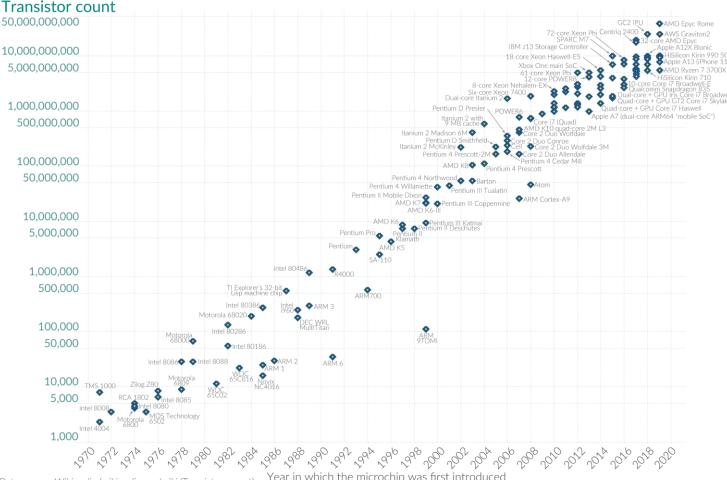
CSE248: ALGORITHMIC AND OPTIMIZATION FOUNDATIONS FOR VLSI CAD

Lecture 2: Moore's Law
Fall 2023
Chung-Kuan Cheng

Moore's Law


Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years.

(Wikipedia)

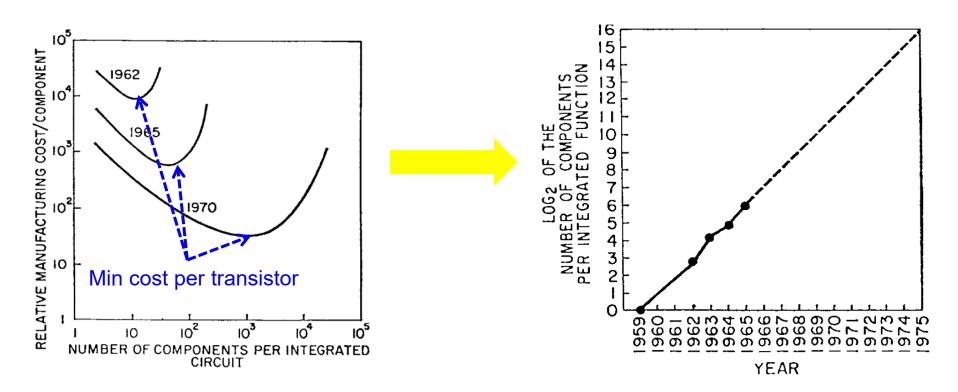
Moore's Law: The number of transistors on microchips doubles every two years

Our World in Data

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Moore's Law: Market

The market is the key to the growth due to heavy investment costs: equipment, non-recurring engineering (NRE) expenses.


Investment: Product: Market

Annual semiconductor sales (1987–2018)

Annual Senticonductor Sales (1367-2016)									
Year →	Revenue (nominal)	Revenue (inflation)	Ref ≑						
2022	\$601,694,000,000		[13]						
2021	\$594,952,000,000		[13]						
2020	\$466,237,000,000		[14]						
2019	\$422,237,000,000		[14]						
2018	\$481,090,000,000	\$560,660,000,000	[1]						
2017	\$420,390,000,000	\$501,890,000,000	[1]						
2016	\$345,850,000,000	\$421,710,000,000	[1]						
2015	\$335,170,000,000	\$413,800,000,000	[15]						
2014	\$335,840,000,000	\$415,150,000,000	[15]						
2013	\$305,580,000,000	\$383,900,000,000	[15]						
2012	\$291,560,000,000	\$371,640,000,000	[15]						
2011	\$299,520,000,000	\$389,640,000,000	[15]						
2010	\$298,320,000,000	\$400,340,000,000	[15]						
2009	\$226,310,000,000	\$308,700,000,000	[15]						
2008	\$280,000,000,000	\$381,000,000,000							
2007	\$255,600,000,000	\$360,700,000,000	[16]						
2006	\$247,700,000,000	\$359,600,000,000	[16]						
2005	\$227,000,000,000	\$340,000,000,000	[15]						
2004	\$213,000,000,000	\$330,000,000,000	[15]						
2000	\$204,000,000,000	\$347,000,000,000	[15]						
1995	\$144,000,000,000	\$277,000,000,000	[15]						
1992	\$60,000,000,000	\$125,000,000,000	[15]						
1990	\$51,000,000,000	\$114,000,000,000	[15]						
1987	\$33,000,000,000	\$85,000,000,000	[15]						

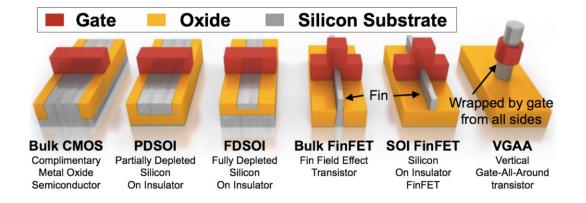
Source: Wikipedia

"Moore's Law" = Scaling of Cost and Value

- Scaling focus: "PPAC" Power, Performance, Area, Cost
- Moore's Law is a law of cost reduction 1% = 1 week

Moore's Law: Innovation

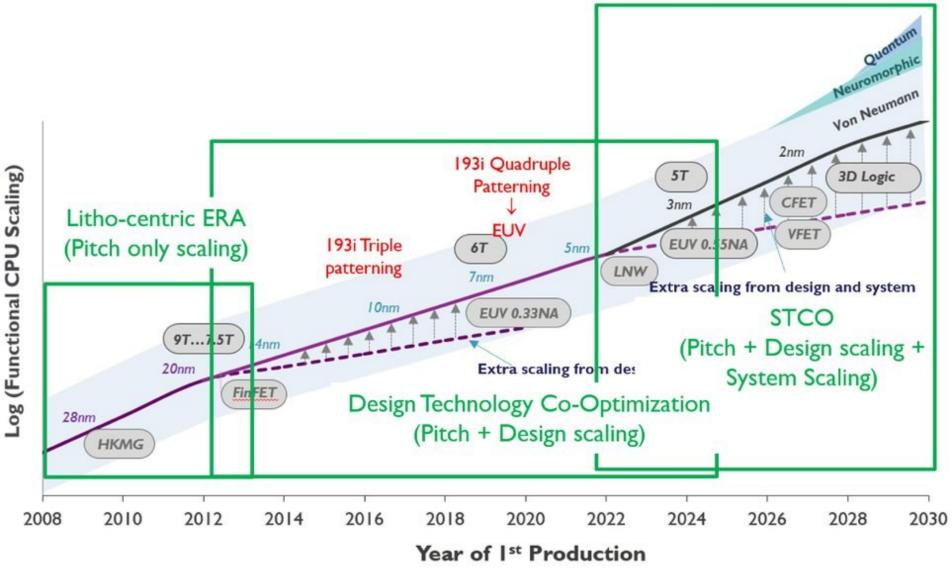
- Device: Bipolar, NMOS, CMOS, ReRAM,... Qbit
- Interconnect: Al, Cu, Ta, Ro, CNT
- Insulator: High K
- Gate: FinFET, nanosheet, CFET, VFET, monolithic 3D IC
- Fabrication: DUV193nm, EUV13.5nm, NIL, DAS
- Design Automation: EDA, DTCO, STCO


Moore's Law: Innovation

- Device: Bipolar, NMOS, CMOS, ReRAM,... Qbit
- Interconnect: Al, Cu, Ta, Ro, CNT
- Insulator: High K
- Gate: FinFET, nanosheet, CFET, VFET, monolithic 3D IC
- Fabrication: DUV193nm, EUV13.5nm, NIL, DAS
- Design Automation: EDA, DTCO, STCO

New Opportunities

Year of Production	2015	2017	2019	2021	2024	2027	2030
Technology Node (nm)	16/14	11/10	8/7	6/5	4/3	3/2.5	2/1.5
Transistor Structure							
Fully Depleted SOI (FDSOI)							
FinFET							
Lateral Gate-All-Around (LGAA)							
Vertical Gate-All-Around (VGAA)							
Monolithic 3D							


ITRS 2015 report

ASML report

We must prepare the future design methodology!!

Now, In Deep Nanometer Technologies

S. M. Y. Sherazi et al., "Standard-cell design architecture options below 5nm node: The ultimate scaling of FinFET and Nanoshee,"keynote, Proc. SPIE, 2019

Subjects

- 1. Partitioning, Floorplanning (3D)
- 2. Placement (3D)
- 3. Routing (3D)
- 4. Standard Cell Synthesis
- 5. Devices: Memtransistor