CSE248 Partitioning: Replication Cut, Retiming

CK Cheng Dept. of Computer Science and Engineering University of California, San Diego

Replication Cut: Example

Replication Cut: Operation

subject to

$$\begin{split} w_{ij} - p_i + p_j &\geq 0 \quad \forall (i, j) \in E \\ u_{ij} - q_i + q_j &\geq 0 \quad \forall (j, i) \in E \\ q_i - p_i &\geq 0 \quad \forall i \in V, i \neq s, t \\ p_s &= 1 \\ q_s &= 1 \\ p_t &= 0 \\ q_t &= 0 \\ w_{ij}, u_{ji} &\geq 0 \quad \forall (i, j) \in E. \end{split}$$

6

subject to

Obj: min
$$\sum_{(i,j)\in E} c_{ij}w_{ij} + \sum_{(j,i)\in E} c_{ji}u_{ij}$$

subject to

$$\begin{split} w_{ij} - p_i + p_j &\geq 0 \quad \forall (i, j) \in E \\ u_{ij} - q_i + q_j &\geq 0 \quad \forall (j, i) \in E \\ q_i - p_i &\geq 0 \quad \forall i \in V, i \neq s, t \\ p_s &= 1 \\ q_s &= 1 \\ q_t &= 0 \\ w_{ij}, u_{ji} &\geq 0 \quad \forall (i, j) \in E. \end{split}$$

 $x_{ij} \leq c_{ij} \quad \forall \ (i,j) \in E$ $x'_{ij} \le c_{ji} \quad \forall \ (j,i) \in E$ $\sum_{i} -x_{ij} + x_{ji} - \lambda_i = 0 \quad \forall i \in V, i \neq s, t$ $\sum_{i} -x'_{ij} + x'_{ji} + \lambda_i = 0 \quad \forall i \in V, i \neq s, t$ $\sum_{j} -x_{sj} + x_{js} + a_s = 0$ $\sum_{j} -x_{tj} + x_{jt} + a_t = 0$ $\sum_{j} -x'_{sj} + x'_{js} + b_s = 0$ $\sum_{j} -x'_{tj} + x'_{jt} + b_t = 0$ $\lambda_i, x_{ij}, x'_{ji} \geq 0 \quad \forall i \in V, (i, j) \in E$ a_s, a_t, b_s, b_t : unrestricted.

Obj: max $a_s + b_s$

Obj: $\max a_s + b_s$

subject to

 $x_{ij} \leq c_{ij} \quad \forall \ (i,j) \in E$ $x'_{ij} \le c_{ji} \quad \forall \ (j,i) \in E$ $\sum_{i} -x_{ij} + x_{ji} - \lambda_i = 0 \quad \forall i \in V, i \neq s, t$ $\sum_{i} -x'_{ij} + x'_{ji} + \lambda_i = 0 \quad \forall i \in V, i \neq s, t$ $\sum_{i} -x_{sj} + x_{js} + a_s = 0$ $\sum_{j} -x_{tj} + x_{jt} + a_t = 0$ $\sum_{j} -x'_{sj} + x'_{js} + b_s = 0$ $\sum_{i} -x'_{tj} + x'_{jt} + b_t = 0$ $\lambda_i, x_{ij}, x'_{ji} \ge 0 \quad \forall i \in V, (i, j) \in E$ a_s, a_t, b_s, b_t : unrestricted.

Results: MCNC Test Cases (various overhead limits)

	RC		FM		DFRG			Improvement	
							Area		
Circuit	Cut	CPU	Cut	CPU	Cut	CPU	Overhead	RC	FM
Test02	81	25	88	63	79	221	4.55%	2%	10%
Test03	52	24	71	54	44	97	10.84%	15%	38%
Test04	50	22	62	50	34	139	10.27%	32%	45%
Test05	62	43	66	125	51	385	10.57%	15%	23%
Test06	41	27	41	55	34	157	7.28%	17%	17%
Test07	88	49	91	115	60	497	11.00%	32%	34%

	RC		FM		DFRG			Improvement	
							Area		
Circuit	Cut	CPU	Cut	CPU	Cut	CPU	Overhead	RC	FM
Test02	42	24	47	55	33	77	37.20%	21%	30%
Test03	25	23	30	31	23	58	48.39%	8%	23%
Test04	41	22	44	40	25	68	19.69%	39%	43%
Test05	42	43	42	96	34	146	4.45%	19%	19%
Test06	23	27	25	25	17	75	33.90%	26%	32%
Test07	45	48	54	77	29	142	44.98%	36%	46%

Retiming: Example e.g. + takes 7 sec delay, δ takes 3 sec delay

Retiming: + takes 7 sec delay, δ takes 3 sec delay

13

Retiming: + takes 7 sec delay, δ takes 3 sec delay

Retiming+ Partitioning + Replication: Example

Figure 1: (a) Retiming reduces the delay from 3 units of original circuit to 2 units. (b) Retiming reduces the delay of partitioned circuit from 5 to 4 units which is not bound-optimal.

Figure 2: A bound-optimal and timing-optimal partition 15 with 2 units delay using retiming.

Retiming: More explanation via the board