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The nodes of multilayered network

y(x; w) = a(wTx+w,)
X: Input vector
w: welights
Wo: bias term
a. activation function

V(x; w) = a(wTx)
X: Input vector padded
with 1
w: weights including bias
a. activation function



Feedforward Networks

* These networks are composed of functions represented
as “layers™

yx)=a(a(axw),w),w)

with weights w; associated with layer | and aj is the
activation function for layer 1.

* Vy(x)can be a scalar or a vector function.



Universal Approximation Theorem

- Universal Approximation Theorem: A feedforward
neural network with a linear output layer and one or

more hidden layers with ReLU [Leshno et al. 93], or
sigmoid or some other “squashing” activation function
[Hornik et al. 89, Cybenko ’89] can approximate any
continuous function on a closed and bounded subset of R"
This holds for functions mapping finite dimensional

discrete spaces as well.

- If we have enough hidden units we can approximate
“any” function! ... but we may not be able to train it.



Universal Approximation Theorem: Caveats

- S0 even though “any” function can be approximated with a
network as described with single hidden layer, the network may
fail to train, fail to generalize, or require so many hidden units as
to be infeasible.

- This is both encouraging and discouraging!

- However, [Montufar et al. 2014] showed that deeper networks
are more efficient in that a deep rectified net can represent
functions that would require an exponential number of hidden
units in a shallow one hidden layer network.

- Deep networks composed on many rectified hidden layers are
good at approximating functions that can be composed from
simpler functions. And lots of tasks such as image classification
may fit nicely into this space.



Optimization for Deep Nets

- Although there is a large literature on global
optimization, gradient descent-based methods are
used in practice.

- Our optimizations for deep learning are typically
done in very high dimensional spaces, where the
number of weights can run into the millions.

- And for these optimizations, when starting the
training from scratch (i.e., some random initialization
of the weights), we will need LOTS of labeled training
data.



Back propagation

- Basically another name for gradient descent

. Because of nature of network

as(a,(a1(x;wy);wW,);W5), gradients with respect to w,
are determined by chain rule

- Can be thought of as “propagating” from loss
function to input.

- Adaptive step size methods (e.qg., ADAM).



Training and Validation Sets
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NEVER TRAIN ON YOUR VALIDATION SET!



Training

- Regularization

- Early stopping

— training set
— validation set

loss

stop here

l overfitting
/
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Finally, we get to images...



What it we just vectorized images
and stuffed these into a MLP?

* MLP * ?




Fully Connected (FC) Layer
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Every input unit is connected to every output unit.



Too many weights and connections!

output units
25x25 hidden units

50x50 hidden units
100x100x3 inputs

- This fully connected hidden layer might have 75 million weights!

. And this Is just for a thumbnalil image and a two layer net.
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Fully Connected (FC) Layer
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outputs

hidden units
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Every input unit is connected to every output unit.
m * n weights



Fully Connected (FC) Layer

m n hidden
inputs units
outputs
_ hidden units
INputs

 Consider a hidden unit: it connects to all units from the previous layer
« m weights per hidden unit



Convolutional Layer: Local
Connections

m n hidden
inputs units
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« The connections are spatially local and governed by the kernel size.



Convolutional Layer: Local
Connections

m n hidden
inputs units
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outputs

hidden units
inputs

« The connections are spatially local and governed by the kernel size.



Convolutional Layer: Local
Connections and Shared Weights

m n hidden
inputs units

\
—

3 weights

outputs

hidden units
inputs

« The connections are spatially local and governed by the kernel size.
« The weights are shared. They are the same for each position.
« S0, this is like a convolution kernel.



Convolution in 2D

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2) +
(-1x2)+(0x4)+(1x1) =-3

Convolution filter
(Sobel Gx) L
(already rotated) ~ Destination pixel




Convolution with 2D Kernel

10 1
20 2 —
10 1

(already rotated)




Convolution with 2D Kernel




Convolution with 2D Kernel
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Convolutional Layer: Shared
Weights

outputs

hidden units
inputs



Convolutional Layer: Stride

#x

outputs
hidden units

Inputs

We can skip input pixels by choosing a stride > 1.



Convolutional Layer: Stride

hidden units

outputs

Inputs

We can skip input pixels by choosing a stride > 1.



Convolutional Layer: Stride

hidden units outputs

Inputs

The output dim = (input dim - kernel size) / stride + 1.



Convolutional Layer: Padding + Stride

— <’§

hidden units outputs

Inputs

Output dimension = (input dim - kernel size + 2 * padding) / stride + 1



Rel.U used with ConvNets

- Just like with our fully connected layers, for our
convolutional layers we will follow the linear
operation (convolution) with a non-linear
squashing function.

- The function to use for now is RelLU.

- But we are not done...there’s one more thing!



Pooling

- We can spatially pool the output from the RelLU to
reduce the size of subsequent layers in our
network.

- This reduces both computation and the number of
parameters that need to be fit and helps prevent
overfitting.

- The pooling operation is often the max value in the
region, but it could be average, or median, etc.

- The pooling has a stride associated with it that
determines the downsampling of the input.



Pooling Layer
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pooling layer

conv layer outputs

Inputs

The pooling layer pools values in regions of the conv layer.



But wait, there’s more



Convolutional Layer: Shared
Weights

outputs

hidden units
inputs

The weights for the kernel are shared. They are the same for each position.



Kernel finds just one type of feature

1-1-1 N
18 -1 — NSRRI
1-1-1 [
'0
\\\ \;

If a kernel shares weights, then it can only extract one type of feature



Single input channels
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Output
channel

Grayscale image
1 channels

« Convolution kernel is 3-D: Goes across image dimensions & across channels

« Size = width x height x # input channels



Multiple input channels
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Color images
3 channels

« Convolution kernel is 3-D: Goes across image dimensions & across channels

« Size = width x height x # input channels



Convolution with 2D Kernel
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Many kernels yielding many features!

2
%,
N

* Gy *
| Layer

Color images Conv layer features
3 channels 9 channels

« Convolution kernel is 4-D: For each output channel, kernel goes across input
dimensions and channels
« Size = width x height x # input channels x # output channels



An example deep
convolution network

- Input: 28x28 grayscale image

.- Qutput: 10 classes. One output per class.



A Convolutional Net

- Let's assume we have 28x28 grayscale images as
iInput to our conv net. So we will input 28x28x1
samples into the net.

. Let’s fix our kernel size at 5x5 and, to make this
simple, pad our images with zeros and use a stride =
. Let’s use max pooling on the output, with a 2x2
pooling region and a stride of 2.

- Let’'s extract 32 features after the first layer.

. S0 the output from this layer will be 14x14x32.



A Convolutional Net

%,

NG %
Conv layer: Q
k=5x5 \\\\\<SE?
stride=1

lll"’ pad=2 lll"’
max pool=2
depth=32

28x28x1 14x14x32



A Convolutional Net

- Now let’'s make a second layer, also convolutional.

. Let’s fix our kernel size at 5x5, pad our images with
zeros and use a stride = 1.

- Let's use max pooling on the output again, with a
2x2 pooling region and a stride of 2.

. Let’s extract 64 features after the second layer.

- S0 the output from this layer will be 7x7x64.



A Convolutional Net
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A Convolutional Net

- Our third layer will be a fully connected layer
mapping our convolutional features to a 1024
dimensional feature space.

- This layer is just like any of the hidden layers
you've seen before. It is a linear transformation
followed by RelU.

. S0 the output from this layer will be 1x1x1024.



A Convolutional Net
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A Convolutional Net

- Finally, we'll map this feature space to a 10 class
output space and use a softmax with a MLE/cross

entropy loss function.

- And...we're done!



A Convolutional Net

%
v,
X%
Conv layer: Conv layer: «0(3
oS k=5x5
stride=1
stride=1 Output
» pad=2 » pad=2 » FC layer: » » »I
max pool=2 max pool=2 Gli-102 Softmax
depth=32 depth=64
TXTX64 1x1x10

28x%28x1 14x14x32 1x1x1024

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7X7x64x1024+1024) + (1024x10+10)



Major layers

. Convolutional layer
- Pooling layer

- Fully connected Layer

. Softmax



Some Famous Deep
Nets and Data sets



LeNet 5

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x28
22 S2 1. maps C5:layer g

6@14x14 % FS:layer QUTRUT

| FuHcomlection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278-2324, 1998.




AlexNet [Krizhevsky et al., 2012]

29

dense dense

13 13 11 — dense
,‘ 5 gy . T F 3 . i .
11 [l A ’ | ! =y 1™
. Input 3 {1 3 ‘ 3
4 image 55 | 364 . 384 256 1000
(RGB) Max
v 256 4096 4096
Max Max pooling
Stride o | ™ pooling

3

« Won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in
September 2012

» The network achieved a top-5 error rate (rate of not finding the true label of a
given image among its top 5 predictions) of 15.3%

* The next best result was 26.2%

« AlexNet used GPUs




VGG /‘ 6 [Simonyan and Zisserman, 2014]

234 w224 %3 2324 x 224 = 6d

Runner up of ILSVRC 2014 classification task
Won the localization task (where in the image,
e.g., draw a box around it)
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GOOg LeNet [Szegedy et al., 2014]

Won the ILSVRC 2014 classification task

i

mmmmm
MaxPool

nother view of GoogleNet’s architecture.
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“Identity shortcut connection” skips one or more layers. A larger number of layers
while mitigating the “vanishing gradient” problem (the gradient is back-propagated

to earlier layers, repeated multiplication may make the gradient inf

ly small).

Initve




PASCAL Visual Object Classes (VOC)

Dataset  Utilities

Annotations ¥ .~ © X Objects 4 Classes Actions

Provides standardized
image data sets for |
object class recognition. | f | perzan

e

11321 annotaticns in list



PASCAL VOC

Statistics

Only 4 classes: bicycles, cars, motorbikes, people. Train/validation/test: 1578

images containing 2209 annotated objects.

10 classes: bicycle, bus, car, cat, cow, dog, horse, motorbike, person, sheep.
Train/validation/test: 2618 images containing 4754 annotated objects.

20 classes:
* Person: person
® Animal: bird, cat, cow, dog, horse, sheep
® \Viehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
® Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Trainvalidationtest: 9,963 images containing 24,640 annotated objects.

20 classes. The data is split (as usual) around 50% train/val and 50% test. The
train/val data has 4,340 images containing 10,363 annotated objects.

20 classes. The train/val data has 7,054 images containing 17,218 ROl annotated
objects and 3,211 segmentations.

20 classes. The train/val data has 10,103 images containing 23,374 ROI annotated
objects and 4,203 segmentations.

20 classes. The train/val data has 11,530 images containing 27,450 ROl annotated
objects and 5,034 segmentations.

20 classes. The train/val data has 11,530 images contal
objects and 6,929 segmentations.

g 27,450 ROI annotated

New developments

wo competitions: classification and detection

r and from Micre SRC) dataset

Number of classes increased from 10 to 21

Segmentation taster introduced

Person layout taster introduced

Truncation flag added to annotations

Evaluation measure for the classification challenge changed to Average Precision. Previously it had been ROC-

Occlusion flag added to annotations
Test data annotation no longer made public
The segmentation and person layout data sets include images from the corresponding VOC2007 set

From now on the data for all tasks consists of the previous years' images augmented with new images. In earlier
years an entirely new data set was released each year for the classification/detection tasks.

Augmenting allows the number of images to grow each year, and means that test results can be compared on the
previous years' images.

Segmentation becomes a standard challenge (promoted from a taster)

Action Classification taster introduced.
Associated challenge on large scale classification introduced based on ImageNet
Amazon Mechanical Turk used for early stages of the annotation.

Action Classification taster extended 1o 10 classes + "other”.

Size of segmentation dataset substantially increased

People in action classification dataset are additionally annotated with a reference point on the body.

Images were largely taken from exising public datasets, and were not as challenging
as the flickr images subsequently used. This dataset is obsolete.

The MSRC images were easier than flickr as the photos often concentrated on the
object of interest. This dataset is cbsolete.

This year established the 20 classes, and these have been fixed since then. This
was the final year that annotation was released for the testing data.

No difficult flags were provided for the additional images (an omission).
Test data annotation not made public.

Method of computing AP changed. Now uses all data points rather than TREC
style sampling.
Test data annotation not made public.

Layout annotation is now not "complete”: only people are annotated and some
people may be unannotated.

Datasets for classifica
voc2011

n, detection and person layout are the same as

20 categories in 11,530 images with 27,450 ROls and
6,929 segmentations

Everingham et al. 2005—2012]



Object Detection: PASCAL VOC mean Average Precision (mAP)

80%
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70%

60% Before deep convnets
50%

40% A A _
A Using deep convnets

30%

20%

mean Average Precision (mAP)

10%
0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year
Figure source: Ross Girshick



ImageNet

* ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [Deng et al. 2009]
 Classification task.

« Localization

20,000+ categories x ~1000 instances = 14,000,000+ images



Classification: ImageNet Challenge top-5 error

28.2

25.8
152 layers

\
{ 22 layers ’ ‘ 19 layers ’
\\ 6.7

7.3
357 I

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure source: Kaiming He



Summary

- Artificial neural networks have been around for over

00 years

- Universal Approximation Theorem

- If we have enough hidden units, then we can
approximate any function

. Deeper networks (more hidden layers) are more
efficient than a single hidden layer

- Convolutional neural networks share weights

. Significantly less weights than a fully connected
network

- Training a neural network is a nonlinear optimization
problem

- Never train on your validation set!



Different Classes

Network Surgery
_|_

Fine Tuning



Cats vs. Dogs

Data from [Kaggle.com]

2 categories x 11,000 instances = 22,000 images



We usually don’t have enough data!



...but hereis a FANTASTIC trick!



Domain Transfer

- Train a deep ConvNet using lots of data on a large image
classification problem like ImageNet.

. Save the weights.
- Chop off the output layer (or final layers) of this ConvNet.

- Replace the output layer (or final layers) with one that fits your
problem.

- Freeze the weights in the old layers and train on your data,
allowing the weights in the new layer to settle.

- Unfreeze the whole network and train.



VGG /‘ 6 [Simonyan and Zisserman, 2014]

234 w224 %3 2324 x 224 = 6d

Runner up of ILSVRC 2014 classification task
Won the localization task (where in the image,
e.g., draw a box around it)
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ImageNet

* ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [Deng et al. 2009]
 Classification task.

« Localization

20,000+ categories x ~1000 instances = 14,000,000+ images



omain
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Network Surgery

23 2243 224 x 224 % Gd

|
H
H
H
n2x128 +——KEEP—*+—[0SS—™
|
56| 56 > 266 O
y/ IR % 28 % 512 TxT <812
/ ; y 4% h n
4 S ,_l.l:-:l::;_alﬂ'ilﬁ 131 1000
: r
H
H
E] convalution+ Rel.lJ

I-’_I] max pooaling

| fully connected+HRel. 1T

 softmax




Network Surgery

234 w224 %3 2324 x 224 = 6d
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First, train the top layers
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Then, train the whole network
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Next Lecture
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