Neural Networks

Computer Vision I
CSE 252A

Lecture 15

CSE 252A, Fall 2023 Computer Vision I

Announcements

* Assignment 3 1s due Nov 22, 11:59 PM

» Assignment 4 will be released Nov 22
— Due Dec 6, 11:59 PM

CSE 252A, Fall 2023 Computer Vision I

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘sig’ner of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takesg at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Without Human Controls ‘

. The Navy said the perceptron
would be the- first non-living
mechanism “capable of receiv-

ing, recognizing and identifying

human training or control.”
The “brain” is designed to

nary computers remember only
what ig fed into them on punch
cards or magnetic tape.

to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.
Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

scious of their existence.

its surroundingg without -any

remember images and informa-
tion it has perceived itself. Ordi-

Later Perceptrons will be able

1958 New York
Times...

In today's demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q"” for the left
squares and ‘“O” for the right

squares. ‘
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms, But he said the computer
had undergone a ‘self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

line and which would be con-

Mark | Perceptron machine

« The Mark I Perceptron machine
was the first implementation of
the perceptron algorithm. The
machine was connected to a
camera that used 20x20
cadmium sulfide photocells
to produce a 400-pixel
image. The main visible feature
is a patchboard that allowed
experimentation with different
combinations of input features.
To the right of that are arrays of
potentiometers that
implemented the adaptive
weights

[From Wikipedia]

Perceptron

Ou tp ut
[O(x) 4
iy 1
_ql]f.'hi-*} 0
10 otherw lse }
0

>
HET = Z W Ll! '

-W WTX

Note: For x=(x,,... , X,), X, can
be binary or a real number

1 it wo+wiz1+-+wpz, >0

0 otherwise.

Questions

For a Network, even as simple as a single
perceptron, we an ask questions:

1. What can be represented with it?
2. How do we evaluate it?

3. How do we train it?

How powerful Is a perceptron?

Inverter Boolean AND

Concept Space & Linear Separability

Linear Separability

g

Increasing Expressiveness:
Multi-Layer Neural Networks

Boolean XOR X0

| 0 |—|._.|:I

input | input
m/ \

2-layer Perceptron Net

Any Boolean function can be represented by
a two layer network!

But where did those weights come
from??

Stay tuned

The nodes of multilayered network

$dy
y(x; w) = a(wix+w) y(x; w) = a(Wix)
X: Input vector X: Input vector padded
w: weights with 1
Wo: bias term w: weights including bias

a: activation function a: activation function

Activation Function: Tanh

 Asx goes from -0 to oo, tanh(x) goes from -1 to 1

* It has a “sigmoid” or S-like shape
* tanh(0)=0

Activat
Rectified Li

g(z) = max(0, 2)

on Func
near Un

tion

it RelLU

Two Laver Network

Y1 W
2 ¥

Wzoutput
% ¥ ¥ hidden

& & & a input
X

y(x,w) = a,(W,a, (W1x + W1 o d) + W5 0)

* Two sets of weights W, and W,
« Two activation functions a, and a,

Feedforward Networks

* These networks are composed of functions represented
as “layers™

yX)=a(aaxw)w),w)

with weights w; associated with layer | and aj is the
activation function for layer 1.

* Vy(x)can be a scalar or a vector function.

Classification Networks and Softmax

- To classify the input x into one of ¢ classes, we have ¢

outputs.

- Output / can be viewed as p(w; | x). That is the posterior
probability of the class, given the input. Recognition
decision is arg max p(w; | x).

- |If the network were certain about the class, one output

would be 1 and the rest would be zero.

- More generally Z 91, the coutputs must sum to 1.

- This can be implemented with a softmax layer [&—

zl'

c Z.
2. e

=1

J:

Feedforward Networks

- The functions defining the layers have been
influenced by neuroscience

- Our training dictates the values to be produced
output layer and the weights are chosen
accordingly

- The weights for intermediate or “hidden” layers
are learned and not specified directly

- You can think of the network as mapping the raw
input space x to some transformed feature space ¢(x)
where the samples are ideally linearly separable

Universal Approximation Theorem

- Universal Approximation Theorem: A feedforward
neural network with a linear output layer and one or

more hidden layers with ReLU [Leshno et al. ’93], or
sigmoid or some other “squashing” activation function
[Hornik et al. 89, Cybenko ’89] can approximate any
continuous function on a closed and bounded subset of R"
This holds for functions mapping finite dimensional

discrete spaces as well.

- If we have enough hidden units we can approximate
“any” function! ... but we may not be able to train it.

Universal Approximation Theorem: Caveats

.- Optimization may fail to find the parameters needed to

represent the desired function.

- Training might choose the wrong function due to
overfitting.

- The network required to approximate this function might
be so large as to be infeasible.

Universal Approximation Theorem: Caveats

« S0 even though “any” function can be approximated with a
network as described with single hidden layer, the network may
fail to train, fail to generalize, or require so many hidden units as
to be infeasible.

- This is both encouraging and discouraging!

- However, [Montufar et al. 2014] showed that deeper networks
are more efficient in that a deep rectified net can represent
functions that would require an exponential number of hidden
units in a shallow one hidden layer network.

- Deep networks composed on many rectified hidden layers are
good at approximating functions that can be composed from
simpler functions. And lots of tasks such as image classification
may fit nicely into this space.

High level view of evaluation and training

. Training data: { < x9,y® > 1 <<y

—-
L(y, ¥)
\

. Total Loss: TL(w) = Z LOAx®D; w), y®)
i=1
- Training: Find w that minimizes the total loss.

The loss function

* The loss function is really important. It's how we compare
the network output to the training labels.

« Common loss functions:
* Regression problems:
e Distance : L(y,¥)=|ly—V¥|lp,usually p=1or2

e (Classification: Softmax + cross entropy

e’

o Softmax: ¥/(z) =—

2., €l

] e n 1 n
» Cross entropy between y and ¥ is Ho.9) =) vilog— = - 3" yiogs,
i=1

! i=1

* where: y is a vector with one 1 and the rest O's.

y is a vector with positive floats that sum to 1

Training Feed Forward Networks

* Given a training set {<x(1), y(U>, <x@), y@>, ... <xn), y">} estimate

(learn) w by making TL(w) = Z L(f(x; w), y) small.
i=1

e Back propagation using Stochastic Gradient Descent
e Adagrad, RMSprop, ADAM
 Regularization: Dropout, Batch/Group/Instance Normalization

e Early Stopping

Gradient-Based Optimization

local minimum

global minimum

Gradient-Based Optimization

f(zo +€) =~ f(xo) + ef'(20)

o xg+E€

Gradient Descent

f(zo +€) =~ f(xo) + ef'(20)

o xg+E€

Note that f’is negative, so going in positive direction
decreases the function.

Critical Points

/
f(zo) =0
Maximum Minimum Saddle Point
L > N
Zo Lo o

f”(:l:{]) < (0 f”(III{]) > () f”(:l:{]) =

When X I1s a vector?

- Use gradient

of

| Oz,

- and make step in opposite direction

Xt4+1 = Xt — vaf(xt)

Optimization for Deep Nets

- Deep learning optimization is usually expressed as a loss
summed over all the training samples.

- Our goal is not so much find the weights that globally
minimize the loss but rather to find parameters that
produce a network with the desired behavior.

- Note that there are LOTS of solutions to which our
optimization could converge to—with very different
values for the weights—but each producing a model with
very similar behavior on our sample data.

Optimization for Deep Nets

- Although there is a large literature on global
optimization, gradient descent-based methods are
used in practice.

- Our optimizations for deep learning are typically
done in very high dimensional spaces, where the
number of weights can run into the millions.

- And for these optimizations, when starting the
training from scratch (i.e., some random initialization
of the weights), we will need LOTS of labeled training
data.

Back propagation

- Basically another name for gradient descent

. Because of nature of network

as(a,(a;(X;w4);w,);w,), gradients with respect to w,
are determined by chain rule

.- Can be thought of as “propagating” from loss
function to input.

- Adaptive step size methods (e.g., ADAM).

Training and Validation Sets

Labeled Data

Training Data Validation Data

« Given a bunch of labelled data, divide into Training Set and
Validation Set.

« Often 90%-10% or 80%-20% split.

+ Often shuffle data before splitting

Training and Validation Sets

AR

TARSSIN

/i iy
\| \"' *‘-.:I t!‘i [

N\ o 4 0
~ 7

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!

Training and Validation Sets

/’,"I}"Qf; R
TAASSIN
/i N
\ \"" *‘-.7! W‘i i
\'sp

§ WA v
i % ~ <.ﬂ'~
~ 7

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!

Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!

Training and Validation Sets

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!

Reqgularization

The goal of regularization is to prevent overfitting
the training data with the hope that this improves
generalization, i.e., the ability to correctly handle
data that the network has not trained on.

Reqularization for MLP

/Frobenius norm

L=—z+log) e += (IIWII2 + [Wol[*)
J

loss regularization

D rO pO Ut [Srivastava et al., 2014]

- For every training batch through the network, dropout 0.5 of hidden
units and 0.2 of input units. You can choose the probabilities as you
like...

- Train as you normally would using SGD, but each time you impose a
random dropout that essentially trains for that batch on a random
sub-network.

- When you are done training, you use for your model the complete
network with all its learned weights, except multiply the weight by the
probability of including its parent unit.

- This is called the weight scaling inference rule. [Hinton et al.,
2012]

—arly Stopping

- Typical deep neural networks have millions and
millions of weights!

- With so many parameters at their disposal how
to we prevent them from overfitting?

. Clearly we can use some of the other

regularization technigues that have been
mentioned...

- ...but given enough training time, our network
will eventually start to overfit the data.

Early Stopping

— training set

— validation set

loss

stop here

overfitting

1terations —}

More Data / Data Augmentation

- Possibly the best way to prevent overfitting is to get more
training data!

- When this isn’t possible, you can often perform data
augmentation where training samples are randomly
perturbed or jittered to produce more training samples.

- This is usually easy to do when the samples are images and
one can crop, rotate, etc. the samples to produce new
samples.

- And if the data can be generated synthetically using computer
graphics, we can produce an endless supply.

Deterministic vs. Stochastic
Methods

- |f we performed our gradient descent optimization using all the
training samples to compute each step in our parameter
updates, then our optimization would be deterministic.

- Confusingly, deterministic gradient descent algorithms are
sometimes referred to as batch algorithms

- In contrast, when we use a subset of randomly selected
training samples to compute each update, we call this
stochastic gradient descent and refer to the subset of
samples as a mini-batch.

- And even more confusingly, we often call this mini-batch the
“batch” and refer to its size as the “batch size.”

Stochastic Gradient Descent

The SGD algorithm could not be any simpler:

1.

~N O O A W N

Choose a learning rate schedule 7.

. Choose stopping criterion.

. Choose batch size m.

Randomly select mini-batch {x),x®), ... x(™)}

. Forward and backpropagation
1 <& L
.Update 011 =0;—m9 8&=_ > VoL(x",y)

. Repeat 4, 5, 6 until the stopping criterion is satisfied.

SGD with Momentum

Update rule with momentum:
1 <& L
1. Compute the gradient: &= — Z VoL(xW,y")
2. Compute the velocity: vt =atvi—1 —n: g
3. Update: 0ir1 = 0; + v,

Note: ¢y starts small and increases with time (typically)
M: starts large and decreases with time

Finally, we get to images...

What it we just vectorized images
and stuffed these into a MLP?

* MLP * ?

Fully Connected (FC) Layer

outputs

hidden units

Every input unit 1s connected to every output unit.

Too many weights and connections!

output units
25x25 hidden units

50x50 hidden units
100x100x3 inputs

- This fully connected hidden layer might have 75 million weights!

- And this 1s just for a thumbnail 1image and a two layer net.

Convolutional Neural Networks

Next Lecture

 Convolutional neural networks

CSE 252A, Fall 2023 Computer Vision I

	Neural Networks
	Announcements
	Slide Number 3
	Mark I Perceptron machine
	Perceptron
	Questions
	How powerful is a perceptron?
	Concept Space & Linear Separability
	Increasing Expressiveness:�Multi-Layer Neural Networks
	Slide Number 10
	But where did those weights come from?��Stay tuned
	Two Layer Network
	Activation Function: Tanh
	Sigmoid Function
	Two Layer Network
	Feedforward Networks
	Classification Networks and Softmax
	Feedforward Networks
	Universal Approximation Theorem
	Universal Approximation Theorem: Caveats
	Universal Approximation Theorem: Caveats
	High level view of evaluation and training
	Slide Number 24
	Slide Number 25
	Gradient-Based Optimization
	Gradient-Based Optimization
	Gradient Descent
	Critical Points
	When x is a vector?
	Optimization for Deep Nets
	Optimization for Deep Nets
	Back propagation
	Training and Validation Sets
	Training and Validation Sets
	Training and Validation Sets
	Training and Validation Sets
	Training and Validation Sets
	Regularization
	 Regularization for MLP
	 Dropout [Srivastava et al., 2014]
	Early Stopping
	Early Stopping
	More Data / Data Augmentation
	Deterministic vs. Stochastic Methods
	Stochastic Gradient Descent
	SGD with Momentum
	Slide Number 48
	What if we just vectorized images and stuffed these into a MLP?
	Fully Connected (FC) Layer
	Too many weights and connections!
	Convolutional Neural Networks
	Next Lecture

