Optical Flow and Motion

Computer Vision I CSE 252A Lecture 12

Announcements

- Assignment 2 is due today, 11:59 PM
- Assignment 3 will be released today
 Due Nov 22, 11:59 PM

Motion

- Consider a video camera moving continuously along a trajectory (rotating & translating).
- How do points in the image move?
- What does that tell us about the 3D motion & scene structure?

Motion

CSE 252A, Fall 2023

Structure-from-Motion (SFM)

Given two or more images or video without any information on camera position/motion as input, estimate camera motion and 3-D structure of a scene

Two Approaches

- 1. Discrete motion (wide baseline)
- 2. Continuous (Infinitesimal) motion usually from video

Motion

"When objects move at equal speed, those more remote seem to move more slowly."

- Euclid, 300 BC

The Motion Field

Where in the image did a point move?

Down and left

CSE 252A, Fall 2023

Motion field

 The motion field is the projection of the 3D scene motion into the image

Motion blur. Usually in direction of motion field

The Motion Field

CSE 252A, Fall 2023

What causes a motion field?

- 1. Camera moves (translates, rotates)
- 2. Objects in scene move rigidly
- 3. Objects articulate (pliers, humans, animals)
- 4. Objects bend and deform (fish)
- 5. Blowing smoke, clouds
- 6. Multiple movements

Direction of motion
 Time to collision

Rigid Motion: General Case

Position and orientation of a rigid body Rotation Matrix & Translation vector Rigid Motion: Velocity Vector: \mathbf{t} Angular Velocity Vector: $\boldsymbol{\omega}$

General Motion

Pixel coordinates
$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{f}{Z} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Taking the time derivative of both sides yields

Motion field
pixel coordinates
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{f}{Z} \begin{bmatrix} \dot{X} \\ \dot{Y} \end{bmatrix} - \frac{f\dot{Z}}{Z^2} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Substitute $\dot{X} = -(\boldsymbol{\omega} \times \mathbf{X} + \mathbf{t})$
 $x = \frac{f}{Z}X$
Then, substitute $y = \frac{f}{Z}Y$

CSE 252A, Fall 2023

Motion Field Equation

• Motion field pixel coordinates

$$\dot{x} = \frac{t_3 x - t_1 f}{Z} - \omega_2 f + \omega_3 y + \frac{\omega_1 x y - \omega_2 x^2}{f}$$
$$\dot{y} = \frac{t_3 y - t_2 f}{Z} + \omega_1 f - \omega_3 x + \frac{\omega_1 y^2 - \omega_2 x y}{f}$$

Pure Translation

If camera is just translating with velocity $\mathbf{t} = (t_1, t_2, t_3)^{\mathsf{T}}$, Then there is no rotation:

- \dot{x}, \dot{y} is inversely proportional to Z (remember Euclid)
- Focus of expansion is located at (x, y) where $\dot{x} = 0, \dot{y} = 0$

Forward Translation & Focus of Expansion [Gibson, 1950]

Focus of Expansion (FOE)

- Focus of expansion is located at (x, y) where $\dot{x} = 0, \dot{y} = 0$
- Substitute and solve for (x, y)

$$x = f \frac{t_1}{t_3}$$
$$y = f \frac{t_2}{t_3}$$

Insight: The FOE is the perspective projection of the linear velocity vector $\mathbf{t} = (t_1, t_2, t_3)^{\mathsf{T}}$

Pure Translation

Sideways Translation

Parallel (FOE point at infinity) $t_3 = 0$ Motion parallel to image plane

CSE 252A, Fall 2023

Pure Rotation: $\mathbf{t} = \mathbf{0}$

- Independent of $\mathbf{t} = (t_1, t_2, t_3)^{\top}$
- Independent of Z
- Only function of x, y, f, and ω

Rotational MOTION FIELD

The "instantaneous" velocity of points in an image

$$\omega = (0,0,1)^{\mathrm{T}}$$

Pure translation and pure rotation: Motion Field on Sphere

Motion Field Equation: Estimate Depth

If t, ω , and f are known or measured, then for each image point (x, y), one can solve for the depth Z given measured motion \dot{u}, \dot{v} at (x, y)

Depth is inversely proportional to image velocity

Measuring Motion

Optical Flow Field

Estimating the motion field from images

- 1. Feature-based (Sect. 8.4.2 of Trucco & Verri)
 - 1. Detect (corner-like) features in an image
 - 2. Search for the same features nearby (feature tracking)

2. Differential techniques (Sect. 8.4.1)

Optical Flow

• Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene

• Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image (i.e., the motion field)

– As we will see, it is not

Problem Definition: Optical Flow

- How to estimate pixel motion from image H to image I?
 - Find pixel correspondences
 - Given a pixel in H, look for nearby pixels of the same color in I
- Key assumptions
 - Color constancy: a point in H looks "the same" in image I
 - For grayscale images, this is **brightness constancy**
 - **Small motion**: points do not move very far

CSE 252A, Fall 2023

Optical Flow Constraint Equation

1. Assume brightness of patch remains same in both images:

$$I(x+u\,\,\delta t,y+v\,\,\delta t,t+\delta t)=I(x,y,t)$$

2. Assume small motion: (Taylor expansion of LHS up to first order)

$$I(x, y, t) + \delta x \frac{\partial I}{\partial x} + \delta y \frac{\partial I}{\partial y} + \delta t \frac{\partial I}{\partial t} = I(x, y, t)$$

CSE 252A, Fall 2023

Optical Flow Constraint Equation

3. Subtracting I(x,y,t) from both sides and dividing by δt

$$\frac{\delta x}{\delta t} \frac{\partial I}{\partial x} + \frac{\delta y}{\delta t} \frac{\partial I}{\partial y} + \frac{\partial I}{\partial t} = 0$$

4. Assume small interval, this becomes:

$$\frac{dx}{dt}\frac{\partial I}{\partial x} + \frac{dy}{dt}\frac{\partial I}{\partial y} + \frac{\partial I}{\partial t} = 0$$

Solving for flow

Optical flow constraint equation :

$$\frac{dx}{dt}\frac{\partial I}{\partial x} + \frac{dy}{dt}\frac{\partial I}{\partial y} + \frac{\partial I}{\partial t} = 0$$

- We can measure $\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}, \frac{\partial I}{\partial t}$
 - $\frac{\partial I}{\partial x}$ Filter image with kernel [-1, 0, 1]
 - $\frac{\partial I}{\partial y}$ Filter image with $[-1, 0, 1]^{\mathrm{T}}$
 - $\frac{\partial I}{\partial t}$ Consider stacking 3 images at (t-1, t, t+1), then filter over time with kernel [-1,0,1]; or backward difference
- We want to solve for $\frac{dx}{dt}$, $\frac{dy}{dt}$
- One equation, two unknowns \rightarrow Cannot solve it

Aperture Problem and Normal Flow

Barber Pole Illusion

Optical flow field is not always the same as the motion field http://www.opticalillusion.net/optical-illusions/the-barber-pole-illusion/ CSE 252A, Fall 2023

Optical Flow \neq Motion Field

What is the correspondence of P & P'

Contour plots of image intensity in two images

Two ways to get flow

1. Think globally, and regularize over image

2. Look over window and assume constant motion in the window

Horn & Schunck algorithm

Additional smoothness constraint :

$$e_{s} = \iint ((u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2}))dxdy,$$

besides OF constraint equation term

$$e_c = \iint (I_x u + I_y v + I_t)^2 dx dy,$$

minimize $e_s + \lambda e_c$

Lucas-Kanade: Integrate over a Patch

Assume a single velocity (u,v) for pixels within an image patch Ω $E(u,v) = \sum_{x,v \in \Omega} (I_x(x,y)u + I_y(x,y)v + I_t)^2$

E(u,v) is minimized when partial derivatives equal zero. $\frac{dE(u,v)}{du} = \sum 2I_x \left(I_x u + I_y v + I_t \right) = 0$

$$\frac{dE(u,v)}{dv} = \sum 2I_{y} \left(I_{x}u + I_{y}v + I_{t} \right) = 0$$

In matrix form:

On the LHS: sum of the 2x2 outer product tensor of the gradient vector

$$\left(\sum \nabla I \nabla I^{T}\right) \vec{U} = -\sum \nabla I I_{t}$$

CSE 252A, Fall 2023

Lukas-Kanade

Let
$$M = \sum (\nabla I) (\nabla I)^T$$
 and $b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$

• So, the optical flow U = (u,v) can be written as

MU=b

• And optical flow is just U=M⁻¹b

Lukas-Kanade: Singularities & Aperture Problem

Let
$$M = \sum (\nabla I) (\nabla I)^T$$
 and $b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$

- Algorithm: At each pixel compute U by solving MU=b
- M is singular if
 - constant brightness in image: $\nabla I = 0$
 - Window is one pixel
 - Along an edge (where the direction of ∇I is the same (or zero) in the window)
 - Aperature problem still exists
- M is full rank for regions of bidirectional texturedness (e.g., corners)

Low texture region

Edge

1 2 3 4 5 6 7 8 9 10 11

High textured region

CSE 252A, Fall 2023

Computer Vision I

Some variants

- Iterative refinement
- Coarse to fine (image pyramids)
- Local/global motion models
- Robust estimation

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Iterative Refinement

- Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation
- Warp one image toward the other using the estimated flow field *(easier said than done)*
- Refine estimate by repeating the process

Pyramid / "Coarse-to-fine"

CSE 252A, Fall 2023

Coarse-to-fine optical flow estimation

Multi-resolution Lucas Kanade Algorithm

- Compute 'simple' LK at highest level
- At level *i*
 - Take flow u_{i-1} , v_{i-1} from level i-1
 - bilinear interpolate it to create u_i^* , v_i^* matrices of twice resolution for level *i*
 - multiply u_i^* , v_i^* by 2
 - compute f_t from a block displaced by $u_i^*(x,y), v_i^*(x,y)$
 - Apply LK to get $u_i'(x, y)$, $v_i'(x, y)$ (the correction in flow)
 - Add corrections $u_i' v_i'$, *i.e.* $u_i = u_i^* + u_i'$, $v_i = v_i^* + v_i'$.

Parametric (Global) Motion Models

2D Models:

(Translation) Affine Quadratic Planar projective transform (Homography)

3D Models:

Instantaneous camera motion models Homography+epipole Plane+Parallax

Motion Model Example: Affine Motion

Affine:
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{h} = \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}$$

CSE 252A, Fall 2023

Optical flow

CSE 252A, Fall 2023

Visual Tracking

Optical flow is pixel-level tracking. Now we consider tracking objects

Main Challenges

- 1. 3D pose variation
- 2. Target occlusion
- 3. Illumination variation
- 4. Camera jitter
- 5. Expression variation etc.

Main tracking notions

- State $\phi(t)$: usually a finite number of parameters (a vector) that characterizes the "state" (e.g., location, size, pose, deformation of thing being tracked.
- **Dynamics** $\dot{\phi}(t)$: How does the state change over time? How is that changed constrained?
- **Prediction**: Given the state $\phi(t)$ at time *t*, what is an estimate $\phi_p(t+1)$? Use $\phi(t)$ and $\dot{\phi}(t)$.
- **Representation**: How do you represent the thing being tracked
- **Data Association:** Which measurements correspond to which object?
- Correction: Given the predicted state $\phi_p(t+1)$ at time t+1, and a measurement at time t+1, update the state $\phi_c(t+1) = f(\phi_p(t+1), M(t+1))$
- **Initialization** what is the state at time t=0?

Tracking by detection

• Example: Structured Output Tracking with Kernels

https://youtu.be/gnT34hJwdjM

Next Lectures

• Recognition, detection, and classification