Optical Flow and Motion

Computer Vision I
CSE 252A

Lecture 12
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Announcements

* Assignment 2 1s due today, 11:59 PM

« Assignment 3 will be released today
— Due Nov 22, 11:59 PM
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« Consider a video camera
moving continuously
along a trajectory
(rotating & translating).

 How do points in the
image move?
* What does that tell us

about the 3D motion &
scene structure?
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Computer Vision I
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Structure-from-Motion (SFM)

Given two or more 1images or video without any
information on camera position/motion as input,
estimate camera motion and 3-D structure of a
scene

Two Approaches
1. Daiscrete motion (wide baseline)

2. Continuous (Infinitesimal) motion usually
from video
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Motion

“When objects move at equal speed,
those more remote seem to move

more slowly.”
- Euclid, 300 BC

s
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The Motion Field

Where 1n the 1mage did a point move?

Down and left
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Motion field

* The motion field is the projection of the
3D scene motion into the image
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Motion blur.
Usually 1n direction of motion field
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The Motion Field
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What causes a motion field?

Camera moves (translates, rotates)
Objects 1n scene move rigidly
Objects articulate (pliers, humans, animals)

Objects bend and deform (fish)
Blowing smoke, clouds

AN A e

Multiple movements

CSE 252A, Fall 2023 Computer Vision I



An example motion field:
Camera moving straight along optical axis

The “instantaneous” velocity of all points in an image
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Intersection of velocity
vector with image plane

With just this information
it 1s possible to calculate:

1. Direction of motion
2. Time to collision
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Rigid Motion: General Case

e
X=1Y
/ Z
/ |~
/ '
Rigid Motion:
Position and orientation of a rigid body Velocity Vector: t
Rotation Matrix & Translation vector Angular Velocity Vector: w
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General Motion

Pixel coordinates F} —

Y

Taking the time derivative of both sides yields

Motion field x

pixel coordinates | Y

Substitute X = —(w X X+ t)
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Motion Field Equation

* Motion field pixel coordinates
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Pure Translation

If camera is just translating with velocity t = (¢1,%,,t3)
Then there 1s no rotation:
®=0
tsx — 11 f Y
Z
_tyy —taf y — WoTY
- I
A

e 1,y 1s 1nversely proportional to Z (remember Euclid)
* Focus of expansion is located at (z,y) wherez = 0,y = 0
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Forward Translation & Focus of Expansion
[G1bson, 1950]
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Focus of Expansion (FOE)

* Focus of expansion is located at (z,y) where + = 0,y = 0
* Substitute and solve for (z,y)

t1

L= E Insight: The FOE 1s the
¢ perspective projection of the

Yy = 2 linear velocity vector t = (t1,ts,t5) "
ts
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Pure Translation
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| Parallel
| (FOE point at infinity)
Radial t; =10
about FOE Motion parallel to image plane
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Parallel

(FOE point at infinity)
t; =0
Motion parallel to image plane
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Pure Rotation: t=0

WY — Wal

f

2
W1y — Waly

f‘

« Independent of t = (¢, 1o, t3) "
* Independent of Z
* Only function of x, y, f, and w
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Rotational MOTION FIELD

The “instantaneous” velocity of points in an image
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Pure translation and pure rotation:
Motion Field on Sphere

Direction of
Translation

[ Z— Center of
Projection

Z— Center of
Projection

Axis of
Rotation
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Motion Field Equation: Estimate Depth

. tzr =11 f W1 LY — Wak?
= Wa ] + W3y

2
) — tsy —taf o1 f — s - WY~ — Wy
— 1 — W3
Z I I f
If t, w, and f are known or measured, then for each 1image
point (x, y), one can solve for the depth Z given measured

motion ,v at (x, y)

Depth 1s inversely proportional to 1image velocity
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Measuring Motion
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Optical Flow Field
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Estimating the motion field from 1mages

1. Feature-based (Sect. 8.4.2 of Trucco &
Verri)

1. Detect (corner-like) features 1in an 1mage

2. Search for the same features nearby (feature
tracking)

2. Differential techniques (Sect. 8.4.1)
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Optical Flow

» Optical flow 1s the pattern of apparent
motion of objects, surfaces, and edges in a
visual scene caused by the relative motion
between an observer and a scene

 Ideally, the optical flow is the projection of
the three-dimensional velocity vectors on
the 1image (1.e., the motion field)

— As we will see, 1t 1s not
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Problem Definition: Optical Flow

O/ Q °

AW ®
o—> i) (@) .
H(z,y) I(x,y)

 How to estimate pixel motion from image H to image 1?

— Find pixel correspondences

« Given a pixel in H, look for nearby pixels of the same color in I

« Key assumptions
— Color constancy: a point in H looks “the same” in image I
* For grayscale images, this is brightness constancy

— Small motion: points do not move very far
CSE 252A, Fall 2023 Computer Vision I



Optical Flow Constraint Equation

o (xpuot,y+vor)

Optical Flow: (¢, V)
(x,y) (x,)

timet timet+ ot

Displacement:
(&, 8) = (u &, v &)

1. Assume brightness of patch remains same in both images:

I(x+uot,y+vott+ot)=1x,y,t)

2. Assume small motion: (Taylor expansion of LHS up to first order)

]/ ]/ ]/
I(x,y,t)+0x —2 + 0y —2 + Ot 6_ =1(x,y,t)
X

y ot
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Optical Flow Constraint Equation

o (xpuot,y+vor)

Optical Flow: (¢, V)
(x,y) (x,)

timet timet+ ot

Displacement:
(&, 8) = (u &, v &)

3. Subtracting I(x,y,t) from both sides and dividing by (5[

8ol &al ol

=0
ot 6x ot 6y Ot
4. Assume small interval, this becomes:
de ol dy ol ol _

dt 6x dt 6y ot
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Solving for flow

Optical flow constraint equation :
de ol dy ol ol
dt 6x dt 6y ot

« We can measure 9/ 0l 0ol

Ox Oy Ot
. 5 Filter image with kernel [-1, 0, 1]

=0

. % Filter image with [-1, 0, 1]T

Z_I Consider stacking 3 images at (t-1, t, t+1), then filter
(

over time with kernel [-1,0,1]; or backward difference
+ We want to solve for & @
dt’ dt

* One equation, two unknowns = Cannot solve it
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Aperture Problem and Normal Flow

We measure: . ]
The gradient constraint:

=
* ox lu+lv+1, =0
;oo
B VielU =0
ol . .
I, = & Defines a line in the (1,v) space
We want to estimate v

Flow vector

Normal Flow: \
dx \

u
dt ’ _ ]t VI
N '

The component of the optical flow in

the direction of the image gradient
CSE 252A, Fall 2023
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Barber Pole Illusion
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Optical Motion
Flow Field

Optical flow field 1s not always the same as the motion field

http://www.opticalillusion.net/optical-illusions/the-barber-pole-illusion/
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Optical Flow £ Motion Field

S N

R,
MK

T
Motion field exists but no optical flow No motion field but shading changes
(a) (b)
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What 1s the correspondence of P & P’

Contour plots of 1mage intensity in two 1mages
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Two ways to get flow

/ﬁ{f/ ;‘

1. Think globally, and regularize over image

2. Look over window and assume constant
motion 1n the window
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Horn & Schunck algorithm

Additional smoothness constraint :
e, = [[ (] +u})+ (] +v]))dxdy,

besides OF constraint equation term

e = _U(Ixu +1,v+ 1)’ dxdy,

‘ minimize es+Aec ‘
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Lucas-Kanade: Integrate over a Patch

Assume a single velocity (u,v) for pixels within an image patch
Euv)= Y (1,0epu+1,(x,yw+1, ]
x,veld

E(u,v) 1s minimized when partial derivatives equal zero.

dE(u,v) B 3
" =221 (Lu+Iy+1)=0
dE(u,v) B B
— —z:ZIy(Ixu+va+It)—O

In matrix form:

B W

On the LHS: sum of the 2x2 outer product
tensor of the gradient vector

TV
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[Lukas-Kanade

Let M=) (VINVI)  and [%ii]

* So, the optical flow U = (u,v) can be written
as

MU=b
« And optical flow is just U=M-'b
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Lukas-Kanade: Singularities & Aperture Problem

Let M=) (VIfVI)  and [ %i j]

« Algorithm: At each pixel compute 7 by solving MU=b

* M 1s singular 1f
— constant brightness in 1mage: V/ =()
— Window 1s one pixel
— Along an edge (where the direction of V/
is the same (or zero) in the window)

« Aperature problem still exists

* M 1s full rank for regions of bidirectional
texturedness (€.g., corners)
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Low texture region
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— Eigenvalues of M: small A, small A,
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200 250

200

100

M =Y (VI)VI)

50

large A4, small A,

— Eigenvalues of M
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High textured region

M =Y (VI\VI)

— Eigenvalues of M: large A, large A,
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Some variants

* [terative refinement
* Coarse to fine (1mage pyramids)
* Local/global motion models

e Robust estimation

CSE 252A, Fall 2023 Computer Vision I



Revisiting the small motion
_assumr tion

-r ‘

* Is this motion small enough?
— Probably not—it’s much larger than one pixel (2" order terms dominate)

— How might we solve this problem?
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Iterative Refinement

+ Estimate velocity at each pixel using one iteration
of Lucas and Kanade estimation

* Warp one 1mage toward the other using the
estimated flow field

(easier said than done)

« Refine estimate by repeating the process
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Pyramid / “Coarse-to-fine”

5 8] % o 23
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Coarse-to-fine optical flow estimation
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Gaussian pyramid of image J Gaussian pyramid of image I
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Coarse-to-Fine Estimation
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Multi-resolution Lucas Kanade
Algorithm

« Compute ‘simple” LK at highest level
» Atlevel i
» Take flow u« _,, v, | from level i-1
* bilinear interpolate it to create u,”, v,
matrices of twice resolution tor level §
« multiply «,, v,” by 2
* compute /, from a block displaced by
o (). vo(xy)
* Apply LK to get w, (x, v). v, (x, v) (the
correction n tlow)
» Add corrections wu,'v,", ie. u, = u, 1w,

v, = v, + v,
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Parametric (Global) Motion
Models

2D Models:
(Translation)
Affine

Quadratic
Planar projective transform (Homography)

3D Models:

Instantaneous camera motion models
Homography+epipole
Plane+Parallax
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Motion Model Example: Affine Motion

* (7]

Affine: A= h =
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Optical flow

Deep neural networks
have become an
essential component of
high performance dense
optical flow algorithms Color encoding

of flow vectors
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Visual Tracking

Optical flow 1s pixel-level tracking.

Now we consider tracking objects
Main Challenges

1. 3D pose variation
Target occlusion
lllumination variation
Camera jitter

Expression variation
etc.

o kWb

[ Ho, Lee, Kriegman ]
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Main tracking notions

« State ¢p(t): usually a finite number of parameters (a
vector) that characterizes the “state” (e.g., location, size,
pose, deformation of thing being tracked.

 Dynamics ¢(t): How does the state change over time?
How 1is that changed constrained?

* Prediction: Given the state ¢p(t) at time ¢, what is an
estimate ¢, (t + 1)? Use ¢(t) and ¢ (¢).

* Representation: How do you represent the thing being
tracked

e Data Association: Which measurements correspond to
which object?

« Correction: Given the predicted state ¢ (t + 1) at time
t+1, and a measurement at time ¢+/, up(fate the state

P (t+1) =1(¢,(t + 1),M(t + 1))

o [Initialization — what is the state at time t=079
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Tracking by detection

« Example: Structured Output Tracking with Kernels
G
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https://youtu.be/gnT34hJwdiM
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Next Lectures

* Recognition, detection, and classification
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