CSE248: ALGORITHMIC AND OPTIMIZATION FOUNDATIONS FOR VLSI CAD

Lecture 2: Moore's Law

Fall 2023
Chung-Kuan Cheng

Moore's Law

Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years.
(Wikipedia) Moore's Law: The number of transistors on microchips doubles every two years
Our World Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
50,000,000,000
10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000
1,000,00
500,00

Moore's Law: Market

The market is the key to the growth due to heavy investment costs: equipment, non-recurring engineering (NRE) expenses.
Investment: Product: Market

Annual semiconductor sales (1987-2018)

Year *	Revenue (nominal)	Revenue (inflation)	Ref
2022	\$601,694,000,000		[13]
2021	\$594,952,000,000		[13]
2020	\$466,237,000,000		[14]
2019	\$422,237,000,000		[14]
2018	\$481,090,000,000	\$560,660,000,000	[1]
2017	\$420,390,000,000	\$501,890,000,000	[1]
2016	\$345,850,000,000	\$421,710,000,000	[1]
2015	\$335,170,000,000	\$413,800,000,000	[15]
2014	\$335,840,000,000	\$415,150,000,000	[15]
2013	\$305,580,000,000	\$383,900,000,000	[15]
2012	\$291,560,000,000	\$371,640,000,000	[15]
2011	\$299,520,000,000	\$389,640,000,000	[15]
2010	\$298,320,000,000	\$400,340,000,000	[15]
2009	\$226,310,000,000	\$308,700,000,000	[15]
2008	\$280,000,000,000	\$381,000,000,000	
2007	\$255,600,000,000	\$360,700,000,000	[16]
2006	\$247,700,000,000	\$359,600,000,000	[16]
2005	\$227,000,000,000	\$340,000,000,000	[15]
2004	\$213,000,000,000	\$330,000,000,000	[15]
2000	\$204,000,000,000	\$347,000,000,000	[15]
1995	\$144,000,000,000	\$277,000,000,000	[15]
1992	\$60,000,000,000	\$125,000,000,000	[15]
1990	\$51,000,000,000	\$114,000,000,000	[15]
1987	\$33,000,000,000	\$85,000,000,000	[15]

"Moore's Law" = Scaling of Cost and Value

- Scaling focus: "PPAC" Power, Performance, Area, Cost
- Moore's Law is a law of cost reduction $1 \%=1$ week

Moore's Law: Innovation

- Device: Bipolar, NMOS, CMOS, ReRAM,... Qbit
- Interconnect: Al, Cu, Ta, Ro, CNT
- Insulator: High K
- Gate: FinFET, nanosheet, CFET, VFET, monolithic 3D IC
- Fabrication: DUV193nm, EUV13.5nm, NIL, DAS
- Design Automation: EDA, DTCO, STCO

Moore's Law: Innovation

- Device: Bipolar, NMOS, CMOS, ReRAM,... Qbit
- Interconnect: Al, Cu, Ta, Ro, CNT
- Insulator: High K
- Gate: FinFET, nanosheet, CFET, VFET, monolithic 3D IC
- Fabrication: DUV193nm, EUV13.5nm, NIL, DAS
- Design Automation: EDA, DTCO, STCO

New Opportunities

Year of Production	2015	2017	2019	2021	2024	2027	2030	
Technology Node (nm)	$16 / 14$	$11 / 10$	$8 / 7$	$6 / 5$	$4 / 3$	$3 / 2.5$	$2 / 1.5$	
Transistor Structure								
Fully Depleted SOI (FDSOI)								
FinFET								
Lateral Gate-All-Around (LGAA)								
Vertical Gate-All-Around (VGAA)								
Monolithic 3D								

ITRS 2015 report

We must prepare the future design methodology !!

Now, In Deep Nanometer Technologies

S. M. Y. Sherazi et al., "Standard-cell design architecture options below 5nm node: The ultimate scaling of FinFET and Nanoshee,"keynote, Proc. SPIE, 2019]

Subjects

1. Partitioning, Floorplanning (3D)
2. Placement (3D)
3. Routing (3D)
4. Standard Cell Synthesis
5. Devices: Memtransistor
