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Announcements
• Assignment 3 is due Nov 22, 11:59 PM
• Assignment 4 will be released Nov 22

– Due Dec 6, 11:59 PM





Mark I Perceptron machine 

• The Mark I Perceptron machine 
was the first implementation of 
the perceptron algorithm. The 
machine was connected to a 
camera that used 20×20 
cadmium sulfide photocells 
to produce a 400-pixel 
image. The main visible feature 
is a patchboard that allowed 
experimentation with different 
combinations of input features. 
To the right of that are arrays of 
potentiometers that 
implemented the adaptive 
weights

[From Wikipedia]



5

Perceptron
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Note: For x=(x1,… , x2), xi can 
be binary or a real number



Questions

For a Network, even as simple as a single 
perceptron, we an ask questions:

1. What can be represented with it?

2. How do we evaluate it?

3. How do we train it?
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How powerful is a perceptron?
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Concept Space & Linear Separability



Increasing Expressiveness:
Multi-Layer Neural Networks

2-layer Perceptron Net



Any Boolean function can be represented by 
a two layer network!



But where did those weights come 
from?

Stay tuned



Two Layer Network

wij

wjk

• Fully connected network

• Nodes are nonlinear function of weighted sum 

inputs:

f(x; w) = S(wTx+w0)



Activation Function: Tanh

• As x  goes from  -∞ to ∞, tanh(x)  goes from -1 to 1
• It has a “sigmoid” or S-like shape
• tanh(0) = 0



Sigmoid Function



Two Layer Network

𝑦𝑦 𝒙𝒙,𝒘𝒘 = 𝒂𝒂𝟐𝟐(𝑊𝑊2𝑎𝑎1 𝑊𝑊1𝒙𝒙 + 𝑤𝑤1,0 𝑑𝑑 + 𝑤𝑤2,0)

• Two sets of weights W1 and W2 
• Two activation functions a1 and a2

x

y1 y2



Feedforward Networks
• Let                    be some function we are trying to 

approximate

• This function could be assignment of an input to a 
category as in a classifier

• This function could be one or more real numbers 
(regression)

• Let a feedforward network approximate this 
mapping y=f(x; w) by learning parameters w    



Classification Networks and Softmax
• To classify the input x into one of c classes, we have c 

outputs.

• Output i can be viewed as p(ωi | x). That is the posterior 
probability of the class, given the input. Recognition 
decision is arg max p(ωi | x).

• If the network were certain about the class, one output 
would be 1 and the rest would be zero.

• More generally                  , the c outputs must sum to 1.

• This can be implemented with a softmax layer



Feedforward Networks
• The functions defining the layers have been 

influenced by neuroscience 

• Our training dictates the values to be produced 
output layer and the weights are chosen 
accordingly

• The weights for intermediate or “hidden” layers 
are learned and not specified directly 

• You can think of the network as mapping the raw 
input space x to some transformed feature space         
where the samples are ideally linearly separable 



Universal Approximation Theorem

• Universal Approximation Theorem: A feedforward 
neural network with a linear output layer and one or 
more hidden layers with ReLU [Leshno et al. ’93], or 
sigmoid or some other “squashing” activation  function 
[Hornik et al. ’89, Cybenko ’89] can approximate any 
continuous function on a closed and bounded subset of        
This holds for functions mapping finite dimensional 
discrete spaces as well.

• If we have enough hidden units we can approximate 
“any” function! … but we may not be able to train it.



Universal Approximation Theorem:  Caveats

• Optimization may fail to find the parameters needed to 
represent the desired function.

• Training might choose the wrong function due to 
overfitting.

• The network required to approximate this function might 
be so large as to be infeasible. 



Universal Approximation Theorem:  Caveats

• So even though “any” function can be approximated with a 
network as described with single hidden layer, the network may 
fail to train, fail to generalize, or require so many hidden units as 
to be infeasible.

• This is both encouraging and discouraging!

• However, [Montufar et al. 2014] showed that deeper networks 
are more efficient in that a deep rectified net can represent 
functions that would require an exponential number of hidden 
units in a shallow one hidden layer network. 

• Deep networks composed on many rectified hidden layers are 
good at approximating functions that can be composed from 
simpler functions. And lots of tasks such as image classification 
may fit nicely into this space.



High level view of evaluation and training

• Training data:

• Total Loss: 

• Training: Find w that minimizes the total loss.

Network
f(x,w) Loss

x

y

L(y, ŷ)

ŷ







Gradient-Based Optimization

local minimum

global minimum



Gradient-Based Optimization



Gradient Descent   

Note that     is negative, so going in positive direction
decreases the function.



Critical Points   

Maximum Minimum Saddle Point



When x is a vector?

• Use gradient

• and make step in opposite direction                  



Optimization for Deep Nets

• Deep learning optimization is usually expressed as a loss 
summed over all the training samples.

• Our goal is not so much find the weights that globally 
minimize the loss but rather to find parameters that 
produce a network with the desired behavior. 

• Note that there are LOTS of solutions to which our 
optimization could converge to—with very different 
values for the weights—but each producing a model with 
very similar behavior on our sample data.



Optimization for Deep Nets

• Although there is a large literature on global 
optimization, gradient descent-based methods are 
used in practice.

• Our optimizations for deep learning are typically 
done in very high dimensional spaces, where the 
number of weights can run into the millions.

• And for these optimizations, when starting the 
training from scratch (i.e., some random initialization 
of the weights), we will need LOTS of labeled training 
data.



Back propagation
• Basically another name for gradient descent

• Because of nature of network 
a3(a2(a1(x;w1);w2);w3), gradients with respect to wi 
are determined by chain rule

• Can be thought of as “propagating” from loss 
function to input.

• Adaptive step size methods (e.g., ADAM).



Training and Validation Sets

Labeled Data

Training Data Validation Data
• Given a bunch of labelled data, divide into  Training Set and 

Validation Set. 
• Often 90%-10% or 80%-20% split.
• Often shuffle data before splitting



Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Regularization
The goal of regularization is to prevent overfitting 
the training data with the hope that this improves 
generalization, i.e., the ability to correctly handle 
data that the network has not trained on.



Regularization for MLP

loss regularization

Frobenius norm



Dropout [Srivastava et al., 2014]                 

• For every training batch through the network, dropout  0.5 of hidden 
units and 0.2 of input units. You can choose the probabilities as you 
like…

• Train as you normally would using SGD, but each time you impose a 
random dropout that essentially trains for that batch on a random 
sub-network.

• When you are done training, you use for your model the complete 
network with all its learned weights, except multiply the weight by the 
probability of including its parent unit.

• This is called the weight scaling inference rule. [Hinton et al., 
2012]



Early Stopping

• Typical deep neural networks have millions and 
millions of weights!

• With so many parameters at their disposal how 
to we prevent them from overfitting?

• Clearly we can use some of the other 
regularization techniques that have been 
mentioned…

• …but given enough training time, our network 
will eventually start to overfit the data.



Early Stopping

iterations 

— training set

— validation set

stop here

overfitting



More Data / Data Augmentation

• Possibly the best way to prevent overfitting is to get more 
training data!

• When this isn’t possible, you can often perform data 
augmentation where training samples are randomly 
perturbed or jittered to produce more training samples.

• This is usually easy to do when the samples are images and 
one can crop, rotate, etc. the samples to produce new 
samples.

• And if the data can be generated synthetically using computer 
graphics, we can produce an endless supply.



Deterministic vs. Stochastic 
Methods

• If we performed our gradient descent optimization using all the 
training samples to compute each step in our parameter 
updates, then our optimization would be deterministic. 

• Confusingly, deterministic gradient descent algorithms are 
sometimes referred to as batch algorithms

• In contrast, when we use a subset of randomly selected 
training samples to compute each update, we call this 
stochastic gradient descent and refer to the subset of 
samples as a mini-batch.

• And even more confusingly, we often call this mini-batch the 
“batch” and refer to its size as the “batch size.”



Stochastic Gradient Descent

The SGD algorithm could not be any simpler:

1. Choose a learning rate schedule     . 

2. Choose stopping criterion.

3. Choose batch size      . 

4. Randomly select mini-batch

5. Forward and backpropagation

6. Update

7. Repeat 4, 5, 6 until the stopping criterion is satisfied.



SGD with Momentum

Update rule with momentum:

1. Compute the gradient:

2. Compute the velocity:

3. Update: 

Note:        starts small and increases with time (typically)  
starts large and decreases with time



Finally, we get to images… 



What if we just vectorized images 
and stuffed these into a MLP?

MLP ?



Fully Connected (FC) Layer

Every input unit is connected to every output unit.

inputs

outputs

hidden units



Too many weights and connections!

100x100x3 inputs
50x50 hidden units

25x25 hidden units
output units

• This fully connected hidden layer might have 75 million weights! 

• And this is just for a thumbnail image and a two layer net.



Convolutional Neural Networks



CSE 252A, Fall 2023 Computer Vision I

Next Lecture
• Convolutional neural networks
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