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Announcements
• Assignment 3 is due Nov 22, 11:59 PM
• Assignment 4 will be released Nov 22

– Due Dec 6, 11:59 PM
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Simplest feature: Image as a Feature Vector

• Consider an n-pixel image to be a point in an 
n-dimensional space, x    Rn

• Each pixel value xi is a coordinate of x
∈

x1

x2

xn

x1

xn

x2
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Nearest Neighbor Classifier
n classes (different people)
{Rj : j=1,…, n} : set of training images, one per person 

x1

x2

x3
R1 R2

I
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k Nearest Neighbor Classification
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Nearest Neighbor Classification

• k Nearest Neighbor with k=1
• It can be shown that as number of samples approaches infinity, the error rate 

of nearest neighbor is at most twice that of the optimal Bayesian classifier. 
(Why is even close? Training samples are drawn from P(x | ωi)P(ωi) ) 
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Comments on Nearest Neighbor
• Sometimes called “Template Matching”
• Variations on distance function (e.g., L1, robust 

distances)
• Multiple templates per class- perhaps many training 

images per class
• Expensive to compute k distances, especially when 

each image is big (N dimensional)
• May not generalize well to unseen examples of class
• Will it apply well to other features (height, weight?)
• Some solutions:

– Bayesian classification
– Dimensionality reduction
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• If we want to build a minimum-error rate 
classifier, then we need a very good 
estimate of P(ωi| x)

• How do we do this?
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• Let’s say our feature space is just 1-dimensional 
and our feature      

• Let’s say we have 10,000 training samples 
from which to estimate our a posteriori 
probabilities

• We could estimate these probabilities using a 
histogram in which we divided the interval into 
100 evenly spaced bins
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• On average each bin would have 100 samples
• We could estimate P(x | ωi) as the number of 

samples from class i that fall in the same bin that 
falls into divided by the total number of samples 
in that bin
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But this plan does not scale as we increase the 
dimensionality of the feature space!
• Let’s say our feature space is 3 dimensional 

and our feature
• Let’s say we still have 10,000 training 

samples from which to estimate our a 
posteriori probabilities

• If we estimate these probabilities using a 
histogram in which we divide the volume 
into the same width bins as before…      
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On average each bin would only have 0.01 samples!
We’re not going be able to estimate probabilities well
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Curse of Dimensionality

Dimensionality Reduction
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An idea: 
Represent the set of images as a linear subspace

What is a linear subspace?
Let V be a vector space and let W be a 

subset of V. Then W is a subspace if and 
only if:

1. The null vector 0 is in W
2. If u and v are elements of W, then any 

linear combination of u and v is an 
element of W; au + bv ∈ W

3. If u is an element of W and c is a 
scalar, then the scalar product cu ∈ W

• A k-dimensional subspace is 
spanned by k linearly independent 
vectors.  It is spanned by a k-
dimensional orthogonal basis

Example: A 2-D linear 
subspace of  R3 spanned 
by y1 and y2



CSE 252A, Fall 2023 Computer Vision I

Linear Subspaces & Linear Projection

• A d-pixel image x∈Rd can be projected to a 
low-dimensional feature space y∈Rk by

y = Wx
where W is an k by d matrix

• Each training image is projected to the 
subspace 

• Recognition is performed in Rk using, for 
example, nearest neighbor

• How do we choose a good W?

Example: A 2-D linear 
subspace of  R3 spanned 
by y1 and y2
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How do we choose a good W?
• Drop dimensions (feature selection)
• Random projections
• Principal Component Analysis
• Linear Discriminant Analysis
• Independent Component Analysis
• Or non-linear dimensionality reduction
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Principal component analysis (PCA) of covariance matrix

Mean

Covariance
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Mean

First Principal Component
Direction of Maximum Variance

Principal component analysis identifies a collection 
of linear features that are independent, and capture 

as much variance as possible from a dataset
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Relationship between singular value decomposition 
(SVD) and eigen decomposition
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Data matrix
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Singular value decomposition of 
(mean-deviation form of) data matrix

Note: economy 
SVD can be used
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SVD Properties
• r = rank(A) = number of non-zero singular values
• U, V give an orthonormal bases for the subspaces 

of A:
– 1st r columns of U:  Column space of A
– Last m - r columns of U:  Left nullspace of A
– 1st r columns of V: Row space of A
– 1st n - r columns of V:  (Right) nullspace of A

• For some d where d ≤ r, the first d column of U 
provide the best d-dimensional basis for columns 
of A in least squares sense.
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PCA for recognition
Modeling

1. Given a collection of n training images xi, represent each one 
as a d-dimensional column vector

2. Compute the mean image and covariance matrix
3. Compute k Eigenvectors of the covariance matrix 

corresponding to the k largest Eigenvalues and form matrix 
WT=[u1, u2,…,uk] (Or perform using SVD) 
 Note that the Eigenvectors  are images 

4. Project the training images to the k-dimensional Eigenspace. 
yi=Wxi

Recognition
1. Given a test image x, project the vectorized image to the 

Eigenspace by y=Wx
2. Perform classification  of y to the projected training images
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Example: Eigenfaces

[ Turk, Pentland 91]

Training 
images
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Eigenfaces

Mean Image
Basis Images
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Accuracy of PCA + K-NN



CSE 252A, Fall 2023 Computer Vision I

Difficulties with PCA
• Projection may suppress important detail

– smallest variance directions may not be 
unimportant

• Method does not take discriminative task 
into account
– typically, we wish to compute features that 

allow good discrimination
– not the same as largest variance or minimizing 

reconstruction error
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Fisherfaces: Class specific linear projection
P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: Recognition 

Using Class Specific Linear Projection, PAMI,  July 1997, pp. 711--720.

• An n-pixel image x∈Rd can be projected to a 
low-dimensional feature space y∈Rk by

y = Wx
where W is an k by d matrix

• Recognition is performed using nearest 
neighbor in Rk

• How do we choose a good W?
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PCA & Fisher’s Linear Discriminant 
• Between-class scatter

• Within-class scatter

• Total scatter

• Where
– c is the number of classes
– µi is the mean of class χi

– | χi | is number of samples of χi..
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If the data points xi are projected by yi=Wxi 
and the scatter of xi is S, then the scatter of the 

projected points yi is WTSW



CSE 252A, Fall 2023 Computer Vision I

PCA & Fisher’s Linear Discriminant 
• PCA (Eigenfaces) 

   Maximizes projected total scatter

• Fisher’s Linear Discriminant 

 
 Maximizes ratio of projected 

between-class to projected 
within-class scatter
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Computing the Fisher Projection Matrix

•There are at most c-1 non-zero generalized 
Eigenvalues, so m ≤ c-1
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Generalized eigenvalues and generalized 
eigenvectors for a pair of symmetric matrices
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Fisherfaces
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= • Since SW
 is rank N-c, project training 

set to subspace spanned by first N-c 
principal components of the training set.
• Apply FLD to N-c dimensional 
subspace yielding c-1 dimensional 
feature space.

• Fisher’s Linear Discriminant projects away the 
within-class variation (lighting, expressions) found in 
training set.
• Fisher’s Linear Discriminant preserves the 
separability of the classes.
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Harvard Face Database
15o

45o

30o

60o

• 10 individuals
• 66 images per person
• Train on 6 images at 15o

• Test on remaining images
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Recognition Results: Lighting Extrapolation
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Where have we been so far

• Supervised classification
– Feature space
– Nearest Neighbor (kth nearest neighbor)
– Bayesian (MAP) classifier

• Curse of dimensionality
• Dimensionality reduction

– Principal component analysis
– Fisher’s linear discriminant

Feature
Extraction

Classification
Object
Identity

Feature 
Vector
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Example of Feature Extraction 

CoralNet
https://coralnet.ucsd.edu/



A Representative Survey
Typical Survey:
• 1,250 images acquired 

over two weeks
• Goal: Coverage of 

dominant functional 
groups

• Annotated with Coral 
Point Count (CPCe)

• 200 annotations per 
image

• 250,000 annotations
• 6-9 months to annotate

Pete Edmunds and Vincent Moriarty, Cal State Northridge



Traditional Computer Vision Method

• Color/Texture classification with
– Preprocess
– Filtered image + color => feature vector at each 

pixel.
– Bag of Visual Words
– Pool over different sized regions
– SVM for classification

[ Beijbom, Edmunds, Kline, Mitchell, Kriegman, Automated Annotation of 
Coral Reef Survey Images, CVPR, 2012 ]
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Beijbom, Edmunds, Kline, Mitchell, Kriegman, 
"Automated Annotation of Coral Reef Survey 
Images", CVPR, 2012

mm/pixel ratio

Automatic Annotation of Survey Images
Step 1. Preprocess



STEP2A. FILTERING
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1. “ A statistical approach to 
texture classification from 
single images.” M. Varma, 
A. Zisserman, IJCV, 2005.
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1. “ A statistical approach to 
texture classification from 
single images.” M. Varma, 
A. Zisserman, IJCV, 2005.
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STEP3. EACH PIXEL IS MAPPED  TO A VISUAL WORD
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STEP4A. HISTOGRAMS
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STEP4B. HISTOGRAMS AT MULTIPLE SCALES
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Next Lectures
• Neural networks
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