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Announcements

« Assignment 2 is due Nov 8, 11:59 PM

CSE 252A, Fall 2023 Computer Vision |



Calibrated stereo

e Offline
— Calibration of stereo cameras

e Online

1.
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Acquire stereo images

2. Epipolar rectify stereo images
3.
4. Estimate depth

Establish correspondence
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Calibrated stereo

« Known Intrinsic camera parameters and
extrinsic relationship between cameras

 Results in reconstructed 3D scene points
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Uncalibrated stereo

« Unknown Intrinsic camera parameters

« Unknown extrinsic relationship between
cameras

 Results in reconstructed 3D scene points

(up to 3D projective transformation)
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The essential and fundamental matrices

 Epipolar constraint using the essential
matrix E and points in normalized
coordinates

%''Ex = 0, where x = K 'x and ¥ = K%’

(K 'x)'EK 'x = 0
x'"K7'EK 'x = 0, where K~ ' = (¥ = &'")™!
x'"'Fx = 0, where F = K~ 'EK™!

 Epipolar constraint using the fundamental
matrix F and points in pixel coordinates
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The essential and fundamental matrices

* In calibrated stereo, the essential matrix E Is
calculated from the rotation R and
translation t of the second camera relative to
the first

E = [t|.R

* In uncalibrated stereo, the fundamental
matrix F is calculated from point
correspondences in pixel coordinates
(covered next lecture)

x'"Fx =0
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The fundamental matrix

» Maps a point (in pixel coordinates) in the first
Image to its corresponding epipolar line (in
pixel coordinates) in the second image

¢ =Fx
 The epipolar line passes through the
corresponding point in the second image

x'1¢ =0
X’TFX — () The epipolar constraint

» Every epipolar line passes through the epipole

el =0
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The fundamental matrix

 Maps a point (in pixel coordinates) inthe
second Image to Its corresponding epipolar line
(in pixel coordinates) in the first image

¢=F'x
¢ =x'TF
» The epipolar line passes through the
corresponding point in the first image

'x=0
X’TFX — () The epipolar constraint

» Every epipolar line passes through the epipole
£'le =0
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Example of using the fundamental matrix
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Image pair rectification

Apply projective transformation so that epipolar lines

correspond to horizontal scanlines

e

«—

e

e

R

—

— | =)

\\ H

H should map epipole e to (1,0,0), a point at infinity on the x-axis

See Hartley and Zisserman,
section 11.12, for algorithm

H should minimize image distortion

Note that rectified images are usually not rectangular
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Epipolar rectification

The epipolar constraint must apply to both the original image pair (i.e., x''Fx = 0) and

. . . . ,T -
rectified image pair (i.e., X, ifeqFrectificdXrectified = 0)-

Points in the original images map to points in the rectified images under the rectification
transformations.

/ Y
Xrectiﬁed = Hx

Substitute this into xgctiﬁedFrectiﬁedxrectiﬁed = 0, then solve for Frectiﬁed-

T o
XrectiﬁedFrectiﬁedxrectiﬁed — 0

(H’X’)TFrec:tiﬁedHX =0
X,TH’TFrectiﬁedHX =0
x'TFx = 0, where F = H’TFrectiﬁedH

Hf?TFH*l — Frectiﬁcd
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Uncalibrated stereo

 Intrinsic and extrinsic camera parameters are
unknown

 Input: Two images (or video frames)

« Detect features in images

« Determine sparse feature correspondences

« Compute the fundamental matrix (covered next lecture)

 Retrieve the relative uncalibrated camera projection
matrices (up to 3D projective transformation) from the
fundamental matrix

» Optional: epipolar rectify images and perform dense
stereo matching using recovered epipolar geometry

» Triangulate corresponding 2D image points to estimate
3D scene points (up to 3D projective transformation)
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Fundamental matrix

7 degrees of freedom

— Two uncalibrated camera projection matrices
(up to 3D projective transformation)

24 elements, but 22 degrees of freedom

— 3D projective transformation /

16 elements, 15 degrees of freedom

e 22 — 15 =7 degrees of freedom
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The essential and fundamental matrices

Essential Matrix E

Calibrated
Normalized coordinates
Rank 2

5 degrees of freedom
— Camera rotation
— Camera translation
— Homogeneous matrix to scale

Euclidean reconstruction
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Fundamental Matrix F

« Uncalibrated
Pixel coordinates
Rank 2

7 degrees of freedom

— Homogeneous matrix to scale
— detF=0

Projective reconstruction
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Uncalibrated stereo

 Intrinsic and extrinsic camera parameters are
unknown

 Input: Two images (or video frames)

« Detect features in images

« Determine sparse feature correspondences
« Compute the fundamental matrix (covered next lecture)

 Retrieve the relative uncalibrated camera projection
matrices (up to 3D projective transformation) from the
fundamental matrix

» Optional: epipolar rectify images and perform dense
stereo matching using recovered epipolar geometry

» Triangulate corresponding 2D image points to estimate
3D scene points (up to 3D projective transformation)
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Feature extraction

 Feature extraction is comprised of
— Feature detection

— Feature description

» A feature descriptor is

— Invariant with respect to a set of transformations if its
value remains unchanged after the application of any
transformation from the family

— Covariant with respect to a set of transformations if
applying any transformation from the set produces the
same result in the descriptor
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Detection of corner-like features

« Corner
— A rapid change of direction in a curve

— A highly effective feature
» Distinctive
 Reasonably invariant to viewpoint
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Detection of corner-like features

CSE 252A, Fall 203 Slide credit: http://vims.cis.udel.edu/~chandra/ Computer Vision |



Corner-like features

« Minor eigenvalues of a gradient matrix are
position and orientation covariant, but they
are not scale covariant due to fixed
(Gaussian filter standard deviation o and the
window size

« They are largely invariant to scaling of
Intensity, except for thresholding
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The importance of scale

The features of many objects in an image are only
Important over a certain spatial extent

The image scale of the object is critical to recognizing
the object

— However, the scale of objects in an image
Is typically unknown

Smaller physical bridge,
but more image pixels
than image of real bridge
on the right

g / R TGRS
5 .l N
. LA d
~ s ,l -~

Seven Mile Bridge, Florida Keys

Miniature model from True Lies (1994)
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The importance of scale

- The features of many objects in an image are only
Important over a certain spatial extent

» The Image scale of the object is critical to recognizing
the object

— However, the scale of objects in an image
Is typically unknown

----

------

»! ILLLLLLLLLLL U ELLT PR EEEETE PR RRTR AR L L L L L Lo L L L [ L
...........

Miniature model from Titanic (1997)
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The importance of scale

- The features of many objects in an image are only
Important over a certain spatial extent

* The image scale of the object is critical to recognizing
the object

— However, the scale of objects in an image
Is typically unknown

* S0, how do we get the image of the object to be at (or
near) the expected image scale?

— Using multiscale image representations
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Multiscale image representations

 (Gaussian Image pyramid
 Scale space

CSE 252A, Fall 2023 Computer Vision |



Gaussian pyramid

1 Earli-eSt (ea:rly 19808) Blur and | / ‘Is.evel|4t_
multiscale image subsample [ Tovely
representation alEampe 3  Casi’

« Different levels of Blurand /5 reselten
pyramid approximate the subsameef | Level 1
original image at Biur and | 1/2 resolution
different scales subsample

 Width and height of next Level 0
level is width and height P R coc
of current level divided e
by rate e

— Typical rate is 2

CSE 252A, Fall 2023 Computer Vision |



Gaussian pyramid

Collectively,
remaining
levels are
1/3 size of

SIS original
Level O is original image - image

e \ . X ! 'l > ‘.,'\'.:\ &d.

CRAZY FRANKENSTEIN.COM|
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Gaussian pyramid implementation

« Binomial filter kernel approximates kernel of Gaussian with variance = 1

1

Pascal’s triangle 1 1
1 2 1

1 3 3 1
11 4 6 4 1| (dividedby16)
1 510 10 5 1

» Filter (convolve) each level with this binomial kernel, then sample resulting
every other pixel in every other row to produce next pyramid level

— Convolution of two Gaussians is a Gaussian

— Convolution is associative

« Convolving Gaussian with image, subsampling, then convolving with result is equivalent
to convolving two Gaussians (though with different variances), then convolving result
with image
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Scale space

Pyramid representation is a predecessor to scale space representation

Scale space theory is a formal theory for image structures at different scales

— Image is represented by a one-parameter family of Gaussian low pass filtered
images

— A Gaussian filter meets all scale space axioms

« Linearity, shift invariance, semi-group structure, non-creation of local extrema (zero-
crossings), non-enhancement of local extrema, rotational symmetry, and scale invariance

The scale parameter is the variance of the Gaussian filter
— Note: use border mirror padding on input image when applying filter

Image details significantly smaller than (two times) the standard deviation
(square root of variance) are removed from the image at that scale

parameter
\- \ll \' \'
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Scale space vs Gaussian pyramid

1024 x 768 1024 x 768
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Scale space vs Gaussian pyramid

1024 x 768 | 512 x 384

Standard deviation = 1 Level 1
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Scale space vs Gaussian pyramid

1024 x 768 256 x 192

Standard deviation = 2 Level 2
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Scale space vs Gaussian pyramid

1024 x 768 128 X 96

Standard deviation = 4 Level 3
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Scale space vs Gaussian pyramid

1024 x 768 64 x 48

Standard deviation = 8 Level 4
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Scale space vs Gaussian pyramid

1024 x 768 32 X 24

Standard deviation = 16 Level 5
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Scale space vs Gaussian pyramid

1024 x 768 ‘ 16 X 12

Standard deviation = 32 Level 6
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Scale space vs Gaussian pyramid

1024 x 768

Standard deviation = 64 Level 7
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Scale space vs Gaussian pyramid

1024 x 768 4x3

Standard deviation = 128 Level 8
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Scale space vs Gaussian pyramid

1024 x 768 2 X2

Standard deviation = 256 Level 9
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Scale space vs Gaussian pyramid

1024 x 768 1x1

Standard deviation = 512 Level 10
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Scale space vs Gaussian pyramid

* Note that Gaussian pyramid (of rate 2) levels
corresponds to Gaussian kernel with standard
deviations of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
— Rate of Gaussian pyramid dictates standard deviations

of levels

— Scale space does not have this imposition; all standard
deviations available

* In scale space, since all images are the same size,
features are precisely located in the coordinates of
the original image

— Points in levels of Gaussian pyramid must be scaled up
to coordinates of the original image, which is imprecise
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Multiscale image representations

 The features of many objects in an Image

are only important over a certain spatial
extent

« The scale of objects in an image Is typically
unknown

« Use multiscale image representations to

represent the image of the object at (or near)
the expected image scale

— Gaussian pyramid
— Scale space
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Scale Invariant feature transform (SIFT)

« SIFT features are called keypoints

» Keypoints are invariant to
— Scale
— Rotation

 Keypoints are robust to
— Changes In viewpoint
— Changes in illumination
— Noise
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Scale Invariant feature transform (SIFT)

« SIFT feature descriptors are n-dimensional
feature vectors

— Elements are invariant feature descriptors
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Scale Invariant feature transform (SIFT)

o Steps
1. Construct the scale space
2. Obtain the initial keypoints

3. Improve the accuracy of the location of the
keypoints

4. Delete unsuitable keypoints
5. Compute keypoint orientations
6. Compute keypoint descriptors
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SIFT, construct the scale space

 Search for stable features across all possible
scales

— Use a function of scale known as scale space
 Achieves scale invariance
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SIFT, construct the scale space

« Each octave
corresponds to
doubling the WE
standard deviation Lz, |,
— First image at each * G

new octave IS -- Octave image

.-l-”_l
.:1Irj
- .:f.l'l - ]
- (or, k2 — 2
ir
downsam p I ed th | rd ,:: j | FIGURE 12.56
Scale space,
Images smoothed using showing three

I m ag e (O Ctave I m ag e) seele Octave 1 Gaussian lowpass kernels ?Zazwirsn ﬁ)?g Ecl‘gii

each octave has five

with the same powers of k is
generated in each octave)

ooooo thed

from previous octave magsin
nel was used for
smoothing, so the

space parameter
is o
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SIFT, construct the scale space

CSE 252A, Fall 2023

FIGURE 12.57
Tllustration using
images of the first
three octaves of
scale space in
SIFT. The entries
in the table are
values of standard
deviation used

at each scale of
each octave. For
example the
standard
deviation vsed in
scale 2 of octave 1
is ko, which is
equal to 1.0.
{The images

of octave 1 are
shown slightly
overlapped to

fit in the figure
space.)

Scale

Octave 1

kory

h lm‘3

Octave 3

Octave 2

g =~22=0707 k=+2=1414

o3=20,=40,

Scale

Octave|

G 2 3 4
1 2,000
2 4000
3 8.000

2.828

5.657

11.314
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SIFT, obtain the initial keypoints

 First, difference two adjacent scale-space
Images In an octave

=
J’—'//Dctavf: 3

RO
, 30
= D

Octave 1
Scale

Gaussian-filtered images, L(x, y, )

FIGURE 12.58 How Eq. (12-69) is implemented in scale space. There are 5 +3 L(x, y,o) images and s+ 2 corre-
sponding D(x,y, o) images in each octave.
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SIFT, obtain the initial keypoints

e Second, detect extrema In the differences

The point (in black) is
selected as an
extremum point if its
value is larger than
the values of all its
neighbors (in blue) or

FIGURE 12.59
Extrema (maxima
or minima) of the
D{x.y, o) images
in an octave are

detected by e
comparing a pixel ) )
26 metehors Corresponding sections of three smaller than the
(shown shaded) in - 1 1
i contienous D x, v, o) images ]
23 rosions guous BT, %, ) imag values of all its

adjacent scale
images.

neighbors (in blue)
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SIFT, obtain the initial keypoints

*

*
=

_,_H__ﬁ"' T

= (Octave 3

Sample INx, v, o)

Octave 1

Gaussian-filtered images, L{x, y, o)

FIGURE 12.58 How Eq. (12-69) is implemented in scale space. There are 5 +3 L(x, y,o) images and s+ 2 corre-
sponding I{x,y, o) images in each octave.
Computer Vision |
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SIFT, improve the accuracy of the
location of the keypoints

* Interpolate the values of the difference
Images about extrema

» Determine subpixel coordinates of extrema
using interpolated values
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SIFT, delete unsuitable keypoints

« Determine difference at subpixel keypoints
 Eliminate keypoints with low contrast and/or are
poorly localized
« Additionally, delete keypoints associated with edges

— Only keep corner-like features
« Equivalent to thresholding the minor eigenvalue o malks hem

_:-:l > i |.. i ' '.-. l -.! i E‘ = . |

’ e Eodow P ER T S
ave 1 Sample D(x, y,er)

Scale

Gaussian-filtered images, L(x, y, o)
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Scale Invariant feature transform (SIFT)

« Steps
1. Construct the scale space
2. QObtain the initial keypoints

3. Improve the accuracy of the location of the
Keypoints

4. Delete unsuitable keypoints

— So far, we have computed the location of each
keypomt In scale space (i.e., location and scale of
each keypoint)

 Scale invariance

— Next Is rotation invariance
5. Compute keypoint orientations
6. Compute keypoint descriptors
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SIFT, compute keypoint orientations

 For each keypoint

— At Its scale, compute the gradient magnitude and
orientation of the keypoint
— Form a histogram of orientations

« 36 bins (10 degrees each)

« Weight an orientation by its associated magnitude and a
Gaussian, when adding it to an orientation bin

— Initial orientation is largest bin

 Create an additional keypoint for other bins within 80%
the size of the largest bin

— Improve orientation estimate using interpolation

« Fit a parabola to values of the largest bin and its two
neighboring bins
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SIFT, compute keypoint orientations

« Keypoints
— Location and scale (scale invariant)

— Orientation (rotation invariant)
 Length of arrow is histogram of orientations interpolated bin value
 (Useful in matching keypoints across images)

| o]

FIGURE 12.51
The keypoints
from Fig. 12.60
superimposed
on the original
image. The arrows
indicate keypoint
orientations.

FIGURE 12.60
SIFT keypoints
detected in the
building image.
The points were
enlarged slightly
to make them
easier to see.
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Local regions

* The local region about each oriented
keypoint Is invariant to

— Scale, orientation, illumination, and image
viewpoint

FIGURE 12.61
The keypoints 7
from Fig. 12.60 et A
superimposed - ARUINE Sl
on the original {8
image. The arrows ST
indicate keypoint DS
ions. 4
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SIFT, compute keypoint descriptors

Feature descriptor
— 16x16 region about keypoint .. _—

- Gradient magnitude (Gaussian - |- T T
weighted) and direction at A P R =1
each point in region L Egn ks anas bt B 1 -

« Quantize gradient directions in ", o
each 4x4 subregion to 45 B SN B SRR byavr Sl NA B el
degree increments IS L g l

. I nterpolate eaCh Of the 16 ~=Gaussian w\;i_g_hting function

gradients directions to VAR RIE B < 4”
distribute it over all 8 bins (8 * R ‘><' % Zal 3 'g_iﬂgbmmgmm“he

45 degrees = 360 degrees) pVA >{ =K | ¥ bins are multiples of 45°)
- Concatenate the 16 8- x
directional histograms binsto | *% 27 7% |4
form a 128-dimensional Sk | Sk | | Sk
feature vector :

- 3

=

Keypoint descriptor = 128-dimensional vector

FIGURE 12.62
Approach used to
compute a
keypoint
descriptor.
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SIFT, compute keypoint descriptors

e Rotation Invariance

— Rotate the 8-directional histograms relative to
the keypoint orientation

» Robustness to changes in illumination

— Unitize the 128-dimensional
feature vector

— Threshold to reduce the
Influence of large gradient
magnitudes

— Unitize again
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Matching keypoints across images

 First image Is whole image

« Second image Is darker
version of red rectangle
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Matching keypoints across images using SIFT
features and feature descriptors

ab
FIGURE 12.63 (a) Keypoints and their directions (shown as gray arrows) for the building image and for a section of
the right corner of the building. The subimage is a separate image and was processed as such. (b) Corresponding

key points between the building and the subimage (the straight lines shown connect pairs of matching points). Only
three of the 36 matches found are incorrect.
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Next Lecture

e Structure from motion
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