## Computer Vision I CSE 252A

Lecture 17

## Announcements

- Assignment 4 is due Dec 6, 11:59 PM
- Final exam is Dec 14, 7:00 PM-9:59 PM
- Please complete TA and course evaluations


## Electromagnetic Spectrum



## The appearance of colors

- Color appearance is strongly affected by (at least):
- spectrum of lighting striking the retina
- other nearby colors (space)
- adaptation to previous views (time)
- "state of mind"


## Separating visible light



4.1 NEWTON'S SUMMARY DRAWING of his experiments with light. Using a point source of light and a prism, Newton separated sunlight into its fundamental components. By reconverging the rays, he also showed that the decomposition is reversible.

From Foundations of Vision, Brian Wandell, 1995, via B. Freeman slides



| XXXXXX | GREEN | GREEN |
| :--- | :--- | :--- |
| XXXXXX | BLUE | BLUE |
| XXXXXX | YELLOW | YELLOW |
| XXXXXX | PURPLE | PURPLE |
| XXXXXX | ORANGE | ORANGE |
| XXXXXX | RED | RED |
| XXXXXX | WHITE | WHITE |
| XXXXXX | PURPLE | PURPLE |
| XXXXXX | ORANGE | ORANGE |
| XXXXXX | BLUE | BLUE |
| XXXXXX | RED | RED |
| XXXXXX | GREEN | GREEN |
| XXXXXX | WHITE | WHITE |
| XXXXXX | YELLOW | YELLOW |
| XXXXXX | PURPLE | PURPLE |
| XXXXXX | RED | RED |
| XXXXXX | GREEN | GREEN |
| XXXXXX | BLUE | BLUE |

## Light Spectrum

Resultant Colour

White


## Talking about colors

1. Spectrum -

- A positive function over interval 400 nm 700 nm
- "Infinite" number of values needed.

2. Names

- red, harvest gold, cyan, aquamarine, auburn, chestnut
- A large, discrete set of color names

3. R,G,B values

- Just 3 numbers


## Color Reflectance

## Measured color spectrum is a function of the spectrum of the illumination and reflectance



## Illumination Spectra

## Different illumination spectra yield different measured color spectra

Blue skylight

## Tungsten bulb



From Foundations of Vision, Brian Wandell, 1995, via B. Freeman slides

## Why is this important?

- The color measured by a camera depends on - The camera response function
- Spectrum of illuminant
- Reflectance properties of objects in the scene
- The "color" of an object does not actually make a lot of sense, unless you talk about it under a reference light


Measurements of relative spectral power of sunlight, made by J . Parkkinen and P . Silfsten. Relative spectral power is plotted against wavelength in nm . The visible range is about 400 nm to 700 nm . The color names on the horizontal axis give the color names used for monochromatic light of the corresponding wavelength --- the "colors of the rainbow". Mnemonic is "Richard of York got blisters in Venice".


Spectral albedoes for several different leaves, with color names attached. Notice that different colours typically have different spectral albedo, but that different spectral albedoes may result in the same perceived color (compare the two whites). Spectral albedoes are typically quite smooth functions. Measurements by E.Koivisto.

## Fresnel Equation for Polished Copper



## RGB Color Model

- Based on human perception of color


Red cones
Green cones
Blue cones

## Color receptors


"Red" cone

"Green" cone

"Blue" cone

Response of $k$ th cone $=\int \rho_{k}(\lambda) E(\lambda) d \lambda$

## Three types of cones: R,G,B

 Response of $k$ th cone $=\int \rho_{k}(\lambda) E(\lambda) d \lambda$

There are three types of cones
S: Short wave lengths (Blue) M: Mid wave lengths (Green)
$\qquad$ - Three attributes to a color

- Three numbers to describe a color L: Long wave lengths (Red)


## Color matching experiment


4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and adjusts the intensities of the three primary lights to match the appearance of the test light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to the observer. After Judd and Wyszecki, 1975.

## Not on a computer Screen

## Color Matching



## Not on a computer Screen

## Color matching experiment 1


slide from T. Darrel

## Color matching experiment 1


slide from T. Darrel

## Color matching experiment 1


slide from T. Darrel

## Color matching experiment 1


slide from T. Darrel

## Color matching experiment 2


slide from T. Darrel

## Color matching experiment 2


slide from T. Darrel

## Color matching experiment 2


slide from T. Darrel

## Color matching experiment 2


slide from T. Darrel

## The principle of trichromacy

- Experimental facts:
- Three primaries will work for most people if we allow subtractive matching
- Exceptional people can match with two or only one primary.
- This could be caused by a variety of deficiencies.
- Most people make the same matches.
- There are some anomalous trichromats, who use three primaries but make different combinations to match.


## Color matching functions

- Choose primaries, say $p_{1}(\lambda), p_{2}(\lambda), p_{3}(\lambda)$
- For monochromatic (single wavelength) energy function, what amounts of primaries will match it?
- That is, for each wavelength $\lambda$, determine how much of $\mathrm{p}_{1}, \mathrm{p}_{2}$, and $\mathrm{p}_{3}$ is needed to match light of that wavelength alone
- These are color matching functions


## RGB



RGB: primaries are monochromatic, energies are $645.2 \mathrm{~nm}, 526.3 \mathrm{~nm}, 444.4 \mathrm{~nm}$. Color matching functions have negative parts -> some colors can be matched only subtractively.

## CIEXYZ



CIEXYZ: Color matching functions are positive everywhere, but primaries are imaginary (i.e., not visible colors).

## Color spaces

- Linear color spaces describe colors as linear combinations of primaries
- Choice of primaries = choice of color matching functions $=$ choice of color space
- Color matching functions, hence color descriptions, are all within linear transformations
- RGB: primaries are monochromatic, energies are $645.2 \mathrm{~nm}, 526.3 \mathrm{~nm}, 444.4 \mathrm{~nm}$. Color matching functions have negative parts -> some colors can be matched only subtractively
- CIE XYZ: Color matching functions are positive everywhere, but primaries are imaginary (i.e., not visible colors).


## Color Spaces

There are many different color spaces, with each describing a color using three numbers:

\author{

1. RGB <br> 2. XYZ <br> 3. CIExyz <br> 4. LMS <br> 5. CMY
}

In general a color represented in one color space (say XYZ ) can be converted and represented in a second color space (say RGB)

## Example: RGB to YIQ

$$
\left[\begin{array}{c}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
0.596 & -0.275 & -0.321 \\
0.212 & -0.532 & 0.311
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- Used by NTSC TV standard
- Separates Hue \& Saturation (I,Q) from Luminance (Y)


## RGB Color Cube



- Block of colors for (r, g, b) in the range ( $0-1$ ).
- Convenient to have an upper bound on coefficient of each primary.
- In practice:
- primaries given by monitor phosphors (phosphors are the materials on the face of the monitor screen that glow when struck by electrons)


## CIELAB

- Also referred to as CIE $\mathrm{L}^{*} \mathrm{a}^{*} \mathrm{~b}^{*}$
- Designed to approximate human vision
- Nonlinear response
- Includes $100 \%$ of visible colors
- L is lightness
- A and B are color-opponent dimensions
- Nonlinear conversion to/from CIEXYZ colorspace
- Human perceptual difference between two colors is the Euclidean distance between the two 3D points in CIELAB space


## CIEXYZ and CIExyz

- Encompasses all color sensations the average person can experience
- Standard reference
- Many other color space definitions are based on XYZ
- Y is luminance
- Z is quasi-equal to blue stimulation
- X is a linear combination of cone response curves chosen to be nonnegative
- The plane $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=1$ contains all possible chromaticities xyz

$$
\begin{aligned}
x & =\frac{X}{X+Y}+Z \\
y & =\frac{Y}{X+Y+Z} \\
z & =\frac{Z}{X+Y+Z}=1-x-y
\end{aligned}
$$

$$
\begin{aligned}
& X=\frac{Y}{y} x \\
& Z=\frac{Y}{y}(1-x-y)
\end{aligned}
$$

## CIEXYZ and CIExy



Usually draw $\mathrm{x}, \mathrm{y}$, where $x=X /(X+Y+Z)$ and
$\mathrm{y}=\mathrm{Y} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$


$$
(\mathrm{z}=1-\mathrm{x}-\mathrm{y})
$$

## CIExyY (Chromaticity Space)




## Color Specification: Chromaticity

- Chromaticity coordinates
- $(x, y, z)$
where $x+y+z=1$
- Usually specified by $(x, y)$
where $z=1-x-y$


The CIE 1931 color space chromaticity diagram

## Chromaticities

- Set of chromaticities
- Red
- Green
- Blue
- White (point)



## Standard Illuminants

| Name | CIE $19312^{\circ}$ |  | CIE 1964 10 ${ }^{\circ}$ |  | ССТ (K) | Hue | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x_{2}$ | $y_{2}$ | $x_{10}$ | $y_{10}$ |  |  |  |
| A | 0.44757 | 0.40745 | 0.45117 | 0.40594 | 2856 |  | Incandescent / Tungsten |
| B | 0.34842 | 0.35161 | 0.34980 | 0.35270 | 4874 |  | \{obsolete\} Direct sunlight at noon |
| C | 0.31006 | 0.31616 | 0.31039 | 0.31905 | 6774 |  | \{obsolete\} Average / North sky Daylight |
| D50 | 0.34567 | 0.35850 | 0.34773 | 0.35952 | 5003 |  | Horizon Light. ICC profile PCS |
| D55 | 0.33242 | 0.34743 | 0.33411 | 0.34877 | 5503 |  | Mid-morning / Mid-afternoon Daylight |
| D65 | 0.31271 | 0.32902 | 0.31382 | 0.33100 | 6504 |  | Noon Daylight: Television, sRGB color space |
| D75 | 0.29902 | 0.31485 | 0.29968 | 0.31740 | 7504 |  | North sky Daylight |
| E | 1/3 | 1/3 | 1/3 | 1/3 | 5454 |  | Equal energy |
| F1 | 0.31310 | 0.33727 | 0.31811 | 0.33559 | 6430 |  | Daylight Fluorescent |
| F2 | 0.37208 | 0.37529 | 0.37925 | 0.36733 | 4230 |  | Cool White Fluorescent |
| F3 | 0.40910 | 0.39430 | 0.41761 | 0.38324 | 3450 |  | White Fluorescent |
| F4 | 0.44018 | 0.40329 | 0.44920 | 0.39074 | 2940 |  | Warm White Fluorescent |
| F5 | 0.31379 | 0.34531 | 0.31975 | 0.34246 | 6350 |  | Daylight Fluorescent |
| F6 | 0.37790 | 0.38835 | 0.38660 | 0.37847 | 4150 |  | Lite White Fluorescent |
| F7 | 0.31292 | 0.32933 | 0.31569 | 0.32960 | 6500 |  | D65 simulator, Daylight simulator |
| F8 | 0.34588 | 0.35875 | 0.34902 | 0.35939 | 5000 |  | D50 simulator, Sylvania F40 Design 50 |
| F9 | 0.37417 | 0.37281 | 0.37829 | 0.37045 | 4150 |  | Cool White Deluxe Fluorescent |
| F10 | 0.34609 | 0.35986 | 0.35090 | 0.35444 | 5000 |  | Philips TL85, Ultralume 50 |
| F11 | 0.38052 | 0.37713 | 0.38541 | 0.37123 | 4000 |  | Philips TL84, Ultralume 40 |
| F12 | 0.43695 | 0.40441 | 0.44256 | 0.39717 | 3000 |  | Philips TL83, Ultralume 30 |

Hue of each white point,

## Chromaticity Diagrams



Rec. 709 and sRGB $35.9 \%$ of visible colors


Adobe RGB
$52.1 \%$ of visible colors

## Chromaticity Diagrams



Rec. 709 and sRGB $35.9 \%$ of visible colors


Wide gamut RGB
$77.6 \%$ of visible colors

## Chromaticity Diagrams



Rec. 709 and sRGB $35.9 \%$ of visible colors


ProPhoto RGB
$90 \%$ of visible colors

# Academy Color Encoding Specification (ACES) 

| ACES |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Color | CIE x | CIE y | CIE z |  |
| Red | 0.73470 | 0.26530 | 0.00000 |  |
| Green | 0.00000 | 1.00000 | 0.00000 |  |
| Blue | 0.00010 | -0.07700 | 1.07690 |  |
| White | 0.32168 | 0.33767 | 0.34065 | Approximately D60 |

$100 \%$ of visible colors


## Incorrect Image Conversion



Same pixel values stored in files, but with different sets of chromaticities

## Chromatic Adaptation

- Estimating the appearance of a sample under a different illuminant
- Convert between different white points
- LMS color space
- Response of the three types of cones in the human eye
- Long, medium, and short wavelengths
- XYZ to LMS
- Bradford transformation matrix
- Chromatic adaptation
- Adaptation matrix


$$
\begin{aligned}
{\left[\begin{array}{c}
L \\
M \\
S
\end{array}\right] } & =\left[\begin{array}{ccc}
0.8951 & 0.2664 & -0.1614 \\
-0.7502 & 1.7135 & 0.0367 \\
0.0389 & -0.0685 & 1.0296
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
D & =D_{1}^{-1} D_{2}=\left[\begin{array}{ccc}
L_{2} / L_{1} & 0 & 0 \\
0 & M_{2} / M_{1} & 0 \\
0 & 0 & S_{2} / S_{1}
\end{array}\right]
\end{aligned}
$$

## Application: Color Transfer

- RGB to XYZ with white point of standard illuminant E (use chromatic adaptation)
- XYZ to Lab
- Map source pixels such that the $\mathrm{L}^{*} \mathrm{a}^{*} \mathrm{~b}^{*}$ mean and standard deviations match those of the target image


Source


Target


Source mapped to target

## Nonlinear Encoding

- All of these standards use nonlinear encoding (gamma encoding)
- Video
- Recommendation ITU-R BT. 601 (standard-definition television (SDTV))
- SMPTE standard 240M (precursor to Rec. 709)
- Recommendation ITU-R BT. 709 (high-definition television (HDTV))
- Image
- sRGB
- Adobe RGB
- Wide gamut RGB (or Adobe Wide Gamut RGB)
- ProPhoto RGB (or reference output medium metric (ROMM) RGB)
- Must convert to linear colorspace first for most color processing


## Nonlinear Encoding and Conversion to Linear

- Typical CRT monitors have a transfer function of gamma $=2.2$
- Image and video standards were designed to be directly displayed on CRTs
- Pixel values are encoded to approximate gamma = 2.2
- Nonlinear to linear (floating-point) using a lookup table
- Linear to nonlinear calculation



## Nonlinear R'G'B' Color Space and Linear RGB Color Space

- Example: sRGB



## Luminance Y and Luma $\mathrm{Y}^{\prime}$

- Luminance is different than Luma
- Luminance is calculated from linear RGB
- Y coordinate of XYZ
- Luma is calculated from nonlinear R'G'B'
- Example: sRGB

$$
\mathrm{Y}=0.21263903 * \mathrm{R}+0.71516871 * \mathrm{G}+
$$

$$
0.072192319 \text { * B }
$$

$$
\mathrm{Y}^{\prime}=0.21263903 * \mathrm{R}^{\prime}+0.71516871 * \mathrm{G}^{\prime}+
$$

$$
0.072192319 \text { * B' }
$$

## Next Lecture

- Human visual system

