
CSE252A_FA23_assignment_1

October 11, 2023

1 CSE 252A Computer Vision I Fall 2023 - Assignment 1
Instructor: Ben Ochoa

Due: Wed, Oct 25, 11:59 PM

1.1 Instructions
Please answer the questions below using Python in the attached Jupyter notebook and follow the
guidelines below:

• This assignment must be completed individually. For more details, please follow the Aca-
demic Integrity Policy and Collaboration Policy on Canvas.

• All the solutions must be written in this Jupyter notebook.

• You may use basic algebra packages (e.g., NumPy, SciPy, etc) but you are not allowed to use
the packages that directly solve the problems. Feel free to ask the instructor and the teaching
assistants if you are unsure about the packages to use.

• It is highly recommended that you begin working on this assignment early.

• You must submit 3 files on Gradescope - .pdf , .ipynb and .py file where the .py
file is the conversion of your .ipynb to .py file . You must mark each problem on
Gradescope in the pdf. To convert the notebook to PDF, you can choose one way below:

1. You can print the web page and save as PDF (e.g., Chrome: Right click the web page
→ Print… → Choose “Destination: Save as PDF” and click “Save”).

2. You can find the export option in the header: File → Download as → “PDF via LaTeX”

To convert the notebook (.ipynb) to .py file use the following command:

jupyter nbconvert –to script filename.ipynb –output output_filename.py

• Please make sure the content in each cell (e.g., code, output images, printed results, etc.) are
clearly visible and are not cut-out or partially cropped in your final PDF file.

• While submitting on gradescope, please make sure to assign the relevant pages in your PDF
submission for each problem.

Late Policy: Assignments submitted late will receive a 15% grade reduction for each 12 hours
late (i.e., 30% per day). Assignments will not be accepted 72 hours after the due date. If you
require an extension (for personal reasons only) to a due date, you must request one as far in

1

https://canvas.ucsd.edu

advance as possible. Extensions requested close to or after the due date will only be granted for
clear emergencies or clearly unforeseeable circumstances.

1.2 Problem 1: Geometry (15 points)
Note: The solution must be typed using Markdown or Latex, handwritten answers will not be
accepted.

Consider a line in the 2D plane, whose equation is given by 𝑎 ̃𝑥 + 𝑏 ̃𝑦 + 𝑐 = 0, where 𝑙 = (𝑎, 𝑏, 𝑐)⊤

and 𝑥 = (̃𝑥, ̃𝑦, 1)⊤. Noticing that 𝑥 is a homogeneous representation of �̃� = (̃𝑥, ̃𝑦)⊤, we can view 𝑙
as a homogeneous representation of the line 𝑎 ̃𝑥 + 𝑏 ̃𝑦 + 𝑐 = 0. We see that the line is also defined
up to a scale since (𝑎, 𝑏, 𝑐)⊤ and 𝑘(𝑎, 𝑏, 𝑐)⊤ with 𝑘 ≠ 0 represents the same line.

1. [6 points] Prove 𝑥𝑇 𝑙+𝑙𝑇 𝑥 = 0, if a point 𝑥 in homogeneous coordinates lies on the homogeneous
line 𝑙.

2. [2 points] What is the line, in homogenous coordinates, joining the inhomogeneous points
(3, 4) and (7, −6).

3. [2 points] Find a vector that is a homogeneous representation of the line that passes through
the points (−2, 6) and (9, 1).

4. [5 points] Consider the intersection of two lines 𝑙1 and 𝑙2. Prove that the homogeneous point
of intersection, 𝑥, of two homogeneous lines 𝑙1 and 𝑙2 is 𝑥 = 𝑙1 × 𝑙2, where × stands for the
vector (or cross) product.

1.3 Problem 2: Image Formation and Rigid Body Transformations (17 points)
In this problem we will practice rigid body transformations and image formations through the
projective camera model. The goal will be to photograph the following four points �̃�1 = [2 4 -5]𝑇 ,
�̃�2 = [4 2 -5]𝑇 , �̃�3 = [-2 -4 -5]𝑇 , �̃�4 = [-4 -2 -5]𝑇 in the world coordinate frame. First, recall the
following formula for rigid body transformation

�̃�𝑐𝑎𝑚 = 𝑅�̃� + 𝑡

Where �̃�𝑐𝑎𝑚 is the point coordinate in the camera coordinate system. �̃� is a point in the world
coordinate frame, and R and 𝑡 are the rotation and translation that transform points from the
world coordinate frame to the camera coordinate frame. Together, R and 𝑡 are the extrinsic camera
parameters. Once transformed to the camera coordinate frame, the points can be photographed
using the 3 × 3 camera calibration matrix K, which embodies the intrinsic camera parameters, and
the canonical projection matrix [I|0]. Given K,R, and 𝑡, the image of a point �̃� is 𝑥 = K[I|0]𝑋Cam =
K[R|𝑡]𝑋, where the homogeneous points 𝑋Cam = (�̃�⊤

Cam, 1)⊤ and 𝑋 = (�̃�⊤, 1)⊤. We will consider
four different settings of focal length, viewing angles and camera positions below.

a). The extrinsic transformation matrix,

b). Intrinsic camera matrix under the perspective camera assumption.

c). Calculate the image of the four vertices and plot using the supplied plot_points function (see
example output in figure below).

1. [No rigid body transformation]. Focal length = 2. The optical axis of the camera is aligned
with the z-axis.

2

2. [Translation]. Focal length = 2. 𝑡 = [0 0 3]𝑇 . The optical axis of the camera is aligned with
the z-axis.

3. [Translation and Rotation]. Focal length = 2. 𝑅 encodes a 45 degrees around the z-axis and
then 30 degrees around the y-axis. 𝑡 = [0 0 3]𝑇 .

4. [Translation and Rotation, long distance]. Focal length = 4. 𝑅 encodes a 45 degrees around
the z-axis and then 30 degrees around the y-axis. 𝑡 = [0 0 8]𝑇 .

We will not use a full intrinsic camera matrix (e.g., that maps centimeters to pixels, and specifies
the coordinates of the principal point), but only parameterize this with f, the focal length. In other
words: the only parameter in the intrinsic camera matrix under the perspective assumption is f.

For all the four cases, include a image like above. Note that the axis are the same for each row,
to facilitate comparison between the two camera models. Note: the angles and offsets used to
generate these plots may be different from those in the problem statement, it’s just to illustrate
how to report your results.

Also, Explain why you observe any distortions in the projection, if any, under this model.

[]: import numpy as np
import matplotlib.pyplot as plt
import math

def to_homog(points):
convert points from inhomogeneous to homogeneous
#
inputs:
points is a dxn matrix where n is the number of d dimensional␣

↪inhomogeneous points
(e.g., d = 3 for 3D inhomogeneous points)
#
outputs:
homo_points is a (d+1)xn matrix of n d-dimensional homogeneous points

write your code here

return homo_points

def from_homog(points_homog):
convert points from homogeneous to inhomogeneous
#
inputs:
points_homog is a (d+1)xn matrix of n d-dimensional homogeous points (e.g.

↪, d = 2
for 2D homogeneous points)
#
outputs:
inhomo_points is a dxn matrix of n d-dimensional inhomogeous points

3

write your code here

return inhomog_points

def project_points(P_int, P_ext, pts):
project 3D inhomogeneous points to 2D inhomogeneous points
#
inputs:
P_int - 3x3 intrinsic camera matrix
P_ext - 3x4 extrinsic camera matrix
pts - 3xn inhomogeneous points
#
outputs:
pts_2d - 2xn inhomogeneous points

write your code here

return pts_2d

Change the three matrices for the four cases as described in the problem
in the four camera functions given below. Make sure that we can see the␣

↪formula
(if one exists) being used to fill in the matrices. Feel free to document with
comments any thing you feel the need to explain.

def intrinsic_cam_mat(f):
"""
K = [f 0 0

0 f 0
0 0 1]

"""
given the focal length, compute the intrinsic camera matrix

write your code here
return int_cam_mat

def extrinsic_cam_mat(angles, t):
"""

ext_cam_mat = [R|t]
"""
Compute the extrinsic camera matrix
#
inputs:

4

angles - a tuple of angles (alpha, beta, gamma), representing the␣
↪rotation

angles around x-axis, y-axis, and z-axis repectively in degrees.
#
outputs:
ext_cam_mat - 3x4 extrinsic camera matrix

write your code here
return ext_cam_mat

def camera1():
"""
replace with your code
"""
write your code here
return P_int_proj, P_ext

def camera2():
"""
replace with your code
"""
write your code here
return P_int_proj, P_ext

def camera3():
"""
replace with your code
"""
write your code here
return P_int_proj, P_ext

def camera4():
"""
replace with your code
"""
write your code here
return P_int_proj, P_ext

###
Do not modify
###

def plot_points(ax, points, title='', style='.-b', axis=[]):
inds = list(range(points.shape[1]))+[0]
ax.plot(points[0,inds], points[1,inds],style)

5

if title:
ax.set_title(title)

if axis:
ax.axis('scaled')

def main():
point1 = np.array([[2,4,-5]]).T
point2 = np.array([[4,2,-5]]).T
point3 = np.array([[-2,-4,-5]]).T
point4 = np.array([[-4,-2,-5]]).T
points = np.hstack((point1,point2,point3,point4))

fig = plt.figure(figsize=(10,7))
for i, camera in enumerate([camera1, camera2, camera3, camera4]):

P_int_proj, P_ext = camera()
ax = fig.add_subplot(2,2,i+1)
plot_points(ax, project_points(P_int_proj, P_ext, points),␣

↪title='Camera %d Projective'%(i+1), axis=[-1,1,-1,1])
plt.tight_layout()
plt.show()

main()

1.4 Problem 3: Surface Rendering [18 pts]
In this portion of the assignment we will be exploring different methods of approximating local
reflectance of objects in a scene. This last section of the homework will be an exercise in rendering
surfaces. Here, you need use the surface normals and the masks from the provided pickle files, with
various light sources, different materials, and using a number of reflectance models. For the sake
of simplicity, multiple reflections of light rays, and occlusion of light rays due to object/scene can
be ignored.

1.4.1 Data

The surface normals and masks are to be loaded from the respective pickle files. For comparison,
You should display the rendering results for both normals calculated from the original image and
the diffuse components. There are 2 images that we will be playing with namely one of a sphere
and the other of a pear.

Masks serve the purpose as the binary_mask given to you last assignment0. Mask is a 𝐻x𝑊 matrix
with each element being either 1 or 0, indicating if a pixel at given location is sphere/pear or not.
It is provided for you to remove the background of the rendered sphere/pear.

Assume that the albedo map is uniform.

1.4.2 Lambertian Reflectance

One of the simplest models available to render 3D objections with reflectance is the Lambertian
model. This model finds the apparent brightness to an observer using the direction of the light

6

source ̂s and the normal vector on the surface of the object n̂. The brightness intensity at a given
point on an object’s surface, 𝑒, with a single light source is found using the following relationship:

𝑒 = 𝑎𝐶 max(0, n̂⊤s)

s = 𝑠0 ̂s

where, 𝑎 is the albedo of the surface facet imaged by pixel, 𝐶 is the light color, 𝑠0 is the intensity
of the light source and you can assume that the intensity is 1 here, and ̂s is the unit direction to
the light source from the surface facet imaged by pixel.

1.4.3 Blinn-Phong Reflectance

One major drawback of Lambertian reflectance is that it only considers the diffuse light in its
calculation of brightness intensity. One other major component to reflectance rendering is the
specular component. The specular reflectance is the component of light that is reflected in a single
direction, as opposed to all directions, which is the case in diffuse reflectance. One of the most used
models to compute surface brightness with specular components is the Blinn-Phong reflectance
model. This model combines ambient lighting, diffused reflectance as well as specular reflectance
to find the brightness on a surface. Blinn-Phong shading also considers the material in the scene
which is characterized by four values: the ambient reflection constant (𝑘𝑎), the diffuse reflection
constant (𝑘𝑑), the specular reflection constant (𝑘𝑠) and 𝛼 the Blinn-Phong constant, which is the
‘shininess’ of an object. Furthermore, since the specular component produces ‘rays’, only some
of which would be observed by a single observer, the observer’s viewing direction v̂ must also be
known. For some scene with known material parameters with 𝑀 light sources the light intensity,
𝑒, on a surface with normal vector n̂ seen from viewing direction v̂ can be computed by:

𝑒 = ∑
𝑚∈𝑀

{𝑠𝑚,𝑎𝑘𝑎 + 𝑠𝑚,𝑑𝑘𝑑𝑓𝑑 + 𝑠𝑚,𝑠𝑘𝑠𝑓𝑠} ,

𝑓𝑑 = max(0, n̂⊤ ̂s), 𝑓𝑠 = max(0, n̂⊤ĥ)𝛼

ĥ = h
||h|| , h = ̂s + v̂

where 𝑠𝑚,𝑎, is the ambient light intensity, 𝑠𝑚,𝑑 and 𝑠𝑚,𝑠 are the intensity of the the diffuse and
specular light respectively for the 𝑚th light source.

1.4.4 Rendering

Please complete the following:

1. Write the function lambertian() that calculates the Lambertian light intensity given the
light direction ̂s with intensity 𝑠0, and normal vector n̂. Then use this function in a program
that calculates and displays the specular sphere and the pear using each of the two lighting
sources found in Table 1. Note: You do not need to worry about material coefficients in this
model.

7

2. Write the function blinn_phong() that calculates the Blinn-Phong light intensity given the
material constants (𝑘𝑎, 𝑘𝑑, 𝑘𝑠, 𝛼), v̂ = (0, 0, 1)⊤, n̂ and some number of 𝑀 light sources. Then
use this function in a program that calculates and displays the specular sphere and the pear
using each of the sets of coefficients found in Table 2 with each light source individually, and
both light sources combined.

Table 1: Light Sources

𝑚 Location Color (RGB)
1 (−1

2 , 1
2 , 1

2)⊤ (1, 1, 1)
2 (1, 0, 0)⊤ (1, .45, 1)

Table 2: Material Coefficients

Mat. 𝑘𝑎 𝑘𝑑 𝑘𝑠 𝛼
1 0 0.1 0.5 5
2 0 0.5 0.1 5
3 0 0.5 0.5 10

1.4.5 Part 1. Plot the normals [4 pts] (Sphere - 2pts, Pear - 2pts)

In this first part, you are required to work with 2 images, one of a sphere and the other one of a
pear. The pickle file normals.pickle is a list consisting of 4 numpy matrices which are
1) Normal Vectors for the sphere with specularities removed (Diffuse component)
2) Normal Vector for the sphere
3) Normal Vectors for the pear with specularities removed (Diffuse component)
4) Normal vectors for the pear

Please plot the normals using the function plot_normals which is provided.

[]: def plot_normals(diffuse_normals, original_normals):
Stride in the plot, you may want to adjust it to different images
stride = 5

normalss = diffuse_normals
normalss1 = original_normals

print("Normals:")
print("Diffuse")
showing normals as three separate channels
figure = plt.figure()
ax1 = figure.add_subplot(131)
ax1.imshow(normalss[..., 0])
ax2 = figure.add_subplot(132)
ax2.imshow(normalss[..., 1])
ax3 = figure.add_subplot(133)
ax3.imshow(normalss[..., 2])

8

plt.show()
print("Original")
figure = plt.figure()
ax1 = figure.add_subplot(131)
ax1.imshow(normalss1[..., 0])
ax2 = figure.add_subplot(132)
ax2.imshow(normalss1[..., 1])
ax3 = figure.add_subplot(133)
ax3.imshow(normalss1[..., 2])
plt.show()

[]: #Plot the normals for the sphere and pear for both the normal and diffuse␣
↪components.

#1 : Load the different normals
import pickle

with open('normals.pkl', 'rb') as f:
data = pickle.load(f)

#2 : Plot the normals using plot_normals
What do you observe? What are the differences between the diffuse component␣

↪and the original images shown?
(Just something to think about, no need to provide an answer, but feel free␣

↪to add markdown cells to explain your thoughts)

#PLOT HERE

1.4.6 Part 2. Lambertian model [6 pts]

Fill in your implementation for the rendered image using the lambertian model.

[]: def normalize(img):
assert img.shape[2] == 3
maxi = img.max()
mini = img.min()
return (img - mini)/(maxi-mini)

[]: def lambertian(normals, lights, color, intensity, mask):
image = np.zeros((normals.shape[0], normals.shape[1], 3))

'''Your implementation'''

return (image)

Plot the rendered results for both the sphere and the pear for both the original and the diffuse
components. Remember to first load the masks from the masks.pkl file. The masks.pkl file is a list
consisting of 2 numpy arrays-

9

1)Mask for the sphere
2)Mask for the pear

Plot the normalized image using the function normalize which is provided.

With 2 light directions and 2 light colors, we expect 4 images for Pear and 4 images for Sphere.

[]: # Load the masks for the sphere and pear
with open('masks.pkl', 'rb') as h:

data1 = pickle.load(h)

Output the rendering results for Pear
Read light direction and color from the table
dirn1 = np.zeros([3,1])
color1 = np.zeros([1,3])
dirn2 = np.zeros([3,1])
color2 = np.zeros([1,3])

#Display the rendering results for pear for both diffuse and for both the light␣
↪sources

[]: # Output the rendering results for Sphere
dirn1 = np.zeros([3,1])
color1 = np.zeros([1,3])
dirn2 = np.zeros([3,1])
color2 = np.zeros([1,3])
#Display the rendering results for sphere for both diffuse and for both the␣

↪light sources

1.4.7 Part 3. Blinn-Phong model [8 pts]

Please fill in your implementation for the Blinn-Phong model below.

[]: def blinn_phong(normals, lights, color, material, view, mask):
'''Your implementation'''
return (image)

With the function completed, plot the rendering results for the sphere and pear (both diffuse and
original components) for all the materials and light sources and also with the combination of both
the light sources.

With 2 light sources and 3 materials, we expect 9 images each for diffuse and original components.
In total, 3*3*2 = 18 images for sphere and 18 images for pear.

[]: # Output the rendering results for sphere
view = np.array([[0],[0],[1]])
material = np.array([[0.1,0.5,5],[0.5,0.1,5],[0.5,0.5,10]])
lightcol1 = np.array([[1.0/2,1],[-1.0/2,1],[1.0/2,1]])
lightcol2 = np.array([[0,1],[1,1],[0,0.5]])

10

#Display rendered results for sphere for all materials and light sources and␣
↪combination of light sources

[]: # Output the rendering results for the pear.
view = np.array([[0],[0],[1]])
material = np.array([[0.1,0.5,5],[0.5,0.1,5],[0.5,0.5,10]])
lightcol1 = np.array([[1.0/2,1],[-1.0/2,1],[1.0/2,1]])
lightcol2 = np.array([[0,1],[1,1],[0,0.5]])
#Display rendered results for pear for all materials and light sources and␣

↪combination of light sources

1.5 Problem 4: Photometric Stereo, Specularity Removal (20 pts)
The goal of this problem is to implement a couple of different algorithms that reconstruct a surface
using the concept of Lambertian photometric stereo. Additionally, you will implement the specular
removal technique of Mallick et al., which enables photometric stereo to be performed on certain
non-Lambertian materials.

You can assume a Lambertian reflectance function once specularities are removed. However, note
that the albedo is unknown and non-constant in the images you will use.

As input, your program should take in multiple images along with the light source direction for
each image. Each image is associated with only a single light, and hence a single direction.

1.5.1 Data

You will use synthetic images and specular sphere images as data. These images are stored in
.pickle files which have been graciously provided by Satya Mallick. Each .pickle file contains

• im1, im2, im3, im4, … images.
• l1, l2, l3, l4, … light source directions.

1.5.2 Part 1: Lambertian Photometric Stereo [8 pts]

Implement the photometric stereo technique described in the lecture. Your program should have
two parts:

1. Read in the images and corresponding light source directions, and estimate the surface normals
and albedo map.

2. Reconstruct the depth map from the surface normals. You should first try the naive scanline-
based “shape by integration” method described in lecture. (You are required to implement
this.) For comparison, you should also integrate using the Horn technique which is already
implemented for you in the horn_integrate function. Note that for good results you will
often want to run the horn_integrate function with 10000-100000 iterations, which will take
a while. For your final submission, we will require that you run Horn integration for 10000
(ten thousand) iterations or more in each case. But for debugging, it is suggested that you
keep the number of iterations low.

You will find all the data for this part in synthetic_data.pickle. Try using only im1, im2 and
im4 first. Display your outputs as mentioned below.

11

http://www.eecs.harvard.edu/~zickler/download/photodiff_cvpr05_preprint.pdf

Then use all four images (most accurate).

Note: DO NOT normalize the images prior to use in the photemetric stero algorithm. the images
must be used as-is.

For each of the two above cases you must output:

1. The estimated albedo map.

2. The estimated surface normals by showing both

1. Needle map, and
2. Three images showing each of the surface normal components.

3. A wireframe of the depth map given by the scanline method.

4. A wireframe of the depth map given by Horn integration.

In total, we expect 2 * 7 = 14 images for this part.

An example of outputs is shown in the figure below. (The example outputs only include one depth
map, although we expect two – see above.)

[]: # Setup
import pickle
import numpy as np
from time import time
from skimage import io
%matplotlib inline
import matplotlib.pyplot as plt

Example: how to read and access data from a .pickle file
pickle_in = open("synthetic_data.pickle", "rb")
data = pickle.load(pickle_in, encoding="latin1")

data is a dict which stores each element as a key-value pair.
print("Keys: ", list(data.keys()))

To access the value of an entity, refer to it by its key.
fig = plt.figure(figsize=(7,7))
for i in range(1, 5):

sub = fig.add_subplot(int('22'+str(i)))
sub.set_title('Image ' + str(i))
sub.set_xlabel("Light source direction: " + str(data["l%d" % i]))
sub.imshow(data["im%d" % i], cmap="gray")

plt.tight_layout()
plt.show()

Based on the above images, can you interpret the orientation of the coordinate frame? If we label
the axes in order as x, y, z, then the x-axis points left, the y-axis points up, and the z-axis points
out of the screen in our direction. (That means this is a left-handed coordinate system. How will
this affect the scanline integration algorithm? Hint: if you integrate rightward along the x-axis and

12

downward along the y-axis, you will be doing in opposite directions to the axes, and the partial
derivatives you compute may need to be modified.)

Note: as clarification, no direct response is needed for this cell.

[]: import numpy as np
from scipy.signal import convolve

def horn_integrate(gx, gy, mask, niter):
"""
Inputs:
- horn_integrate recovers the function g from its partial
derivatives gx and gy.
- mask is a binary image which tells which pixels are
involved in integration.
- niter is the number of iterations, typically between 10,000 - 100,000,
although the trend can be seen even after 1000 iterations.
"""
g = np.ones(np.shape(gx))

gx = np.multiply(gx, mask)
gy = np.multiply(gy, mask)

A = np.array([[0,1,0],[0,0,0],[0,0,0]]) #y-1
B = np.array([[0,0,0],[1,0,0],[0,0,0]]) #x-1
C = np.array([[0,0,0],[0,0,1],[0,0,0]]) #x+1
D = np.array([[0,0,0],[0,0,0],[0,1,0]]) #y+1

d_mask = A + B + C + D

den = np.multiply(convolve(mask,d_mask,mode="same"),mask)
den[den == 0] = 1
rden = 1.0 / den
mask2 = np.multiply(rden, mask)

m_a = convolve(mask, A, mode="same")
m_b = convolve(mask, B, mode="same")
m_c = convolve(mask, C, mode="same")
m_d = convolve(mask, D, mode="same")

term_right = np.multiply(m_c, gx) + np.multiply(m_d, gy)
t_a = -1.0 * convolve(gx, B, mode="same")
t_b = -1.0 * convolve(gy, A, mode="same")
term_right = term_right + t_a + t_b
term_right = np.multiply(mask2, term_right)

for k in range(niter):
g = np.multiply(mask2, convolve(g, d_mask, mode="same")) + term_right

13

return g

[]: '''Function to compute the albego, normals,
and height map using the photometric stereo
method & horn integration'''

def photometric_stereo(images, lights, mask, horn_niter=25000):

"""
*** Input images should not be normalized to [0, 1] range, use as-is.

*** mask is an optional parameter used to ignore the background when
integrating the normals. In practice something like 0.05 or 0.1 tends to
work well.

You do not need to use the mask for 1a (it shouldn't matter, just pass a␣
↪mask of all ones),

but you SHOULD use it to filter out the background for the specular data␣
↪(1c).

"""

""" ==========
YOUR CODE HERE
========== """

note:
images : (n_ims, h, w)
lights : (n_ims, 3)
mask : (h, w)

albedo = np.ones(images[0].shape)
normals = np.dstack((np.zeros(images[0].shape),

np.zeros(images[0].shape),
np.ones(images[0].shape)))

H = np.ones(images[0].shape)
H_horn = np.ones(images[0].shape)
return albedo, normals, H, H_horn

[]: # --
The following code is just a working example so you don't get stuck with any
of the graphs required. You may want to write your own code to align the
results in a better layout. You are also free to change the function
however you wish; just make sure you get all of the required outputs.
--

def visualize(albedo, normals, depth, horn, imtitle='', stride = 15):
showing albedo map

14

fig = plt.figure(figsize=(12,10))
albedo_max = albedo.max()
albedo = albedo / albedo_max
ax0 = fig.add_subplot(231)
ax0.set_title("Albedo")
ax0.imshow(albedo, cmap="gray")

showing normals as three separate channels
ax1 = fig.add_subplot(253)
fig.colorbar(ax1.imshow(normals[..., 0]), ax=ax1, orientation='horizontal')
ax2 = fig.add_subplot(254)
ax2.set_title("Normals as 3 separate channels.")
fig.colorbar(ax2.imshow(normals[..., 1]), ax=ax2, orientation='horizontal')
ax3 = fig.add_subplot(255)
fig.colorbar(ax3.imshow(normals[..., 2]), ax=ax3, orientation='horizontal')

showing normals as quiver
X, Y, _ = np.meshgrid(np.arange(0,np.shape(normals)[0], stride),

np.arange(0,np.shape(normals)[1], stride),
np.arange(1))

X = X[..., 0]
Y = Y[..., 0]
Z = depth[::stride,::stride].T
NX = normals[..., 0][::stride,::-stride].T
NY = normals[..., 1][::-stride,::stride].T
NZ = normals[..., 2][::stride,::stride].T
ax4 = fig.add_subplot(234, projection='3d')
ax4.set_title("Needle map")
ax4.quiver(X,Y,Z,NX,NY,NZ, length=10, color='g')

plotting wireframe depth map
H = depth[::stride,::stride]
ax5 = fig.add_subplot(235, projection='3d')
ax5.set_title("Wireframe - PS")
ax5.plot_surface(X,Y, H.T, color='g')

H = horn[::stride,::stride]
ax6 = fig.add_subplot(236,projection='3d')
ax6.set_title("Wireframe - HORN")
ax6.plot_surface(X,Y, H.T, color='g')
fig.suptitle(imtitle)
plt.show()

[]: # Don't forget to run your photometric stereo code on TWO sets of images!
(One being {im1, im2, im4}, and the other being {im1, im2, im3, im4}.)
Some code is given to you below to help you get started.

15

from mpl_toolkits.mplot3d import Axes3D

pickle_in = open("synthetic_data.pickle", "rb")
data = pickle.load(pickle_in, encoding="latin1")

lights =

images = []

mask = np.ones(data["im1"].shape) # these images don't have a background, so␣
↪we'll just use a mask of all ones

albedo, normals, depth, horn = photometric_stereo(images, lights, mask)
visualize(albedo, normals, depth, horn, "Photometric Sterio - Synthetic data (3␣

↪images)", 5)

1.5.3 Part 2: Specularity Removal [6 pts]

Implement the specularity removal technique described in Beyond Lambert: Reconstructing Specular
Surfaces Using Color (by Mallick, Zickler, Kriegman, and Belhumeur; CVPR 2005).

Your program should input an RGB image and light source color and output the corresponding
SUV image.

Try this out first with the specular sphere images and then with the pear images.

For each of the specular sphere and pear images, include

1. The original image (in RGB colorspace).

2. The recovered 𝑆 channel of the image.

3. The recovered diffuse part of the image. Use 𝐷 =
√

𝑈2 + 𝑉 2 to represent the diffuse part.

In total, we expect 2 * 3 = 6 images as outputs for this problem.

Note: You will find all the data for this part in specular_sphere.pickle and
specular_pear.pickle.

[]: def get_rot_mat(rot_v, unit=None):
'''
Takes a vector and returns the rotation matrix required to align the
unit vector(2nd arg) to it.
'''
if unit is None:

unit = [1.0, 0.0, 0.0]

rot_v = rot_v/np.linalg.norm(rot_v)
uvw = np.cross(rot_v, unit) # axis of rotation

rcos = np.dot(rot_v, unit) # cos by dot product

16

rsin = np.linalg.norm(uvw) # sin by magnitude of cross product

normalize and unpack axis
if not np.isclose(rsin, 0):

uvw = uvw/rsin
u, v, w = uvw

compute rotation matrix
R = (

rcos * np.eye(3) +
rsin * np.array([

[0, -w, v],
[w, 0, -u],
[-v, u, 0]

]) +
(1.0 - rcos) * uvw[:,None] * uvw[None,:]

)
return R

def RGBToSUV(I_rgb, rot_vec):
'''
Your implementation which takes an RGB image and a vector encoding
the orientation of the S channel w.r.t. to RGB.
'''

""" ==========
YOUR CODE HERE
========== """

S = np.ones(I_rgb.shape[:2])
G = np.ones(I_rgb.shape[:2])
return S, G

pickle_in = open("specular_sphere.pickle", "rb")
data = pickle.load(pickle_in, encoding="latin1")

sample input
S, G = RGBToSUV(data["im1"], np.hstack((data["c"][0][0],

data["c"][1][0],
data["c"][2][0])))

1.5.4 Part 3: Robust Photometric Stereo [6 pts]

Now we will perform photometric stereo on our sphere/pear images which include specularities.
First, for comparison, run your photometric stereo code from Part 1 on the original images (con-
verted to grayscale). You should notice erroneous “bumps” in the resulting reconstructions, as a
result of violating the Lambertian assumption. For this, show the same outputs as in Part 1.

17

Next, combine parts 1 and 2 by removing the specularities (using your code from Part 2) and then
running photometric stereo on the diffuse components of the specular sphere/pear images. Our
goal will be to remove the bumps/sharp parts in the reconstruction.

Note: While creating the masks, please use 0.1 as your threshold. DO NOT “normalize” or
ortherwise modify the images prior to use in the photometric stereo algorithm. The images must
be used as-is.

For the specular sphere image set in specular_sphere.pickle and specular pear images set in
specular_pear.pickle, using all of four images in each, include:

1. The estimated albedo map (original and diffuse).

2. The estimated surface normals (original and diffuse) by showing both

1. Needle map, and
2. Three images showing each of the surface normal components.

3. A wireframe of depth map (original and diffuse).

4. A wireframe of the depth map given by Horn integration (original and diffuse).

In total, we expect 2 * 7 = 14 images for the 1a comparison, plus 2 * 7 = 14 images for the outputs
after specularity removal has been performed. (Thus 28 output images overall.)

[]: # ---
You may reuse the code for photometric_stereo here.
Write your code below to process the data and send it to photometric_stereo
and display the albedo, normals, and depth maps.

18

	CSE 252A Computer Vision I Fall 2023 - Assignment 1
	Instructions
	Problem 1: Geometry (15 points)
	Problem 2: Image Formation and Rigid Body Transformations (17 points)
	Problem 3: Surface Rendering [18 pts]
	Data
	Lambertian Reflectance
	Blinn-Phong Reflectance
	Rendering
	Part 1. Plot the normals [4 pts] (Sphere - 2pts, Pear - 2pts)
	Part 2. Lambertian model [6 pts]
	Part 3. Blinn-Phong model [8 pts]

	Problem 4: Photometric Stereo, Specularity Removal (20 pts)
	Data
	Part 1: Lambertian Photometric Stereo [8 pts]
	Part 2: Specularity Removal [6 pts]
	Part 3: Robust Photometric Stereo [6 pts]

