Photometric Stereo

Computer Vision I
 CSE 252A
 Lecture 4

Announcements

- Assignment 0 is due today, 11:59 PM
- Assignment 1 will be released today
- Due Oct 25, 11:59 PM

Shading reveals 3D surface geometry

Two shape-from-X methods that use shading

- Shape-from-shading: Use just one image to recover shape. Requires knowledge of light source direction and BRDF everywhere. Too restrictive (good candidate for deep learning)
- Photometric stereo: Single viewpoint, multiple images under different lighting.

Photometric Stereo Rigs:

One viewpoint, changing lighting

An example of photometric stereo

surface
(albedo texture map)

Photometric stereo

- Single viewpoint, multiple images under different lighting

1. General BRDF, known lighting
2. Lambertian BRDF, known lighting
3. Lambertian BRDF, unknown lighting

1. Photometric Stereo: General BRDF

and
Reflectance Map

BRDF

- Bi-directional Reflectance Distribution Function

$$
\rho\left(\theta_{\mathrm{in}}, \phi_{\mathrm{in}} ; \theta_{\text {out }}, \phi_{\text {out }}\right)
$$

- Function of
- Incoming light direction:

$$
\theta_{\text {in }}, \phi_{\text {in }}
$$

- Outgoing light direction:

$$
\theta_{\text {out }}, \phi_{\text {out }}
$$

- Ratio of emitted radiance to incident irradiance

Coordinate system

Surface: $\mathbf{s}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, \mathrm{y}, \mathrm{f}(\mathrm{x}, \mathrm{y}))$

$$
\begin{aligned}
\text { Tangent vectors: } & \frac{\partial s(x, y)}{\partial x}=\left(1,0, \frac{\partial f}{\partial x}\right) \\
& \frac{\partial s(x, y)}{\partial y}=\left(0,1, \frac{\partial f}{\partial y}\right)
\end{aligned}
$$

Normal vector

$$
\begin{aligned}
\mathbf{n} & =\frac{\partial s}{\partial x} \times \frac{\partial s}{\partial y} \\
& =\left(-\frac{\partial f}{\partial x},-\frac{\partial f}{\partial y}, 1\right)
\end{aligned}
$$

Gradient Space (p, q)

Gradient Space : (p, q)

$$
p=\frac{\partial f}{\partial x}, \quad q=\frac{\partial f}{\partial y}
$$

Image Formation

For a given point A on the surface a, the image irradiance $\mathrm{E}(\mathrm{x}, \mathrm{y})$ is a function of

1. The BRDF at A
2. The surface normal at A
3. The direction of the light source

Reflectance Map

Let the BRDF be the same at all points on the surface, and let the light direction \mathbf{s} be a constant

1. Then image irradiance is a function of only the direction of the surface normal
2. In gradient space, we have $E(p, q)$

Example Reflectance Map: Lambertian surface

LAMBERTIAN REFLECTANCE MAP

$$
E=L \rho \frac{1+p p_{s}+q q_{s}}{\sqrt{1+p^{2}+q^{2}} \sqrt{1+p_{s}{ }^{2}+q_{s}^{2}}}
$$

$$
P_{s=-2} \quad Q_{s=-1}
$$

Reflectance Map of Lambertian Surface

What does the intensity (irradiance) of one pixel in one image tell us?
It constrains the surface normal projecting to that point to a curve

Two Light Sources, Two reflectance maps

A third image would disambiguate match

Three Source Photometric stereo:

Offline:

Step1

Using source directions \& BRDF, construct reflectance map for each light source direction. $\mathrm{R}_{1}(\mathrm{p}, \mathrm{q}), \mathrm{R}_{2}(\mathrm{p}, \mathrm{q}), \mathrm{R}_{3}(\mathrm{p}, \mathrm{q})$
Online:

1. Acquire three images with known light source directions. $\mathrm{E}_{1}(\mathrm{x}, \mathrm{y}), \mathrm{E}_{2}(\mathrm{x}, \mathrm{y}), \mathrm{E}_{3}(\mathrm{x}, \mathrm{y})$
2. For each pixel location (x, y), find (p, q) as the intersection of the three curves

$$
\begin{aligned}
& R_{1}(p, q)=E_{1}(x, y) \\
& R_{2}(p, q)=E_{2}(x, y) \\
& R_{3}(p, q)=E_{3}(x, y)
\end{aligned}
$$

3. This is the surface normal at pixel (x, y). Over image, the normal field is estimated

Normal Field

Plastic Baby Doll: Normal Field

Next step:

Go from normal field to surface

Recovering the surface $f(x, y)$

Many methods: Simplest approach

1. From estimate $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right), p=-n_{x} / n_{z}, q=-n_{y} / n_{z}$
2. Integrate $p=d f / d x$ along row $(x, 0)$ to get $f(x, 0)$
3. Then integrate $q=d f / d y$ along each column starting with value of the first row

Start here,
setting $\mathrm{f}(0,0)=0$

Use a convex mask to only include object

$\mathrm{f}(\mathrm{x}, 0)$

When done, some values may be negative. Subtract all values from the minimum value.

What might go wrong?

- Height $z(x, y)$ is obtained by integration along a curve from ($\mathrm{x}_{0}, \mathrm{y}_{0}$).

$$
z(x, y)=z\left(x_{0}, y_{0}\right)+\int_{\left(x_{0}, y_{0}\right)}^{(x, y)}(p d x+q d y)
$$

- If one integrates the derivative field along any closed curve, one expects to get back to the starting value.
- Might not happen because of noisy estimates of (p,q)

What might go wrong?

Integrability. If $f(x, y)$ is the height function, we expect that

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}
$$

In terms of estimated gradient space (p, q), this means:

$$
\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}
$$

But since p and q were estimated indpendently at each point as intersection of curves on three reflectance maps, equality is not going to exactly hold

> Horn's Method ["Robot Vision", B.K.P. Horn, 1986]

- Formulate estimation of surface height $\mathrm{z}(\mathrm{x}, \mathrm{y})$ from gradient field by minimizing cost functional:

$$
\iint_{\text {Image }}\left(z_{x}-p\right)^{2}+\left(z_{y}-q\right)^{2} d x d y
$$

where (p, q) are estimated components of the gradient while z_{x} and z_{y} are partial derivatives of best fit surface

- Solved using calculus of variations - iterative updating
- $\mathrm{z}(\mathrm{x}, \mathrm{y})$ can be discrete or represented in terms of basis functions
- Integrability is naturally satisfied

2. Photometeric Stereo: Lambertian Surface, Known Lighting

Photometric stereo, Lambertian surface

$s_{i, 0}$ is the intensity of the i-th light source
$\hat{\mathbf{s}}_{i}$ is the i-th light source direction at the surface point
$\hat{\mathbf{n}}(x, y)$ is the normal at the surface point projected to the image coordinates (x, y)
$a(x, y)$ is the albedo of the surface point projected to the image coordinates (x, y)
$e_{i}(x, y)$ is the intensity of the light reflected from the surface point projected to the i-th image coordinates (x, y)

Photometric stereo, Lambertian surface

For each pixel

$$
\begin{aligned}
& e_{i}(x, y)=a(x, y) \hat{\mathbf{n}}(x, y)^{\top} s_{i, 0} \hat{\mathbf{s}}_{i} \text {, solve for } a(x, y) \text { and } \hat{\mathbf{n}}(x, y) \\
& e_{i}(x, y)=\mathbf{b}(x, y)^{\top} \mathbf{s}_{i} \text {, where } \mathbf{b}(x, y)=a(x, y) \hat{\mathbf{n}}(x, y) \text { and } \mathbf{s}_{i}=s_{i, 0} \hat{\mathbf{s}}_{i} \\
& e_{i}(x, y)=\mathbf{s}_{i}^{\top} \mathbf{b}(x, y) \\
& {\left[\begin{array}{l}
e_{1}(x, y) \\
e_{2}(x, y)
\end{array}\right]\left[\begin{array}{l}
\mathbf{s}_{1}^{\top} \\
\mathbf{s}_{2}^{\top} \\
\vdots
\end{array}\right] \quad n \geq 3 \text { light sources and associated images }} \\
& \left(\mathbf{S}^{\top} \mathbf{S}\right)^{-1} \mathbf{S}^{\top} \mathbf{e}(x, y)=\mathbf{b}(x, y) \\
& \mathbf{S}^{+} \mathbf{e}(x, y)=\mathbf{b}(x, y) \text {, where } \mathbf{S}^{+}=\left(\mathrm{S}^{\top} \mathrm{S}\right)^{-1} \mathrm{~S}^{\top} \\
& \mathbf{b}(x, y)=a(x, y) \hat{\mathbf{n}}(x, y) \text {, where } a(x, y)=\|\mathbf{b}(x, y)\| \text { and } \hat{\mathbf{n}}(x, y)=\frac{\mathbf{b}(x, y)}{\|\mathbf{b}(x, y)\|} \\
& \text { albedo }
\end{aligned}
$$

Input Images

Recovered albedo

Recovered normal field

Surface recovered by integration

Use a convex mask to only include object

An example of photometric stereo

SUV Color Space for Photometric Stereo of Glossy Objects

Motivation: Lambertian Algorithm Applied to non-Lambertian Surface: Photometric Stereo

Use a convex mask to only include object

Dichromatic Reflection Model

Color depends on light source color and diffuse color

Dichromatic Reflection Model

Color of light source

Dichromatic Reflection Model

Image formation: Color Channel k

$I_{k}=\left(D_{k} f_{d}+S_{k} f_{s}(\boldsymbol{\theta})\right) \hat{\mathbf{n}} \cdot \hat{\mathbf{1}}$,

$\boldsymbol{\theta}=\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)$

士

Where f_{d} and f_{s} are the diffuse and specular BRDF

Image formation: 3 color channels

$I_{k}=\left(D_{k} f_{d}+S_{k} f_{S}(\boldsymbol{\theta})\right) \widehat{\mathbf{n}} \cdot \hat{\mathbf{l}}, \quad \boldsymbol{\theta}=\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)$
\(\left[$$
\begin{array}{c}I_{r} \\
I_{g} \\
I_{b}\end{array}
$$\right]=\left(f_{d} \hat{\mathbf{n}} \cdot \hat{l}\right)\left[$$
\begin{array}{l}D_{r} \\
D_{g} \\
D_{b}\end{array}
$$\right]+\left(f_{s}(\theta) \hat{\mathbf{n}} \cdot \hat{l}\right)\left[\begin{array}{l}S_{r}

S_{g}

S_{g}

s_{b}\end{array}\right]\)| Image color lies in span |
| :--- |
| of diffuse color \boldsymbol{D} and |
| specular color \boldsymbol{S} |

$\mathbf{I}=\left(f_{d} \hat{n} \cdot \hat{l}\right) \mathbf{D}+\left(f_{s}(\theta) \hat{n} \cdot \hat{l}\right) \mathbf{S}$

Varying diffuse color

Note:

- Diffuse color D varies over the image
- Specular color is just color of light source

Data-dependent SUV Color Space

$\mathbf{I}_{S U V}=[R] \mathbf{I}_{R G B}$ $[R] \in S O(3)$

\mathbf{U}, \mathbf{V} spans a plane orthogonal to \mathbf{S}
First row of R is specular color S . Other rows are orthogonal to S

Given color of light source $\mathbf{c}=\left(R_{s}, G_{s}, B_{s}\right)^{\top}$, calculate $\mathrm{R} \in \mathrm{SO}(3)$ such that $(1,0,0)^{\top}=\mathrm{R} \hat{\mathbf{c}}$

$$
\hat{\mathbf{c}}=\frac{\mathbf{c}}{\|\mathbf{c}\|}
$$

$$
R=\left[\begin{array}{c}
\hat{\mathbf{c}}^{\top} \\
{[\hat{\mathbf{c}}]^{\perp}}
\end{array}\right] \text {, where }[\hat{\mathbf{c}}]^{\perp} \hat{\mathbf{c}}=0 \text { (i.e., }[\hat{\mathbf{c}}]^{\perp} \text { is left null space of } \hat{\mathbf{c}}
$$

if $\operatorname{det}(R)=-1$, then negate last row of R

Properties of SUV

- Data-dependent.

- Rotational (hence, linear) Transformation.
- The S channel encodes the entire specular component and an unknown amount of diffuse component.
- Shading information is preserved in \mathbf{u} and \mathbf{v} channels.
- Diffuse image

$$
D=\sqrt{U^{2}+V^{2}}
$$

Example

Multi-channel Photometric Stereo

Multi-channel Photometric Stereo

$\mathbf{J}=\left[\begin{array}{ll}I_{U} & I_{V}\end{array}\right]^{\top}$
\mathbf{J}^{k} : 2-channel color vector under the $k^{t h}$ light source.
$\hat{\mathbf{l}}^{k}$: The $k^{t h}$ three light source directions.
ρ : 2-channel UV albedo.

$$
\mathbf{J}^{k}=\left[I_{U}^{k}, I_{V}^{k}\right]^{\top}=\left(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}^{k}\right) \boldsymbol{\rho}
$$

Shading vector $=\mathbf{F}=\left[f^{1}, f^{2}, f^{3}\right]^{\top}=\left[\hat{\mathbf{l}}^{1} \hat{\mathbf{l}}^{2} \hat{\mathbf{l}}^{3}\right]^{\top} \hat{\mathbf{n}}$
Intensity matrix $=[J]=\left[\begin{array}{cc}J_{1}^{1} & J_{2}^{1} \\ J_{1}^{2} & J_{2}^{2} \\ J_{1}^{3} & J_{2}^{3}\end{array}\right]=\left[\begin{array}{cc}f^{1} \rho_{U} & f^{1} \rho_{V} \\ f^{2} \rho_{U} & f^{2} \rho_{V} \\ f^{3} \rho_{U} & f^{3} \rho_{V}\end{array}\right]=\mathbf{F} \boldsymbol{\rho}^{\top}$.
The least squares estimate of the shading vector \mathbf{F} is the principal eigenvector of $[J][J]^{\top}$. Once the shading vector is known, the surface normal is found by solving the matrix equation $\mathbf{F}=\left[\hat{\mathbf{l}}^{1} \hat{\mathbf{l}}^{2} \hat{\mathbf{l}}^{3}\right]^{\top} \hat{\mathbf{n}}$.

Qualitative Results

Quantitative Results

3. Photometric Stereo with unknown lighting and Lambertian surfaces

Uncalibrated Photometric Stereo

- For calibrated photometric stereo, we estimated the n by 3 matrix B of surface normals scaled by albedo using lighting.
- Uncalibrated Input: Only images. No lighting info.
- Without shadowing, all images lie in 3D subspace of the n pixel image space spanned by columns of an n by 3 matrix \mathbf{B}^{*}.
- From 3 or more images, SVD can be used to estimate \mathbf{B}^{*}.
- The n by 3 matrix \mathbf{B} of surface normals scaled by albedo differs from \mathbf{B}^{*} by a 3×3 linear transformation $\mathbf{B}=\mathbf{A B}$ *.
- After enforcing integrability, one can only estimate shape and albedo (B) up to a Generalized Bas Relief (GBR) transformation which has 3 parameters (depth scaling, tilt)

Next Lecture

- Image filtering

