Model Fitting

Computer Vision I
 CSE 252A
 Lecture 11

Announcements

- Assignment 2 is due Nov 8, 11:59 PM
- Assignment 3 will be released Nov 8
- Due Nov 22, 11:59 PM

Model fitting example

- Segment linked edge chains into curve features (e.g., line segments)
- Group unlinked or unrelated edges into lines (or curves in general)

- Accurately fitting parametric curves (e.g., lines) to grouped edge points

Hough Transform [Patented 1962]

Finding lines in an image

image space

Hough space

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to?

The equation of any line passing through ($\mathrm{x}_{0}, \mathrm{y}_{0}$) has form

$$
y_{0}=m x_{0}+b
$$

This is a line in Hough space: $b=-x_{0} m+y_{0}$

Hough Transform Algorithm

- Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis

- Basic Hough transform algorithm

1. Initialize $\mathrm{H}[\mathrm{d}, \theta]=0 \quad ; \mathrm{H}$ is called accumulator array
2. for each edge point $\mathrm{I}[\mathrm{x}, \mathrm{y}]$ in the image

$$
\begin{aligned}
& \text { for } \theta=0 \text { to } 180 \\
& \quad \begin{array}{l}
d=x \cos \theta+y \sin \theta \\
H[d, \theta]+=1
\end{array}
\end{aligned}
$$

3. Find the value(s) of (d, θ) where $\mathrm{H}[\mathrm{d}, \theta]$ is the global maximum
4. The detected line in the image is given by $d=x \cos \theta+y \sin \theta$

- What's the running time (measured in \# votes)?

Hough Transform: 20 colinear points

- d, θ representation of line
- Drawn as: $d=|x \cos \theta+y \sin \theta|$
- Maximum accumulator value is 20

Note: accumulator array range: theta: 0-360, d: positive

Hough Transform: Random points

Image

- $\mathrm{d},{ }^{\mathrm{x}} \theta$ representation of line
- Drawn as: $d=|x \cos \theta+y \sin \theta|$
- Maximum accumulator value is 4

Hough Transform: "Noisy line" Image
 Accumulator

- d, θ representation of line
- Drawn as: $d=|x \cos \theta+y \sin \theta|$
- Maximum accumulator value is 6

Hough Transform for Curves Generalized Hough Transform

- The Hough transform can be generalized to detect any curve that can be expressed in parametric form:

$$
y=f\left(x, a_{1}, a_{2}, \ldots a_{p}\right)
$$

or

$$
\mathrm{g}\left(\mathrm{x}, \mathrm{y}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{p}}\right)=0
$$

$-a_{1}, a_{2}, \ldots a_{p}$ are the parameters

- The parameter space is p -dimensional
- The accumulating array is large

Example: Finding circles

Equation for circle is

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

where the parameters are the circle' s center $\left(x_{c}, y_{c}\right)$ and radius r.

Three dimensional generalized Hough space.
Given an edge point (x, y),

1. Loop over all values of $\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}\right)$,
2. Compute r
3. Increment $\mathrm{H}\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{r}\right)$

Transmission Electron Microscopy (TEM) Image of Keyhole Limpet Hemocyanin (KLH) with detected particles

3D Maps of KLH

Three-dimensional maps of KLH at a resolution of $23.5 \AA$ reconstructed using particles extracted either manually or automatically as described in the text. (a), (b) The side- and top- view of a 3D map reconstructed from a set of 1042 manually selected particle images.

Processing in Stage 1 for KLH

- Canny edge detection.
- A sequence of ordered Hough transforms (HTs) is applied in order from the computationally simplest one to the most complex one.
- Edges covered by the detected shapes are removed immediately from edge images following the application of the last HT.

Picking KLH Particles in Stage 1

Zhu et al., IEEE Transactions on Medical Imaging, 2003

Line Fitting

Line Fitting

Problem: minimize

$$
E(a, b, d)=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Given n points $\left(x_{i}, y_{i}\right)$, estimate parameters of line

$$
a x_{i}+b y_{i}-d=0
$$

subject to the constraint that $a^{2}+b^{2}=1$
Note: $a x_{i}+b y_{i}-d$ is distance from $\left(x_{i}, y_{i}\right)$ to line.

Cost Function:
Sum of squared distances between each point and the line
with respect to (a, b, d).

1. Minimize E with respect to d :

$$
\frac{\partial E}{\partial d}=0 \Rightarrow d=\frac{1}{n} \sum_{i=1}^{n} a x_{i}+b y_{i}=a \bar{x}+b \bar{y}
$$

Where (\bar{x}, \bar{y}) is the mean of the data points

Line Fitting

2. Substitute d back into E

$$
E=\sum_{i=1}^{n}\left[a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right]^{2}=|\mathcal{U} \boldsymbol{n}|^{2} \quad \text { where } \quad \mathcal{U}=\left(\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\cdots & \cdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right)
$$ where $\mathbf{n}=(\mathrm{ab})^{\mathrm{T}}$.

3. Minimize $E=|U n|^{2=} \boldsymbol{n}^{T} U^{T} U \boldsymbol{n}=\boldsymbol{n}^{\boldsymbol{T}} S \boldsymbol{n}$ with respect to a, b subject to the constraint $\mathbf{n}^{\mathrm{T}} \mathbf{n}=1$. Note that S is given by

$$
S=\mathcal{U}^{T} \mathcal{U}=\left(\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2} & \sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} \\
\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} & \sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}
\end{array}\right)
$$

which is real, symmetric, and positive definite

Line Fitting

4. This is a constrained optimization problem in \boldsymbol{n}. Solve with Lagrange multiplier

$$
\mathrm{L}(\boldsymbol{n})=\mathbf{n}^{\mathrm{T}} \mathbf{S n}-\lambda\left(\mathbf{n}^{\mathrm{T}} \mathbf{n}-1\right)
$$

Take partial derivative (gradient) w.r.t. \mathbf{n} and set to 0 .

$$
\nabla \mathbf{L}=\mathbf{2 S n}-\mathbf{2} \lambda \mathbf{n}=0
$$

or

$$
S \mathbf{n}=\lambda \mathbf{n}
$$

$\boldsymbol{n}=(a, b)$ is an Eigenvector of the symmetric matrix S (the one corresponding to the smallest Eigenvalue).
5. d is computed from Step 1.

RANdom Sample Consensus (RANSAC)

Slides adapted from
Frank Dellaert and Marc Pollefeys

Motivation

- Estimating parameters of models in the presence of outlier data points
- Lines (two parameters)
- Homographies for mosaicing or rectification (8 parameters)
- Essential matrix
- And other models (circle, ellipses)
- For SFM: keypoints in two images

Simpler Example

- Fitting a straight line

- Inliers
- Outliers

Discard Outliers

- No point with $\mathrm{d}>\mathrm{t}$
- RANSAC:
- RANdom SAmple Consensus
- Fischler \& Bolles 1981
- Copes with a large proportion of outliers

RANSAC Idea applied to line fitting

Problem: Given S points and threshold τ, determine best fit line in presence of outliers Repeat N times

- Select two points at random
- Determine line equation from the two points
- Count number of points that are within distance τ from the line. This is called the "support" of the line and it's the number of inliers
- Line with the greatest support wins

Why will this work ?

Why will this work ?

- Best line has most support
- More support -> better fit

Why will this work ?

- Best line has most support
- More support -> better fit

RANSAC More Generally

- What do we need to apply RANSAC

1. A parameterized model
2. A way to estimate the model parameters from s data points $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{s}\right\}$
3. Given the parameters of the model, a way to estimate the distance from a data point x_{i} to the model

RANSAC More Generally

Objective

Robust fit of model to data set S which contains outliers

Algorithm
REPEAT
(i) Randomly select a sample of s data points from S
(ii) Instantiate the model from this sample.
(iii) Determine the set of data points S_{i} which are within a distance threshold t of the model. The set S_{i} is the consensus set of samples and defines the inliers of S.
(iv) $\mathrm{S}_{\text {largest }}=\mathrm{S}_{\mathrm{i}}$ if S_{i} is larger than $\mathrm{S}_{\text {largest }}$

UNTIL (The size of S_{i} is greater than some threshold T) $O R$
(There have been N samples)
The model is re-estimated using all the points in $\mathrm{S}_{\text {largest }}$

Using RANSAC to estimate the fundamental matrix

- What is the model?

Fundamental matrix

- What is the sample size and where do the samples come from?

8 points in each image or 8 matched pairs (e.g., SIFT matches)

- What distance do we use to compute the consensus set? 1. L^{2} distance of points to epipolar line

2. Epipolar constraint
3. Reprojection error or its Sampson error approximation

- How often do outliers occur

Usually not known in advance

Feature points extracted by a corner detector

Matched points by RANSAC

Yellow: Inliers (correct matches)
Cyan: Outliers (mismatches)

Putative matches of the feature points in both images are computed by using a correlation measure for points in one image with a features in the other image. Only features within a small window are considered to limit computation time. Mutually best matches are retained. RANSAC is used to robustly determine F from these putative matches.

Putative Epipolar Geometry during an iteration of RANSAC

Distance 1 for computing consensus set

Distance between matching feature points \mathbf{q} and \mathbf{q}^{\prime} using point-line distance
$\operatorname{Dist} 1\left(\mathbf{q}, \mathbf{q}^{\prime}\right)=\operatorname{dist}\left(\mathbf{q}, L\left(\mathbf{q}^{\prime}\right)\right)+\operatorname{dist}\left(\mathbf{q}^{\prime}, L^{\prime}(\mathbf{q})\right)$

Distance 2 for computing consensus set

Distance between matching feature points \mathbf{q} and \mathbf{q} ' using epipolar constraint

$$
\operatorname{Dist} 2\left(\mathbf{q}, \mathbf{q}^{\prime}\right)=\mathbf{q}^{\mathrm{T}} \mathbf{F q}
$$

Where \mathbf{F} is the fundamental matrix.

Note: F must be normalized, perhaps by dividing by $\|\mathbf{F}\|$

Two input images with features points

Matching points computed with RANSAC

Epipolar lines

How many samples are needed to be

 confident that you have found only inliers?Choose N (number of samples) so that, with probability p, at least one of N random samples is free from outliers, e.g., $p=0.99$
Let
s : sample size (i.e., number of points needed for the model)
e : proportion of outliers in the data

- For line fitting: $s=2$
- For this example, there are 6 inliers and 2 outliers: $e=2 / 8=0.25$

RANSAC applied to estimating Fundamental Matrix

- The 8 point algorithm requires having 8 correctly matching pairs of points in a pair of images.
- Hypothetically, if a matching method using SIFT descriptors leads to 40% of pairs being incorrect, Then the chance of randomly selecting 8 pairs, all of which are correct, is $(1-0.4)^{8}=0.016$
- To be 99% sure that at least one of the randomly selected group of 8 pairs of points is correct implies that you must draw 272 pairs (i.e., random samples).

How many samples are needed to be confident that you have found only inliers?
Choose N (number of samples) so that, with probability p, at least one of N random samples is free from outliers, e.g., $p=0.99$ Let
s : sample size (i.e., number of points needed for the model)
e : proportion of outliers in the data

$$
\begin{gathered}
\left.\left(\begin{array}{lll}
1 & (1 & e
\end{array}\right)^{s}\right)^{N}=1
\end{gathered} \quad p \quad \text { Solve for } N .
$$

Where does this equation come from?

$$
\left.\left(\begin{array}{lll}
1 & (1 & e
\end{array}\right)^{s}\right)^{N}=1 \quad p
$$

- p : desired probability that at least one of N random samples is free from outliers
- 1- p : probability that none of the samples is free from outliers
- s : sample size (i.e., number of points needed for the model)
- e : proportion of outliers in the data
- 1-e: probability of a data sample being an inlier
- (1-e) $)^{s}$: probability that s samples are all inliers
- $1-(1-e)^{s}$: probability that s samples contain at least one outlier
- $\left(1-(1-e)^{s}\right)^{N}$: probability that none of the samples is free from outliers

How many samples are needed to be

 confident that you have found only inliers?Choose N (number of samples) so that, with probability p, at least one of N random samples is free from outliers, e.g., $p=0.99$
Let s : sample size (i.e., number of points needed for the model) e : proportion of outliers in the data

$$
\begin{gathered}
\left.\left(\begin{array}{lll}
1 & (1 & e
\end{array}\right)^{s}\right)^{N}=1
\end{gathered} \quad p \quad \text { Solve for } N .
$$

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

Distance threshold

Choose threshold t so probability for inlier is α

$$
\text { (e.g., } \alpha=0.95 \text {) }
$$

- Often empirically
- Zero-mean Gaussian noise σ then d_{\perp}^{2} follows χ_{m}^{2} distribution with $m=$ codimension of model
(codimension of subspace $=$ dimension of space - dimension of subspace)

Codimension	Model	t^{2}
1	E, F, 2D line	$3.84 \sigma^{2}$
2	P	$5.99 \sigma^{2}$

Number of inliers threshold

- Typically, terminate when inlier ratio reaches expected ratio of inliers

$$
T=\left(\begin{array}{ll}
1 & e
\end{array}\right) N
$$

- N : number of samples
- e : proportion of outliers in the data

Next Lecture

- Optical flow and motion
- Additional, optional reading in Course Reserves
- Introductory Techniques for 3-D Computer Vision, Trucco and Verri
- Chapter 8: Motion

