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Announcements

• Assignment 1 is due Oct 25, 11:59 PM
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Image Filtering Example

Input Output

Filter
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What is image filtering?

Producing a new image where the value at a pixel in the output 

image is a function of a neighborhood of the pixel location in 

the input image.
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Example: Smoothing by Averaging
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Image Filtering

• Most common filters are linear filters and the process 

of applying a linear filter is called convolution

• Why filter

– Enhance images

• Denoise, resize, increase contrast, etc.

– Extract information from images

• Texture, edges, distinctive points, etc.

– Detect patterns

• Template matching

– The “convolution” in Convolutional Neural 

Networks
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Linear Filters

• General process:

– Form new image whose pixels 

are a weighted sum of original 

pixel values, using the same 

set of weights at each point.

• Properties

– Output is a linear function of 

the input

– Output is a shift-invariant 

function of the input (i.e., shift 

the input image two pixels to 

the left, the output is shifted 

two pixels to the left)

• Example: smoothing by 

averaging

– form the average of pixels in a 

neighborhood

• Example: smoothing with a 

Gaussian

– form a weighted average of 

pixels in a neighborhood

• Example:  finding a 

derivative

– form a difference of pixels in a 

neighborhood
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Spatial filtering (2D)
2D correlation

2D convolution

When kernel is symmetric, 

convolution and correlation 

give the same result

For convolution, kernel is 

rotated 180 degrees
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Correlation and convolution (2D)

For convolution, kernel is 

rotated 180 degrees
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“Shape” of correlation/convolution
• Full

– w(x,y) and f(x,y) have at least 1 pixel 
overlap

– P = A + 2(C – 1)

– Q = B + 2(D – 1)

– Output g(x,y)
• Width is B + D – 1, height is A + C – 1

• Same
– P = A + C – 1

– Q = B + D – 1

– Output g(x,y)
• Width is B, height is A

• Valid
– w(x,y) must be completely inside 

f(x,y)

– P = A

– Q = B

– Output g(x,y)
• Width is B – D + 1, height is A – C + 1

Padded f(x,y)

f(x,y) A P

B

Q

w(x,y) C

D

Convolution g(x,y) = w(x,y) * f(x,y)
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Convolution

Input image f(x,y)

Kernel w(x,y)

*

Note: Typically kernel

is relatively small in

vision applications. 
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“Valid” convolution

Input image Output image
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“Valid” convolution

Input image Output image
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“Valid” convolution

Input image Output image
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“Valid” convolution

Input image Output image
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“Valid” convolution

Input image Output image
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Input image Output image
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“Valid” convolution

Input image Output image
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“Valid” convolution

Input image Output image
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“Valid” convolution

Input image Output image
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000

100

000

Shifted one 

Pixel to the left

Shift

Correlation
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Blur Examples

1-Dimensional Correlation
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Practice with linear filters

Original

111

111

111

000

020

000

- ?

Source: D. Lowe

[ ]
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Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with 

local average

Source: D. Lowe

[ ]



CSE 252A, Fall 2023 Computer Vision I



CSE 252A, Fall 2023 Computer Vision I

=*



CSE 252A, Fall 2023 Computer Vision I

Filters are templates
• Applying a filter at 

some point can be 

seen as taking a dot-

product between the 

image and some vector

• Filtering the image is a 

set of dot products

• Insight, for corelation

– filters look like the 

effects they are 

intended to find

– filters find effects they 

look like
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Correlation and convolution

• Convolution is commutative and 

associative, correlation is not

This is equivalent to applying one filter
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Convolution properties (cont.)

• Distributes over addition:
  I * (k1 + k2) = (I * k1) + (I * k2)

• Scalars factor out:
– For scalar s

s (f * I) = (sf) * I = f * (sI) 

• Identity: 
 unit impulse e = [0, 0, 1, 0, 0]
  I * e = I

Source: S. Lazebnik
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Properties of Continuous Convolution

Let f,g,h be images and * denote convolution

• Commutative: f*g=g*f

• Associative: f*(g*h)=(f*g)*h

• Linear: for scalars a & b and images f,g,h

   (af+bg)*h=a(f*h)+b(g*h)

• Differentiation rule
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Convolutional Neural Networks

• Core operation in CNN is, not surprisingly, 

convolution.

• During training of a CNN, the weights of 

the convolution kernels are learned.

• Can be extended to 3D – e.g.,

–  Image and R,G,B as channels (N x N x 3)

– Volumetric data such as MRI, CT
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Filtering to reduce noise

• Noise is what we are not interested in

– Usually think of simple, low-level noise:

•  Light fluctuations; Sensor noise; Quantization 

effects; Finite precision

– Complex noise: shadows; extraneous objects

• A pixel’s neighborhood contains 

information about its color and intensity

• Averaging noise reduces its effect
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Additive noise

• I = S + N.  Noise doesn’t depend on signal.

• We’ll consider:

• Gaussian noise, ni drawn from Gaussian. 

I
i
= s

i
+ n

i
 with E(n

i
) = 0

s
i
 deterministic.  n

i
 a random var.

n
i
,n

j
 independent for i ¹ j

n
i
,n

j
 identically distributed
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Gaussian noise

Gaussian noise, ni drawn from 

Gaussian distribution with zero 

mean and standard deviation σ

Image is 

constant 

with Ii = 0.5
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Gaussian Noise:

sigma=1

Gaussian Noise: 

sigma=16
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Averaging  Filter

• Mask with positive 

entries, that sum 1

• Replaces each pixel 

with an average of 

its neighborhood

• If all weights are 

equal, it is called a 

Box filter

1

1

1
1

1 1

1

1

1

F

1/9

(Camps)
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Smoothing by Averaging
Kernel:
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An Isotropic Gaussian Kernel

• Circularly symmetric 

Gaussian with variance σ2
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Smoothing with a Gaussian
Kernel:
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Smoothing

Gaussian filterBox filter
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An image with constant 

intensity + noise :

Each row shows smoothing

With Gaussians of different

width; each column shows

different realizations of 

an image of Gaussian noise.

The effects of smoothing

Increased Noise → 

In
creased

 S
m

o
o
th

in
g
 →
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Smoothing with Gaussian kernel

Volume under surface greater than 3σ is negligible

Standard deviation σ Percent of total volume under surface

1 39.35

2 86.47

3 98.89
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Smoothing with Gaussian kernel

σ = 7

43x43

σ = 7

85x85

Difference
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Smoothing with Gaussian kernel

σ = 3.5

21x21

Input image σ = 7

43x43
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Border padding

Replicate padding

Constant padding

Zero padding

when v = 0

Mirror padding
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Border padding

Mirror

padding

Replicate

padding

Zero

padding
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Gaussian Smoothing

2=s

8.2=s 4=s

original
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Gaussian Smoothing

by Charles Allen Gillbert by Harmon & Julesz 

http://www.michaelbach.de/ot/cog_blureffects/index.html 
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Gaussian Smoothing

http://www.michaelbach.de/ot/cog_blureffects/index.html 

http://www.michaelbach.de/ot/cog_blureffects/index.html
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Efficient Implementation

• Both, the Box filter and the Gaussian filter are 

separable:

– First convolve each row with a 1D horizontal 

kernel

– Then convolve each column with a 1D vertical 

kernel
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Overview: Image processing in the 

frequency domain

Image in 

spatial domain

f(x,y)

Image in 

spatial domain

g(x,y)

Fourier

transform

Image in 

frequency domain

F(u,v)

Inverse 

Fourier

transform

Image in 

frequency domain

G(u,v)

Frequency domain 

processing
Jean-Baptiste Joseph Fourier

1768-1830
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Fourier Transform

• 1-D transform (signal processing)

• 2-D transform (image processing)

• Consider 1-D

Time domain  → Frequency Domain 

Real →Complex

• Consider time domain signal to be expressed as 

weighted sum of sinusoid.  A sinusoid cos(ut+) is 

characterized by its phase  and its frequency u

• The Fourier transform of the signal is a function 

giving the weights (and phase) as a function of 

frequency u.
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Fourier Transform

• 1D example

– Sawtooth wave

• Combination of harmonics
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Fourier Transform

Discrete Fourier Transform (DFT)  of I[x,y]

Inverse DFT

x,y: spatial domain

u,v: frequence domain

Implemented via the “Fast Fourier Transform” algorithm (FFT)
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Fourier basis element 

Transform is sum of orthogonal 
basis functions

Vector (u,v)
• Magnitude gives frequency
• Direction gives orientation. 

 

e
−i2 ux+vy( )
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Here u and v are 

larger than in the 

previous slide.
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And larger still...
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Using Fourier Representations

Limitations: not useful for local segmentation

Dominant Orientation



CSE 252A, Fall 2023 Computer Vision I

Phase and Magnitude

eiθ
 = cosθ + i sin θ

• Fourier transform of a real function is complex

– difficult to plot, visualize

– instead, we can think of the phase and magnitude of the transform

• Phase is the phase of the complex transform

• Magnitude is the magnitude of the complex transform

• Curious fact

– all natural images have about the same magnitude transform

– hence, phase seems to matter, but magnitude largely doesn’t

• Demonstration

– Take two pictures, swap the phase transforms, compute the 

inverse - what does the result look like?
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This is the 
magnitude 
transform 
of the 
cheetah pic
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This is the 
phase 
transform 
of the 
cheetah pic
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This is the 
magnitude 
transform 
of the 
zebra pic
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This is the 
phase 
transform 
of the 
zebra pic
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Reconstruction 
with zebra 
phase, cheetah 
magnitude
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Reconstruction 
with cheetah 
phase, zebra 
magnitude
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The Fourier Transform and Convolution

• If H and G are images, and F(.) represents Fourier transform, then

• Thus, one way of thinking about the properties of a convolution is by 

thinking of how it modifies the frequencies of the image to which it is 

applied.

• In particular, if we look at the power spectrum, then we see that 

convolving image H by G attenuates frequencies where G has low 

power, and amplifies those which have high power.

• This is referred to as the Convolution Theorem 

F(H*G) = F(H)F(G)
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Various Fourier Transform Pairs

• Important facts

– scale function down  scale transform up

 i.e. high frequency = small details

– The Fourier transform of a Gaussian is a Gaussian.

compare to box function transform
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Other Types of Noise

• Impulsive noise

– randomly pick a pixel and randomly set to a value

– saturated version is called salt and pepper noise

• Quantization effects

– Often called noise although it is not statistical

• Unanticipated image structures

– Also often called noise although it is a real repeatable 

signal
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Some other useful 

filtering techniques

• Median filter

• Anisotropic diffusion
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Median filters  : principle

Method : 

 1. rank-order neighborhood intensities

 2. take middle value

• non-linear filter

• no new gray levels emerge...
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Median filters: Example for window size of 3

The advantage of this type of filter is that it

eliminates spikes (salt & pepper noise).

1,1,1,7,1,1,1,1



?,1,1,1,1,1,1,?
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Median filters : example

filters have width 5 : 
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Median filters  : analysis

Median completely discards the spike,

linear filter always responds to all aspects

Median filter preserves discontinuities,

linear filter produces rounding-off effects

Median filters can destroy detail
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Median filter  : images

3 x 3 median filter : 

sharpens edges, destroys edge cusps 

and protrusions
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Median filters : Gauss revisited

Comparison with Gaussian : 

e.g. upper lip smoother, eye better preserved
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Example of median

10 times 3 X 3 median

patchy effect

important details lost (e.g. earring)
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Next Lecture

• Edge detection and corner detection
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