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Announcements

* Assignment 3 1s due Nov 22, 11:59 PM

» Assignment 4 will be released Nov 22
— Due Dec 6, 11:59 PM
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Simplest feature: Image as a Feature Vector

* Consider an n-pixel 1mage to be a point in an
n-dimensional space, x € R®

» Each pixel value x; 1s a coordinate of x
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Nearest Neighbor Classifier

n classes (different people)
{R; :J=1,..., n} : set of training 1mages, one per person

label = argmindist(R 1)
j
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k Nearest Neighbor Classification
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i

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses & training samples, and it labels the test point by a majority
vole of these samples. In this & = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Faltern

Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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Nearest Neighbor Classification
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* k Nearest Neighbor with k=1

It can be shown that as number of samples approaches infinity, the error rate
of nearest neighbor is at most twice that of the optimal Bayesian classifier.
(Why is even close? Training samples are drawn from P(x | ®,)P(®,) )
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Comments on Nearest Neighbor

* Sometimes called “Template Matching”

* Variations on distance function (e.g., L,, robust
distances)

e Multiple templates per class- perhaps many training
1mages per class

« Expensive to compute k distances, especially when
ecach 1image 1s big (N dimensional)

* May not generalize well to unseen examples of class
« Will 1t apply well to other features (height, weight?)

* Some solutions:
— Bayesian classification
— Dimensionality reduction
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 If we want to build a minimume-error rate
classifier, then we need a very good
estimate of P(m;| x)

« How do we do this?
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* Let’s say our feature space 1s just 1-dimensional
and our feature x € [0,1]

* Let’s say we have 10,000 training samples
from which to estimate our a posteriori
probabilities

* We could estimate these probabilities using a
histogram 1in which we divided the interval into
100 evenly spaced bins

CSE 252A, Fall 2023 Computer Vision I



* On average each bin would have 100 samples

* We could estimate P(x | ;) as the number of
samples from class i that fall in the same bin that
falls into divided by the total number of samples
in that bin
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But this plan does not scale as we increase the
dimensionality of the feature space!

* Let’s say our feature space 1s 3 dimensional
and our feature x € [0,1]3

* Let’s say we still have 10,000 training
samples from which to estimate our a
posteriori probabilities

 If we estimate these probabilities using a
histogram 1in which we divide the volume
into the same width bins as before...
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On average each bin would only have 0.01 samples!

We’re not going be able to estimate probabilities well -
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Curse of Dimensionality

Dimensionality Reduction
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An 1dea:

Represent the set of images as a linear subspace

What is a linear subspace?

Let V' be a vector space and let W be a
subset of V. Then W is a subspace if and

only if;

1. Thenull vectorQ0i1sin W

2. Ifuand v are elements of W7, then any
linear combination of u and v 1s an
element of W;au+bve W

3. Ifuisanelement of Wandcisa
scalar, then the scalar product cu € W

* A k-dimensional subspace 1s
spanned by £ linearly independent
vectors. It 1s spanned by a -
dimensional orthogonal basis
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Example: A 2-D linear

subspace of R?spanned

by y, andy,
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Linear Subspaces & Linear Projection

* A d-pixel image xeRcan be projected to a Xo s
. . k AR AR
low-dimensional feature space yeR" by

y = Wx

where W is an k by d matrix

* Each training image is projected to the N .
subspace
* Recognition is performed in R" using, for *»:;;;w
example, nearest neighbor “
* How do we choose a good W?
X3
Example: A 2-D linear
subspace of R?spanned
by y; andy,
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How do we choose a good W?

* Drop dimensions (feature selection)

* Random projections

 Principal Component Analysis

* Linear Discriminant Analysis

* Independent Component Analysis

* Or non-linear dimensionality reduction
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Principal component analysis (PCA) of covariance matrix

Assume we have a set of n feature vectors ®; (i = 1,..., n) in R®. Write

1
Mean M= p Z T
]

i N T
Covariance X ,= —7 L{m, — plx; — )
i

Eigen decomposition of covariance matrix
Ly, = VAV'
where

Yy 1S a positive semidefinite n X n matrix
V is an n X n orthogonal matrix
A= diag()\l, ceey An); where )\z Z )‘H—l 2 0

Columns of V are eigenvectors (also called principal component coefficients) corresponding

to eigenvalues (also called principal component variances) A = (A,...,\,) .
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Relationship between singular value decomposition
(SVD) and eigen decomposition

A=TUzv' A=TUzv'
A'A = (uzv')'uzv' AAT =uzv'(uzv')'
A'A=vz'u'uzv! AA" =uzv'vz'u!
ATA=vz'zv! AT =usz'u’l
A"A=VAV' where A=3%'% AAT = UAU', where A = T2 '
where

U and V are orthogonal matrices
Y = diag(oy,...,0,), where 0; > g;11 > 0
A= diag()\l, ceey >\n)7 where )\z Z )‘i—i-l Z 0

variances \; = o Vi
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Data matrix

Data matrix

'X1T
X2T

X =
XmT

Data matrix, mean-deviation form
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Singular value decomposition of
(mean-deviation form of) data matrix

Note: economy

v T
X =UDV SVD can be used

where

D = diag(o1, . . ., Omin(m,n)), Where o; > 011 >0

columns of V (rows of V') are principal component coefficients of X

Projection of X to principal component axes

A

A
AV

|
>4

V (forward) projection to principal component scores

X back projection

Dimensionality reduction
Columns of V corresponding to smallest singular values can be removed

A/
A/V/T
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SVD Properties

* 1 =rank(A) = number of non-zero singular values

« U, V give an orthonormal bases for the subspaces
of A:
— 1st 7 columns of U: Column space of 4
— Last m - r columns of U: Left nullspace of 4
— 1st » columns of V: Row space of 4
— 1stn - r columns of V: (Right) nullspace of 4

o For some d where d <r, the first d column of U
provide the best d-dimensional basis for columns
of A in least squares sense.
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PCA for recognition
Modeling

1. Given a collection of # training images X, represent each one
as a d-dimensional column vector

Compute the mean 1image and covariance matrix

3. Compute k Eigenvectors of the covariance matrix
corresponding to the & largest Eigenvalues and form matrix
W'=[u,, u,,...,u;] (Or perform using SVD)

= Note that the Eigenvectors are images
4. Project the training images to the k-dimensional Eigenspace.
yi=Wx,
Recognition

1. Given a test image x, project the vectorized image to the
Eigenspace by y=Wx

2. Perform classification of y to the projected training images
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Example: Eigenfaces

Training
1mages

[ Turk, Pentland 91]
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Eigenfaces

Basis Images
Mean Image
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Accuracy of PCA + K-NN

KNN + 3,072 Features 33.86
KNN + 200 PCA Comp. 36.54
KNN + 75 PCA Comp. 39.77
KNN + 50 PCA Comp. 40.12
KNN + 40 PCA Comp. 40.93
KNN + 30 PCA Comp. 41.78
KNN + 25 PCA Comp. 41.57
KNN + 15 PCA Comp. 38.75
KNN + 10 PCA Comp. 34.93
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Difficulties with PCA

* Projection may suppress important detail

— smallest variance directions may not be
unimportant

e Method does not take discriminative task
into account

— typically, we wish to compute features that
allow good discrimination

— not the same as largest variance or minimizing
reconstruction error
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Fisherfaces: Class specific linear projection

P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection, PAMI, July 1997, pp. 711--720

* An n-pixel image xeRcan be projected to a
low-dimensional feature space ye R by
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* How do we choose a good W?
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PCA & Fisher’s Linear Discriminant

 Between-class scatter

C

Sp=D,

i=1

 Within-class scatter
Sy = ZC: Z('xk — 1,)(x, _lui)T

i=l x ey,

e Total scatter

St :Zc: Z(xk — H1)(x, _lLl)T =S85 +3S5y

i=1 x, ey,

e Where

— ¢ 1s the number of classes

(= 1) (1, — p1)"

Xi

— W, 1s the mean of class y.

— | %; | 1s number of samples of ;.
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If the data points x, are projected by y,=Wx,
and the scatter of x; is S, then the scatter of the
projected points y. is WISW
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PCA & Fisher’s Linear Discriminant

« PCA (Eigenfaces)
W, =arg mWax‘WT STW‘

Maximizes projected total scatter

e Fisher’s Linear Discriminant
WS W
WS,

W, =arg max

Maximizes ratio of projected
between-class to projected
within-class scatter
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Computing the Fisher Projection Matrix

w's,Ww
W~ = arg max
opt e : .
: WS, W]
= [Wl Wy oo W (4)
where {wf i= 1,2.....1}1} is the set of generalized eigen-
vectors of S, and S, corresponding to the m largest gener-
alized eigenvalues {/’Lj | i=12,..., m}. ie.,
SgW, = AS,w,, i=12...m

*There are at most c-1 non-zero generalized
Eigenvalues, so m < c¢-1
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Generalized eigenvalues and generalized
eigenvectors for a pair of symmetric matrices

AV=BVAand V'A=AV'B
where
A 1s symmetric
B is (symmetric) positive definite

V=|[vy]| - |Vvy] is not orthogonal
A =diag(Aq, ..., )

Eigenvalue \; corresponds to eigenvector v;.

SB 1S A

SW is B
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Fisherfaces

W =Ww dWP cu » Since Sy, is rank N-c, project training
S set to subspace spanned by first N-¢
principal components of the training set.
WP oy =arg max‘WT S TW‘  Apply FLD to N-c¢ dimensional
w subspace yielding c-/ dimensional
feature space.

‘WTWPTCASB WPCAW‘

/4
‘WTWPTCAS w WPCAW‘

= drg max
fld g 1

* Fisher’s Linear Discriminant projects away the
within-class variation (lighting, expressions) found in
training set.

 Fisher’s Linear Discriminant preserves the
separability of the classes.
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Harvard Face Database
T
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U
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* 10 individuals

* 66 1mages per person

e Train on 6 images at 15 %
 Test on remaining 1images



Recognition Results: Lighting Extrapolation
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Where have we been so far

Feature
F r Vector : :
> catu .e —| Classification >
Extraction Object

Identity

« Supervised classification
— Feature space

— Nearest Neighbor (kth nearest neighbor)
— Bayesian (MAP) classifier

e Curse of dimensionality

e Dimensionality reduction
— Principal component analysis

— Fisher’s linear discriminant
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Example of Feature Extraction

CoralNet
https://coralnet.ucsd.edu/
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A Representative Survey
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A cor Typical Survey:

1,250 images acquired
over two weeks

Goal: Coverage of
dominant functional
groups

Annotated with Coral
Point Count (CPCe)

200 annotations per
Image

250,000 annotations
6-9 months to annotate

Pete Edmunds and Vincent Moriarty, Cal State Northridge



Traditional Computer Vision Method

* Color/Texture classification with
— Preprocess

— Filtered image + color => feature vector at each
pixel.

— Bag of Visual Words
— Pool over different sized regions
— SVM for classification

[ Beijbom, Edmunds, Kline, Mitchell, Kriegman, Automated Annotation of
Coral Reef Survey Images, CVPR, 2012 ]



Automatic Annotation of Survey Images
Step 1. Preprocess

E L g .
L

INPUT IMAGE

Beijbom, Edmunds, Kline, Mitchell, Kriegman,
"Automated Annotation of Coral Reef Survey
Images", CVPR, 2012
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STEP2A. FILTERING
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STEP3. EACH PIXEL IS MAPPED TO A VISUAL WORD
w; € R** Tp = argmin [jw; — Fylf

E@-—n

L . = --t-' \;‘(f \
o | ] T A
X wnns T BN e
w,
W3
Wy
o
®
® ST S0
TEXTON MAP

Wi3s
\ J 135 WORDS IN

"DICTIONARY’
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STEP4A. HISTOGRAMS
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STEP4B. HISTOGRAMS AT MULTIPLE SCALES
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Next Lectures

 Neural networks
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