees = 360 degrees)

• Concatenate the 16 8-
directional histograms bins to 
form a 128-dimensional 
feature vector
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SIFT, compute keypoint descriptors

• Rotation invariance

– Rotate the 8-directional histograms relative to 

the keypoint orientation

• Robustness to changes in illumination

– Unitize the 128-dimensional 

feature vector

– Threshold to reduce the 

influence of large gradient 

magnitudes

– Unitize again
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Matching keypoints across images

• First image is whole image

• Second image is darker 

version of red rectangle
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Matching keypoints across images using SIFT 

features and feature descriptors
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Next Lecture

• Structure from motion
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