
CSE 252A, Fall 2023 Computer Vision I

Convolutional Neural Networks

Computer Vision I

CSE 252A

Lecture 16



CSE 252A, Fall 2023 Computer Vision I

Announcements

• Assignment 4 is due Dec 6, 11:59 PM



CSE 252A, Fall 2023 Computer Vision I

Neural Networks



4

Perceptron

w0

0

1

0

-w0
wTx

O(x)

Note: For x=(x1,… , x2), xi can 

be binary or a real number



Two Layer Network

wij

wjk

• Fully connected network

• Nodes are nonlinear function of weighted sum 

inputs:

f(x; w) = S(wTx+w0)

The nodes of multilayered network

a

x: input vector 

w: weights 

w0: bias term 

a: activation function

y(x; w) = a(wTx+w0)

w0

x: input vector padded 

    with 1 

w: weights including bias 

a: activation function

y(x; w) = a(wTx)

y



Feedforward Networks

• Let                    be some function we are trying to 
approximate

• This function could be assignment of an input to a 
category as in a classifier

• This function could be one or more real numbers 
(regression)

• Let a feedforward network approximate this 
mapping y=f(x; w) by learning parameters w    



Universal Approximation Theorem

• Universal Approximation Theorem: A feedforward 

neural network with a linear output layer and one or 

more hidden layers with ReLU [Leshno et al. ’93], or 

sigmoid or some other “squashing” activation  function 

[Hornik et al. ’89, Cybenko ’89] can approximate any 

continuous function on a closed and bounded subset of        

This holds for functions mapping finite dimensional 

discrete spaces as well.

• If we have enough hidden units we can approximate 

“any” function! … but we may not be able to train it.



Universal Approximation Theorem:  Caveats

• So even though “any” function can be approximated with a 

network as described with single hidden layer, the network may 

fail to train, fail to generalize, or require so many hidden units as 

to be infeasible.

• This is both encouraging and discouraging!

• However, [Montufar et al. 2014] showed that deeper networks 

are more efficient in that a deep rectified net can represent 

functions that would require an exponential number of hidden 

units in a shallow one hidden layer network. 

• Deep networks composed on many rectified hidden layers are 

good at approximating functions that can be composed from 

simpler functions. And lots of tasks such as image classification 

may fit nicely into this space.



Optimization for Deep Nets

• Although there is a large literature on global 
optimization, gradient descent-based methods are 
used in practice.

• Our optimizations for deep learning are typically 
done in very high dimensional spaces, where the 
number of weights can run into the millions.

• And for these optimizations, when starting the 
training from scratch (i.e., some random initialization 
of the weights), we will need LOTS of labeled training 
data.



Back propagation

• Basically another name for gradient descent

• Because of nature of network 

a3(a2(a1(x;w1);w2);w3), gradients with respect to wi 

are determined by chain rule

• Can be thought of as “propagating” from loss 

function to input.

• Adaptive step size methods (e.g., ADAM).



Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Training

• Regularization

• Early stopping

iterations 

— training set

— validation set

stop here

overfitting



Finally, we get to images… 



What if we just vectorized images 

and stuffed these into a MLP?

MLP ?



Fully Connected (FC) Layer

Every input unit is connected to every output unit.

inputs

outputs

hidden units



Too many weights and connections!

100x100x3 inputs

50x50 hidden units

25x25 hidden units

output units

• This fully connected hidden layer might have 75 million weights! 

• And this is just for a thumbnail image and a two layer net.
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Fully Connected (FC) Layer

• Every input unit is connected to every output unit.

• m * n weights

inputs

outputs

hidden units

m

inputs

n hidden

units



Fully Connected (FC) Layer

• Consider a hidden unit: it connects to all units from the previous layer

• m weights per hidden unit

inputs

outputs

hidden units

m

inputs

n hidden

units



Convolutional Layer: Local 

Connections

inputs

outputs

hidden units

m

inputs

n hidden

units

• The connections are spatially local and governed by the kernel size.



Convolutional Layer: Local 

Connections

• The connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units

m

inputs

n hidden

units



Convolutional Layer: Local 

Connections and Shared Weights

inputs

outputs

hidden units

• The connections are spatially local and governed by the kernel size.

• The weights are shared. They are the same for each position. 

• So, this is like a convolution kernel.

m

inputs

n hidden

units

3 weights



Convolution in 2D

(already rotated)



Convolution with 2D Kernel

-1 0 1

-2 0 2

-1 0 1* =
(already rotated)



Convolution with 2D Kernel

-1 -1 -1

-1 8 -1

-1 -1 -1* =



Convolution with 2D Kernel

1 2 1

2 4 2

1 2 1* =/ 16



Convolutional Layer: Shared 

Weights

inputs

outputs

hidden units



Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputs

hidden units



Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputshidden units



Convolutional Layer: Stride

The output dim = (input dim - kernel size) / stride + 1.

inputs

outputs
hidden units



Convolutional Layer: Padding + Stride

Output dimension = (input dim - kernel size + 2 * padding) / stride + 1

inputs

outputshidden units

0

0



ReLU used with ConvNets

• Just like with our fully connected layers, for our 

convolutional layers we will follow the linear 

operation (convolution) with a non-linear 

squashing function. 

• The function to use for now is ReLU.

• But we are not done…there’s one more thing!



Pooling

• We can spatially pool the output from the ReLU to 
reduce the size of subsequent layers in our 
network. 

• This reduces both computation and the number of 
parameters that need to be fit and helps prevent 
overfitting.

• The pooling operation is often the max value in the 
region, but it could be average, or median, etc.

• The pooling has a stride associated with it that 
determines the downsampling of the input. 



Pooling Layer

The pooling layer pools values in regions of the conv layer. 

inputs

outputsconv layer

0

0

pooling layer



But wait, there’s more



Convolutional Layer: Shared 

Weights

The weights for the kernel are shared. They are the same for each position.

inputs

outputs

hidden units



Kernel finds just one type of feature

-1 0 1

-2 0 2

-1 0 1* =

If a kernel shares weights, then it can only extract one type of feature

-1 -1 -1

-1 8 -1

-1 -1 -1* =



Single input channels

Conv 

Layer

Grayscale image

1 channels

• Convolution kernel is 3-D: Goes across image dimensions & across channels

• Size = width x height x # input channels

Output

channel



Multiple input channels

Conv 

Layer

Color images

3 channels

• Convolution kernel is 3-D: Goes across image dimensions & across channels

• Size = width x height x # input channels

Output

channel



Convolution with 2D Kernel

1 2 1

2 4 2

1 2 1* =/ 16

-1 -1 -1

-1 8 -1

-1 -1 -1* =



Many kernels yielding many features!

Conv 

Layer

Color images

3 channels

Conv layer features

9 channels

• Convolution kernel is 4-D: For each output channel, kernel goes across input 

dimensions and channels

• Size = width x height x # input channels x # output channels



An example deep 

convolution network

• Input: 28x28 grayscale image

• Output: 10 classes. One output per class. 



A Convolutional Net

• Let’s assume we have 28x28 grayscale images as 
input to our conv net. So we will input 28x28x1 
samples into the net.

• Let’s fix our kernel size at 5x5 and, to make this 
simple, pad our images with zeros and use a stride = 
1.

• Let’s use max pooling on the output, with a 2x2 
pooling region and a stride of 2. 

• Let’s extract 32 features after the first layer.

• So the output from this layer will be 14x14x32.



A Convolutional Net

28x28x1 14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32 



A Convolutional Net

• Now let’s make a second layer, also convolutional.

• Let’s fix our kernel size at 5x5, pad our images with 
zeros and use a stride = 1.

• Let’s use max pooling on the output again, with a 
2x2 pooling region and a stride of 2. 

• Let’s extract 64 features after the second layer.

• So the output from this layer will be 7x7x64.



28x28x1

A Convolutional Net

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32 

14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=64 

7x7x64



A Convolutional Net

• Our third layer will be a fully connected layer 

mapping our convolutional features to a 1024 

dimensional feature space.

• This layer is just like any of the hidden layers 

you’ve seen before. It is a linear transformation 

followed by ReLU.

• So the output from this layer will be 1x1x1024.



A Convolutional Net

28x28x1

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32 

14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=64 

7x7x64

FC layer:

dim=1024 

1x1x1024



A Convolutional Net

• Finally, we’ll map this feature space to a 10 class 

output space and use a softmax with a MLE/cross 

entropy loss function.

• And…we’re done!



A Convolutional Net

28x28x1

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=32 

14x14x32

Conv layer:

k=5x5

stride=1

pad=2

max pool=2

depth=64 

7x7x64

FC layer:

dim=1024 

1x1x1024

1x1x10

Output 

+

Softmax

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7x7x64x1024+1024) + (1024x10+10)



Major layers

• Convolutional layer

• Pooling layer

• Fully connected Layer

• Softmax



Some Famous Deep 

Nets and Data sets



LeNet  [LeCun et al., 1998]



AlexNet [Krizhevsky et al., 2012] 

• Won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 

September 2012

• The network achieved a top-5 error rate (rate of not finding the true label of a 

given image among its top 5 predictions) of 15.3%

• The next best result was 26.2%

• AlexNet used GPUs



VGG16 [Simonyan and Zisserman, 2014]

• Runner up of ILSVRC 2014 classification task

• Won the localization task (where in the image, 

e.g., draw a box around it)



GoogLeNet [Szegedy et al., 2014]

Won the ILSVRC 2014 classification task



ResNet [He et al., 2016]

“Identity shortcut connection” skips one or more layers.  A larger number of layers 

while mitigating the “vanishing gradient” problem (the gradient is back-propagated 

to earlier layers, repeated multiplication may make the gradient infinitively small).



PASCAL Visual Object Classes (VOC)

Provides standardized 

image data sets for 

object class recognition.



PASCAL VOC

20 categories in 11,530 images with 27,450 ROIs and

 6,929 segmentations

[Everingham et al. 2005—2012] 





ImageNet

[Deng et al. 2009]

20,000+ categories x ~1000 instances = 14,000,000+ images

• ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC)

• Classification task.

• Localization





Summary

• Artificial neural networks have been around for over 
60 years

• Universal Approximation Theorem
• If we have enough hidden units, then we can 

approximate any function
• Deeper networks (more hidden layers) are more 

efficient than a single hidden layer
• Convolutional neural networks share weights

• Significantly less weights than a fully connected 
network

• Training a neural network is a nonlinear optimization 
problem
• Never train on your validation set!



Different Classes

Network Surgery

+ 

Fine Tuning 



Cats vs. Dogs
Data from [Kaggle.com]

2 categories x 11,000 instances = 22,000 images

vs.



We usually don’t have enough data! 



…but here is a FANTASTIC trick!



Domain Transfer

• Train a deep ConvNet using lots of data on a large image 
classification problem like ImageNet.

• Save the weights.

• Chop off the output layer (or final layers) of this ConvNet.

• Replace the output layer (or final layers) with one that fits your 
problem.

• Freeze the weights in the old layers and train on your data, 
allowing the weights in the new layer to settle.

• Unfreeze the whole network and train.



VGG16 [Simonyan and Zisserman, 2014]

• Runner up of ILSVRC 2014 classification task

• Won the localization task (where in the image, 

e.g., draw a box around it)



ImageNet

[Deng et al. 2009]

20,000+ categories x ~1000 instances = 14,000,000+ images

• ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC)

• Classification task.

• Localization



Domain Transfer + Fine-Tuning



Network Surgery

Keep Toss



Network Surgery

Keep Add

1 x 1 x 256 1 x 1 x 1



First, train the top layers

Freeze Train

1 x 1 x 256 1 x 1 x 1



Then, train the whole network

Train Train

1 x 1 x 256 1 x 1 x 1
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Next Lecture

• Color
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