Photometric Image Formation

Computer Vision I
CSE 252A
Lecture 3

Announcements

- Assignment 0 is due Oct 11, 11:59 PM
- Assignment 1 will be released Oct 11
- Due Oct 25, 11:59 PM

Geometric image formation

The projective camera

- Extrinsic parameters: Since the camera coordinate frame may not align with the world coordinate frame, there is a 3D Euclidean transformation from world coordinates to camera coordinates
- Intrinsic parameters: Since the scene units (e.g., cm) differ from the pixel coordinate frame units (i.e., pixels) and origin (i.e., upper left pixel), there is a 2D affine transformation comprised of focal length in x and y directions, skew (which is 0 in real cameras), and principal point, all in terms of pixel dimensions

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=} \\
\underset{\text { Intrinsic }}{\left[\begin{array}{ccc}
\alpha_{x} & 0 & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{array} \begin{array}{cccc}
\text { parameters }_{r_{11}} & r_{12} & r_{13} & t_{X} \\
r_{21} & r_{22} & r_{23} & t_{Y} \\
r_{31} & r_{32} & r_{33} & t_{Z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right]
$$

Photometric image formation

Beyond the pinhole Camera Getting more light - Bigger Aperture

Pinhole Camera Images with Variable

 Aperture2 mm
.6 mm

.35 mm
0.6 mm
0.35 mm

1 mm

2 mm

.07 mm
.15 mm

The reason for lenses

We need light, but big pinholes cause blur.

Thin Lens

- Rotationally symmetric about optical axis
- Spherical interfaces

Thin Lens: Center

- All rays that enter lens along line pointing at \mathbf{O} emerge in same direction

Thin Lens: Focus

Parallel lines pass through the focus F

Thin Lens: Image of Point

All rays passing through lens and starting at \mathbf{P} converge upon \mathbf{P} '

So light gather capability of lens is given the area of the lens and all the rays focus on P^{\prime} instead of become blurred like a pinhole

Thin Lens: Image of Point

Thin Lens: Image Plane

Image Plane

A price: Whereas the image of \mathbf{P} is in focus, the image of \mathbf{Q} is not

Thin Lens: Aperture

Deviations from the lens model

Deviations from this ideal are aberrations Two types

1. geometrical
\square spherical aberration
\square astigmatism
\square distortion

- coma

2. chromatic

Aberrations are reduced by combining lenses

Compound lenses

Chromatic aberration

(great for prisms, bad for lenses)

Chromatic aberration

rays of different wavelengths focused in different planes

Axial chromatic aderration

cannot be removed completely

The imape is blurred and appears cotored at the fringe.

Photometric image formation

- Light incident on a given pixel

Measuring Angle

- The solid angle subtended by an object from a point P is the area of the projection of the object onto the unit sphere centered at P
- Definition is analogous to projected angle in 2D
- Measured in steradians, sr
- If I am at P and I look out, the solid angle tells me how much of my view is filled with an object

Radiance

- Power traveling at some point in a specified direction, per unit area perpendicular to the direction of travel, per unit solid angle
- Units: watts per square meter per steradian, $\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}=$ W m ${ }^{-2} \mathrm{sr}^{-1}$
$L(\mathbf{X}, \theta, \phi)=\frac{P}{(\mathrm{~d} A \cos \theta) \mathrm{d} \omega}$
radiance in direction different from
surface normal, use spherical coordinates θ, ϕ

Irradiance

- Total power arriving at the surface (from all incoming angles)
- Units: power per unit area, $\mathrm{W} / \mathrm{m}^{2}=\mathrm{W} \mathrm{m}^{-2}$

$$
E(\mathbf{X})=\int_{\text {hemisphere }} L(\mathbf{X}, \theta, \phi) \cos \theta \mathrm{d} \omega
$$

Visible Light Spectrum

Resultant Colour

White

Camera sensor

- Measured pixel intensity is a function of irradiance E integrated over
- Pixel's area (x, y)
- range of wavelengths λ
- some period of time t

$$
I=\iint_{t} \int_{\lambda} \int_{y} E(x, y, \lambda, t) s(x, y) q(\lambda) d x d y d \lambda d t
$$

- Ideally, the camera response function R is linear to the radiance, but it may not be

$$
I=R\left(\iint_{t} \int_{x} \int_{y} E(x, y, \lambda, t) s(x, y) q(\lambda) d x d y d \lambda d t\right)
$$

Image irradiance is proportional scene radiance

For a camera with a thin lens, it can be shown that

$$
E(x)=k_{L} L
$$

where

- $\mathrm{E}(\mathrm{x})$ is the image irradiance at point x
- L is the radiance coming from a scene point projecting to image point x
- k_{L} is a proportionality
constant that may depend on the lens and may be a function of x

Combined with linear sensor model, we have

$$
\mathrm{I}=\mathrm{k}_{\mathrm{c}} \mathrm{k}_{\mathrm{L}} \mathrm{~L}
$$

In other words, the measured pixel intensity is proportional to the radiance

Image acquisition

Color Cameras

Eye:

Three types of Cones

Cameras:

1. Filter wheel
2. Prism (with 3 sensors)
3. Filter mosaic
... and X3

Filter wheel

Rotate multiple filters in front of lens Allows more than 3 color bands

Only suitable for static scenes

Prism color camera

Separate light in 3 beams using dichroic prism Requires 3 sensors \& precise alignment Good color separation

Filter mosaic

Coat filter directly on sensor

Bayer filter

Demosaicing (obtain full color \& full resolution image)

G	R	G	R
B	G	B	G
G	R	G	R
B	G	B	G
$C F A$			

rGb	Rgb	rGb	Rgb
rgB	rGb	rgB	rGb
rGb	Rgb	rGb	Rgb
rgB	rGb	rgB	rGb

Interpolated (lower case) pixel values

Color CMOS sensor Foveon's X3

better image quality

smarter pixels

UPS Enables a Foveon $\times 3$ image sensor to be addressed in variable resolutions.

Light at surfaces

Many effects when light strikes a surface -- could be:

- Reflected
- Mirror
- Transmitted
- Skin, glass
- Scattered
- Milk
- Travel along the surface and leave at some other point
- Absorbed

We will assume:

- All the light leaving a point is due to that arriving at that point
- Surfaces don't fluoresce
- e.g., scorpions, detergents
- Surfaces don't emit light (i.e., are cool)

Light at surfaces

BRDF

- Bi-directional Reflectance Distribution Function

$$
\rho\left(\theta_{\text {in }}, \phi_{\text {in }} ; \theta_{\text {out }}, \phi_{\text {out }}\right)
$$

- Function of
- Incoming light direction:

$$
\theta_{\text {in }}, \phi_{\text {in }}
$$

- Outgoing light direction:

$$
\theta_{\text {out }}, \phi_{\text {out }}
$$

- Ratio of emitted radiance to incident irradiance

Lighting, reflectance, and shading

$\operatorname{BRDF} f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r} ; \lambda\right)$

Specular reflection

- Ideal specular reflection is mirror reflection
- Perfectly smooth surface
- Incoming light ray is bounced in single direction
- Angle of incidence equals angle of reflection

5

Specular Reflection: Smooth Surface

- $\mathbf{N}, \omega_{i}, \omega_{\mathbf{0}}$ are coplanar
- $\theta_{i}=\theta_{0}$

$$
\omega_{o}=2\left(\omega_{i} \cdot N\right) N-\omega_{i}
$$

Speculum - Latin for "Mirror"

Diffuse surface

- Ideal diffuse material reflects light equally in all directions
- View-independent
- Matte, not shiny materials
- Paper
- Unfinished wood
- Unpolished stone

Diffuse reflection

- Beam of parallel rays shining on a surface
- Area covered by beam varies with the angle between the beam and the normal
- The larger the area, the less incident light per area
- Incident light per unit area is proportional to the cosine of the angle between the normal and the light rays
- Object darkens as normal turns away from light
- Lambert's cosine law (Johann Heinrich Lambert, 1760)
- Diffuse surfaces are also called Lambertian surfaces

Do not allow angles greater than 90 degrees (light is behind surface) $\cos \theta=\hat{\mathbf{n}}^{\top} \hat{\mathbf{s}}$
$\cos ^{+} \theta=\max \left(0, \hat{\mathbf{n}}^{\top} \hat{\mathbf{s}}\right)$

Glossy surface

- Assume surface composed of small mirrors with random orientation (micro-facets)
- Smooth surfaces
- Micro-facet normals close to surface normal
- Sharp highlights
- Rough surfaces
- Micro-facet normals vary strongly
- Blurry highlight

Polished
Smooth
Rough

Very rough

Glossy reflection

- Expect most light to be reflected in mirror direction
- Because of micro-facets, some light is reflected slightly off ideal reflection direction
- Reflection
- Brightest when view vector is aligned with reflection
- Decreases as angle between view vector and reflection direction increases

Phong reflectance model

Symmetric V-shaped
grooves - 'microfacets'

Phong Lobe
(Lobe illustrates brightness in a direction)

Phong Model

Mirror

Diffuse

Ambient light

- In the real world, light is bounced all around scene
- Could use global illumination techniques to simulate
- Simple approximation
- Add constant ambient light at each point
- Areas with no direct illumination are not completely dark

General BRDF

Example: velvet
Portrait of Sir Thomas
Morre, Hans Holbein the
Younger, 1527

Isotropic BRDF

Isotropic BRDF's are symmetric about the surface normal. If the surface is rotated about the normal for the same incident and emitting directions, the value of the BRDF is the same.

Anisotropic BRDF

Ways to measure BRDFs

Gonioreflectometers

- Three degrees of freedom spread among light source, detector, and/or sample

Gonioreflectometers

- Three degrees of freedom spread among light source, detector, and/or sample

Gonioreflectometers

- Can add fourth degree of freedom to measure anisotropic BRDFs

Marschner's Image-Based BRDF Measurement

- For uniform BRDF, capture 2-D slice corresponding to variations in normals

Ward's BRDF Measurement Setup

- Collect reflected light with hemispherical (should be ellipsoidal) mirror

Half-silvered

Ward's BRDF Measurement Setup

- Result: each image captures light at all exitant angles

Light sources and shading

- How bright (or what color) are objects?
- One more definition: Exitance of a source is the internally generated power radiated per unit area on the radiating surface
- Also referred to as radiant emittance
- Similar to irradiance
- Same units, W/m ${ }^{2}=\mathrm{W}^{-2}$

Light

- Special light sources
- Point sources
- Distant point sources
- Area sources

Point light source

- Similar to light bulbs
- An infinitesimally small point that radiates light equally in all directions
- Light vector varies across receiving surface
- Intensity drops off proportionally to the inverse square of the distance from the light
- Reason for inverse square falloff: Surface area of sphere $A=4 \pi r^{2}$

Standard nearby point source model

- N is the surface normal
- ρ is diffuse (Lambertian) albedo
- S is source vector - a vector from x to the source, whose length is the intensity term

$$
\begin{array}{r}
\rho_{d}(x)\left(\frac{N(x)^{T} S(x)}{r(x)^{2}}\right) \\
\begin{array}{r}
\text { Remember, do not allow angles greater } \\
\text { than } 90 \text { degrees (light is behind surface) }
\end{array} \\
\cos (\theta)=\hat{\mathbf{n}}^{\top} \hat{\mathbf{s}} \\
\cos ^{+}(\theta)=\max \left(0, \hat{\mathbf{n}}^{\top} \hat{\mathbf{s}}\right)
\end{array}
$$

Light from a distant source

- Note, if light is very far away, then view light as coming from a direction in 3D
- Directional light source
- Light rays are parallel
- Direction and intensity are the same everywhere
- As if the source were infinitely far away

$$
\rho_{d}(x)\left(N(x)^{T} S(x)\right)
$$

Remember, do not allow angles greater than 90 degrees (light is behind surface)

$$
\begin{aligned}
\cos (\theta) & =\hat{\mathbf{n}}^{\top} \hat{\mathbf{s}} \\
\cos ^{+}(\theta) & =\max \left(0, \hat{\mathbf{n}}^{\top} \hat{\mathbf{s}}\right)
\end{aligned}
$$

Lambertian (Diffuse) Reflection

Image of the intensity of the light reflected from the surface

Remember, do not allow angles greater

$$
\begin{array}{ll}
e(x, y)=a(x, y) s_{0} \cos \theta & \text { than } 90 \text { degrees (light is behind surface) } \\
e(x, y)=a(x, y) s_{0} \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y), \text { where } \cos \theta=\hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y) & \cos \theta=\hat{\mathbf{n}}^{\top} \hat{\mathbf{s}} \\
e(x, y)=a(x, y) s_{0} \max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y)\right) & \cos ^{+} \theta=\max \left(0, \hat{\mathbf{n}}^{\top} \hat{\mathbf{s}}\right) \\
e(x, y)=a(x, y) \max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \mathbf{s}(x, y)\right), \text { where } \mathbf{s}(x, y)=s_{0} \hat{\mathbf{s}}(x, y) &
\end{array}
$$ where

$a(x, y)$ is the albedo of the surface facet imaged by pixel $\hat{\mathbf{n}}(x, y)$ is the unit normal of the surface facet imaged by pixel s_{0} is the intensity of the light source $\hat{\mathbf{s}}(x, y)$ is the unit direction to the light source from the surface facet imaged by pixel

Lambertian (Diffuse) Reflection

 Image of the intensity of the light reflected from the surface

Remember, do not allow angles greater

$$
\begin{array}{ll}
e(x, y)=a(x, y) s_{0} \cos \theta & \text { than } 90 \text { degrees (light is behind surface) } \\
e(x, y)=a(x, y) s_{0} \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y), \text { where } \cos \theta=\hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y) & \cos \theta=\hat{\mathbf{n}}^{\top} \hat{\mathbf{s}} \\
e(x, y)=a(x, y) s_{0} \max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y)\right) & \cos ^{+} \theta=\max \left(0, \hat{\mathbf{n}}^{\top} \hat{\mathbf{s}}\right) \\
e(x, y)=a(x, y) \max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \mathbf{s}(x, y)\right), \text { where } \mathbf{s}(x, y)=s_{0} \hat{\mathbf{s}}(x, y) &
\end{array}
$$

- For color (instead of grayscale)
- Surface color and light color are RGB
- Need to compute RGB values of reflected color separately

Blinn-Phong Reflection

$$
e(x, y)=s_{a, 0} k_{a}(x, y)+s_{0}\left(k_{d}(x, y) f_{d}(x, y)+k_{s}(x, y) f_{s}(x, y)\right)
$$

where

$$
\begin{aligned}
f_{d}(x, y) & =\max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y)\right) \\
f_{s}(x, y) & =\max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{h}}(x, y)\right)^{\alpha(x, y)}
\end{aligned}
$$

where

$$
\hat{\mathbf{h}}(x, y)=\frac{1}{\|\mathbf{h}(x, y)\|} \mathbf{h}(x, y) \text { and } \mathbf{h}(x, y)=\hat{\mathbf{s}}(x, y)+\hat{\mathbf{v}}(x, y)
$$

$k_{a}(x, y)$ is the ambient value of the surface facet imaged by pixel
$k_{d}(x, y)$ is the diffuse value of the surface facet imaged by pixel
$k_{s}(x, y)$ is the specular value of the surface facet imaged by pixel
$\alpha(x, y)$ is the shininess of the surface facet imaged by pixel
$\hat{\mathbf{n}}(x, y)$ is the unit normal of the surface facet imaged by pixel
$s_{a, 0}$ is the ambient light intensity
s_{0} is the intensity of the light source
$\hat{\mathbf{s}}(x, y)$ is the unit direction to the light source from the surface facet imaged by pixel
$\hat{\mathbf{v}}(x, y)$ is the unit direction to the camera from the surface facet imaged by pixel

Blinn-Phong Reflection

$$
e(x, y)=s_{a, 0} k_{a}(x, y)+s_{0}\left(k_{d}(x, y) f_{d}(x, y)+k_{s}(x, y) f_{s}(x, y)\right)
$$

where

$$
\begin{aligned}
& f_{d}(x, y)=\max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{s}}(x, y)\right) \\
& f_{s}(x, y)=\max \left(0, \hat{\mathbf{n}}(x, y)^{\top} \hat{\mathbf{h}}(x, y)\right)^{\alpha(x, y)}
\end{aligned}
$$

where

$$
\hat{\mathbf{h}}(x, y)=\frac{1}{\|\mathbf{h}(x, y)\|} \mathbf{h}(x, y) \text { and } \mathbf{h}(x, y)=\hat{\mathbf{s}}(x, y)+\hat{\mathbf{v}}(x, y)
$$

Multiple Light Sources

- Light is additive
- Integrate over all light sources
- For example, given two light sources
- Render image 1 using light source 1
- Render image 2 using light source 2
- Final image $=$ image $1+$ image 2

image 1

image 2

final image

Shadows

- Give additional cues on scene lighting

Shadows

- Contact points
- Depth cues

Shadows cast by a point source

- A point that cannot see the source is in shadow
- For point sources, two types of shadows: cast shadows \& attached shadows

Terminology

Umbra: fully shadowed region
 Penumbra: partially shadowed region

Penumbra and Umbra

Hard and soft shadows

- Point and directional lights lead to hard shadows, no penumbra
- Area light sources lead to soft shadows, with penumbra point directional

umbra

Hard and soft shadows

Hard shadow from point light source

Soft shadow from area light source

Next Lecture

- Photometric Stereo

