
CSE252A_FA23_assignment_2

October 25, 2023

1 CSE 252A Computer Vision I Fall 2023 - Assignment 2
Instructor: Ben Ochoa

Assignment due: Wed, Nov 8, 11:59 PM

Name:

PID:

1.1 Instructions
Please answer the questions below using Python in the attached Jupyter notebook and follow the
guidelines below:

• This assignment must be completed individually. For more details, please follow the Aca-
demic Integrity Policy and Collaboration Policy on Canvas.

• All the solutions must be written in this Jupyter notebook.

• You may use basic algebra packages (e.g. NumPy, SciPy, etc) but you are not allowed to use
the packages that directly solve the problems. Feel free to ask the instructor and the teaching
assistants if you are unsure about the packages to use.

• It is highly recommended that you begin working on this assignment early.

• You must submit this notebook exported as a pdf. You must also submit this notebook as
an .ipynb file.

• Your code and results should remain inline in the pdf.

• You must submit 3 files on Gradescope - .pdf , .ipynb and .py file where the .py
file is the conversion of your .ipynb to .py file . You must mark each problem on
Gradescope in the pdf. To convert the notebook to PDF, you can choose one way below:

1. You can print the web page and save as PDF (e.g. Chrome: Right click the web page →
Print… → Choose “Destination: Save as PDF” and click “Save”).

2. You can find the export option in the header: File → Download as → “PDF via LaTeX”

To convert the notebook (.ipynb) to .py file use the following command:

jupyter nbconvert –to script filename.ipynb –output output_filename.py

• Please make sure the content in each cell (e.g. code, output images, printed results, etc.) are
clearly visible and are not cut-out or partially cropped in your final PDF file.

1

https://canvas.ucsd.edu

• While submitting on gradescope, please make sure to assign the relevant pages in your PDF
submission for each problem.

Late Policy: Assignments submitted late will receive a 15% grade reduction for each 12 hours
late (i.e., 30% per day). Assignments will not be accepted 72 hours after the due date. If you
require an extension (for personal reasons only) to a due date, you must request one as far in
advance as possible. Extensions requested close to or after the due date will only be granted for
clear emergencies or clearly unforeseeable circumstances.

[]: import numpy as np
from time import time
from skimage import io
%matplotlib inline
import matplotlib.pyplot as plt

1.2 Problem 1 Image filtering [15 pts]
1.2.1 Problem 1.1 Implementing Convolution[5 pts]

In this problem, you will implement the convolution filtering operation using NumPy functions,
but without using the NumPy convolve function directly.

As shown in the lecture, a convolution can be considered as a sliding window that computes a sum
of the pixel values weighted by the flipped kernel. Your version will i) zero-pad an image, ii) flip
the kernel horizontally and vertically, and iii) compute a weighted sum of the neighborhood at each
pixel.

Problem 1.1.1 [1 pts] First you will want to implement the zero_pad function.

[]: def zero_pad(image, pad_top, pad_down, pad_left, pad_right):
""" Zero-pad an image.

Ex: a 1x1 image [[1]] with pad_top = 1, pad_down = 1, pad_left = 2,␣
↪pad_right = 2 becomes:

[[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]] of shape (3, 5)

Args:
image: numpy array of shape (H, W)
pad_left: width of the zero padding to the left of the first column
pad_right: width of the zero padding to the right of the last column
pad_top: height of the zero padding above the first row
pad_down: height of the zero padding below the last row

Returns:
out: numpy array of shape (H + pad_top + pad_down, W + pad_left +␣

↪pad_right)

2

"""
""" ==========
YOUR CODE HERE
========== """

return out

Open image as grayscale
img = io.imread('dog.jpg', as_gray=True)

Show image
plt.imshow(img,cmap='gray')
plt.axis('off')
plt.show()

pad_width = 20 # width of the padding on the left and right
pad_height = 40 # height of the padding on the top and bottom

padded_img = zero_pad(img, pad_height, pad_height, pad_width, pad_width)

Plot your padded dog
plt.subplot(1,2,1)
plt.imshow(padded_img,cmap='gray')
plt.title('Padded dog')
plt.axis('off')

Plot what you should get
solution_img = io.imread('padded_dog.jpg', as_gray=True)
plt.subplot(1,2,2)
plt.imshow(solution_img,cmap='gray')
plt.title('What you should get')
plt.axis('off')

plt.show()

Problem 1.1.2 [2 pts] Now implement the function conv, using at most 2 loops. This
function should take an image 𝑓 and a kernel ℎ as inputs and output the convolved image (𝑓 ∗ ℎ)
that has the same shape as the input image (use zero padding to accomplish this). We will only be
using kernels with odd width and odd height. Depending on the computer, your implementation
should take around a second or less to run.

[]: def conv(image, kernel):
""" An efficient implementation of a convolution filter.

This function uses element-wise multiplication and np.sum()
to efficiently compute a weighted sum of the neighborhood at each

3

pixel.

Hints:
- Use the zero_pad function you implemented above
- You should need at most two nested for-loops
- You may find np.flip() and np.sum() useful
- You need to handle both odd and even kernel size

Args:
image: numpy array of shape (Hi, Wi)
kernel: numpy array of shape (Hk, Wk)

Returns:
out: numpy array of shape (Hi, Wi)

"""
Hi, Wi = image.shape
Hk, Wk = kernel.shape
out = np.zeros((Hi, Wi))

""" ==========
YOUR CODE HERE
========== """

return out

Simple convolution kernel.
kernel = np.array(
[

[1,0,-1],
[2,0,-2],
[1,0,-1]

])

t1 = time()
out = conv(img, kernel)
t2 = time()
print("took %f seconds." % (t2 - t1))

Plot original image
plt.subplot(2,2,1)
plt.imshow(img,cmap='gray')
plt.title('Original')
plt.axis('off')

Plot your convolved image
plt.subplot(2,2,3)

4

plt.imshow(out,cmap='gray')

plt.title('Convolution')
plt.axis('off')

Plot what you should get
solution_img = io.imread('convolved_dog.jpg', as_gray=True)
plt.subplot(2,2,4)
plt.imshow(solution_img,cmap='gray')
plt.title('What you should get')
plt.axis('off')

plt.show()

Problem 1.1.3 [1 pt] Now let’s filter some images! Here, you will apply the convolution function
that you just implemented in order to bring about some interesting image effects. More specifically,
we will use convolution to blur and sharpen our images.

First we will apply convolution for image blurring. To accomplish this, convolve the dog image
with a 13x13 Gaussian filter for 𝜎 = 2.0. You can use the included function to obtain the Gaussian
kernel.

[]: def gaussian2d(sig):
"""
Creates 2D Gaussian kernel with a sigma of `sig`.
"""
filter_size = int(sig * 6)
if filter_size % 2 == 0:

filter_size += 1

ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-0.5 * (np.square(xx) + np.square(yy)) / np.square(sig))
return kernel / np.sum(kernel)

def blur_image(img):
"""Blur the image by convolving with a Gaussian filter."""
blurred_img = np.zeros_like(img)
""" ==========
YOUR CODE HERE
========== """

return blurred_img

Plot original image
plt.subplot(2,2,1)

5

plt.imshow(img,cmap='gray')
plt.title('Original')
plt.axis('off')

Plot blurred image
plt.subplot(2,2,2)
plt.imshow(blur_image(img),cmap='gray')
plt.title('Blurred')
plt.axis('off')

plt.show()

Problem 1.1.4 [1 pt] Next, we will use convolution to sharpen the images. Convolve the image
with the following filter to produce a sharpened result. For convenience, we have defined the filter
for you:

[]: sharpening_kernel = np.array([
[1, 4, 6, 4, 1],
[4, 16, 24, 16, 4],
[6, 24, -476, 24, 6],
[4, 16, 24, 16, 4],
[1, 4, 6, 4, 1],

]) * -1.0 / 256.0

[]: def sharpen_image(img):
"""Sharpen the image by convolving with a sharpening filter."""
sharpened_img = np.zeros_like(img)
""" ==========
YOUR CODE HERE
========== """

return sharpened_img

Plot original image
plt.subplot(2,2,1)
plt.imshow(img, vmin=0.0, vmax=1.0,cmap='gray')
plt.title('Original')
plt.axis('off')

Plot sharpened image
plt.subplot(2,2,2)
plt.imshow(sharpen_image(img), vmin=0.0, vmax=1.0,cmap='gray')
plt.title('Sharpened')
plt.axis('off')

plt.show()

6

1.2.2 Problem 1.2: Convolution Theory [5 pts]

Problem 1.2.1 [2 pts] Consider (1) smoothing an image with a 3x3 box filter and then computing
the derivative in the y-direction. Also consider (2) computing the derivative first, then smoothing.
What is a single convolution kernel that will simultaneously implement both (1) and (2)? Try to
give a brief justification for how you arrived at the kernel. (Hint: See shape full convolution)

Use the y-derivative filter
[−1/2, 0, 1/2]𝑇

for this problem.

Problem 1.2.2 [3 pts] Certain 2D filters can be expressed as a convolution of two 1D filters.
Such filters are called separable filters. Give an example of a 3 × 3 separable filter and compare the
number of arithmetic operations it takes to convolve an n × n image using that filter before and
after separation. Count both, the number of multiplication and addition operations in each case.

Assume that the convolution of the image and filter is performed in “valid” mode, i.e., the image
is not padded before convolution.

1.2.3 Problem 1.3 Template Matching [5 pts]

Suppose that you are a clerk at a grocery store. One of your responsibilites is to check the shelves
periodically and stock them up whenever there are sold-out items. You got tired of this laborious
task and decided to build a computer vision system that keeps track of the items on the shelf.

Luckily, you have learned in CSE 252A (or are learning right now) that convolution can be used for
template matching: a filpped template g is multiplied with regions of a larger image f to measure
how similar each region is to the template. Note that you will want to flip the filter before giving
it to your convolution function, so that it is overall not flipped when making comparisons. You
will also want to subtract off the mean value of the image or template (whichever you choose,
subtract the same value from both the image and template) so that our solution is not biased
toward higher-intensity (white) regions.

The template of a product (template.jpg) and the image of the shelf (shelf.jpg) is provided. We
will use convolution to find the product in the shelf.

[]: # Load template and image in grayscale
img = io.imread('shelf.jpg')
img_gray = io.imread('shelf.jpg', as_gray=True)
temp = io.imread('template.jpg')
temp_gray = io.imread('template.jpg', as_gray=True)

Perform a convolution between the image (grayscale) and the template␣
↪(grayscale) and store

the result in the out variable
""" ==========
YOUR CODE HERE
========== """

7

Display product template
plt.figure(figsize=(20,16))
plt.subplot(3, 1, 1)
plt.imshow(temp_gray, cmap="gray")
plt.title('Template')
plt.axis('off')

Display convolution output
plt.subplot(3, 1, 2)
plt.imshow(out, cmap="gray")
plt.title('Convolution output (white means more correlated)')
plt.axis('off')

Display image
plt.subplot(3, 1, 3)
plt.imshow(img, cmap="gray")
plt.title('Result (blue marker on the detected location)')
plt.axis('off')

Draw marker at detected location
plt.plot(x, y, 'bx', ms=40, mew=10)
plt.show()

1.3 Problem 2: Edge detection [21 pts]
In this problem, you will write a function to perform Canny edge detection. The following steps
need to be implemented.

1.3.1 Problem 2.1 Smoothing [1 pt]

First, we need to smooth the images in order to prevent noise from being considered as edges. For
this assignment, use a 9x9 Gaussian kernel filter with 𝜎 = 1.5 to smooth the images.

[]: import numpy as np
from skimage import io
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from scipy.signal import convolve
%matplotlib inline

import matplotlib
matplotlib.rcParams['figure.figsize'] = [5, 5]

[]: def gaussian2d(sig=None):
"""Creates a 2D Gaussian kernel with
side length `filter_size` and a sigma of `sig`."""
filter_size = int(sig * 6)
if filter_size % 2 == 0:

8

filter_size += 1

ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-0.5 * (np.square(xx) + np.square(yy)) / np.square(sig))
return kernel / np.sum(kernel)

[]: def smooth(image):
""" ==========
YOUR CODE HERE
========== """

[]: # Load image in grayscale
image = io.imread('sio_pier.jpg', as_gray=True)
assert len(image.shape) == 2, 'image should be grayscale; check your Python/

↪skimage versions'
smoothed = smooth(image)
print('Original:')
plt.imshow(image, cmap=cm.gray)
plt.show()

print('Smoothed:')
plt.imshow(smoothed, cmap=cm.gray)
plt.show()

1.3.2 Problem 2.2 Gradient Computation [5 pts]

After you have finished smoothing, find the image gradient in the horizontal and vertical directions.
Compute the gradient magnitude image as |𝐺| = √𝐺2𝑥 + 𝐺2𝑦. The edge direction for each pixel is

given by 𝐺𝜃 = tan−1 (𝐺𝑦
𝐺𝑥

).

[]: def gradient(image):
""" ==========
YOUR CODE HERE
========== """

return g_mag, g_theta

[]: g_mag, g_theta = gradient(smoothed)
print('Gradient magnitude:')
plt.imshow(g_mag, cmap=cm.gray)
plt.show()

9

1.3.3 Problem 2.3 Non-Maximum Suppression [7 pts]

We would like our edges to be sharp, unlike the ones in the gradient image. Use non-maximum
suppression to preserve all local maxima and discard the rest. You can use the following method
to do so:

• For each pixel in the gradient magnitude image:
– Round the gradient direction 𝜃 to the nearest multiple of 45∘ (which we will refer to as

𝑣𝑒).
– Compare the edge strength at the current pixel to the pixels along the +𝑣𝑒 and −𝑣𝑒

gradient direction in the 8-connected neighborhood.
– If the pixel does not have a larger value than both of its two neighbors in the +𝑣𝑒 and

−𝑣𝑒 gradient directions, suppress the pixel’s value (set it to 0). By following this process,
we preserve the values of only those pixels which have maximum gradient magnitudes
in the neighborhood along the +𝑣𝑒 and −𝑣𝑒 gradient directions.

• Return the result as the NMS response.

[]: def nms(g_mag, g_theta):
""" ==========
YOUR CODE HERE
========== """

return nms_response

[]: nms_image = nms(g_mag, g_theta)
print('NMS:')
plt.imshow(nms_image, cmap=cm.gray)
plt.show()

1.3.4 Problem 2.4 Hysteresis Thresholding [8 pts]

Choose suitable values of thresholds and use the thresholding approach decribed in lecture 6. This
will remove the edges caused by noise and color variations.

• Define two thresholds t_min and t_max.
• If the nms > t_max, then we select that pixel as an edge.
• If nms < t_min, we reject that pixel.
• If t_min < nms < t_max, we select the pixel only if there is a path from/to another pixel

with nms > t_max. (Hint: Think of all pixels with nms > t_max as starting points and run
BFS/DFS from these starting points).

• The choice of value of low and high thresholds depends on the range of values in the gradient
magnitude image. You can start by setting the high threshold to some percentage of the max
value in the gradient magnitude image, e.g. thres_high = 0.2 * image.max(), and the low
threshold to some percentage of the high threshold, e.g. thres_low = 0.85 * thres_high. And
then you can tune those values however you want.

A good initial value to use is thres_high = 0.25 * image.max() amd thres_low = 0.25 * thres_high

10

[]: def hysteresis_threshold(image, g_theta, use_g_theta=False):
""" ==========
YOUR CODE HERE
========== """

return result

[]: thresholded = hysteresis_threshold(nms_image, g_theta)
print('Thresholded:')
plt.imshow(thresholded, cmap=cm.gray)
plt.show()

1.4 Problem 3 Corner detection [13 pts]
1.4.1 Problem 3.1 [12 pts]

In this problem, we are going to build a corner detector. This should be done according to the
lecture slides. You should fill in the function corner_detect below, which takes as input image,
nCorners, smoothSTD, windowSize – where smoothSTD is the standard deviation of the smoothing
kernel and windowSize is the window size for corner detector and non-maximum suppression. In
the lecture, the corner detector was implemented using a hard threshold. Do not do that; instead,
return the nCorners strongest corners after non-maximum suppression. This way you can control
exactly how many corners are returned. Run your code on all four images (with nCorners = 20)
and display outputs as shown below. You may find scipy.ndimage.filters.gaussian_filter
helpful for smoothing.

In this problem, try the following different standard deviation (𝜎) parameters for the Gausian
smoothing kernel: 0.5, 1, 2 and 4. For a particular 𝜎, you should take the kernel size to be 6 × 𝜎
(add 1 if the kernel size is even). So for example if 𝜎 = 2, corner detection kernel size should be
13. This should be followed throughout all of the experiments in this assignment.

There will be a total of 24 images as outputs: 4 choices of smoothSTD x (2 dino + 2 matrix + 2
warrior images).

[]: import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter
import imageio.v2 as imageio
from scipy.signal import convolve

def rgb2gray(rgb):
""" Convert rgb image to grayscale.
"""
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

[]: def corner_detect(image, nCorners, smoothSTD, windowSize):
"""Detect corners on a given image.

11

Args:
image: Given a grayscale image on which to detect corners.
nCorners: Total number of corners to be extracted.
smoothSTD: Standard deviation of the Gaussian smoothing kernel.
windowSize: Window size for corner detector and non-maximum suppression.

Returns:
Detected corners (in image coordinate) in a numpy array (n*2).

"""

""" ==========
YOUR CODE HERE
========== """

return corners

[]: def show_corners_result(imgs, corners):
fig = plt.figure(figsize=(8, 8))
ax1 = fig.add_subplot(221)
ax1.imshow(imgs[0], cmap='gray')
ax1.scatter(corners[0][:, 0], corners[0][:, 1], s=35, edgecolors='r',␣

↪facecolors='none')

ax2 = fig.add_subplot(222)
ax2.imshow(imgs[1], cmap='gray')
ax2.scatter(corners[1][:, 0], corners[1][:, 1], s=35, edgecolors='r',␣

↪facecolors='none')
plt.show()

for smoothSTD in (0.5, 1, 2, 4):
windowSize = int(smoothSTD * 6)
if windowSize % 2 == 0:

windowSize += 1

print('smooth stdev: %r' % smoothSTD)
print('window size: %r' % windowSize)

nCorners = 20

read images and detect corners on images

imgs_din = []
crns_din = []
imgs_mat = []
crns_mat = []
imgs_war = []

12

crns_war = []

for i in range(2):
img_din = imageio.imread('dino/dino' + str(i) + '.png')
imgs_din.append(rgb2gray(img_din))
downsize your image in case corner_detect runs slow in test
imgs_din.append(rgb2gray(img_din)[::2, ::2])
crns_din.append(corner_detect(imgs_din[i], nCorners, smoothSTD,␣

↪windowSize))

img_mat = imageio.imread('matrix/matrix' + str(i) + '.png')
imgs_mat.append(rgb2gray(img_mat))
downsize your image in case corner_detect runs slow in test
imgs_mat.append(rgb2gray(img_mat)[::2, ::2])
crns_mat.append(corner_detect(imgs_mat[i], nCorners, smoothSTD,␣

↪windowSize))

img_war = imageio.imread('warrior/warrior' + str(i) + '.png')
imgs_war.append(rgb2gray(img_war))
downsize your image in case corner_detect runs slow in test
imgs_war.append(rgb2gray(img_war)[::2, ::2])
crns_war.append(corner_detect(imgs_war[i], nCorners, smoothSTD,␣

↪windowSize))

show_corners_result(imgs_din, crns_din)
show_corners_result(imgs_mat, crns_mat)
show_corners_result(imgs_war, crns_war)

1.4.2 Problem 3.2 [1 pts]

Comment on your results and observations. You don’t need to comment per output; just discuss any
trends you see for the detected corners as you change the windowSize and increase the smoothing
w.r.t the two pairs of images (warrior and matrix). Also discuss whether you are able to find
corresponding corners for the pairs of images.

1.5 Problem 4 Epipolar rectification and feature matching [43 pts]
1.5.1 4.1 Epipolar rectification [22 pts]

In this problem, we are going to perform epipolar rectification. Given calibrated stereo cameras
(i.e., calibration matrices 𝐾1 and 𝐾2, camera rotation matrices 𝑅1 and 𝑅2, camera translation
vectors 𝑡1 and 𝑡2), you are expected to determine the rotation matrix 𝑅 and calibration matrix 𝐾
of the virtual cameras. Your goal is to complete the function epipolarRecification, which determines
the calibration matrix and rotation matrix of both cameras, the translation vector of each of the
cameras, and matching planar transformations that epipolar rectify the two images acquired by the
cameras. The destination virtual cameras have the same centers as the source real cameras.

13

4.1.1 Camera translation matrices and Projective Transformation matrices [6 pts] To
calculate the camera translation from cameras with the same camera center, you will have to
complete the cameraTranslation first. Another function you need to complete is calcProjective-
Transformation, which calculates the planar projective transformation from cameras with the same
camera center. The camera calibration matrix (same for both cameras) will be calculated by cal-
cDestinateK. This is provided for you. To get the rotation matrix 𝑅 of the virtual camera, we
usually interpolate halfway between the two 3D rotations embodied by 𝑅1 and 𝑅2. For simplicity,
this will be also given to you.

[]: from imageio.v2 import imread
import matplotlib.pyplot as plt
import numpy as np
import math
import pickle
from math import floor, ceil

[]: def cameraTranslation(R_real, t_real, R_virt):
'''
Calculate the camera translation of virtual camera from real camera with␣

↪the same camera center.

Args:
R_real: The rotation matrix of the real camera.
t_real: The translation vector of the real camera.
R_virt: The rotation matrix of the virtual camera.

Returns:
The translation vector of the virtual camera.
'''
""" ==========
YOUR CODE HERE
========== """

[]: def calcProjectiveTransformation(K_real, R_real, K_virt, R_virt):
'''
Calculates the planar projective transformation from cameras with the same␣

↪camera center.
This function determines the planar projective transformation from the␣

↪image of a 3D point in the real camera to its image in the virtual camera
where P_real = K_real * R_real * [I | -C] and P_virt = K_virt * R_virt * [I␣

↪| -C].

Args:
K_real: The calibration matrix of the real camera.
R_real: The rotation matrix of the real camera.
K_virt: The calibration matrix of the virtual camera.

14

R_virt: The rotation matrix of the virtual camera.

Returns:
The transformation matrix.
'''
""" ==========
YOUR CODE HERE
========== """

[]: def calcDestinateK(srcK1, srcK2):
'''
Camera calibration matrix (same for both cameras)
'''
alpha = (srcK1[0][0] + srcK2[0][0] + srcK1[1][1] + srcK2[1][1]) // 4
x0 = (srcK1[0][2] + srcK2[0][2]) // 2
y0 = (srcK1[1][2] + srcK2[1][2]) // 2
dstK = np.zeros((3, 3))
dstK[0][0] = alpha
dstK[0][2] = x0
dstK[1][1] = alpha
dstK[1][2] = y0
dstK[2][2] = 1
return dstK

[]: import scipy.linalg
import math
def calcDestinateR(srcR1, srcR2,src_t1,src_t2):

'''
interpolate between two rotation matrices
'''

Rotation matrix that is half way between srcR1 and srcR2
Rinterp = scipy.linalg.expm(0.5*scipy.linalg.logm(srcR2@srcR1.T))@srcR1

Rotation matrix to compose with above rotation matrix such that relative␣
↪camera translation vector is aligned with the X-axis

u = cameraTranslation(srcR2, src_t2,Rinterp) - cameraTranslation(srcR1,␣
↪src_t1, Rinterp)

vhat = np.array([[1],[0],[0]])

if 0 > u.T@vhat:
#Unit vector along negative X-axis instead, so that the images are not␣

↪upside down
vhat[0] = -1

15

The 3-vector 'axis' defines an axis and theta is the rotation about the␣
↪axis.

theta = math.acos((u.T@vhat)[0,0]/np.linalg.norm(u))
axis = np.cross(u.reshape(-1),vhat.reshape(-1))

The angle-axis representation is a 3-vector omega where the norm of omega␣
↪is theta and the unitized omega is the unit vector representing the axis of␣
↪rotation.

omega = (theta/np.linalg.norm(axis))*axis
omega = omega.reshape(-1)

omega_x is the skew symmetric matrix form of omega
omega_x = np.array([[0, -omega[2], omega[1]],

[omega[2], 0, -omega[0]],
[-omega[1], omega[0], 0]])

R_x = scipy.linalg.expm(omega_x)
dstR = R_x@Rinterp

return dstR

[]: def epipolarRecification(srcK1, srcR1, src_t1,
srcK2, srcR2, src_t2):

'''
Given two calibrated cameras, this function determines the calibration␣

↪matrix and rotation matrix of both cameras, the translation vector of each␣
↪of the cameras, and matching planar transformations that epipolar rectify␣
↪the two image acquired by the cameras. The destination cameras have the␣
↪same centers as the source cameras.

Args:
srcK1: The calibration matrix of the first source camera.
srcR1: The rotation matrix of the first source camera.
src_t1: The translation vector of the first source camera.
srcK2: The calibration matrix of the second source camera.
srcR2: The rotation matrix of the second source camera.
src_t2: The translation vector of the second source camera.

Returns:
dstK: The calibration matrix of the virtual cameras.
dst_t1: The translation vector of the first virtual camera.
dst_t2: The translation vector of the second virtual camera.
H1, H2: The image rectification transformation matrices.
'''
dstR = calcDestinateR(srcR1, srcR2,src_t1,src_t2)

16

dst_t1 = cameraTranslation(srcR1, src_t1, dstR)
dst_t2 = cameraTranslation(srcR2, src_t2, dstR)

dstK = calcDestinateK(srcK1, srcK2)

H1 = calcProjectiveTransformation(srcK1, srcR1, dstK, dstR)
H2 = calcProjectiveTransformation(srcK2, srcR2, dstK, dstR)

return dstK, dst_t1, dst_t2, H1, H2

Problem 4.1.2 Warp Image [10 pts] After calling epipolarRectification, we can get the pro-
jective transformation matrices 𝐻1 and 𝐻2. Next, we will geometrically transform (i.e., ‘warp’)
the image so that the epipolar lines are image rows. You have to complete warpImage using the
backward method in Lecture 7. Note the destination images are required to be the same size as
the source images.

[]: def warpImage(image, H, out_height, out_width):
"""
Performs the warp of the full image content.
Calculates bounding box by piping four corners through the transformation.

Args:
image: Image to warp
H: The image rectification transformation matrices.
out_height, out_width: The shape of output image.

Returns:
Out: An inverse warp of the image, given a homography.
min_x, min_y, max_x, max_y: The minimum/maxmum of warped image bound.
"""
""" ==========
YOUR CODE HERE
========== """

return out, min_x, min_y, max_x, max_y

[]: file_param = open('param.pkl', 'rb')
param = pickle.load(file_param)
file_param.close()
srcK1, srcR1, src_t1 = param['srcK1'], param['srcR1'], param['src_t1']
srcK2, srcR2, src_t2 = param['srcK2'], param['srcR2'], param['src_t2']

[]: dstK, dst_t1, dst_t2, H1, H2 = epipolarRecification(srcK1, srcR1, src_t1,
srcK2, srcR2, src_t2)

[]: src1 = imread('Sport0_OG0.bmp')
plt.imshow(src1)

17

print('Original image 1:')

[]: height1, width1, _ = src1.shape
rectified_im1_unbounded, min_x1, min_y1, max_x1, max_y1 = warpImage(src1, H1,␣

↪height1, width1)
plt.imshow(rectified_im1_unbounded)
print('Unbounded Rectified image 1:')

[]: src2 = imread('Sport1_OG0.bmp')
plt.imshow(src1)
print('Original image 2:')

[]: height2, width2, _ = src2.shape
rectified_im2_unbounded, min_x2, min_y2, max_x2, max_y2 = warpImage(src2, H2,␣

↪height2, width2)
plt.imshow(rectified_im2_unbounded)
print('Unbounded Rectified image 2:')

4.1.3 Partial bounded retification [3 pts] In the resulting images, although they are epipolar
rectified, you should observe portions of the source images being transformed “out of bounds” of
the destination images. To fix this problem, we can introduced a 2D transformation containing a
translation (i.e., 𝑇 1 and 𝑇 2).

𝑇 1 = ⎡⎢
⎣

1 0 −𝑚𝑖𝑛_𝑥1 − 0.5
0 1 −𝑚𝑖𝑛(𝑚𝑖𝑛_𝑦1, 𝑚𝑖𝑛_𝑦2) − 0.5
0 0 1

⎤⎥
⎦

𝑇 2 = ⎡⎢
⎣

1 0 −𝑚𝑖𝑛_𝑥2 − 0.5
0 1 −𝑚𝑖𝑛(𝑚𝑖𝑛_𝑦1, 𝑚𝑖𝑛_𝑦2) − 0.5
0 0 1

⎤⎥
⎦

𝐻1, 𝐻2 can be updated by left multiplying 𝑇 1, 𝑇 2, respectivley. Again, geometrically tranform
the images under the updated 𝐻1, 𝐻2. The destination image is required to be the same size as
the source images. In the resulting images, although they are (still) epipolar rectified, you should
observe the portions of the source images being transformed are no longer “out of bounds” on the
top and left of the destination images.

[]: def partialboundedRetification(min_x1, min_y1, min_x2, min_y2, H1, H2):
'''
Update the projective transformation matries so that the rectified images␣

↪are no longer 'out of bound'.
'''
""" ==========
YOUR CODE HERE
========== """

return H1_bounded, H2_bounded

18

[]: H1_bounded, H2_bounded = partialboundedRetification(min_x1, min_y1, min_x2,␣
↪min_y2, H1, H2)

rectified_im1_bounded, min_x1_bounded, min_y1_bounded, max_x1_bounded,␣
↪max_y1_bounded = warpImage(src1, H1_bounded, height1, width1)

plt.imshow(rectified_im1_bounded)
print('The partial bounded rectified image 1:')

[]: rectified_im2_bounded, min_x2_bounded, min_y2_bounded, max_x2_bounded,␣
↪max_y2_bounded = warpImage(src2, H2_bounded, height2, width2)

plt.imshow(rectified_im2_bounded)
print('The partial bounded rectified image 2:')

4.1.4 Completely bounded rectification [3 pts] Finally, determine the size of the destination
images that completely bound the transformed images.

𝑑𝑠𝑡1𝑊𝑖𝑑𝑡ℎ = 𝑖𝑛𝑡(𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛 + 1)
𝑑𝑠𝑡2𝑊𝑖𝑑𝑡ℎ = 𝑖𝑛𝑡(𝑥2𝑚𝑎𝑥 − 𝑥2𝑚𝑖𝑛 + 1)

𝑑𝑠𝑡𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑖𝑛𝑡(𝑚𝑎𝑥(𝑦1𝑚𝑎𝑥, 𝑦2𝑚𝑎𝑥) − 𝑚𝑖𝑛(𝑦1𝑚𝑖𝑛, 𝑦2𝑚𝑖𝑛) + 1)

Again geometrically transform the images under the updated 2D projective transformation matrices
𝐻1 and 𝐻2 (these are not updated a second time). You should complete the function completely-
BoundedRectification. The destination images are required to be the size you just calculated. In
the resulting images, you should observe the source images being transformed such that they are
epipolar rectified and are completely bounded.

[]: def completelyBoundedRectification(src1, src2, H1_bounded,␣
↪H2_bounded,min_x1_bounded, max_x1_bounded,

min_y1_bounded,␣
↪max_y1_bounded,min_x2_bounded, max_x2_bounded,

min_y2_bounded, max_y2_bounded):
'''
Determine the size of the destination images (same size for both) that␣

↪completely bound the transformed images. geometrically transform the images␣
↪under the updated 2D projective transformation matrices H1 and H2 (these are␣
↪not updated a second time).

'''
""" ==========
YOUR CODE HERE
========== """

return rectified_im1_final, rectified_im2_final

[]: rectified_im1_final, rectified_im2_final = completelyBoundedRectification(src1,␣
↪src2, H1_bounded, H2_bounded,min_x1_bounded, max_x1_bounded,

min_y1_bounded,␣
↪max_y1_bounded,min_x2_bounded, max_x2_bounded,min_y2_bounded, max_y2_bounded)

19

1.5.2 Problem 4.2 Feature matching [4 pts]

4.2.1 SSD (Sum Squared Distance) Matching [1 pts] Complete the function ssdMatch:
SSD = ∑𝑥,𝑦 |𝑊1(𝑥, 𝑦) − 𝑊2(𝑥, 𝑦)|2

[]: def ssdMatch(img1, img2, c1, c2, R):
"""Compute SSD given two windows.

Args:
img1: Image 1.
img2: Image 2.
c1: Center (in image coordinate) of the window in image 1.
c2: Center (in image coordinate) of the window in image 2.
R: R is the radius of the patch, 2 * R + 1 is the window size

Returns:
SSD matching score for two input windows.

"""
""" ==========
YOUR CODE HERE
========== """

return matching_score

[]: # Here is the code for you to test your implementation
img1 = np.array([[1, 2, 7, 3], [2, 8, 5, 7], [3, 2, 7, 0]])
img2 = np.array([[4, 3, 3, 4], [4, 6, 8, 5], [3, 8, 9, 4]])
print(ssdMatch(img1, img2, np.array([1, 1]), np.array([1, 1]), 1))
should print 83
print(ssdMatch(img1, img2, np.array([2, 1]), np.array([2, 1]), 1))
should print 91
print(ssdMatch(img1, img2, np.array([1, 1]), np.array([2, 1]), 1))
should print 113

Problem 4.2.2 NCC (Normalized Cross-Correlation) Matching [2 pts] Write a function
ncc_match that implements the NCC matching algorithm for two input windows.

NCC = ∑𝑖,𝑗
̃𝑊1(𝑖, 𝑗) ⋅ ̃𝑊2(𝑖, 𝑗)

where �̃� = 𝑊−𝑊
√∑𝑘,𝑙(𝑊(𝑘,𝑙)−𝑊)2

is a mean-shifted and normalized version of the window and 𝑊 is the

mean pixel value in the window W.

[]: def normalize_window(window):
_mean = np.mean(window)
_stdev = np.sqrt(np.sum((window - _mean) ** 2))
return (window - _mean) / (_stdev + 1e-6)

20

def ncc_match(img1, img2, c1, c2, R):
"""Compute NCC given two windows.

Args:
img1: Image 1.
img2: Image 2.
c1: Center (in image coordinate) of the window in image 1.
c2: Center (in image coordinate) of the window in image 2.
R: R is the radius of the patch, 2 * R + 1 is the window size

Returns:
NCC matching score for two input windows.

"""

""" ==========
YOUR CODE HERE
========== """

[]: # test NCC match
img1 = np.array([[1, 2, 7, 3], [2, 8, 5, 7], [3, 2, 7, 0]])
img2 = np.array([[4, 3, 3, 4], [4, 6, 8, 5], [3, 8, 9, 4]])

print (ncc_match(img1, img2, np.array([1, 1]), np.array([1, 1]), 1))
should print 0.338

print (ncc_match(img1, img2, np.array([2, 1]), np.array([2, 1]), 1))
should print 0.250

print (ncc_match(img1, img2, np.array([1, 1]), np.array([2, 1]), 1))
should print 0.0498

Problem 4.2.3 [1 pts] i. Which feature matching algorithm do you think is better to
use between SSD and NCC?

ii. Give a scenario where your answer in part i would result in better matches.

1.5.3 Problem 4.3 Naive Matching [8 pts]

Equipped with the corner detector and the NCC matching function, we are ready to start finding
correspondences. NCC matching radius (R in the code below) is the radius of the NCC patch of
size 2 × 𝑅 + 1. One naive strategy is to try and find the best match between the two sets of corner
points. Write a script that does this, namely, for each corner in image1, find the best match from
the detected corners in image2 (or, if the NCC match score is too low, then return no match for
that point). You will have to figure out a good threshold (NCCth) value by experimentation.

Write a function naive_matching and call it as below. Examine your results for 10, 20, and 30

21

detected corners in each image. Choose the number of detected corners to maximize the number
of correct matching pairs. naive_matching will call your NCC matching code.

Properly label or mention which output corresponds to which choice of number of
corners. The total number of outputs is 6 images: (3 choices of number of corners for each
of matrix and warrior), where each figure might look like the following:

Number of corners: 10

[]: def naive_matching(img1, img2, corners1, corners2, R, NCCth):
"""Compute NCC given two windows.

Args:
img1: Image 1.
img2: Image 2.
corners1: Corners in image 1 (nx2)
corners2: Corners in image 2 (nx2)
R: NCC matching radius
NCCth: NCC matching score threshold

Returns:
NCC matching result a list of tuple (c1, c2),
c1 is the 1x2 corner location in image 1,
c2 is the 1x2 corner location in image 2.

"""

""" ==========
YOUR CODE HERE
========== """

return matching

[]: # detect corners on warrior and matrix sets
you are free to modify code here, create your helper functions, etc.

nCorners = 20 # do this for 10, 20 and 30 corners
smoothSTD = 1
windowSize = 17

read images and detect corners on images

imgs_sport = []
crns_sport = []

for i in range(2):
img_sport = imageio.imread('Sport' + str(i) + '_OG0.bmp')
imgs_sport.append(rgb2gray(img_sport))

22

downsize your image in case corner_detect runs slow in test
imgs_mat.append(rgb2gray(img_mat)[::2, ::2])
crns_sport.append(corner_detect(imgs_sport[i], nCorners, smoothSTD,␣

↪windowSize))

[]: # match corners
R = 16
NCCth = 0.6 # put your threshold here
matching_sport = naive_matching(imgs_sport[0]/255,

imgs_sport[1]/255,
crns_sport[0],
crns_sport[1],
R, NCCth)

[]: # plot matching result
def show_matching_result(img1, img2, matching):

""" ==========
YOUR CODE HERE
========== """

print("Number of Corners:", nCorners)
show_matching_result(imgs_sport[0], imgs_sport[1], matching_sport)

1.5.4 Problem 4.4 Matching using epipolar geometry [10 pts]

Next, we will use the epipolar geometry constraint on the rectified images and updated corner
points to build a better matching algorithm. First, detect 10 corners in image1. Then, for each
corner, do a line search along the corresponding parallel epipolar line in image2.

Evaluate the NCC score for each point along this line and return the best match (or no match if
all scores are below the NCCth). R is the radius (size) of the NCC patch in the code below.

You do not have to run this in both directions. Show your result as in the naive matching part.

[]: def display_correspondence(img1, img2, corrs):
"""Plot matching result on image pair given images and correspondences

Args:
img1: Image 1.
img2: Image 2.
corrs: Corner correspondence

"""

""" ==========
YOUR CODE HERE
You may want to refer to the `show_matching_result` function.

23

========== """

def correspondence_matching_epipole(img1, img2, corners1, R, NCCth):
"""Find corner correspondence along epipolar line.

Args:
img1: Image 1 (Rectified)
img2: Image 2 (Rectified)
corners1: Detected corners in image 1.
R: NCC matching window radius.
NCCth: NCC matching threshold.

Returns:
Matching result to be used in display_correspondence function

"""

""" ==========
YOUR CODE HERE
========== """

return matching

[]: rectified_im1_final, rectified_im2_final = completelyBoundedRectification(src1,␣
↪src2, H1_bounded, H2_bounded,min_x1_bounded, max_x1_bounded,

min_y1_bounded,␣
↪max_y1_bounded,min_x2_bounded, max_x2_bounded,

min_y2_bounded, max_y2_bounded)

[]: # replace black pixels with white pixels
_black_idxs = (rectified_im1_final[:, :, 0] == 0) & (rectified_im1_final[:, :,␣

↪1] == 0) & (rectified_im1_final[:, :, 2] == 0)
rectified_im1_final[:, :][_black_idxs] = [1.0, 1.0, 1.0]
_black_idxs = (rectified_im2_final[:, :, 0] == 0) & (rectified_im2_final[:, :,␣

↪1] == 0) & (rectified_im2_final[:, :, 2] == 0)
rectified_im2_final[:, :][_black_idxs] = [1.0, 1.0, 1.0]

nCorners = 20
Choose your threshold and NCC matching window radius
NCCth = 0.6
R = 8
detect corners using corner detector here, store in corners1
corners1 = corner_detect(rgb2gray(rectified_im1_final), nCorners, smoothSTD,␣

↪windowSize)
corrs = correspondence_matching_epipole(rectified_im1_final,␣

↪rectified_im2_final, corners1, R, NCCth)

24

display_correspondence(rectified_im1_final, rectified_im2_final, corrs)

25

	CSE 252A Computer Vision I Fall 2023 - Assignment 2
	Instructions
	Problem 1 Image filtering [15 pts]
	Problem 1.1 Implementing Convolution[5 pts]
	Problem 1.2: Convolution Theory [5 pts]
	Problem 1.3 Template Matching [5 pts]

	Problem 2: Edge detection [21 pts]
	Problem 2.1 Smoothing [1 pt]
	Problem 2.2 Gradient Computation [5 pts]
	Problem 2.3 Non-Maximum Suppression [7 pts]
	Problem 2.4 Hysteresis Thresholding [8 pts]

	Problem 3 Corner detection [13 pts]
	Problem 3.1 [12 pts]
	Problem 3.2 [1 pts]

	Problem 4 Epipolar rectification and feature matching [43 pts]
	4.1 Epipolar rectification [22 pts]
	Problem 4.2 Feature matching [4 pts]
	Problem 4.3 Naive Matching [8 pts]
	Problem 4.4 Matching using epipolar geometry [10 pts]

