
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2012

2

Multi-Level Logic
Minimization

Reading:
Logic Synthesis in a Nutshell

Section 3 (§3.3)

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Finite State Machine

Finite-State Machine F(Q,Q0,X,Y,,)
where:

Q: Set of internal states
Q0: Set of initial states
X: Input alphabet
Y: Output alphabet
: X x Q  Q (next state function)
: X x Q  Y (output function)

Delay element:

• Clocked: synchronous circuit

• single-phase clock, multiple-phase clocks

• Not clocked: asynchronous circuit

x=(x1,x2,…,xn) y=(y1,y2,…,yn)



s=(s1,s2,…,sn)
s’ =(s’1,s’2,…,s’n)

D

4

General Logic Structure

 Combinational
optimization
 keep latches/registers

at current positions,
keep their function

 optimize combinational
logic in between

 Sequential
optimization
 change latch

position/function

5

Optimization Criteria for Synthesis
 The optimization criteria for multi-level logic is to

minimize some function of:
1. Area occupied by the logic gates and interconnect

(approximated by literals = transistors in technology
independent optimization)

2. Critical path delay of the longest path through the logic
3. Degree of testability of the circuit, measured in terms

of the percentage of faults covered by a specified set of
test vectors for an approximate fault model (e.g. single
or multiple stuck-at faults)

4. Power consumed by the logic gates
5. Noise immunity
6. Placeability, routability

while simultaneously satisfying upper or lower bound
constraints placed on these physical quantities

6

Area-Delay Trade-off

Example

7

Two-Level (PLA) vs. Multi-Level

 PLA
 Control logic
 Constrained layout
 Highly automatic
 Technology independent
 Multi-valued logic
 Input, output, state encoding
 Predictable

 Multi-level logic
 Control logic, data path
 General layout
 Automatic
 Partially technology independent
 Some ideas of multi-valued logic
 Occasionally involving encoding
 Hard to predict

E.g. Standard Cell Layout

8

General Approaches to Synthesis

 PLA synthesis:
 theory well understood
 predictable results in a top-down flow

Multi-level synthesis:
 optimization criteria very complex

except special cases, no general theory available
 greedy optimization approach

 incrementally improve along various dimensions of the
criteria

 works on common design representation (circuit or
network representation)
attempt a change, accept if criteria improve, reject

otherwise

9

Transformation-based Synthesis
 All modern synthesis systems are transformation based

 set of transformations that change network representation
work on uniform network representation

 “script” of “scenario” that can orchestrate various
transformations

 Transformations differ in:
 the scope they are applied

 Local vs. global restructuring
 the domain they optimize

 combinational vs. sequential
 timing vs. area
 technology independent vs. technology dependent

 the underlying algorithms they use
 BDD based, SAT based, structure based

10

Network Representation

 Boolean network
 Directed acyclic graph

(DAG)
 Node logic function

representation fj(x,y)
 Node variable yj: yj=fj(x,y)
 Edge (i,j) if fj depends

explicitly on yi

 Inputs: x = (x1, …, xn)
 Outputs: z = (z1, …, zp)
 External don’t cares:

d1(x), …, dp(x) for outputs

11

Typical Synthesis Scenario

RTL to Network Transformation

Technology Independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Test Preparation

- read Verilog

- control/datapath analysis

- basic logic restructuring

- crude measures for goals

- use logic gates from target

cell library

- timing optimization

- physically driven optimization

- improve testability

- test logic insertion

12

Local vs. Global Transformation
 Local transformations optimize one node’s function in the

network
 smaller area
 faster performance
 map to a particular set of cells

 Global transformations restructure the entire network
 merging nodes
 splitting nodes
 removing/changing connections between nodes

 Node representation:
 keep size bounded to avoid blow-up of local transformations

 SOP, POS
 BDD
 Factored forms

13

Sum-of-Products (SOP)

 Example
abc’+a’bd+b’d’+b’e’f

 Advantages:
 Easy to manipulate and minimize
 many algorithms available (e.g. AND, OR, TAUTOLOGY)
 two-level theory applies

 Disadvantages:
 Not representative of logic complexity

E.g., f=ad+ae+bd+be+cd+ce and f’=a’b’c’+d’e’
differ in their implementation by an inverter

 Not easy to estimate logic; difficult to estimate progress
during logic manipulation

14

Reduced Ordered BDD
 Represents both function and its

complement, like factored forms to be
discussed

 Like network of muxes, but restricted since
controlled by primary input variables
 not really a good estimator for

implementation complexity
 Given an ordering, reduced BDD is

canonical, hence a good replacement for
truth tables

 For a good ordering, BDDs remain
reasonably small for complicated functions
(but not multipliers, for instance)

 Manipulations are well defined and efficient
 Only true support variables (dependency

on primary input variables) are displayed

15

Factor Form
 Example

(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representative of logic complexity

f=ad+ae+bd+be+cd+ce
f’=a’b’c’+d’e’  f=(a+b+c)(d+e)

 in many designs (e.g. complex gate CMOS) the
implementation of a function corresponds directly to its
factored form

 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation
 usually converted into SOP before manipulation

16

Factor Form

Note:

literal count  transistor
count  area
 however, area also
depends on wiring, gate
size, etc.
 therefore very crude
measure

17

Factored Form
 Definition: f is an algebraic expression if f is a set of cubes (SOP),

such that no single cube contains another (minimal with respect
to single cube containment)
 Example

a+ab is not an algebraic expression (factoring gives a(1+b))

 Definition: The product of two expressions f and g is a set defined
by fg = {cd | c  f and d  g and cd  0}
 Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a’b

 Definition: fg is an algebraic product if f and g are algebraic
expressions and have disjoint support (that is, they have no input
variables in common)
 Example

(a+b)(c+d)=ac+ad+bc+bd is an algebraic product

18

Factored Form
 Definition: A factored form can be defined recursively by

the following rules. A factored form is either a product or
sum where:
 a product is either a single literal or a product of

factored forms
 a sum is either a single literal or a sum of factored forms

 A factored form is a parenthesized algebraic expression
 In effect a factored form is a product of sums of

products or a sum of products of sums

 Any logic function can be represented by a factored form,
and any factored form is a representation of some logic
function

19

Factored Form

Example
 x, y’, abc’, a+b’c, ((a’+b)cd+e)(a+b’)+e’ are

factored forms
 (a+b)’c is not a factored form since

complement is not allowed, except on literals

Factored forms are not unique
 Three equivalent factored forms

ab+c(a+b), bc+a(b+c), ac+b(a+c)

20

Factored Form
 Definition: The factorization value of an algebraic

factorization F=G1G2+R is defined to be
fact_val(F,G2) = lits(F) - (lits(G1) + lits(G2) + lits(R))
= (|G1|-1) lits(G2) + (|G2|-1) lits(G1)
 Assuming G1, G2 and R are algebraic expressions, where |H| is

the number of cubes in the SOP form of H
 Example

F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+g), which
requires 7 literals, rather than 24

 If G1=(a+bc+bd) and G2=(e+f+g), then R= and
fact_val(F,G2) = 23+25=16
 The above factored form saves 17 literals, not 16. The extra literal

saving comes from recursively applying the formula to the factored
form of G1.

21

Factored Form

 Factored forms are more compact
representations of logic functions than the
traditional SOP forms
 Example:

(a+b)(c+d(e+f(g+h+i+j)))
when represented as an SOP form is
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+
bdfh+bdfi+bdfj

 SOP is a factored form, but it may not be a good
factorization

22

Factored Form
 There are functions whose size is exponential in SOP

representation, but polynomial in factored form
 Example:

Achilles’ heel function

n literals in factored form and (n/2)2n/2 literals in SOP form

(x
2i1

 x
2i

)
i1

in / 2



Factored forms are useful in estimating
area and delay in a multi-level synthesis
and optimization system. In many design
styles (e.g. complex gate CMOS design)
the implementation of a function
corresponds directly to its factored form.

23

Factored Form
 Factored forms can be graphically represented as labeled

trees, called factoring trees, in which each internal node
including the root is labeled with either + or , and each
leaf has a label of either a variable or its complement
 Example

factoring tree of ((a’+b)cd+e)(a+b’)+e’

24

Factored Form
 Definition: The size of a factored form F (denoted (F)) is

the number of literals in the factored form
 E.g., ((a+b)ca’) = 4, ((a+b+cd)(a’+b’)) = 6

 A factored form of a function is optimal if no other factored
form has less literals

 A factored form is positive unate in x, if x appears in F, but
x’ does not. A factored form is negative unate in x, if x’
appears in F, but x does not.

 F is unate in x if it is either positive or negative unate in x,
otherwise F is binate in x
 E.g., F = (a+b’)c+a’

positive unate in c; negative unate in b; binate in a

25

Factored Form
Cofactor

 The cofactor of a factored form F, with respect to
a literal x1 (or x1’), is the factored form Fx1

=
Fx1=1(x) (or Fx1’=Fx1=0(x)) obtained by
 replacing all occurrences of x1 by 1, and x1’

by 0
 simplifying the factored form using the

Boolean algebra identities
1y=y 1+y=1 0y=0 0+y=y

 after constant propagation (all constants are
removed), part of the factored form may
appear as G+G. In general, G is in a factored
form.

26

Factored Form
Cofactor

The cofactor of a factored form F, with
respect to a cube c, is a factored form FC
obtained by successively cofactoring F
with each literal in c
 Example

F = (x+y’+z)(x’u+z’y’(v+u’)) and c = vz’.
Then
Fz’ = (x+y’)(x’u+y’(v+u’))
Fz’ v = (x+y’)(x’u+y’)

27

Factored Form
Optimality

 Definition
Let f be a completely specified Boolean function,
and (f) is the minimum number of literals in any
factored form of f
 Recall (F) is the number of literals of a factored form F

 Definition
Let sup(f) be the true support variable of f, i.e.
the set of variables that f depends on. Two
functions f and g are orthogonal, denoted f  g, if
sup(f)  sup(g) = 

28

Factored Form
Optimality

 Lemma: Let f = g + h such that g  h, then (f) = (g) + (h)
 Proof:

Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form, (f)=(F)  (G+H)=(g)+(h).

Let c be a minterm, on sup(g), of g’. Since g and h have disjoint
support, we have fc=(g+h)c=gc+hc=0+hc=hc=h. Similarly, if d is a
minterm of h’, fd=g. Because (h)=(fc)(Fc) and (g)=(fd)(Fd),
(h)+(g)  (Fc)+(Fd).

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing Fc (Fd), we replace all the literals from
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the
factored form by eliminating all the constants and possibly some literals
from sup(g) (sup(h)) by using the Boolean identities. Hence (Fc)  n
and (Fd)  m. Since (F) = m+n, (Fc)+(Fd)  m+n = (F).
We have (f)  (g)+(h)  (Fc)+(Fd)  (F)  (f) = (g) + (h) since
(f)=(F).

29

Factored Form
Optimality

 Note, the previous result does not imply that all minimum literal
factored forms of f are sums of the minimum literal factored forms
of g and h

 Corollary: Let f = gh such that g  h, then (f)=(g)+(h)
 Proof:

Let F’ denote the factored form obtained using DeMorgan’s law. Then
(F) = (F’), and therefore (f)=(f’). From the above lemma, we have
(f) = (f’) = (g’+h’) = (g’)+(h’) = (g)+(h).

 Theorem: Let such that fijfkl, ik or jl, then

 Proof:
Use induction on m and then n, and the above lemma and corollary.

f  fij
j1

m


i1

n



(f)  (f

ij
)

j1

m


i1

n



30

Factored Form
 SOP forms are used as the internal representation of logic

functions in most multi-level logic optimization systems
 Advantages

 good algorithms for manipulating them are available
 Disadvantages

 performance is unpredictable - may accidentally generate a function
whose SOP form is too large

 factoring algorithms have to be used constantly to provide an estimate
for the size of the Boolean network, and the time spent on factoring
may become significant

 Possible solution
 avoid SOP representation by using factored forms as the internal

representation
 still not practical unless we know how to perform logic operations

directly on factored forms without converting to SOP forms
 the most common logic operations over factored form have been

partially provided

31

Boolean Network Manipulation

Basic techniques
Structural operations (change topology)

Algebraic
Boolean

Node simplification (change node functions)
Node minimization using don’t cares

32

Structural Operation
 Restructuring: Given initial network, find best network

 Example
f1 = abcd+ab’cd’+acd’e+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg
minimizing
f1 = bcd+b’cd’+cd’e+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg
factoring
f1 = c(d(b+f)+d’(b’+e)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))
decompose
f1 = c(x+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

 Two problems:
 find good common subfunctions
 effect the division

33

Structural Operation
 Basic Operations:

 Decomposition (single function)
f = abc+abd+a’c’d’+b’c’d’ 
f = xy+x’y’ x = ab y = c+d

 Extraction (multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde 
f = xy+e g = xe’ h = ye x = az+bz’ y = cd

 Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e 
f = (a+b)(c+d)+e

 Substitution
g = a+b f = a+bc 
f = g(a+c)

 Collapsing (also called elimination)
f = ga+g’b g = c+d 
f = ac+ad+bc’d’ g = c+d

“Division” plays a key role in all of these operations

34

Factoring vs. Decomposition

 Factoring:
 f=(e+g’)(d(a+c)+a’b’c’)

+b(a+c)

 Decomposition:
 y(b+dx)+xb’y’

Similar to merging
common nodes and
using negative
pointers in BDD.
However, not
canonical, so have no
perfect identification
of common nodes.

Tree

DAG

35

Structural Operation
Node Elimination

where
ni = number of times literals yj and yj’ occur in factored form fi
 can treat yj and yj’ the same since (Fj) = (Fj’)

lj = number of literals in factored fj
with factoring

without factoring

value = (without factoring) - (with factoring)

value(j)  n
i

iFO(j)










 l

j
1  l

j

l
j
 n

i
iFO(j)
  c

l
j

n
i

iFO(j)
  c

36

Structural Operation
Node Elimination

 Example
 Literals before

5+7+5 = 17
 Literals after

9+15 = 24
 Difference:

after - before =
value = 7

xx

value(j)  n
i

iFO(j)










 l

j
1  l

j

 (n
1
 n

2
)(l

3
1)  l

3

 (1 2)(51)  5  7

37

Structural Operation
Node Elimination

Note: Value of a node can change during elimination

value=3

38

Factorization
 Given a SOP, how do we generate a “good” factored form

 Division operation:
 is central in many operations
 find a good divisor
 apply division

results in quotient and remainder

 Applications:
 factoring
 decomposition
 substitution
 extraction

39

Division

 Definition: An operation op is called division if,
given two SOP expressions F and G, it generates
expressions H and R (<H,R> = op(F,G)) such
that F = GH + R
 G is called the divisor
 H is called the quotient
 R is called the remainder

 Definition: If GH is an algebraic product, then op
is called an algebraic division (denoted F // G),
otherwise GH is a Boolean product and op is
called a Boolean division (denoted F  G)

40

Division

 Example:
f = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

 Algebraic division:
f // a = d + e, r = bcd + j

Also, f // a = d or f // a = e, i.e. algebraic division is
not unique

f // (bc) = d, r = ad + ae + j
h1 = f // g1 = d, r1 = ae + j

 Boolean division:
h2 = f  g2 = (a + c)d, r2 = ae + j.

i.e. f = (a+b)(a+c)d + ae + j

41

Division
 Definition:

G is an algebraic factor of F if there exists an algebraic
expression H such that F = GH (using algebraic
multiplication)

 Definition:
G is an Boolean factor of F if there exists an expression H
such that F = GH (using Boolean multiplication)

 Example
 f = ac + ad + bc + bd

 (a+b) is an algebraic factor of f since f = (a+b)(c+d)
 f = ab + ac + bc

 (a+b) is a Boolean factor of f since f = (a+b)(a+c)

42

Why Algebraic Methods?

Algebraic methods provide fast algorithms
for various operations
 Treat logic functions as polynomials
 Fast algorithms for polynomials exist
 Lost of optimality but results are still good
Can iterate and interleave with Boolean

operations
In specific instances, slight extensions are available

to include Boolean methods

43

Weak Division
 Weak division is a specific example of algebraic division

 Definition:
Given two algebraic expressions F and G, a division is
called a weak division if
1. it is algebraic and
2. remainder R has as few cubes as possible
 The quotient H resulting from weak division is denoted by F/G

 Theorem:
Given expressions F and G, H and R generated by weak
division are unique

44

Weak Division
ALGORITHM WEAK_DIV(F,G) {
// G = {g1,g2,...}, F = {f1,f2,...} are sets of cubes
foreach gi {

Vgi = 
foreach fj {

if(fj contains all literals of gi) {
vij = fj - literals of gi
Vgi = Vgi  vij

}
}

}

H = iVgi

R = F - GH
return (H,R);

}

45

Weak Division
 Example

F = ace + ade + bc + bd + be +a’b + ab
G = ae + b

Vae= c + d

Vb = c + d + e + a’ + a

H = c + d = F/G H =  Vgi

R = be + a’b + ab R = F \ GH

F = (ae + b)(c + d) + be + a’b + ab

46

Weak Division

We use filters to prevent trying a division
G is not an algebraic divisor of F if

G contains a literal not in F,
G has more terms than F,
For any literal, its count in G exceeds that in F, or
F is in the transitive fanin of G.

47

Weak Division

Weak_Div provides a method to divide an
expression for a given divisor

How do we find a “good” divisor?
Restrict to algebraic divisors
Generalize to Boolean divisors

Problem:
Given a set of functions { Fi }, find
common weak (algebraic) divisors

48

Divisor Identification
Primary Divisor

 Definition:
An expression is cube-free if no cube divides the expression
evenly (i.e., there is no literal that is common to all the
cubes)

“ab+c” is cube-free
“ab+ac” and “abc” are not cube-free

 Note: A cube-free expression must have more than one cube

 Definition:
The primary divisors of an expression F are the set of
expressions

D(F) = {F/c | c is a cube}
Note that F/c is the quotient of a weak division

49

Divisor Identification
Kernel and Co-Kernel

 Definition:
The kernels of an expression F are the set of
expressions
K(F) = {G | G  D(F) and G is cube-free}
 In other words, the kernels of an expression F are the

cube-free primary divisors of F

 Definition:
A cube c used to obtain the kernel K = F/c is
called a co-kernel of K
 C(F) is used to denote the set of co-kernels of F

50

Divisor Identification
Kernel and Co-Kernel

Example
x = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g

kernels co-kernels
a+b+c df, ef
d+e af, bf, cf
(a+b+c)(d+e)f+g 1

51

Divisor Identification
Kernel and Kernel Intersection

 Fundamental Theorem
If two expressions F and G have the property
that

kF  K(F), kG  K(G)  | kG  kF |  1
(kG and kF have at most one term in common),
then F and G have no common algebraic divisors
with more than one cube

 Important:
If we “kernel” all functions and there are no nontrivial
intersections, then the only common algebraic divisors
left are single cube divisors

52

Divisor Identification
Kernel Level

 Definition:
A kernel is of level 0 (K0) if it contains no kernels except itself

A kernel is of level n or less (Kn) if it contains at least one kernel
of level (n-1) or less, but no kernels (except itself) of level n or
greater

 Kn(F) is the set of kernels of level n or less
 K0(F)  K1(F)  K2(F)  ...  Kn(F)  K(F)
 level-n kernels = Kn(F) \ Kn-1(F)

 Example:
F = (a + b(c + d))(e + g)
k1 = a + b(c + d)  K1

 K0 ==> level-1
k2 = c + d  K0

k3 = e + g  K0

53

Divisor Identification
Kerneling Algorithm

Algorithm KERNEL(j, G) {

R = 
if(CUBE_FREE(G)) R = {G}

for(i=j+1,...,n) {

if(li appears only in one term) continue

if(k  i, lk  all cubes of G/li) continue

R = R  KERNEL(i, MAKE_CUBE_FREE(G/li))
}

return R

}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F

54

Divisor Identification
Kerneling Algorithm

 KERNEL(0, F) returns all the kernels of F

 Note:
 The test “(k  i, lk  all cubes of G/li)” in the kerneling

algorithm is a major efficiency factor. It also guarantees
that no co-kernel is tried more than once.

 Can be used to generate all co-kernels

55

Divisor Identification
Kerneling Algorithm

 Example
F = abcd + abce + adfg + aefg + adbe + acdef + beg
(Let a, b, c, d, e, f, g be l1, l2, l3, l4, l5, l6,l7, respectively.)

a b

c
(a)

c
d e

(a)

(a)
ac+d+g

fg

d+ecd+g

ef

ce+g

f

b+cf

e

d

b+df

e

b+ef

d

c

d+e

c+e

c+d

b

c d e

(bc + fg)(d + e) + de(b + cf)

c(d+e) + de=
d(c+e) + ce =
...

a(d+e)

56

Divisor Identification
Kerneling Algorithm

 Example
co-kernels kernels

1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d + e
abd c + e
abe c + d
ac b(d + e) + def
acd b + ef

Note: F/bc = ad + ae = a(d + e)

57

Factor
Algorithm FACTOR(F) {

if(F has no factor) return F
// e.g. if |F|=1, or F is an OR of single literals
// or of no literal appears more than once
D = CHOOSE_DIVISOR(F)
(Q,R) = DIVIDE(F,D)
return FACTOR(Q)×FACTOR(D) + FACTOR(R) //recur

}

 different heuristics can be applied for CHOOSE_DIVISOR
 different DIVIDE routines may be applied (algebraic division,

Boolean division)

58

Factor
 Example:

F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

 Problem 1:
O is not optimal since not maximally factored and can be
further factored to “a(b(c + d) + e + f) + g”
 It occurs when quotient Q is a single cube, and some of the literals

of Q also appear in the remainder R

Notation:
F = original function
D = divisor
Q = quotient
P = partial factored form
O = final factored form by
FACTOR restricting to
algebraic operations only

59

Factor

To solve Problem 1
Check if the quotient Q is not a single cube,

then done
 Else, pick a literal l1 in Q which occurs most

frequently in cubes of F. Divide F by l1 to
obtain a new divisor D1.
Now, F has a new partial factored form

(l1)(D1) + (R1)
and literal l1 does not appear in R1.
Note: The new divisor D1 contains the original D as a

divisor because l1 is a literal of Q. When recursively
factoring D1, D can be discovered again.

60

Factor
 Example:

F = ace + ade + bce + bde + cf + df
D = a + b
Q = ce + de
P = (ce + de)(a + b) + (c + d) f
O = e(c + d)(a + b) + (c + d)f

 Problem 2:
O is not maximally factored because “(c + d)” is common to
both products “e(c + d)(a + b)” and “(c + d)f”
 The final factored form should have been “(c+d)(e(a + b) + f)”

Notation:
F = original function
D = divisor
Q = quotient
P = partial factored form
O = final factored form by
FACTOR restricting to
algebraic operations only

61

Factor

To solve Problem 2
 Essentially, we reverse D and Q!!

Make Q cube-free to get Q1

Obtain a new divisor D1 by dividing F by Q1

If D1 is cube-free, the partial factored form is
F = (Q1)(D1) + R1, and can recursively factor Q1, D1,
and R1

If D1 is not cube-free, let D1 = cD2 and D3 = Q1D2.
We have the partial factoring F = cD3 + R1. Now
recursively factor D3 and R1.

62

Factor
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
D = DIVISOR(F)
if(D = 0) return F
Q = DIVIDE(F,D)
if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
Q = MAKE_CUBE_FREE(Q)
(D, R) = DIVIDE(F,Q)
if (CUBE_FREE(D)) {

Q = GFACTOR(Q, DIVISOR, DIVIDE)
D = GFACTOR(D, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q × D + R

}
else {

C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE)

}
}

63

Factor

Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal
factor

L = BEST_LITERAL(F, C) //L  C most frequent in F

(Q, R) = DIVIDE(F, L)

C = COMMON_CUBE(Q) // largest one

Q = CUBE_FREE(Q)

Q = GFACTOR(Q, DIVISOR, DIVIDE)

R = GFACTOR(R, DIVISOR, DIVIDE)

return L × C × Q + R

}

64

Factor

 Various kinds of factoring can be obtained by choosing
different forms of DIVISOR and DIVIDE

 CHOOSE_DIVISOR:
LITERAL - chooses most frequent literal
QUICK_DIVISOR - chooses the first level-0 kernel
BEST_DIVISOR - chooses the best kernel

 DIVIDE:
Algebraic Division
Boolean Division

65

Factor
 Example

x = ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df
+ dg

LITERAL_FACTOR:
x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f +
g)

QUICK_FACTOR:
x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR:
(c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce

66

Factor
 QUICK_FACTOR uses GFACTOR, first level-0 kernel

DIVISOR, and WEAK_DIV

 Example
x = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg +
bcfh
D = c + d ---- level-0 kernel (first found)
Q = x/D = b(e + f(g + h)) ---- weak division
Q = e + f(g + h) ---- make cube-free
(D, R) = WEAK_DIV(x, Q) ---- second division
D = a + b(c + d)
x = QD + R, R = 0
x = (e + f(g + h)) (a + b(c + d))

67

Decomposition
 Decomposition is the same as factoring except:

 divisors are added as new nodes in the network
 the new nodes may fan out elsewhere in the network in both positive

and negative phases

Algorithm DECOMP(fi) {
k = CHOOSE_KERNEL(fi)
if (k == 0) return
fm+j = k // create new node m + j
fi = (fi/k)ym+j+(fi/k’)y’m+j+r // change node i using

// new node for kernel
DECOMP(fi)
DECOMP(fm+j)

}

Similar to factoring, we can define
QUICK_DECOMP: pick a level 0 kernel and improve it
GOOD_DECOMP: pick the best kernel

68

Substitution
 Idea: An existing node in a network may be a useful divisor in

another node. If so, no loss in using it (unless delay is a factor).

 Algebraic substitution consists of the process of algebraically
dividing the function fi at node i in the network by the function fj
(or by f’j) at node j. During substitution, if fj is an algebraic divisor
of fi, then fi is transformed into
fi = qyj + r (or fi = q1yj + q0y’j + r)

 In practice, this is tried for each node pair of the network. n nodes
in the network  O(n2) divisions.

ffii

ffjj

yyjj

69

Extraction
 Recall: Extraction operation identifies common sub-

expressions and restructures a Boolean network
 Combine decomposition and substitution to provide an

effective extraction algorithm

Algorithm EXTRACT
foreach node n {

DECOMP(n) // decompose all network nodes
}
foreach node n {

RESUB(n) // resubstitute using existing nodes
}
ELIMINATE_NODES_WITH_SMALL_VALUE

}

70

Extraction

 Kernel Extraction:
1. Find all kernels of all functions
2. Choose kernel intersection with best “value”
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat 1,2,3,4 until best value  threshold

New Node

71

Extraction
 Example

f1 = ab(c(d + e) + f + g) + h
f2 = ai(c(d + e) + f + j) + k

(only level-0 kernels used in this example)
1. Extraction:

K0(f1) = K0(f2) = {d + e}
K0(f1)  K0(f2) = {d + e}
l = d + e
f1 = ab(cl + f + g) + h
f2 = ai(cl + f + j) + k

2. Extraction:
K0(f1) = {cl + f + g}; K0(f2) = {cl + f + j)
K0(f1)  K0(f2) = cl + f
m = cl + f
f1 = ab(m + g) + h
f2 = ai(m + j) + k

No kernel intersections anymore!!
3. Cube extraction:

n = am
f1 = b(n + ag) + h
f2 = i(n + aj) + k

72

Extraction
Rectangle Covering

 Alternative method for extraction

 Build co-kernel cube matrix M = RT C
 rows correspond to co-kernels of individual functions
 columns correspond to individual cubes of kernel
 mij = cubes of functions
 mij = 0 if cube not there

 Rectangle covering:
 identify sub-matrix M* = R*T C*, where R*  R, C*  C,

and m*ij 0
 construct divisor d corresponding to M* as new node
 extract d from all functions

73

Extraction
Rectangle Covering

 Example
F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

Kernels/Co-kernels:
F: (de+f+g)/a

(de + f)/b
(a+b+c)/de
(a + b)/f
(de+g)/c
(a+c)/g

G: (ce+f)/{a,b}
(a+b)/{f,ce}

H: (a+c)/de

a b c ce de f g

F a ade af ag

F b bde bf

F de ade bde cde

F f af bf

M F c cde cg

F g ag cg

G a ace af

G b bce bf

G ce ace bce

G f af bf

H de ade cde



74

Extraction
Rectangle Covering
 Example (cont’d)

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

 Pick sub-matrix M’
 Extract new expression X

F = fx + ag + cg + dex + cde
G = fx + cex
H =ade + cde
X = a + b

 Update M

a b c ce de f g

F a ade af ag

F b bde bf

F de cde

F f

M F c cde cg

F g ag cg

G a ace af

G b b

ade bde

af bf

ac

ce bf

G ce

G f

H

e b

de

ce

a

a

f b

e

f

de cd



75

Extraction
Rectangle Covering

 Number literals before - Number of literals after

 For prior example
 V = 20 - 10 - 2 = 8

, '

(', ')

: Number of literals of cube

: (Number of literals of the cube associated with row) 1

: Number of literals of the cube associated with column

r c
ij i j

i R j C i R j C

ij ij

r
i

c
j

V R C v w w

v m

w i

w j

   

  



  

a b c ce d e f g

F a a d e a f a g

F b b d e b f

F d e cd e

F f

M F c cd e cg

F g a g cg

G a a ce a f

G b b

a d e b d e

a f b f

a c

ce b f

G ce

G f

H

e b

d e

ce

a

a

f b

e

f

d e cd



76

Extraction
Rectangle Covering

 Pseudo Boolean Division
 Idea: consider entries in covering matrix that are don’t cares

overlap of rectangles (a+a = a)
product that cancel each other out (aa’ = 0)

 Example:
F = ab’ + ac’ + a’b + a’c + bc’ + b’

Result:
X = a’ + b’ + c’
F = ax + bx + cx

' ' '

' '

' '

' '

' ' '

'

*

*

*

*

' '

*' ' '

*

a b c a b c

F a ab ac

F b a b bc

M F c a c b c

F a a b a c

F b ab b c

F c ac bc



77

Fast Kernel Computation
 Non-robustness of kernel extraction

 Recomputation of kernels after every substitution:
expensive

 Some functions may have many kernels (e.g. symmetric
functions)

 Cannot measure if kernel can be used as complemented
node

 Solution: compute only subset of kernels:
 Two-cube “kernel” extraction [Rajski et al ‘90]
 Objects:

2-cube divisors
2-literal cube divisors

 Example: f = abd + a’b’d + a’cd
ab + a’b’, b’ + c and ab + a’c are 2-cube divisors.
a’d is a 2-literal cube divisor.

78

Fast Kernel Computation

 Properties of fast divisor (kernel) extraction:
 O(n2) number of 2-cube divisors in an n-cube Boolean

expression
 Concurrent extraction of 2-cube divisors and 2-literal

cube divisors
 Handle divisor and complemented divisor simultaneously

 Example:
f = abd + a’b’d + a’cd

k = ab + a’b’, k’ = ab’ + a’b (both 2-cube divisors)
j = ab + a’c, j’ = ab’ + a’c’ (both 2-cube divisors)
c = ab (2-literal cube), c’ = a’ + b’ (2-cube divisor)

79

Fast Kernel Computation
 Generating all two cube divisors

F = {ci}
D(F) = {d | d = make_cube_free(ci + cj)}
 ci, cj are any pair of cubes in F

 I.e., take all pairs of cubes in F and makes them cube-free
 Divisor generation is O(n2), where n = number of cubes in F

 Example:
F = axe + ag + bcxe + bcg
make_cube_free(ci + cj) = {xe + g, a + bc, axe + bcg, ag
+ bcxe}
 Note: Function F is made into an algebraic expression before

generating double-cube divisors
 Not all 2-cube divisors are kernels (why?)

80

Fast Kernel Computation
 Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiple-
cube divisors if and only if D(F)  D(G)  0

Proof:
If:

If D(F)  D(G)  0 then d  D(F)  D(G) which is a double-
cube divisor of F and G. d is a multiple-cube divisor of F and of
G.

Only if:
Suppose C = {c1, c2, ..., cm} is a multiple-cube divisor of F and
of G. Take any e = (ci + cj). If e is cube-free, then e  D(F) 
D(G). If e is not cube-free, then let d = make_cube_free(ci +
cj). d has 2 cubes since F and G are algebraic expressions.
Hence d  D(F)  D(G).

81

Fast Kernel Computation

 Example:
Suppose that C = ab + ac + f is a multiple divisor
of F and G

If e = ac + f, e is cube-free and e  D(F)  D(G)

If e = ab + ac, d = {b + c}  D(F)  D(G)

As a result of the Theorem, all multiple-cube
divisors can be “discovered” by using just double-
cube divisors

82

Fast Kernel Computation

 Algorithm:
 Generate and store all 2-cube kernels (2-literal cubes)

and recognize complement divisors
 Find the best 2-cube kernel or 2-literal cube divisor at

each stage and extract it
 Update 2-cube divisor (2-literal cubes) set after

extraction
 Iterate extraction of divisors until no more improvement

 Results:
 Much faster
 Quality as good as that of kernel extraction

83

Boolean Division

What’s wrong with algebraic division?
Divisor and quotient are orthogonal!
Better factored form might be:

(g1+ g2+ …+gn) (d1+d2+…+dm)
gi and dj may share same literals
redundant product literals

 Example
abe+ace+abd+cd / (ae+d) = 
But: aabe+ace+abd+cd / (ae+d) = (ab+c)

gi and dj may share opposite literals
product terms are non-existing

 Example
a’b+ac+bc / (a’+c) = 
But: a’a+a’b+ac+bc / (a’+c) = (a+b)

84

Boolean Division

 Definition:
g is a Boolean divisor of f if h and r exist such
that f = gh + r, gh  0

g is said to be a factor of f if, in addition, r = 0,
i.e., f = gh

 h is called the quotient
 r is called the remainder
 h and r may not be unique

85

Boolean Division

Theorem:
A logic function g is a Boolean factor of a
logic function f if and only if f  g (i.e. fg’
= 0, i.e. g’  f’)

fg

86

Boolean Division

Proof:
() g is a Boolean factor of f. Then h such that f = gh;
Hence, f  g (as well as h).

() f  g  f = gf = g(f + r) = gh. (Here r is any function
r  g’.)

 Note:
 h = f works fine for the proof
 Given f and g, h is not unique
 To get a small h is the same as to get a small f + r. Since rg =

0, this is the same as minimizing (simplifying) f with DC = g’.

87

Boolean Division

Theorem:
g is a Boolean divisor of f if and only if fg 
0

f g

88

Boolean Division

Proof:
() f = gh + r, gh  0  fg = gh + gr. Since gh 
0, fg  0.

() Assume that fg  0. f = fg + fg’ = g(f + k) +
fg’. (Here k  g’.)
Then f = gh + r, with h = f + k, r = fg’. Since gh
= fg  0, then gh  0.

 Note:
 f has many divisors. We are looking for some g such

that f = gh+r, where g, h, r are simple functions.
(simplify f with DC = g’)

89

Boolean Division
Incomplete Specified Function

 F = (f,d,r)

 Definition:
A completely specified logic function g is a
Boolean divisor of F if there exist h, e
(completely specified) such that

f  gh + e  f + d
and gh  d.

 Definition:
g is a Boolean factor of F if there exists h such
that

f  gh  f + d

90

Boolean Division
Incomplete Specified Function
 Lemma:

f  g if and only if g is a Boolean factor of F.

Proof:
() Assume that f  g. Let h = f + k where kg  d.

Then hg = (f + k) g  (f + d).
Since f  g, fg = f and thus f  (f + k) g = gh.

Thus
f  (f + k) g  f + d

() Assume that f = gh.
Suppose  minterm m such that f(m) = 1 but g(m) = 0.
Then f(m) = 1 but g(m)h(m) = 0 implying that f  gh.
Thus f(m) = 1 implies g(m) = 1, i.e. f  g

 Note:
 Since kg  d, k  (d + g’). Hence obtain

h = f + k by simplifying f with DC = (d + g’).

91

Boolean Division
Incomplete Specified Function

 Lemma:
fg  0 if and only if g is a Boolean divisor of F.

Proof:
() Assume fg  0.

Let fg  h  (f + d + g’) and fg’  e  (f + d).
Then f = fg + fg’  gh + e  g(f + d + g’) + f + d = f + d
Also, 0  fg  gh  ghf  0.
Now gh  d, since otherwise ghf = 0 (since fd = 0),
verifying the conditions of Boolean division.

() Assume that g is a Boolean divisor.
Then h such that gh  d and
f  gh + e  f + d
Since gh = (ghf + ghd)  d, then fgh  0 implying that fg  0.

92

Boolean Division
Incomplete Specified Function

Recipe for Boolean division:
(f  gh + e  f + d)
Choose g such that fg  0
Simplify fg with DC = (d + g’) to get h
Simplify fg’ with DC = (d + fg) to get e (could

use DC = d + gh)

fg  h  f + d + g’

fg’  e  fg’ + d + fg = f + d

93

Boolean Division

 Given F = (f,d,r), write a cover for F in the form gh + e
where h and e are minimal in some sense

Algorithm:
1. Create a new variable x to “represent” g
2. Form the don’t care set (= xg’ + x’g)

(Since x = g we don’t care if x  g)
3. Minimize (f , d + , r) to get
4. Return (h = /x, e) where e is the remainder of

(These are simply the terms not containing x)
5. f/x denote weak algebraic division

d
~

'
~
d '

~
dd

~

f
~

f
~

f
~

94

Boolean Division
 Note that (f , d + , r) is a partition. We can use ESPRESSO to

minimize it, but the objective there is to minimize the number of cubes -
not completely appropriate.

 Example:
f = a + bc
g = a + b

= xa’b’ + x’(a+b) where x = g = (a+b)

 Minimize (a + bc) = (a + bc) (x’a’b’ + x(a+b)) = xa + xbc
with DC = xa’b’ + x ’(a+b)

 A minimum cover is a + bc but it does not use x or x’ !
 Force x in the cover. This yields f = a + xc = a + (a+b) c.

Heuristic:
Find answer with x in it and which also uses the least variables (or literals)

'
~
d d

~

d
~

'
~
d

'
~
d

95

Boolean Division
Assume F is a cover for  = (f,d,r) and D is a cover for d.

First Algorithm:
Algorithm Boolean_Divide1(F,D,G) {
D1 = D + xG’ + x’G // (don’t care)
F1 = FD1’ // (care on-set)
R1 = (F1 + D1)’ = F1’D1’ = F’D1’ // (care off-set)
F2 = remove x’ from F1 // positive substitution only
F3 = MIN_LITERAL(F2, R1, x) // Filter for Espresso

// (minimum literal support including x)
F4 = ESPRESSO(F3,D1,R1)
H = F4/x // (quotient)
E = F4 - {xH} // (remainder)
return (HG+E)

}

96

Boolean Division
Assume F is a cover for  = (f,d,r) and D is a cover for d.

Second Algorithm:
Algorithm Boolean_Divide2(F,D,G) {
D1 = D + xG’ + x’G // (don’t care)
F1 = FD1’ // (on-set)
R1 = (F1 + D1)’ = F1’D1’ = F’D1’ // (off-set)
// F2 = remove x’ from F1 (difference to first alg.)
F3 = MIN_LITERAL(F2, R1, x, x’) // Filter for Espresso

// (minimum literal support including x)
F4 = ESPRESSO(F3,D1,R1)
H1 = F4/x // (first quotient)
H0 = F4/x’ // (first quotient)
E = F4 - ({xH1}+{x’H0}) // (remainder)
return (GH1+G’H0+E)

}

97

Boolean Division
Minimal Literal Support

 Support minimization (MINVAR)

Given:
 = (f,d,r)
F = {c1, c2,, ck} (a cover of )
R = {r1, r2, ..., rm} (a cover of r)
1. Construct blocking matrix Bi for each ci

2. Form “super” blocking matrix B

3. Find a minimum cover S of B,

S = { j1, j2, ..., jv }.

4. Modify where























Bk

B2
B1

B


 kcccF
~

,...,
~

,
~~

21

 
 

 










otherwise21,0

Sjif
~

~ i
i c

c j
j

98

Boolean Division
Minimal Literal Support

 Given:
 = (f,d,r)
F = {c1, c2,, ck} (a cover of )
R = {r1, r2, ..., rm} (a cover of r)
n: number of variables
Literal Blocking Matrix:

 Example:
ci = ad’e’, rq = a’ce

 

  





 









 



 otherwise0

rvandcv'if1

otherwise0

rv'andcvif1

q
j

i
j

,

q
j

i
j

ˆ

ˆ

i

i

B

B

njq

q,j

1

'

0

'

0

'

0

'

0

'

00001
ˆ edcbaedcba
Bi

q 

99

Boolean Division
Minimal Literal Support

 Example (literal blocking matrix)
on-set cube: ci = ab’d
off-set: r = a’b’d’ + abd’ + acd’ + bcd + c’d’

 Minimum column cover {d,b’}
 Thus b’d is the maximum prime covering ab’d

 Note:
For one cube, minimum literal support is the same as
minimum variable support

a b c d a’ b’ c’ d’
a’b’d’ 1 0 0 1 0 0 0 0
abd’ 0 0 0 1 0 1 0 0
acd’ 0 0 0 1 0 0 0 0
bcd 0 0 0 0 0 1 0 0
c’d’ 0 0 0 1 0 0 0 0

100

Boolean Division
 Example

F = a + bc
Algebraic division: F/(a + b) = 0
Boolean division: F  (a + b) = a + c
1. Let x = a + b
2. Generate don’t care set: D1 = x’(a + b) + xa’b’.
3. Generate care on-set:

 F1 = F  D1’ = (a + bc)(xa + xb +x’a’b’) =ax + bcx.
 Let C = {c1 = ax, c2 = bcx}

4. Generate care off-set:
 R1 = F’D1’ = (a’b’ + a’c’)(xa + xb + x’a’b’) =a’bc’x + a’b’x’.
 Let R = {r1 = a’bc’x, r2 = a’b’x’}.

5. Form super-variable blocking matrix using column order (a, b, c, x),
with a’,b’,c’,x’ omitted.





























1

0

1

0

0

1

0

0

1

0

0

0

0

0

1

1

2

1

B

B
B

101

Boolean Division
 Example (cont’d)

6. Find minimum column cover = {a, c, x}
7. Eliminate in F1 all variables associated with b

So F1 = ax + bcx = ax + cx = x(a + c)
8. Simplifying (applying expand, irredundant on F1), we get F1 = a + xc
9. Thus quotient = F1/x = c, remainder = a
10.F = a + bc = a + cx = a + c(a + b)

It is important that x is forced in the cover!





























1

0

1

0

0

1

0

0

1

0

0

0

0

0

1

1

2

1

B

B
B

a b c x

