Reading/Hand-on Assignment 1

- Survey of 3 SAT solvers
 - MiniSAT, Sweden.
 - **CHAFF**, Princeton University.
 - **GRASP**, University of Michigan.
- 3 groups, 1 group per solver.
- Oral presentation (**April 14th**, in class)
 - Technical details.
 - Your test run of the solvers + results.
- Written report (due April 19th)
 - One copy per group.

Multi-Level Logic Synthesis

Pingqiang Zhou ShanghaiTech University

Why Multi-level Logic?

- Two-level forms are too **restrictive**.
- It has small delay but large area.
 - Area = gates + literals (wires), i.e., things that take space on a chip.
 - Delay = maximum levels of logic gates required to compute function.
 - Two-level is minimum gate delay possible, but usually worst on area.

Area versus Delay Tradeoff Multi-level designs = Delay fewer gates, but > 2 levels slower, Two-level design = many many levels gates, but only 2 levels of logic, so fastest possible fast, few levels ➤ Area small, large, few gates + wires many gates + wires

Why Multi-level Logic?

• <u>**Rarely</u>** see 2-level designs for really big things...</u>

- We use 2-level logic mostly for **pieces** of bigger things.
- Even small things routinely done as **multi-level**.
- What does a 2-level design with 1000 gates look like?

This is just **NOT** going to be the preferred logic network structure...

Real Multilevel Example

• A small design, done by commercial synthesis tool.

Boolean Logic Network Model

- Need more sophisticated model: **Boolean Logic Network**
 - Idea: it's a graph of connected blocks, like any logic diagram, but now individual component blocks can be 2-level Boolean functions in SOP form.

Multilevel Logic: What to Optimize?

- A simplistic but surprisingly useful metric: Total literal count
 - Count every appearance of every variable on <u>right hand</u> <u>side</u> of "=" in every internal node.
 - Delays also matter, but for this class, only focus on logic complexity.

Optimizing Multilevel Logic: Big Ideas

- Again: Boolean logic network is a data structure. What operators do we need?
- 3 basic kinds of operators:
 - Simplify network nodes: <u>no change</u> in # of nodes, just simplify insides, which are SOP form.
 - Remove network nodes: take "too small" nodes, substitute them back into fanouts.
 - This is not too hard. This is mostly manipulating the graph, simple SOP edits.
 - Add new network nodes: this is factoring. Take big nodes, split into smaller nodes.
 - This is a big deal. This is new. This is what we need to teach you...

Simplifying a Node

- You already know this! This is **2-level synthesis**.
- Just run ESPRESSO on 2-level form **inside** the node, to reduce # literals.
- As structural changes happen across network, "**insides**" of nodes may present opportunity to simplify.

Removing a Node

- Typical case is you have a "**small**" factor which doesn't seem to be worth making it a **separate** node.
- **"Push"** it back into its fanouts, make those nodes bigger, and hope you can use 2-level simplification on them.

Adding new Nodes

- This is Factoring, this is new, and hard.
 - Look at existing nodes, identify common divisors, extract them, connect as <u>fan-ins</u>.
 - Tradeoff: more delay (another level of logic), but fewer literals (less gate area).

Multi-Level Logic Synthesis

- A more common design style.
 - Small area, but may have large delay.
- More sophisticated model: **Boolean logic network**
- 3 kinds of optimizing step:
 - Simplify a node by **2-level minimization**.
 - Remove a node by **substituting**.
 - Add a node by **factoring**.

Multilevel Synthesis Scripts

- Multilevel synthesis like 2-level synthesis is heuristic.
- ...but it's also more complex. Write scripts of basic operators.
 - Do several passes of different optimizations over the Boolean logic network.
 - Do some "cleanup" steps to get rid of "too small" nodes (remove nodes).
 - Look for "easy" factors: just look at existing nodes, and try to use them.
 - Look for "hard" **factors**: do some work to extract them, try them, and keep the good ones.
 - Do 2-level optimization of insides of each logic node in network (simplify nodes by ESPRESSO).
 - Lots of "art" in the engineering of these scripts.
- For us, the one big thing you don't know: **How to factor**...

Multi-Level Logic Synthesis

- We need a new operator: **factoring**
- Problem #1: how to do division?
 - <u>Solution</u>: Algebraic model and algebraic division
 - Algebraic model: <u>Pretending</u> that Boolean expressions behave like polynomials of real numbers, not like Boolean algebra.
 - Algebraic division: Given a Boolean expression F and a divisor D, obtain quotient Q and remainder R, such that $F = D \cdot Q + R$
- Problem #2: how to find good divisors?
 - <u>Solution</u>: <u>Kernels</u>.

Another New Model: Algebraic Model

- Factoring: How do we really do it?
 - Develop another model for Boolean functions, cleverly designed to let us do this
 - Tradeoff: lose some "expressivity" some aspects of Boolean behavior and some Boolean optimizations we just cannot do, but we gain practical factoring.

• <u>New model</u>: Algebraic model

- Term "algebraic" comes from pretending that Boolean expressions behave like polynomials of real numbers, not like Boolean algebra.
- Big new Boolean operator: Algebraic Division (or, also "Weak" Division).

Algebraic Model

Idea: keep just those rules that work for BOTH polynomials of reals AND Boolean algebra, but get rid of the rest.
 Real numbers Boolean algebra

 $a \cdot b = b \cdot a \quad a + b = b + a$ $a \cdot b = b \cdot a \quad a + b = b + a$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ a + (b + c) = (a + b) + ca + (b + c) = (a + b) + cSame $a \cdot (b + c) = a \cdot b + a \cdot c$ $a \cdot (b + c) = a \cdot b + a \cdot c$ $a \cdot 1 = a \quad a \cdot 0 = 0$ $a \cdot 1 = a \quad a \cdot 0 = 0$ a + 0 = aa + 0 = a $a \cdot \overline{a} = 0$ $a + \overline{a} = 1$ $a \cdot a = a \ a + a = a$ Not a + 1 = 1Allowed $(a+b)(a+c) = a+b \cdot c$

Algebraic Model

- If we only get to use algebra rules from real numbers...
 - <u>Consequence</u>: A variable and its complement must be treated as **totally unrelated**.
 - Since no expression like $a + \overline{a} = 1$ allowed.

$$F = ab + \bar{a}x + \bar{b}y$$

Let $R = \bar{a}, S = \bar{b}$
$$F = ab + Rx + Sy$$

<u>Aside</u>: this is one of the losses of "expressive power" of Boolean algebra.

Algebraic Model

- Idea
 - Boolean functions manipulated in SOP form like polynomials.
 - Each product term in such an expression is just a set of variables, e.g., *abRy* is the set (*a*, *b*, *R*, *y*).
 - SOP expression itself is just a list of these products (cubes), e.g., ab + Rx is the list (ab, Rx).

Algebraic Division: Our Model for Factoring

• Given function *F* we want to factor as:

• If remainder R = 0, we call the divisor as a "factor".

Example:
$$F = ac + ad + bc + bd + e$$

 $= (a + b)(c + d) + e$
 \uparrow \uparrow \uparrow \uparrow
divisor quotient remainder

Algebraic Division

- Example: F = ac + ad + bc + bd + e if R = 0.
 - <u>Want</u>: $F = D \cdot Q + R$.

Divisor (D)	Quotient (Q)	Remainder (R)	Is D Factor?
ac + ad + bc +bd + e	1	0	Yes
a+b	c + d	е	No
c+d	a+b	е	No
а	c + d	bc + bd + e	No
b	c + d	ac + ad + e	No
С	a+b	ad + bd + e	No
d	a+b	ac + bc + e	No
е	1	ac + ad + bc + bd	No

Divisor is a **factor**

Algebraic Division: Very Nice Algorithm

- <u>Inputs</u>: A Boolean expression *F* and a divisor *D*, represented as lists of cubes (and each cube as a set of literals).
- <u>Output</u>
 - Quotient Q = F/D as a cube list, or **empty** if Q = 0.
 - Remainder *R* as a cube list, or **empty** if D was a **factor**.

• <u>Strategy</u>

- Cube-wise walk through cubes in divisor *D*, trying to divide each of them into *F*.
- ... intersect all the division results.

Algebraic Division Algorithm

Algebraic Division: Example

F = axc + axd + axe +	bc + bd + de, L	D = ax + b
-----------------------	-----------------	------------

F cube	<i>D</i> cube: <i>ax</i>	D cube: b
ахс	$axc \rightarrow c$	_
axd	$axd \rightarrow d$	_
axe	$axe \rightarrow e$	_
bc	_	$bc \rightarrow c$
bd	_	$bd \rightarrow d$
de	_	

$$C = c + d + e \qquad C = c + d$$
$$Q = (c + d + e) \cap (c + d) = c + d$$
$$R = F - QD = axe + de$$

Algebraic Division: Warning

- Remember: No "**Boolean**" simplification, only "**algebraic**".
 - So what? Well, suppose you have this

$$F = a\overline{b}\overline{c} + ab + ac + bc, D = ab + \overline{c}$$

and you want F/D.

• You must let $X = \overline{b}$ and $Y = \overline{c}$ and transform F and D to something like

F = aXY + ab + ac + bc, D = ab + Y

 Because we must treat the true and complement forms of variables as totally unrelated.

One More Constraint: Redundant Cubes

- To do F/D, function F must have no **redundant** cubes
 - Technical definition is: minimal with respect to single-cube containment.
 - <u>Means</u>: no one cube is completely covered by one of the other cubes in SOP cover.
 - E.g., *abcd* is completely covered by *ab*.
- Why <u>no</u> redundant cubes?
 - Consider: F = a + ab + bc and D = a.
 - <u>Note</u>: F has redundant cube *ab*.
 - What is *F*/*D* by our **algebraic division algorithm**?

$$Q = F/D = 1 + b$$

However, we don't have 1+stuff operation in algebraic model!

One More Constraint: Redundant Cubes

... So, we should remove redundant cubes to make the SOP minimal with respect to single-cube containment.
 Not hard.

Multilevel Logic Synthesis: Where are We?

- For Boolean function F and D, can compute $F = Q \cdot D + R$ via algebraic model.
 - It is great, but still <u>not enough</u>: don't know how to find a good divisor D.
 - <u>Another problem</u>: given *n* functions *F*₁, *F*₂, ..., *F_n*, find a set of good common divisors.

Where to Look for Good Divisors?

- Surprisingly, the **algebraic model** has a beautiful answer.
 - One more reason we like it: Has some surprising and elegant "deep structure".
- Where to look for divisors of function F?
 - In the set of kernels of F, denoted K(F).
 - K(F) is another set of 2-level SOP forms which are the special, foundational structure of any function F, being interpreted in our algebraic model.
- How to find a kernel $k \in K(F)$?
 - Algebraically divide *F* by one of its co-kernels, *C*.

Kernels and Co-Kernels of Function F

- **Kernel** of a Boolean expression *F* is:
 - A cube-free quotient k obtained by algebraically dividing
 F by a single cube C.
 - This single cube *C* also has a name: it is a co-kernel of function *F*.

Kernels Are Cube-Free...

- Cube-free means...?
 - You cannot factor out a <u>single</u> cube divisor that <u>leaves no</u> remainder.
 - Technically: has no **one cube** that is a **factor** of expression.
 - Pick a cube C. If you can "cross out" C in <u>each</u> product term of F, then
 F is not a kernel.

Expression <i>F</i>	$F = D \cdot Q + R$	F Cube-free?
а	$a \cdot 1 + 0$	No
a + b		Yes
ab + ac	$a \cdot (b+c) + 0$	No
abc + abd	$ab \cdot (c+d) + 0$	No
ab + acd + bd		Yes

Some Kernel Examples

• Suppose
$$F = abc + abd + bcd$$

Divisor cube <i>d</i>	Q = F/d	Is Q a kernel of F ?
1	abc + abd + bcd	No, has cube $= b$ as factor
а	bc + bd	No, has cube $= b$ as factor
b	ac + ad + cd	Yes! co-kernel = b
ab	c+d	Yes! co-kernel = ab

Any Boolean function F can have many different kernels.
The <u>set</u> of kernels of F is denoted as K(F).

Kernels: Why Are They Important?

- Big result: Brayton & McMullen Theorem
 - <u>From</u>: R. Brayton and C. McMullen, "The decomposition and factorization of Boolean expressions." In *IEEE International Symposium on Circuits and Systems*, pages 49–54, 1982.

Expressions F and G have a **common multiple-cube divisor** d**if and only if**: there are kernels $k1 \in K(F)$ and $k2 \in K(G)$ such that $d = k1 \cap k2$ and d is an expression with **at least 2** cubes in it (i.e., k1 and k2 have **common cubes**).

Multiple-Cube Divisors and Kernels

- Brayton & McMullen Theorem in words:
 - The <u>only</u> place to look for <u>multiple-cube divisors</u> is in the intersection of kernels!
 - Indeed, this intersection of kernels contains <u>all</u> divisors.

Brayton-McMullen: Informal Illustration

Kernels: Real Example

F = ae + be + cde + ab

$$G = ad + ae + bd + be + bc$$

Kernels: Very Useful, But How To Find?

- Another **recursive** algorithm ("recursive" again!)
 - There are 2 more useful properties of kernels we need to see first...
- Start with a function F and a kernel k1 in K(F)F = cube1 • k1 + remainder1
- Then: a new, interesting question: what about K(k1)?
 - k1 is a perfectly nice Boolean expression, so it has got its own kernels.
 - Do these k1's kernels have anything interesting to say about K(F)?

How K(k1) Relates to K(F)...

- We know this: $F = cube1 \cdot k1 + remainder1$
- Suppose k2 is a kernel in K(k1), then we know
 k1 = cube2•k2 + remainder2
- Substitute this expression for k1 in original expression for F $F = cube1 \cdot [cube2 \cdot k2 + remainder2] + remainder1$
- Since cube1•cube2 is itself just another single cube, we have:
 F = (cube1•cube2)•[k2] + [cube1•remainder2 + remainder1]
- <u>Conclusion</u>: k2 also a kernel of original F (with co-kernel cube1•cube2)

There is a Hierarchy of Kernels Inside F

• **Definition**: $k \in K(F)$ is

- A level-0 kernel if it contains no kernels inside it except itself.
 - In words: Only cube you can pull out, get a cube-free quotient is "1".
- A level-n kernel if it contains at least one level-(n-1) kernel, and no other level-n kernels except itself.
 - In words: a level-1 kernel only has level-0 kernels inside it. A level-2 kernel only has level-1 and level-0 kernels in it, etc...

Kernel Hierarchy: Example

- F = abe + ace + de + gh has three kernels:
 - k1 = b + c, with co-kernel ae.
 - $k^2 = ab + ac + d$, with co-kernel e.
 - k3 = F with co-kernel 1.
- Note: k1 is level 0, k2 is level 1, and k3 is level 2.

Kernels

- Second useful result [by Brayton et al.]:
 - Co-kernels of a Boolean expression in SOP form correspond to intersections of 2 or more cubes in this SOP form.
- <u>Note</u>: **Intersections** here means that we regard a cube as **a set of literals**, and look at common subsets of literals.
 - This is not like "AND" for products. This just extracts common literals.
 - Example: ace + bce + de + g

ace \cap bce = ce \rightarrow ce is a potential co-kernel ace \cap bce \cap de = e \rightarrow e is a potential co-kernel

How to Find Kernels Using These 2 Results?

- Find the kernels **recursively**.
 - Whenever find one kernel, call FindKernels() on it, to find (if any) lower level kernels inside.
- Use **algebraic division** to divide function by potential co-kernels, to drive recursion.
 - Use 2nd result co-kernels are intersections of the cubes: If there're at least 2 cubes, then look at the intersection of those cubes, and use that intersected result as our potential co-kernel cube.
- One technical point: need to start with a cube-free function F to make things work right.
 - If not cube-free, just divide by biggest common cube to simplify F.

Kernel Algorithm

FindKernels(cube-free SOP expression **F**) { $\mathbf{K} = \mathbf{empty};$ for (each variable \mathbf{x} in \mathbf{F}) { if (there are at least 2 cubes in \mathbf{F} that have variable \mathbf{x}) { let $S = \{ \text{ cubes in } \mathbf{F} \text{ that have variable } \mathbf{x} \text{ in them } \};$ let co = cube that results from*intersection*of all cubes in S,this will be the product of just those literals that appear in *each* of these cubes in S; $\mathbf{K} = \mathbf{K} \cup \mathbf{FindKernels}(\mathbf{F} / \mathbf{co});$

Cube-free \mathbf{F} is always its own kernel, with trivial co-kernel = $\mathbf{1}$

 $\mathbf{K} = \mathbf{K} \cup \mathbf{F};$

return(**K**);

Kernelling Example

FindKernels(**F**):

for (each var x in F) {
 if (x in ≥ 2 cubes in F) {
 co = intersection of cubes;
 K=K U FindKernels(F/co);
 }
}

$\mathbf{K} = \mathbf{K} \cup \mathbf{F};$

return(**K**);

F = ace + bce + de + g

- *a*: only 1 cube with *a*, no work.
- b: only 1 cube with b, no work.
- c: two cubes *ace* and *bce* with c.
 - $co = ace \cap bce = ce$

•
$$F/co = a + b$$

- **Recurse** on *a* + *b*
- d: only 1 cube with d, no work.
- *e*: three cubes *ace*, *bce*, and *de* with *e*.
 - $co = ace \cap bce \cap de = e$
 - F/co = ac + bc + d
 - Recurse on ac + bc + d
- g: only 1 cube with g, no work.

Kernelling Example (cont.)

• Recurse on a + b

- No work for variables a and b, since one cube with a/b.
- Recurse on ac + bc + d
 - No work for variables a, b, d, since one cube with a/b/d.
 - C: two cubes ac and bc with c.
 - $co = ac \cap bc = c$
 - F/co = a + b
 - **Recurse** on a + b (the same as above)

Get Co-Kernels

- With this algorithm ...
 - Can find **all** the kernels and **co-kernels** too.
 - Get co-kernels by ANDing the divisor CO cubes <u>up</u> recursion tree.

One Tiny Problem

- The algorithm will revisit same kernel **multiple** times.
 - Why? Kernel you get for co-kernel *abc* is same as for *cba*, but current algorithm **doesn't know this** and will find same kernel for both co-kernels.
- <u>Solution</u>: remember which variables already tried in cokernels. A little extrabook keeping solves this.

Multilevel Synthesis Models: Summary

Boolean network model

- Like a gate network, but each node in network is an SOP form.
- Supports many operations to add, reduce, simplify nodes in network.
- Algebraic model & algebraic division
 - Simplifies Boolean functions to behave like polynomials of reals.
 - Divides one Boolean function by another:

 $F = (divisor D) \cdot (quotient Q) + remainder R$

- Kernels / Co-kernels of a function F
 - Kernel = cube-free quotient obtained by dividing by a single cube (co-kernel)
 - Intersections of kernels of two functions give all <u>multiple-</u> <u>cube common divisors</u> (Brayton & McMullen theorem).

Notes

- The **algebraic model** (and **division**) are not the only options.
 - There are also **"Boolean division**" models and algorithms that don't lose expressivity.
 - ...but they are more complex.
 - Rich universe of models & methods here.

Good References

- R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, "MIS: A Multiple-Level Logic Optimization System," *IEEE Transactions on CAD of ICs*, vol. CAD-6, no. 6, November 1987, pp. 1062-1081.
- Giovanni De Micheli, *Synthesis and Optimization of Digital Circuits*, McGraw-Hill, 1994.

Next question:

what are the **best** common divisors to get?

How Do We Find Good Divisors?

- The operator is called **extraction**.
 - Want to extract either single-cube divisor or multiple-cube divisor from multiple expressions.
- How do we **extract** good divisors?
- Solution:
 - When you want a single-cube divisor, go look for co-kernels.
 - When you want a multiple-cube divisor, go look for kernels.

Approach Overview

- For single cube extraction
 - Build a very large matrix of 0s and 1s
 - Heuristically look for "prime rectangles" in this matrix
 - Each such "prime" is a good common single-cube divisor
- For multiple cube extraction
 - Build a (different) very large matrix of 0s and 1s
 - Heuristically look for "prime rectangles" in this matrix
 - Each such "prime" is a good multiple-cube divisor
- Surprisingly, a lot like Karnaugh maps!
 - Except we do it all algorithmically.

Single Cube Extract: Matrix Representation

- <u>Given</u>: a set of SOP Boolean equations (P,Q,R).
- Construct the **cube-literal matrix** as follows:
 - One row for each unique product term.
 - One column for each unique literal.
 - A "1" in the matrix if this product term uses this literal, else a "-".

		a	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	-	-	-	-
abd	2	1	1	-	1	-	-	-
eg	3	-	-	-	-	1	-	1
abfg	4	1	1	-	-	-	1	1
bd	5	-	1	-	1	-	-	-
ef	6	-	-	-	-	1	1	-

Covering this Matrix: Prime Rectangles

- A rectangle of a cube-literal matrix is a set of rows R and columns C that has a '1' in <u>every row/column</u> intersection.
 - Need not be contiguous rows or columns in matrix. Any set of rows or columns is fine.

-								
		а	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	-	-	-	-
abd	2	1	1	Γ-	1	-	-	-
 eg	3	-	-	L -	-	1	-	1
abfg	4	1	1	D -	-	-	1	1
bd	5	<u> </u>	1	-	1	-	-	-
ef	6	-	-	-	-	1	1	-

Covering this Matrix: Prime Rectangles

• A **prime rectangle** is a rectangle that cannot be made any bigger by adding another row or a column.

		a	b		С	d	е	f	g
		1	2		3	4	5	6	7
abc	1	1	1		1	-	-	-	-
abd	2	1	1] -	1	-	-	-
eg	3	-	-		-	-	1	-	1
abfg	4	1	1	Γ	-	-	-	1	1
bd	5	9	1	,	-	1	-	-	-
ef	6	-	-		-	-	1	1	-

Prime Rectangle Columns = Divisor!

- **Primes** are "biggest possible" common single-cube divisors.
 - <u>Makes sense</u>: columns of the prime rectangle tell you the literals in the single-cube divisor, while rows tell you which product terms you can divide!

Prime Rectangle Columns = Divisor!

$$P = abc + abd + eg$$
$$Q = abfg$$
$$R = bd + ef$$

P = Xc + Xd + egQ = XfgR = bd + efX = ab

59

Simple Bookkeeping to Track # Literals

- Recall: we factor & extract to **reduce literals** in logic network.
 - Would be nice if there was a simple formula to compute this.
- Indeed, there is:
 - Start with a prime rectangle.
 - Let C = # columns in rectangle.
 - For each row r in rectangle: let Weight(r) = # times this product appears in network.
 - Compute $L = (C 1) \times [\sum_{\text{rows } r} \text{Weight}(r)] C$.
- <u>Nice result</u>: for a prime rectangle, *L* = **# literals saved**
 - <u>To be precise</u>: if you count literals before extracting this single-cube divisor, and after, *L* is how many literals are saved.

Compute Saved Literals: Example

Compute Saved Literals: Example

Result by Counting: # saved: 1

- Now apply formula $L = (C 1) \times [\sum_{rows r} Weight(r)] C$
 - C = # columns in rectangle $\Rightarrow 2$
 - Weight(abw) \Rightarrow 2 (appear twice in the network)
 - Weight(aby) \Rightarrow 1 (appear once in the network)

•
$$L = (2 - 1) \times (2 + 1) - 2 = 1$$
 Correct!

How About Multiple-Cube Factors?

- Remarkably, a very similar matrix-rectangle-prime concept.
 - Make an appropriate matrix. Find prime rectangle. Do literal count bookkeeping with numbers associated with rows/columns.
- Given: A set of Boolean functions (nodes in a network)

$$P = af + bf + ag + cg + ade + bde + cde$$

$$Q = af + bf + ace + bce$$

$$R = ade + cde$$

- First: find **kernels** of each of these functions.
 - Why? Brayton-McMullen theorem: Multiple-cube factors are intersections of the product terms in the kernels for each of these functions.

Kernels / Co-Kernels of P,Q,R Example

- P = af + bf + ag + cg + ade + bde + cde
 - Co-kernel a, kernel de + f + g
 - Co-kernel b, kernel de + f
 - Co-kernel c, kernel de + g
 - Co-kernel de, kernel a + b + c
 - Co-kernel f, kernel a + b
 - Co-kernel g, kernel a + c
 - Co-kernel 1, kernel af + bf + ag + cg + ade + bde + cde (trivial, ignore)

Kernels / Co-Kernels of P,Q,R Example

- Q = af + bf + ace + bce
 - Co-kernel a, kernel ce + f
 - Co-kernel b, kernel ce + f
 - Co-kernel *ce*, kernel a + b
 - Co-kernel f, kernel a + b
 - Co-kernel 1, kernel af + bf + ace + bce (trivial, ignore)
- R = ade + cde
 - Co-kernel de, kernel a + c
 - Note: *R* is not its own kernel, why?

New Matrix: Co-Kernel-Cube Matrix

- One row for each **unique** (function, co-kernel) **pair** in problem.
- One column for each **unique cube** among all kernels in problem.

<i>P</i> : co-kernel a , kernel $de + f + g$				а	b	С	се	de	f	g
<i>P</i> : co-kernel <i>b</i> , kernel $de + f$				1	2	3	4	5	6	7
<i>P</i> : co-kernel <i>c</i> , kernel $de + a$	Ρ	а	1							
P: co-kernel de kernel a + b + c	Ρ	b	2							
P , as beyond f beyond $a \perp b$	Ρ	С	3							
F: co-kernel f , kernel $u + b$	Ρ	de	4				_			
<i>P</i> : co-kernel g , kernel $a + c$	Ρ	f	5			4	2			
Q: co-kernel a , kernel $ce + f$	Ρ	g	6							
Q: co-kernel b , kernel $ce + f$	Q	a	7							
Q: co-kernel <i>ce</i> , kernel $a + b$	Q	b	8							
Q: co-kernel f , kernel $a + b$	Q	се	9							
<i>R</i> : co-kernel de , kernel $a + c$	Q	f	10							
, , , , , , , , , , , , , , , , , , ,	R	de	11							

Entries in the Co-Kernel-Cube Matrix

- For each **row**, take the co-kernel, go look at the associated kernel.
- Look at cubes in this kernel: put "1" in columns that are cubes in this kernel; else put "-"

$P \cdot co \text{ kernel } a \text{ kernel } de + f + a$				а	b	С	се	de	f	g
P = 1 = 1 h = 1 h = 1 h				1	2	3	4	5	6	7
P: co-kernel D , kernel $ae + f$	Ρ	а	1	-	_	_	_	1	1	1
<i>P</i> : co-kernel <i>c</i> , kernel $de + g$	P	b	2	-	-	_	_	1	1	_
<i>P</i> : co-kernel de , kernel $a + b + c$	P	C	3	-	-	_	-	1	_	1
<i>P</i> : co-kernel f , kernel $a + b$	P	de	4	1	1	1	-	_	_	_
<i>P</i> : co-kernel g , kernel $a + c$	Ρ	f	5	1	1	-	-	-	-	-
Q: co-kernel a , kernel $ce + f$	Ρ	g	6	1	-	1	-	-	-	-
Q: co-kernel b , kernel $ce + f$	Q	а	7	-	-	-	1	-	1	-
Q: co-kernel <i>ce</i> , kernel $a + b$	Q	b	8	-	-	-	1	-	1	-
0 co-kernel f kernel $a + h$	Q	се	9	1	1	-	-	-	-	-
P as level do level q l q	Q	f	10	1	1	-	-	-	-	-
R: co-kernel ue, kernel u + c	R	de	11	1	-	1	-	-	-	-

Entries in the Co-Kernel-Cube Matrix

Prime Rectangles in Co-Kernel-Cube Matrix

- Prime rectangle is again a good divisor: now multiple cube
 - Create the multiple cube divisor as sum (OR) of cubes of prime rectangle columns.

69

Simple Formula to Get # Literals Saved

- For each column *c* in rectangle: let Weight(*c*) = # literals in column cube.
- For each row r in rectangle: let Weight(r) = 1 + # literals in co-kernel label.
- For each "1" covered at row *r* and column *c*: AND row cokernel and column cube; let Value(*r*, *c*) = # literals in this new ANDed product.
- # literals saved is

L
=
$$\sum_{\text{row } r} \sum_{\text{col } c} \text{Value}(r, c) - \sum_{\text{row } r} \text{Weight}(r)$$

- $\sum_{\text{col } c} \text{Weight}(c)$

Compute Saved Literals: Example

Compute Saved Literals: Example

Compute Saved Literals: Example

- Column weight
 - Weight(a) = 1; Weight(b) = 1
- Row weight
 - Weight((P, de)) = 3; Weight((P, f)) = 2
 - Weight((Q, ce)) = 3; Weight((Q, f)) = 2
- Value(r,c): # literals in the product of row co-kernel and column cube.
- Apply formula $L = \sum_{row r} \sum_{col c} Value(r, c) \sum_{row r} Weight(r) \sum_{col c} Weight(c) = 20 10 2 = 8$ Correct!

Details for Both Single/Multiple Cube Extraction

- You can extract a **second**, **third**, etc., divisor using same matrix.
 - Works for both single-cube and multiple-cube divisors.
- ...but must **update** matrix to reflect new Boolean logic network.
 - Because the node contents are different, and there is a new divisor node in network.
 - For multiple-cube case, must **kernel** new divisor nodes to update matrix.
 - All mechanical. A bit tedious. Just skip it...
 - For us: just know how to **extract first good divisor** is good enough.

How to Find Prime Rectangle in Matrix?

- **Greedy heuristics** work well for this rectangle covering problem.
 - Start with a single row rectangle with "good #literal savings".
 - Grow the rectangle alternatively by adding more rows, more columns.
- Example: Rudell's Ping Pong heuristic.
 - From his Berkeley PhD dissertation in 1989.
 - Very good heuristic:
 - < 1% of optimal result.
 - **10~100x faster** than brute force approach.

Rudell's Ping Pong Heuristic

- Pick the **best single row** (the 1-row rectangle with best #literals saved).
- Look at other rows with 1s in same places (may have more 1s). Add the one that maximizes #literals saved. Iterate until can't find any more.
- Look at other columns with 1s in same places (may have more 1s). Add the one that maximizes # literals saved.
 Iterate until can't find any more.
- **4**. Go to 2.
- 5. Quit when can't grow rectangle any more in any direction.

Extraction: Summary

• Single cube extraction

- Build the cube-literal matrix.
- Each prime rectangle is a good **single cube divisor**.
- Simple bookkeeping lets us obtain savings in #literals.
- Multiple cube extraction
 - Kernel all the expressions in network; build the co-kernel-cube matrix.
 - Each prime rectangle is a good **multiple cube divisor**.
 - Simple bookkeeping lets us obtain savings in #literals.
- Mechanically, both are rectangle covering problems (very like Karnaugh maps!)
 - Good heuristics to obtain a good prime rectangle, fast and effective.

Aside: How to We Really Do This?

- Do **not** use rectangle covering on **all** kernels/co-kernels
 - Too expensive to do rectangle problem on big circuits (>20K gates)
 - Too expensive to go compute **complete** set of kernels, co-kernels
- Often use heuristics to find a "quick" set of likely divisors.
 - Don't fully kernel each node of network: too many cubes to consider. Instead, can extract a subset of useful kernels quickly.
 - Then, can either do rectangle cover on these smaller problems (smaller since fewer things to consider in covering problem)...
 - ...or, try to do simpler overall network restructuring, e.g., try all pairwise substitutions of one node into another node: keep good ones, continue in a greedy way.

References

- R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, "MIS: A Multiple-Level Logic Optimization System," *IEEE Transactions on CAD of ICs*, vol. CAD-6, no. 6, November 1987, pp. 1062-1081.
- Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
- R.K. Brayton, R. Rudell, A.S. Vincentelli, and A. Wang, "Multi-Level Logic Optimization and the Rectangular Covering Problem," Proceedings of the International Conference on Computer Aided Design, pp. 66-69, 1987.
- Richard Rudell, *Logic Synthesis for VLSI Design*, PhD Thesis, Dept of EECS, University of California at Berkeley, 1989.
- Srinivas Devadas, Abhijit Gosh, Kurt Keutzer, *Logic Synthesis*, McGraw Hill Inc., 1994.

Don't Cares

- We made progress on multi-level logic by **simplifying** the model.
 - Algebraic model: we **get rid of** a lot of "difficult" Boolean behaviors.
 - But we lost some optimality in the process.
- How do we put it back? One surprising answer: **Don't cares**
 - To help this, extract don't cares from "surrounding logic," use them inside each node.
- The big difference in multi-level logic
 - Don't cares happen as a natural byproduct of Boolean network model: called Implicit Don't Cares.
 - They are all over the place, in fact. Very useful for simplification.
 - But they are **not explicit**. We have to **go hunt for them**...

Don't Cares Review: 2-Level

- In basic digital design...
 - Don't Care (DC) = an input pattern that can never happen or you don't care the output if it happens.
 - Example: use binary-coded decimals (BCD) to control seven-segment digital tube.

XYZW

How about input (x,y,z,w) =(1,0,1,0),(1,0,1,1) ...?

Don't care!

0000 0001 \mathbf{O} 2 0010 3 004 100 \mathbf{O} 5 0101 6 7 8 1000 1001 9

decimal value

segment a

Don't Cares Review: 2-Level

Since patterns (x,y,z,w)=(1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1) are don't cares, we are free to decide whether F=1 or 0, to better optimize F.

xyzw	decimal value	segment a
0000	0	1
0001	1	0
0010	2	1
0011	3	1
0100	4	0
0101	5	1
0110	6	1
0111	7	1
1000	8	1
1001	9	1

Don't Cares (DCs): Multi-level

- What's different in multi-level?
 - DCs arise implicitly, as a result of the Boolean logic network structure.
 - We must go find these implicit don't cares we must search for them explicitly.

• Suppose we have a Boolean network and a node *f* in the network.

- Can we say anything about **don't cares** for node *f*?
 - No. We don't know any "context" for surrounding parts of network.
 - As far as we can tell, all patterns of inputs (X,b,Y) are possible.
 - We **cannot further simplify** the expression for *f*.

- Now suppose we know something about input X to f:
 - Node X = ab.
 - Also assume a and b are primary inputs (PIs) and f is primary output (PO).

- Now can we say something about DCs for node $f \dots$?
 - **YES!**
 - Because there are some **impossible patterns** of (X, b, Y).

• Impossible patterns for (X, b, Y) are (1, 0, 0) and (1, 0, 1).

Can be simplified as

• With them, we can simplify *f*.

• Now further suppose Y = b + c. What will happen?

• Now suppose *f* is <u>not</u> a **primary output**, *Z* is.

- <u>Question</u>: when does the value of the output of node *f* actually affect the primary output *Z*?
 - Or, said <u>conversely</u>: When does it **not matter** what *f* is?
 - Let's go look at patterns of (f, X, d) at node $Z \dots$

When Is Z "Sensitive" to Value of f?

f	Х	d	Ζ	Does f affect Z?
0	0	0	0	No
1	0	0	0	
0	0	1	0	No
1	0	1	0	NO
0	1	0	0	No
1	1	0	0	INO
0	1	1	0	N/s s
1	1	1	1	Yes

Can we use this information to find new patterns of (X, b, Y) to help us simplify f further?

YES!

91

When Is Z "Sensitive" to Value of f?

f	X	d	Ζ	Dose f affect Z?
0	0	0	0	No
1	0	0	0	
0	0	1	0	No
1	0	1	0	NO
0	1	0	0	No
1	1	0	0	INO I
0	1	1	0	Maa
1	1	1	1	Yes

92

What patterns at **input to** fnode (i.e., (X, b, Y)) are DCs, because those patterns make Zoutput **insensitive** to changes in f?

(X, b, Y) = (0, -, -)

This means when X = 0, we can set f to any value – it **won't change** Z. So (X, b, Y) = (0, -, -) is DC of f!

So, we can use this **new** DC pattern (0, -, -) to simplify *f* further...
... with previous DC patterns (1,0,0), (1,0,1), (0,1,0), (1,1,0).

Final Result: Multi-level DC Tour

- What happened to f?
 - Due to network **context**, it **<u>disappeared</u>** (f = 1)!

Summary

- Don't Cares are **implicit** in the Boolean network model.
 - They arise from the graph structure of the multilevel Boolean network model itself.
- Implicit Don't Cares are **powerful**.
 - They can greatly help simplify the 2-level SOP structure of any node.
- Implicit Don't Cares require **computational work** to find.
 - For this example, we just "stared at the logic" to find the DC patterns.
 - We need some **algorithms** to do this automatically!
 - This is what we need to study next ...

Multi-Level Don't Cares

- Don't Cares are **implicit** in the Boolean network model.
 - They arise from the graph structure of the multilevel Boolean network model itself.
- Implicit Don't Cares are **powerful**.
 - They can greatly help simplify the 2-level SOP structure of any node.
- Implicit Don't Cares require **computational work** to find.
 - We need some **algorithms** to do this automatically!

3 Types of Implicit DCs

- Satisfiability don't cares: SDCs
 - Belong to the **wires** inside the Boolean logic network.
 - Used to compute **controllability** don't cares (below).
- **Controllability** don't cares: **CDCs**
 - Patterns that cannot happen at inputs to a network node.
- Observability don't cares: ODCs
 - Patterns that "mask" outputs.

Controllability don't cares: CDCs

- Patterns that **cannot happen at inputs** to a network node.
- Example
 - For node f, (X, b, Y) = (1,0,0), (1,0,1) are CDCs.

Observability don't cares: ODCs

- Input patterns to node that make primary outputs **insensitive** to output of the node.
 - Patterns that "mask" outputs.
- Example
 - For node f, (X, b, Y) = (0, -, -) is ODC.

Background: Representing DC Patterns

- How shall we **represent** DC patterns at a node?
 - <u>Answer</u>: As a Boolean function that makes a 1 when the inputs are these DCs.
 - This is often called a **Don't Care Cover**.

Background: Representing DC Patterns

- So, each SDC, CDC, ODC is really just another Boolean function, in this strategy.
- Why do it like this?
 - Because we can use all the other computational Boolean algebra techniques we know (e.g., BDDs), to solve for, and to manipulate the DC patterns.
 - This turns out to be hugely important to making the computation practical.

SDCs: They "Belong" to the Wires

- One SDC for every **internal wire** in Boolean logic network.
 - The SDC represents impossible patterns of inputs to, and output of, each node.
 - If the node function is F, with inputs a, b, c, write as: $S_F(F, a, b, c)$.

102

 $S_X(X, a, b)$ for impossible patterns of X, a, b.

SDCs: How to Compute

- Compute an SDC for each output wire from each internal Boolean node.
- You want an expression that is 1 when output *X* does not equal the Boolean expression for *X*.
 - This is just: $X \oplus$ (expression for X)
 - <u>Note #1</u>: expression for X doesn't have X in it!
 - <u>Note #2</u>: this is the **complement** of the gate consistency function from SAT.
- Example

 $SDC_X = X \oplus (ab + c)$

$$a \longrightarrow X = ab + c \longrightarrow$$

SDCs: Summary

- SDCs are associated with every **internal wire** in Boolean logic network.
 - SDCs explain impossible patterns of input to, and output of, each node.
 - SDCs are easy to compute.
- SDCs alone are <u>not</u> the Don't Cares used to simplify nodes.
 - We use SDCs to build CDCs, which give impossible patterns at input of nodes.

How to Compute CDCs?

- Computational recipe:
 - Get all the SDCs on the wires input to this node in Boolean logic network.
 - 2. **OR** together all these SDCs.
 - 3. **Universally Quantify** away all variables that are **NOT** used inside this node.

How to Compute CDCs?

 $CDC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left[\sum_{\text{input } X_i \text{ to } F} SDC_{X_i} \right]$

• <u>**Result</u>**: Inputs that let $CDC_F = 1$ are **impossible patterns** at input to node!</u>

CDCs: Why Does This Work?

 $CDC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left| \sum_{\text{input } X_i \text{ to } F} SDC_{X_i} \right|$

- Roughly speaking...
 - SDC_{X_i} 's explain all the impossible patterns involving X_i wire input to the F node.
 - **OR** operation is just the "**union**" of all these impossible patterns involving X_i 's.
 - Universal Quantify removes variables not used by *F*, and does so in the right way: we want patterns that are impossible FOR ALL values of these removed variables.
Compute CDCs: Example

Obtain CDCs for the node f

109

Compute CDCs: Example

- What about SDCs on **primary inputs**?
 - They are just 0.
 - Why? $SDC_a = a \oplus (\text{expression for } a) = a \oplus a = 0.$
- <u>Thus</u>: SDCs on primary inputs have no impact on OR. We can **ignore primary inputs**.

• Since we ignore primary inputs, we have ...

111

• Thus, we have:

 $CDC_f = (\forall b)[SDC_X + SDC_Y] = (\forall b)[[X \oplus (a+b)] + [Y \oplus ab]]$

- $= \left[\left[X \oplus (a+b) \right] + \left[Y \oplus ab \right] \right]_{b=1} \cdot \left[\left[X \oplus (a+b) \right] + \left[Y \oplus ab \right] \right]_{b=0}$
- $= [\overline{X} + (Y \oplus a)] \cdot [(X \oplus a) + Y] = \overline{X}a + Y\overline{a} + \overline{X}Y$

Compute CDCs: Example

•
$$CDC_f = \overline{X}a + Y\overline{a} + \overline{X}Y$$

- Does it **make sense**?
 - From *CDC_f*, **impossible patterns** are
 - (X, a) = (0, 1) $a = 1 \Rightarrow X = 1$
 - (Y, a) = (1, 0) $a = 0 \Rightarrow Y = 0$
 - (X,Y) = (0,1) $X = 0 \Rightarrow a = 0 \&\& b = 0 \Rightarrow Y = 0$

How to Handle External CDCs?

- What if there are external DCs for primary inputs *a*, *b*, *c*, *d* for which we just don't care what *f* does?
 - <u>Answer</u>: Just **OR** these DCs in $(\sum SDC_i)$ part of CDC expression.
 - Represent these DCs as a Boolean function that makes a 1 when the inputs are these DCs.

Handling External CDCs: Example

- Suppose (b, c, d) = (1, 1, 1) cannot happen.
 - How to compute *CDC_f* now?

$$CDC_f = (\forall b) \left[[X \oplus (a+b)] + [Y \oplus ab] + bcd \right]$$

External DCs as a **Boolean function** that makes a 1 when the pattern is **impossible**.

Handling External CDCs: Example

- $CDC_f = (\forall b) [[X \oplus (a+b)] + [Y \oplus ab] + bcd]$ $= \overline{X}a + Y\overline{a} + \overline{X}Y + \overline{a}cdX + cdY$
- New impossible patterns are

•
$$(a, c, d, X) = (0, 1, 1, 1)$$

 $a = 0 \&\&X = 1 \Rightarrow b = 1$ Thus, b = c = d = 1

• (c, d, Y) = (1, 1, 1) $Y = 1 \Rightarrow b = 1$

Thus, b = c = d = 1

CDCs: Summary

- CDCs give impossible patterns at input to node *F* use as DCs.
 - Impossible because of the network structure of the nodes feeding node *F*.
 - CDCs can be computed mechanically from SDCs on wires input to *F*.
 - Internal local CDCs: computed just from SDCs on wires into *F*.
 - **External global CDCs**: include DC patterns at primary inputs.

CDCs: Summary (cont.)

- But CDCs still **not all** the Don't Cares available to simplify nodes.
 - CDC_F derived from the structure of nodes "**before**" node F.
 - We need to look at DCs that derive form nodes "after" node F.
 - These are nodes between the **output** of *F* and **primary outputs** of overall network.
 - These are ODCs.

Observability Don't Cares (ODCs)

- **ODCs**: patterns that **mask** a node's output at primary output (PO) of the network.
 - So, these are **not** impossible patterns these patterns **can occur** at node input.
 - These patterns make this node's output not observable at primary output.
 - "Not observable" for an input pattern means: Boolean value of node output does not affect <u>ANY</u> primary output.

Primary Output Insensitive to F

- When is primary output Z insensitive to internal variable F?
 - Means Z independent of value of F, given other inputs to Z.

How about the general case?

Recall: Boolean Difference

- What does **Boolean difference** $\partial F(a, b, ..., w, x) / \partial x = F_x \bigoplus F_{\overline{x}} = 1$ mean?
 - If you apply an input pattern (a, b, ..., w) that makes $\partial F / \partial x = 1$, then **any change** in x will **force a change** in output F.
- What makes output *F* sensitive to input *X*?
 - <u>Answer</u>: Any pattern that makes $\frac{\partial F}{\partial x} = F_x \bigoplus F_{\overline{x}} = 1$.

Z Insensitive to F

- When is primary output Z insensitive to internal variable
 F?
 - <u>Answer</u>: when inputs (other than F) to Z make cofactors $Z_F = Z_{\overline{F}}$.
 - Make sense: if cofactors with respect to F are same, Z does not depend on F!
- How to find when cofactors are the same?
 - <u>Answer</u>: Solve for $Z_F \bigoplus Z_{\overline{F}} = 1$

• Note:
$$Z_F \bigoplus Z_{\overline{F}} = 1 \implies \overline{Z_F \bigoplus Z_{\overline{F}}} = 1 \implies \frac{\partial Z}{\partial F} = 1$$

How to Compute ODCs?

- A nice computational recipe:
 - 1. Compute $\partial Z/\partial F$. Any patterns that make $\partial Z/\partial F = 1$ mask output F for Z.
 - 2. **Universally Quantify** away all variables that are **NOT** inputs to the F node.

 $ODC_F(X_1, \dots, X_n) = (\forall \text{ vars not used in } F) \left| \overline{\partial Z / \partial F} \right|$

How to Compute ODCs?

 $ODC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left[\frac{\partial Z}{\partial F} \right]$

<u>Result</u>: Inputs that let ODC_F = 1 mask output F for Z,
 i.e., make Z insensitive to F.

Compute ODCs: Example

• Obtain the ODCs for node F.

125

Check: Does this ODC Make Sense?

• $ODC_F = ab$

ODC pattern is (a, b) = (1,1)

Make sense! Because when (a, b) = (1,1), Z = 1 independent of F.

ODCs: More General Case

- <u>Question</u>: what if F feeds to many primary outputs?
 - <u>Answer</u>: Only patterns that are <u>unobservable</u> at <u>ALL</u> outputs can be ODCs.

• Computational recipe: $ODC_F = (\forall \text{ vars not used in } F) \left[\prod_{\text{Output } Z_i} \overline{\partial Z_i / \partial F} \right]$

AND all n differences for each output Z_i .

ODCs: Summary

- ODCs give input patterns of node *F* that **mask** *F* at **primary outputs**.
 - Not impossible patterns they can occur.
 - Don't cares because primary output "doesn't care" what F is, for these patterns.
 - ODCs are can be computed mechanically from $\overline{\partial Z_i/\partial F}$ on all outputs connected to F.
- CDCs + ODCs give the "full" don't care set used to simplify *F*.
 - With these patterns, you can call something like ESPRESSO to simplify F.

Multi-Level Don't Cares: Are We Done?

- Yes, if your networks look just like above.
 - More precisely, if you only want to get CDCs from nodes immediately "before" you.
 - And if you only want to get ODCs for one layer of nodes between you and output.

Don't Cares, In General

- But, this is what **real** multi-level logic can look like!
 - CDCs are function of **all nodes** "before" *X*.
 - ODCs are function of **all nodes** between X and any output.
 - In general, we can never get all the DCs for node X in a big network.
 - Representing all this stuff can be explosively large, even with BDDs

Summary: Getting Network DCs

- How we really do it? generally **do not get all** the DCs.
 - Lots of tricks that trade off effort (time, memory) with quality (how many DCs).
 - Example: Can just extract "local CDCs", which requires looking at outputs of immediate precedent vertices and computing from the SDC patterns, which is easy.
 - There are also incremental, node-by-node algorithms that walk the network to compute more of the CDC and ODC set for X, but these are more complex.
- For us, knowing these "limited" DC recipes is **sufficient**.