
CSE 252A, Fall 2023 Computer Vision I

Convolutional Neural Networks

Computer Vision I

CSE 252A

Lecture 16

CSE 252A, Fall 2023 Computer Vision I

Announcements

• Assignment 4 is due Dec 6, 11:59 PM

CSE 252A, Fall 2023 Computer Vision I

Neural Networks

4

Perceptron

w0

0

1

0

-w0
wTx

O(x)

Note: For x=(x1,… , x2), xi can

be binary or a real number

Two Layer Network

wij

wjk

• Fully connected network

• Nodes are nonlinear function of weighted sum

inputs:

f(x; w) = S(wTx+w0)

The nodes of multilayered network

a

x: input vector

w: weights

w0: bias term

a: activation function

y(x; w) = a(wTx+w0)

w0

x: input vector padded

 with 1

w: weights including bias

a: activation function

y(x; w) = a(wTx)

y

Feedforward Networks

• Let be some function we are trying to
approximate

• This function could be assignment of an input to a
category as in a classifier

• This function could be one or more real numbers
(regression)

• Let a feedforward network approximate this
mapping y=f(x; w) by learning parameters w

Universal Approximation Theorem

• Universal Approximation Theorem: A feedforward

neural network with a linear output layer and one or

more hidden layers with ReLU [Leshno et al. ’93], or

sigmoid or some other “squashing” activation function

[Hornik et al. ’89, Cybenko ’89] can approximate any

continuous function on a closed and bounded subset of

This holds for functions mapping finite dimensional

discrete spaces as well.

• If we have enough hidden units we can approximate

“any” function! … but we may not be able to train it.

Universal Approximation Theorem: Caveats

• So even though “any” function can be approximated with a

network as described with single hidden layer, the network may

fail to train, fail to generalize, or require so many hidden units as

to be infeasible.

• This is both encouraging and discouraging!

• However, [Montufar et al. 2014] showed that deeper networks

are more efficient in that a deep rectified net can represent

functions that would require an exponential number of hidden

units in a shallow one hidden layer network.

• Deep networks composed on many rectified hidden layers are

good at approximating functions that can be composed from

simpler functions. And lots of tasks such as image classification

may fit nicely into this space.

Optimization for Deep Nets

• Although there is a large literature on global
optimization, gradient descent-based methods are
used in practice.

• Our optimizations for deep learning are typically
done in very high dimensional spaces, where the
number of weights can run into the millions.

• And for these optimizations, when starting the
training from scratch (i.e., some random initialization
of the weights), we will need LOTS of labeled training
data.

Back propagation

• Basically another name for gradient descent

• Because of nature of network

a3(a2(a1(x;w1);w2);w3), gradients with respect to wi

are determined by chain rule

• Can be thought of as “propagating” from loss

function to input.

• Adaptive step size methods (e.g., ADAM).

Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!

Training

• Regularization

• Early stopping

iterations

— training set

— validation set

stop here

overfitting

Finally, we get to images…

What if we just vectorized images

and stuffed these into a MLP?

MLP ?

Fully Connected (FC) Layer

Every input unit is connected to every output unit.

inputs

outputs

hidden units

Too many weights and connections!

100x100x3 inputs

50x50 hidden units

25x25 hidden units

output units

• This fully connected hidden layer might have 75 million weights!

• And this is just for a thumbnail image and a two layer net.

CSE 252A, Fall 2023 Computer Vision I

Convolutional Neural Networks

Fully Connected (FC) Layer

• Every input unit is connected to every output unit.

• m * n weights

inputs

outputs

hidden units

m

inputs

n hidden

units

Fully Connected (FC) Layer

• Consider a hidden unit: it connects to all units from the previous layer

• m weights per hidden unit

inputs

outputs

hidden units

m

inputs

n hidden

units

Convolutional Layer: Local

Connections

inputs

outputs

hidden units

m

inputs

n hidden

units

• The connections are spatially local and governed by the kernel size.

Convolutional Layer: Local

Connections

• The connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units

m

inputs

n hidden

units

Convolutional Layer: Local

Connections and Shared Weights

inputs

outputs

hidden units

• The connections are spatially local and governed by the kernel size.

• The weights are shared. They are the same for each position.

• So, this is like a convolution kernel.

m

inputs

n hidden

units

3 weights

Convolution in 2D

(already rotated)

Convolution with 2D Kernel

-1 0 1

-2 0 2

-1 0 1* =
(already rotated)

Convolution with 2D Kernel

-1 -1 -1

-1 8 -1

-1 -1 -1* =

Convolution with 2D Kernel

1 2 1

2 4 2

1 2 1* =/ 16

Convolutional Layer: Shared

Weights

inputs

outputs

hidden units

Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputs

hidden units

Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputshidden units

Convolutional Layer: Stride

The output dim = (input dim - kernel size) / stride + 1.

inputs

outputs
hidden units

Convolutional Layer: Padding + Stride

Output dimension = (input dim - kernel size + 2 * padding) / stride + 1

inputs

outputshidden units

0

0

ReLU used with ConvNets

• Just like with our fully connected layers, for our

convolutional layers we will follow the linear

operation (convolution) with a non-linear

squashing function.

• The function to use for now is ReLU.

• But we are not done…there’s one more thing!

Pooling

• We can spatially pool the output from the ReLU to
reduce the size of subsequent layers in our
network.

• This reduces both computation and the number of
parameters that need to be fit and helps prevent
overfitting.

• The pooling operation is often the max value in the
region, but it could be average, or median, etc.

• The pooling has a stride associated with it that
determines the downsampling of the input.

Pooling Layer

The pooling layer pools values in regions of the conv layer.

inputs

outputsconv layer

0

0

pooling layer

But wait, there’s more

Convolutional Layer: Shared

Weights

The weights for the kernel are shared. They are the same for each position.

inputs

outputs

hidden units

Kernel finds just one type of feature

-1 0 1

-2 0 2

-1 0 1* =

If a kernel shares weights, then it can only extract one type of feature

-1 -1 -1

-1 8 -1

-1 -1 -1* =

Single input channels

Conv

Layer

Grayscale image

1 channels

• Convolution kernel is 3-D: Goes across image dimensions & across channels

• Size = width x height x # input channels

Output

channel

Multiple input channels

Conv

Layer

Color images

3 channels

• Convolution kernel is 3-D: Goes across image dimensions & across channels

• Size = width x height x # input channels

Output

channel

Convolution with 2D Kernel

1 2 1

2 4 2

1 2 1* =/ 16

-1 -1 -1

-1 8 -1

-1 -1 -1* =

Many kernels yielding many features!

Conv

Layer

Color images

3 channels

Conv layer features

9 channels

• Convolution kernel is 4-D: For each output channel, kernel goes across input

dimensions and channels

• Size = width x height x # input channels x # output channels

An example deep

convolution network

• Input: 28x28 grayscale image

• Output: 10 classes. One output per class.

A Convolutional Net

• Let’s assume we have 28x28 grayscale images as
input to our conv net. So we will input 28x28x1
samples into the net.

• Let’s fix our kernel size at 5x5 and, to make this
simple, pad our images with zeros and use a stride =
1.

• Let’s use max pooling on the output, with a 2x2
pooling region and a stride of 2.

• Let’s extract 32 features after the first layer.

• So the output from this layer will be 14x14x32.

A Convolutional Net

28x28x1 14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32

A Convolutional Net

• Now let’s make a second layer, also convolutional.

• Let’s fix our kernel size at 5x5, pad our images with
zeros and use a stride = 1.

• Let’s use max pooling on the output again, with a
2x2 pooling region and a stride of 2.

• Let’s extract 64 features after the second layer.

• So the output from this layer will be 7x7x64.

28x28x1

A Convolutional Net

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32

14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=64

7x7x64

A Convolutional Net

• Our third layer will be a fully connected layer

mapping our convolutional features to a 1024

dimensional feature space.

• This layer is just like any of the hidden layers

you’ve seen before. It is a linear transformation

followed by ReLU.

• So the output from this layer will be 1x1x1024.

A Convolutional Net

28x28x1

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32

14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=64

7x7x64

FC layer:

dim=1024

1x1x1024

A Convolutional Net

• Finally, we’ll map this feature space to a 10 class

output space and use a softmax with a MLE/cross

entropy loss function.

• And…we’re done!

A Convolutional Net

28x28x1

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32

14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=64

7x7x64

FC layer:

dim=1024

1x1x1024

1x1x10

Output

+

Softmax

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7x7x64x1024+1024) + (1024x10+10)

Major layers

• Convolutional layer

• Pooling layer

• Fully connected Layer

• Softmax

Some Famous Deep

Nets and Data sets

LeNet [LeCun et al., 1998]

AlexNet [Krizhevsky et al., 2012]

• Won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in

September 2012

• The network achieved a top-5 error rate (rate of not finding the true label of a

given image among its top 5 predictions) of 15.3%

• The next best result was 26.2%

• AlexNet used GPUs

VGG16 [Simonyan and Zisserman, 2014]

• Runner up of ILSVRC 2014 classification task

• Won the localization task (where in the image,

e.g., draw a box around it)

GoogLeNet [Szegedy et al., 2014]

Won the ILSVRC 2014 classification task

ResNet [He et al., 2016]

“Identity shortcut connection” skips one or more layers. A larger number of layers

while mitigating the “vanishing gradient” problem (the gradient is back-propagated

to earlier layers, repeated multiplication may make the gradient infinitively small).

PASCAL Visual Object Classes (VOC)

Provides standardized

image data sets for

object class recognition.

PASCAL VOC

20 categories in 11,530 images with 27,450 ROIs and

 6,929 segmentations

[Everingham et al. 2005—2012]

ImageNet

[Deng et al. 2009]

20,000+ categories x ~1000 instances = 14,000,000+ images

• ImageNet Large Scale Visual Recognition

Challenge (ILSVRC)

• Classification task.

• Localization

Summary

• Artificial neural networks have been around for over
60 years

• Universal Approximation Theorem
• If we have enough hidden units, then we can

approximate any function
• Deeper networks (more hidden layers) are more

efficient than a single hidden layer
• Convolutional neural networks share weights

• Significantly less weights than a fully connected
network

• Training a neural network is a nonlinear optimization
problem
• Never train on your validation set!

Different Classes

Network Surgery

+

Fine Tuning

Cats vs. Dogs
Data from [Kaggle.com]

2 categories x 11,000 instances = 22,000 images

vs.

We usually don’t have enough data!

…but here is a FANTASTIC trick!

Domain Transfer

• Train a deep ConvNet using lots of data on a large image
classification problem like ImageNet.

• Save the weights.

• Chop off the output layer (or final layers) of this ConvNet.

• Replace the output layer (or final layers) with one that fits your
problem.

• Freeze the weights in the old layers and train on your data,
allowing the weights in the new layer to settle.

• Unfreeze the whole network and train.

VGG16 [Simonyan and Zisserman, 2014]

• Runner up of ILSVRC 2014 classification task

• Won the localization task (where in the image,

e.g., draw a box around it)

ImageNet

[Deng et al. 2009]

20,000+ categories x ~1000 instances = 14,000,000+ images

• ImageNet Large Scale Visual Recognition

Challenge (ILSVRC)

• Classification task.

• Localization

Domain Transfer + Fine-Tuning

Network Surgery

Keep Toss

Network Surgery

Keep Add

1 x 1 x 256 1 x 1 x 1

First, train the top layers

Freeze Train

1 x 1 x 256 1 x 1 x 1

Then, train the whole network

Train Train

1 x 1 x 256 1 x 1 x 1

CSE 252A, Fall 2023 Computer Vision I

Next Lecture

• Color

	Slide 1: Convolutional Neural Networks
	Slide 2: Announcements
	Slide 3: Neural Networks
	Slide 4: Perceptron
	Slide 5: Two Layer Network
	Slide 6: Feedforward Networks
	Slide 7: Universal Approximation Theorem
	Slide 8: Universal Approximation Theorem: Caveats
	Slide 9: Optimization for Deep Nets
	Slide 10: Back propagation
	Slide 11: Training and Validation Sets
	Slide 12: Training
	Slide 13
	Slide 14: What if we just vectorized images and stuffed these into a MLP?
	Slide 15: Fully Connected (FC) Layer
	Slide 16: Too many weights and connections!
	Slide 17: Convolutional Neural Networks
	Slide 18: Fully Connected (FC) Layer
	Slide 19: Fully Connected (FC) Layer
	Slide 20: Convolutional Layer: Local Connections
	Slide 21: Convolutional Layer: Local Connections
	Slide 22: Convolutional Layer: Local Connections and Shared Weights
	Slide 23: Convolution in 2D
	Slide 24: Convolution with 2D Kernel
	Slide 25: Convolution with 2D Kernel
	Slide 26: Convolution with 2D Kernel
	Slide 27: Convolutional Layer: Shared Weights
	Slide 28: Convolutional Layer: Stride
	Slide 29: Convolutional Layer: Stride
	Slide 30: Convolutional Layer: Stride
	Slide 31: Convolutional Layer: Padding + Stride
	Slide 32: ReLU used with ConvNets
	Slide 33: Pooling
	Slide 34: Pooling Layer
	Slide 35
	Slide 36: Convolutional Layer: Shared Weights
	Slide 37: Kernel finds just one type of feature
	Slide 38: Single input channels
	Slide 39: Multiple input channels
	Slide 40: Convolution with 2D Kernel
	Slide 41: Many kernels yielding many features!
	Slide 42: An example deep convolution network
	Slide 43: A Convolutional Net
	Slide 44: A Convolutional Net
	Slide 45: A Convolutional Net
	Slide 46: A Convolutional Net
	Slide 47: A Convolutional Net
	Slide 48: A Convolutional Net
	Slide 49: A Convolutional Net
	Slide 50: A Convolutional Net
	Slide 51: Major layers
	Slide 52: Some Famous Deep Nets and Data sets
	Slide 53: LeNet [LeCun et al., 1998]
	Slide 54: AlexNet [Krizhevsky et al., 2012]
	Slide 55: VGG16 [Simonyan and Zisserman, 2014]
	Slide 56: GoogLeNet [Szegedy et al., 2014]
	Slide 57: ResNet [He et al., 2016]
	Slide 58: PASCAL Visual Object Classes (VOC)
	Slide 59: PASCAL VOC
	Slide 60
	Slide 61: ImageNet
	Slide 62
	Slide 63: Summary
	Slide 64: Different Classes Network Surgery + Fine Tuning
	Slide 65: Cats vs. Dogs
	Slide 66
	Slide 67
	Slide 68: Domain Transfer
	Slide 69: VGG16 [Simonyan and Zisserman, 2014]
	Slide 70: ImageNet
	Slide 71: Domain Transfer + Fine-Tuning
	Slide 72: Network Surgery
	Slide 73: Network Surgery
	Slide 74: First, train the top layers
	Slide 75: Then, train the whole network
	Slide 76: Next Lecture

