
Reading/Hand-on Assignment 1
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 Survey of 3 SAT solvers

 MiniSAT, Sweden.

 CHAFF, Princeton University.

 GRASP, University of Michigan.

 3 groups, 1 group per solver.

 Oral presentation (April 14th, in class)

 Technical details.

 Your test run of the solvers + results.

 Written report (due April 19th)

 One copy per group.



Pingqiang Zhou

ShanghaiTech University

Multi-Level Logic Synthesis



Why Multi-level Logic?
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 Two-level forms are too restrictive.

 It has small delay but large area.

 Area = gates + literals (wires), i.e., things that take space on a 

chip.

 Delay = maximum levels of logic gates required to compute 

function.

 Two-level is minimum gate delay possible, but usually worst

on area.



Area versus Delay Tradeoff
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Area

Delay
Multi-level designs = 

fewer gates, but > 2 levels

Two-level design = many 

gates, but only 2 levels of 

logic, so fastest possible

small,

few gates + wires

large,

many gates + wires

fast,

few levels

slower,

many levels



Why Multi-level Logic?
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 Rarely see 2-level designs for really big things…

 We use 2-level logic mostly for pieces of bigger things.

 Even small things routinely done as multi-level.

 What does a 2-level design with 1000 gates look like?

1 2 3 4 999

1000

This is just NOT going to be the 

preferred logic network structure...



Real Multilevel Example
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 A small design, done by commercial synthesis tool.

Levels1 2 3 4 5 6 7 8 9 10 11



Boolean Logic Network Model
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 Need more sophisticated model: Boolean Logic Network

 Idea: it’s a graph of connected blocks, like any logic diagram, 

but now individual component blocks can be 2-level Boolean 

functions in SOP form.

AND

OR

a

b

c

x

y

Ordinary Gate Logic

𝑦 = 𝑥 + 𝑐

𝑥 = 𝑎𝑏
𝑎

𝑏

𝑐
𝑦

𝑥

Primary

Inputs

Primary

Outputs

Internal

Nodes

Boolean Logic Network

𝑥 and 𝑦 are now Boolean function.



Multilevel Logic: What to Optimize?
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 A simplistic but surprisingly useful metric: 

Total literal count

 Count every appearance of every variable on right hand 

side of “=” in every internal node.

 Delays also matter, but for this class, only focus on logic 

complexity.

𝑋 = 𝑑𝑌 + 𝑍

𝑌 = 𝑏 + 𝑐

𝑎

𝑏

𝑐

𝑄

𝑑

𝑍 = 𝑏𝑐

𝑄 = 𝑎𝑋

#Literals = 9



Optimizing Multilevel Logic: Big Ideas
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 Again: Boolean logic network is a data structure. What 
operators do we need?

 3 basic kinds of operators:

 Simplify network nodes: no change in # of nodes, just simplify 
insides, which are SOP form.

 Remove network nodes: take “too small” nodes, substitute 
them back into fanouts.

 This is not too hard. This is mostly manipulating the graph, 
simple SOP edits.

 Add new network nodes: this is factoring. Take big nodes, split 
into smaller nodes.

 This is a big deal. This is new. This is what we need to teach 
you…



Simplifying a Node
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 You already know this! This is 2-level synthesis.

 Just run ESPRESSO on 2-level form inside the node, to 

reduce # literals.

 As structural changes happen across network, “insides” of 

nodes may present opportunity to simplify.

𝑋 = 𝑎 + 𝑎𝑏 + 𝑏𝑐 𝑋 = 𝑎 + 𝑏𝑐



Removing a Node
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 Typical case is you have a “small” factor which doesn’t seem 

to be worth making it a separate node.

 “Push” it back into its fanouts, make those nodes bigger, and 

hope you can use 2-level simplification on them.

𝑍 = 𝑎𝑏

𝑋 = 𝑐𝑍 + 𝑑

𝑌 = 𝑒𝑓𝑍

𝑋 = 𝑐𝑎𝑏 + 𝑑

𝑌 = 𝑒𝑓𝑎𝑏



Adding new Nodes
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 This is Factoring, this is new, and hard.

 Look at existing nodes, identify common divisors, extract 

them, connect as fan-ins.

 Tradeoff: more delay (another level of logic), but 

fewer literals (less gate area).

𝑋 = 𝑎𝑏 + 𝑐 + 𝑟

𝑌 = 𝑎𝑏𝑑 + 𝑐𝑑

𝑍 = 𝑎𝑏𝑟𝑠 + 𝑐𝑟𝑠

𝑄 = 𝑎𝑏 + 𝑐

𝑋 = 𝑄 + 𝑟

𝑌 = 𝑄𝑑

𝑍 = 𝑄𝑟𝑠
Divisor

16 Literals 10 Literals



Multi-Level Logic Synthesis
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 A more common design style.

 Small area, but may have large delay.

 More sophisticated model: Boolean logic network

 3 kinds of optimizing step:

 Simplify a node by 2-level minimization.

 Remove a node by substituting.

 Add a node by factoring.



Multilevel Synthesis Scripts
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 Multilevel synthesis like 2-level synthesis is heuristic.

 …but it’s also more complex. Write scripts of basic 
operators.
 Do several passes of different optimizations over the Boolean logic 

network.
 Do some “cleanup” steps to get rid of “too small” nodes (remove 

nodes).
 Look for “easy” factors: just look at existing nodes, and try to use 

them.
 Look for “hard” factors: do some work to extract them, try them, 

and keep the good ones.
 Do 2-level optimization of insides of each logic node in network 

(simplify nodes by ESPRESSO).
 Lots of “art” in the engineering of these scripts.

 For us, the one big thing you don’t know: How to factor…



Multi-Level Logic Synthesis
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 We need a new operator: factoring

 Problem #1: how to do division?

 Solution: Algebraic model and algebraic division

 Algebraic model: Pretending that Boolean expressions 

behave like polynomials of real numbers, not like Boolean 

algebra.

 Algebraic division: Given a Boolean expression 𝐹 and a 

divisor 𝐷, obtain quotient 𝑄 and remainder 𝑅, such that

𝐹 = 𝐷 ⋅ 𝑄 + 𝑅

 Problem #2: how to find good divisors?

 Solution: Kernels.



Another New Model: Algebraic Model
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 Factoring: How do we really do it?

 Develop another model for Boolean functions, cleverly designed 
to let us do this

 Tradeoff: lose some “expressivity” – some aspects of Boolean 
behavior and some Boolean optimizations we just cannot do, 
but we gain practical factoring.

 New model: Algebraic model

 Term “algebraic” comes from pretending that Boolean 
expressions behave like polynomials of real numbers, not 
like Boolean algebra.

 Big new Boolean operator: Algebraic Division (or, also 
“Weak” Division).



Algebraic Model
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 Idea: keep just those rules that work for BOTH polynomials 

of reals AND Boolean algebra, but get rid of the rest.

Real numbers Boolean algebra

𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 𝑎 + 𝑏 = 𝑏 + 𝑎
𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐
𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐
𝑎 ⋅ 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐
𝑎 ⋅ 1 = 𝑎 𝑎 ⋅ 0 = 0
𝑎 + 0 = 𝑎

Same

𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 𝑎 + 𝑏 = 𝑏 + 𝑎
𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐
𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐
𝑎 ⋅ 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐
𝑎 ⋅ 1 = 𝑎 𝑎 ⋅ 0 = 0
𝑎 + 0 = 𝑎

𝑎 ⋅  𝑎 = 0 𝑎 +  𝑎 = 1
𝑎 ⋅ 𝑎 = 𝑎 𝑎 + 𝑎 = 𝑎
𝑎 + 1 = 1

𝑎 + 𝑏 𝑎 + 𝑐 = 𝑎 + 𝑏 ⋅ 𝑐

Not 

Allowed



Algebraic Model
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 If we only get to use algebra rules from real numbers…

 Consequence: A variable and its complement must be treated 

as totally unrelated.

 Since no expression like 𝑎 +  𝑎 = 1 allowed.

 Aside: this is one of the losses of “expressive power” of Boolean 

algebra.

𝐹 = 𝑎𝑏 +  𝑎𝑥 +  𝑏𝑦

𝐹 = 𝑎𝑏 + 𝑅𝑥 + 𝑆𝑦

Let 𝑅 =  𝑎, 𝑆 =  𝑏



Algebraic Model
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 Idea

 Boolean functions manipulated in SOP form like 

polynomials.

 Each product term in such an expression is just a set of 

variables, e.g., 𝑎𝑏𝑅𝑦 is the set (𝑎, 𝑏, 𝑅, 𝑦). 

 SOP expression itself is just a list of these products 

(cubes), e.g., 𝑎𝑏 + 𝑅𝑥 is the list (𝑎𝑏, 𝑅𝑥).



Algebraic Division: Our Model for Factoring
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 Given function 𝐹 we want to factor as:

𝐹 = 𝐷 ⋅ 𝑄 + 𝑅

 If remainder 𝑅 = 0, we call the divisor as a “factor”.

divisor
quotient remainder

Example: 𝐹 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑒

= (𝑎 + 𝑏)(𝑐 + 𝑑) + 𝑒

divisor quotient remainder



Algebraic Division
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 Example: 𝐹 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑒

 Want: 𝐹 = 𝐷 ⋅ 𝑄 + 𝑅.

Divisor (𝐷) Quotient (𝑄) Remainder (𝑅) Is 𝐷 Factor?

𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐
+𝑏𝑑 + 𝑒

𝑎 + 𝑏

𝑐 + 𝑑

𝑎

𝑏

𝑐

𝑑

𝑒

Divisor is a factor

if 𝑅 = 0.

1 0 Yes

𝑐 + 𝑑 𝑒 No

No

No

No

No

No

No

𝑒

𝑐 + 𝑑

𝑐 + 𝑑

1

𝑎 + 𝑏

𝑎 + 𝑏

𝑎 + 𝑏

𝑏𝑐 + 𝑏𝑑 + 𝑒

𝑎𝑐 + 𝑎𝑑 + 𝑒

𝑎𝑑 + 𝑏𝑑 + 𝑒

𝑎𝑐 + 𝑏𝑐 + 𝑒

𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑



Algebraic Division: Very Nice Algorithm
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 Inputs: A Boolean expression 𝐹 and a divisor 𝐷, represented 

as lists of cubes (and each cube as a set of literals).

 Output

 Quotient 𝑄 = 𝐹/𝐷 as a cube list, or empty if 𝑄 = 0.

 Remainder 𝑅 as a cube list, or empty if D was a factor.

 Strategy

 Cube-wise walk through cubes in divisor 𝐷, trying to divide each 

of them into 𝐹.

 ... intersect all the division results.



Algebraic Division Algorithm
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AlgebraicDivision( F, D ) {  // divide D into F

for ( each cube d in divisor D ) {

let C = { cubes in F that contain this product term d };

if ( C is empty )  return ( quotient = 0,  remainder = F );

let C = cross out literals of cube d in each cube of C;

if ( d is the first cube we have looked at in divisor D )  

let Q = C;

else  Q = Q ∩ C;

}

R = F − ( Q • D );
return (quotient = Q,  remainder = R);

}

Example:
Cube xyzw contains
product term yz

Example:

Suppose C = xyz + yzw +pqyz

and d = yz. Then crossing

out all the yz parts yields

x + w + pq



Algebraic Division: Example
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𝐹 = 𝑎𝑥𝑐 + 𝑎𝑥𝑑 + 𝑎𝑥𝑒 + 𝑏𝑐 + 𝑏𝑑 + 𝑑𝑒, 𝐷 = 𝑎𝑥 + 𝑏

𝐹 cube 𝐷 cube: 𝑎𝑥 𝐷 cube: 𝑏

𝑎𝑥𝑐

𝑎𝑥𝑑

𝑎𝑥𝑒

𝑏𝑐

𝑏𝑑

𝑑𝑒

𝑎𝑥𝑐 → 𝑐

𝑎𝑥𝑑 → 𝑑

𝑎𝑥𝑒 → 𝑒

𝐶 = 𝑐 + 𝑑 + 𝑒

−

−

−

−

−

−

𝑏𝑐 → 𝑐

𝑏𝑑 → 𝑑

−

𝐶 = 𝑐 + 𝑑

𝑄 = 𝑐 + 𝑑 + 𝑒 ∩ 𝑐 + 𝑑 = 𝑐 + 𝑑

𝑅 = 𝐹 − 𝑄𝐷 = 𝑎𝑥𝑒 + 𝑑𝑒



Algebraic Division: Warning
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 Remember: No “Boolean” simplification, only “algebraic”.

 So what? Well, suppose you have this

𝐹 = 𝑎 𝑏  𝑐 + 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐, 𝐷 = 𝑎𝑏 +  𝑐

and you want 𝐹/𝐷.

 You must let 𝑋 =  𝑏 and 𝑌 =  𝑐 and transform 𝐹 and 𝐷 to 

something like

𝐹 = 𝑎𝑋𝑌 + 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐, 𝐷 = 𝑎𝑏 + 𝑌

 Because we must treat the true and complement forms of 

variables as totally unrelated.



One More Constraint: Redundant Cubes
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 To do 𝐹/𝐷, function 𝐹 must have no redundant cubes
 Technical definition is: minimal with respect to single-cube 

containment.

 Means: no one cube is completely covered by one of the 
other cubes in SOP cover.

 E.g., 𝑎𝑏𝑐𝑑 is completely covered by 𝑎𝑏.

 Why no redundant cubes?

 Consider: 𝐹 = 𝑎 + 𝑎𝑏 + 𝑏𝑐 and 𝐷 = 𝑎.
 Note: F has redundant cube 𝑎𝑏.

 What is 𝐹/𝐷 by our algebraic division algorithm?

𝑄 = 𝐹/𝐷 = 1 + 𝑏 However, we don’t have 1+stuff 

operation in algebraic model!



One More Constraint: Redundant Cubes
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 … So, we should remove redundant cubes to make the SOP 

minimal with respect to single-cube containment.

 Not hard.



Multilevel Logic Synthesis: Where are We?
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 For Boolean function 𝐹 and 𝐷, can compute 

𝐹 = 𝑄 ∙ 𝐷 + 𝑅 via algebraic model.

 It is great, but still not enough: don’t know how to find a 

good divisor 𝐷.

 Another problem: given 𝑛 functions 𝐹1, 𝐹2, … , 𝐹𝑛, find a 

set of good common divisors.

𝐹1 = 𝑎𝑏 + 𝑐 + 𝑥

𝐹2 = 𝑎𝑏𝑥 + 𝑐𝑥 + 𝑞

𝐹3 = 𝑎𝑏 + 𝑞

factor 𝑑𝑖 = 𝑎𝑏 + 𝑐

𝐹1 = 𝑑𝑖 + 𝑟

𝐹2 = 𝑑𝑖𝑥 + 𝑞

Divisor
𝐹3 = 𝑎𝑏 + 𝑞



Where to Look for Good Divisors?
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 Surprisingly, the algebraic model has a beautiful answer.

 One more reason we like it: Has some surprising and elegant 
“deep structure”.

 Where to look for divisors of function 𝐹? 
 In the set of kernels of 𝐹, denoted 𝐾(𝐹).
 𝐾(𝐹) is another set of 2-level SOP forms which are the special, 

foundational structure of any function 𝐹, being interpreted in 
our algebraic model.

 How to find a kernel 𝑘 ∈ 𝐾(𝐹)?
 Algebraically divide 𝐹 by one of its co-kernels, 𝑐.



Kernels and Co-Kernels of Function F
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 Kernel of a Boolean expression 𝐹 is:

 A cube-free quotient 𝑘 obtained by algebraically dividing

𝐹 by a single cube 𝑐.

 This single cube 𝑐 also has a name: it is a co-kernel of function 

𝐹.

expression 𝐹divisor 𝐷

quotient 𝑄

…

remainder 𝑅

𝐹 = 𝐷 ⋅ 𝑄 + 𝑅

expression 𝐹𝑐 = 1 cube

kernel 𝑘 (cube-free)

…

remainder 𝑅

𝐹 = 𝑐 ⋅ 𝑘 + 𝑅



Kernels Are Cube-Free…
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 Cube-free means...?

 You cannot factor out a single cube divisor that leaves no 

remainder.

 Technically: has no one cube that is a factor of expression.

 Pick a cube 𝑐. If you can “cross out” 𝑐 in each product term of 𝐹, then 

𝐹 is not a kernel.

Expression 𝐹 𝐹 = 𝐷 ⋅ 𝑄 + 𝑅 𝐹 Cube-free?

𝑎

𝑎 + 𝑏

𝑎𝑏 + 𝑎𝑐

𝑎𝑏𝑐 + 𝑎𝑏𝑑

𝑎𝑏 + 𝑎𝑐𝑑 + 𝑏𝑑

𝑎 ⋅ 1 + 0

𝑎 ⋅ (𝑏 + 𝑐) + 0

𝑎𝑏 ⋅ (𝑐 + 𝑑) + 0

--

--

No

No

No

Yes

Yes



Some Kernel Examples

32

 Suppose 𝐹 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑

 Any Boolean function 𝐹 can have many different kernels.

 The set of kernels of 𝐹 is denoted as 𝐾(𝐹).

Divisor cube 𝑑 𝑄 = 𝐹/𝑑 Is 𝑄 a kernel of 𝐹?

1

𝑎

𝑏

𝑎𝑏

𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑

𝑏𝑐 + 𝑏𝑑

𝑎𝑐 + 𝑎𝑑 + 𝑐𝑑

𝑐 + 𝑑

No, has cube = 𝑏 as factor

No, has cube = 𝑏 as factor

Yes! co-kernel = 𝑏

Yes! co-kernel = 𝑎𝑏



Kernels: Why Are They Important?
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 Big result: Brayton & McMullen Theorem

 From: R. Brayton and C. McMullen, “The decomposition and 

factorization of Boolean expressions.” In IEEE International 

Symposium on Circuits and Systems, pages 49–54, 1982.

Expressions 𝐹 and 𝐺 have a common multiple-cube divisor 𝑑
if and only if:

there are kernels 𝑘1 ∈ 𝐾(𝐹) and 𝑘2 ∈ 𝐾(𝐺) such that 𝑑 = 𝑘1 ∩ 𝑘2
and 𝑑 is an expression with at least 2 cubes in it (i.e., 𝑘1 and 𝑘2 have 

common cubes).



Multiple-Cube Divisors and Kernels
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 Brayton & McMullen Theorem in words:

 The only place to look for multiple-cube divisors is in the 

intersection of kernels!

 Indeed, this intersection of kernels contains all divisors.

𝐹 = stuff

𝐺 = stuff

k1 k2

k3

Kernels of 𝐹

k4 k5

Kernels of 𝐺

Intersect

≥ 2 cubes?

k3
k5

Yes! d=…
Multi-cube

divisor

extracted!

𝑑 = 𝑎𝑏 + 𝑐

𝐹 = new

𝐺 = new



Brayton-McMullen: Informal Illustration
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F = cube1 • kernel1 + remainder1

G = cube2 • kernel2 + remainder2

F = cube1 • [X + Y + stuff1] + remainder1

G = cube2 • [X + Y + stuff2] + remainder2

F = cube1 • [X + Y] + [cube1•stuff1 + remainder1]

G = cube2 • [X + Y] + [cube2•stuff2 + remainder2]

Assume: 

kernel1 ∩ kernel2 = X + Y

d=X+Y
F = cube1•d +…

G = cube2•d +…



Kernels: Real Example
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𝐹 = 𝑎𝑒 + 𝑏𝑒 + 𝑐𝑑𝑒 + 𝑎𝑏 𝐺 = 𝑎𝑑 + 𝑎𝑒 + 𝑏𝑑 + 𝑏𝑒 + 𝑏𝑐

Kernels Co-kernel

𝑎 + 𝑏 + 𝑐𝑑 𝑒

𝑏 + 𝑒 𝑎

𝑎 + 𝑒 𝑏

𝑎𝑒 + 𝑏𝑒 + 𝑐𝑑𝑒 + 𝑎𝑏 1

Kernels Co-kernel

𝑎 + 𝑏 𝑑 or 𝑒

𝑑 + 𝑒 𝑎

𝑐 + 𝑑 + 𝑒 𝑏

𝑎𝑏 + 𝑎𝑒 + 𝑏𝑑 + 𝑏𝑒
+ 𝑏𝑐

1

Intersecting these 2 kernels: 𝑎 + 𝑏 + 𝑐𝑑 ∩ 𝑎 + 𝑏 = 𝑎 + 𝑏



Kernels: Very Useful, But How To Find?
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 Another recursive algorithm (“recursive” again!)

 There are 2 more useful properties of kernels we need to see 
first…

 Start with a function 𝐹 and a kernel 𝑘1 in 𝐾(𝐹)

F = cube1 • k1 + remainder1

 Then: a new, interesting question: what about 𝐾(𝑘1)?
 𝑘1 is a perfectly nice Boolean expression, so it has got its own

kernels.

 Do these 𝑘1’s kernels have anything interesting to say about 
𝐾(𝐹)?



How 𝐾(𝑘1) Relates to 𝐾(𝐹)…
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 We know this: F = cube1•k1 + remainder1

 Suppose k2 is a kernel in K(k1), then we know

k1 = cube2•k2 + remainder2

 Substitute this expression for k1 in original expression for F

F = cube1•[cube2•k2 + remainder2] + remainder1

 Since cube1•cube2 is itself just another single cube, we have:

F = (cube1•cube2)•[k2] + [ cube1•remainder2 + remainder1]

 Conclusion: k2 also a kernel of original F (with

co-kernel cube1•cube2)



There is a Hierarchy of Kernels Inside F
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 Definition: 𝑘 ∈ 𝐾(𝐹) is

 A level-0 kernel if it contains no kernels inside it except itself.

 In words: Only cube you can pull out, get a cube-free quotient is “1”.

 A level-n kernel if it contains at least one level-(n-1) kernel, and no 

other level-n kernels except itself.

 In words: a level-1 kernel only has level-0 kernels inside it. A level-2 

kernel only has level-1 and level-0 kernels in it, etc…

𝐹 = stuff

Level-2 kernel

Level-1 kernel

Level-0 kernel

Level-1 kernel

Level-0 kernel Level-0 kernel



Kernel Hierarchy: Example
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 𝐹 = 𝑎𝑏𝑒 + 𝑎𝑐𝑒 + 𝑑𝑒 + 𝑔ℎ has three kernels:

 𝑘1 = 𝑏 + 𝑐, with co-kernel 𝑎𝑒.

 𝑘2 = 𝑎𝑏 + 𝑎𝑐 + 𝑑, with co-kernel 𝑒.

 𝑘3 = 𝐹 with co-kernel 1.

 Note: 𝑘1 is level 0, 𝑘2 is level 1, and 𝑘3 is level 2.

𝑘1: level 0

𝑘2: level 1

𝑘3 = 𝐹: level 2



Kernels
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 Second useful result [by Brayton et al.]:

 Co-kernels of a Boolean expression in SOP form correspond 

to intersections of 2 or more cubes in this SOP form.

 Note: Intersections here means that we regard a cube as a 

set of literals, and look at common subsets of literals.

 This is not like “AND” for products. This just extracts common 

literals.

 Example: ace + bce + de + g

ace ∩ bce = ce

ace ∩ bce∩ de = e

 ce is a potential co-kernel

 e is a potential co-kernel



How to Find Kernels Using These 2 

Results?
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 Find the kernels recursively. 

 Whenever find one kernel, call FindKernels() on it, to find (if any) 

lower level kernels inside.

 Use algebraic division to divide function by potential 

co-kernels, to drive recursion.

 Use 2nd result – co-kernels are intersections of the cubes: If there’re 

at least 2 cubes, then look at the intersection of those cubes, and use 

that intersected result as our potential co-kernel cube.

 One technical point: need to start with a cube-free function F 

to make things work right.

 If not cube-free, just divide by biggest common cube to simplify F.



Kernel Algorithm
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FindKernels( cube-free SOP expression F ) {

K = empty;

for ( each variable x in F ) {

if ( there are at least 2 cubes in F that have variable x ) {

let S = { cubes in F that have variable x in them };

let co = cube that results from intersection of all cubes in S,

this will be the product of just those literals

that appear in each of these cubes in S;

K = K∪ FindKernels( F / co) ;

}

}

K = K∪ F ;

return( K );
}

Cube-free F is always its own

kernel, with trivial co-kernel = 1



Kernelling Example
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 𝑎: only 1 cube with 𝑎, no work.

 𝑏: only 1 cube with 𝑏, no work.

 𝑐: two cubes 𝑎𝑐𝑒 and 𝑏𝑐𝑒 with 𝑐.

 𝑐𝑜 = 𝑎𝑐𝑒 ∩ 𝑏𝑐𝑒 = 𝑐𝑒
  𝐹 𝑐𝑜 = 𝑎 + 𝑏
 Recurse on 𝑎 + 𝑏

 𝑑: only 1 cube with 𝑑, no work.

 𝑒: three cubes 𝑎𝑐𝑒, 𝑏𝑐𝑒, and 𝑑𝑒 with 𝑒.

 𝑐𝑜 = 𝑎𝑐𝑒 ∩ 𝑏𝑐𝑒 ∩ 𝑑𝑒 = 𝑒
  𝐹 𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑
 Recurse on 𝑎𝑐 + 𝑏𝑐 + 𝑑

 𝑔: only 1 cube with 𝑔, no work.

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔

FindKernels( F ):

for (each var x in F ) {

if (x in ≥ 2 cubes in F) {

co = intersection of cubes;

K=K∪FindKernels(F/co) ;

}

}

K = K∪ F ;

return( K );



Kernelling Example (cont.)

45

 Recurse on 𝑎 + 𝑏

 No work for variables 𝑎 and 𝑏, since one cube with 𝑎/𝑏.

 Recurse on 𝑎𝑐 + 𝑏𝑐 + 𝑑

 No work for variables 𝑎, 𝑏, 𝑑, since one cube with 𝑎/𝑏/𝑑.
 𝑐: two cubes 𝑎𝑐 and 𝑏𝑐 with 𝑐.

 𝑐𝑜 = 𝑎𝑐 ∩ 𝑏𝑐 = 𝑐
  𝐹 𝑐𝑜 = 𝑎 + 𝑏
 Recurse on 𝑎 + 𝑏 (the same as above)



Kernelling Example (cont.)
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𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔

𝑎

no work

𝑏 𝑐
𝑑

𝑒

𝑔

𝑐𝑜 = 𝑐𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏
𝑐𝑜 = 𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

no work no work no work

𝑎 𝑏

no work no work

𝑎

no work no work

𝑏

𝑐𝑜 = 𝑐; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

no work𝑐

𝑑

𝑎 𝑏
no work no work



Kernelling Example (cont.)
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FindKernels( F ):

for (each var x in  F ) {

…

}

K = K∪ F ;

return( K );

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔

𝑐

𝑐𝑜 = 𝑐𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑒

𝑐𝑜 = 𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

𝑐𝑜 = 𝑐; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑐return 𝐾 = {𝑎 + 𝑏}

return 𝐾 = {𝑎 + 𝑏}

return 𝐾 = {𝑎 + 𝑏,
𝑎𝑐 + 𝑏𝑐 + 𝑑}

Kernels 𝐾 = {𝑎 + 𝑏,

𝑎𝑐 + 𝑏𝑐 + 𝑑,
𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔}



Get Co-Kernels
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 With this algorithm …

 Can find all the kernels and co-kernels too.

 Get co-kernels by ANDing the divisor 𝑐𝑜 cubes up 

recursion tree.

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔
𝑐

𝑐𝑜 = 𝑐𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑒

𝑐𝑜 = 𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

𝑐𝑜 = 𝑐; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑐
co-kernel:

𝑐𝑒



One Tiny Problem
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 The algorithm will revisit same kernel multiple times.

 Why? Kernel you get for co-kernel 𝑎𝑏𝑐 is same as for 𝑐𝑏𝑎, but 

current algorithm doesn’t know this and will find same 

kernel for both co-kernels.

 Solution: remember which variables already tried in co-

kernels. A little extrabook keeping solves this.

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔
𝑐

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑒

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑐



Multilevel Synthesis Models: Summary
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 Boolean network model

 Like a gate network, but each node in network is an SOP form.

 Supports many operations to add, reduce, simplify nodes in 
network.

 Algebraic model & algebraic division

 Simplifies Boolean functions to behave like polynomials of reals.

 Divides one Boolean function by another: 

F = (divisor D )•(quotient Q) + remainder R

 Kernels / Co-kernels of a function F

 Kernel = cube-free quotient obtained by dividing by a single 
cube (co-kernel)

 Intersections of kernels of two functions give all multiple-
cube common divisors (Brayton & McMullen theorem).



Notes
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 The algebraic model (and division) are not the only 

options.

 There are also “Boolean division” models and algorithms that 

don’t lose expressivity.

 ..but they are more complex.

 Rich universe of models & methods here.



Good References
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 R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R. 

Wang, “MIS: A Multiple-Level Logic Optimization System,” 

IEEE Transactions on CAD of ICs, vol. CAD-6, no. 6, November 

1987, pp. 1062-1081.

 Giovanni De Micheli, Synthesis and Optimization of Digital 

Circuits, McGraw-Hill, 1994.

Next question: 

what are the best common divisors to get?



How Do We Find Good Divisors?
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 The operator is called extraction.

 Want to extract either single-cube divisor or

multiple-cube divisor from multiple expressions.

 How do we extract good divisors?

 Solution:

 When you want a single-cube divisor, go look for 

co-kernels.

 When you want a multiple-cube divisor, go look for 

kernels.



Approach Overview
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 For single cube extraction

 Build a very large matrix of 0s and 1s

 Heuristically look for “prime rectangles” in this matrix

 Each such “prime” is a good common single-cube divisor

 For multiple cube extraction

 Build a (different) very large matrix of 0s and 1s

 Heuristically look for “prime rectangles” in this matrix

 Each such “prime” is a good multiple-cube divisor

 Surprisingly, a lot like Karnaugh maps!

 Except we do it all algorithmically.



Single Cube Extract: Matrix Representation
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 Given: a set of SOP Boolean equations (P,Q,R).

 Construct the cube-literal matrix as follows:

 One row for each unique product term.

 One column for each unique literal.

 A “1” in the matrix if this product term uses this literal, else a “-”.

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

𝑃 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑒𝑔
𝑄 = 𝑎𝑏𝑓𝑔
𝑅 = 𝑏𝑑 + 𝑒𝑓



Covering this Matrix: Prime Rectangles
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 A rectangle of a cube-literal matrix is a set of rows R and 

columns C that has a ‘1’ in every row/column 

intersection.

 Need not be contiguous rows or columns in matrix. Any set of 

rows or columns is fine.

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -



Covering this Matrix: Prime Rectangles
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 A prime rectangle is a rectangle that cannot be made any 

bigger by adding another row or a column.

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -



Prime Rectangle Columns = Divisor!
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 Primes are “biggest possible” common single-cube divisors.

 Makes sense: columns of the prime rectangle tell you the 

literals in the single-cube divisor, while rows tell you which 

product terms you can divide!

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

Single-cube divisor:

𝑋 = 𝑎𝑏



Prime Rectangle Columns = Divisor!
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a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

Single-cube divisor:

𝑋 = 𝑎𝑏

𝑃 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑒𝑔
𝑄 = 𝑎𝑏𝑓𝑔
𝑅 = 𝑏𝑑 + 𝑒𝑓

𝑃 = 𝑋𝑐 + 𝑋𝑑 + 𝑒𝑔
𝑄 = 𝑋𝑓𝑔
𝑅 = 𝑏𝑑 + 𝑒𝑓
𝑋 = 𝑎𝑏



Simple Bookkeeping to Track # Literals
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 Recall: we factor & extract to reduce literals in logic 
network.

 Would be nice if there was a simple formula to compute this. 

 Indeed, there is:

 Start with a prime rectangle.

 Let 𝐶 = # columns in rectangle.

 For each row 𝑟 in rectangle: let Weight(𝑟) = # times this 
product appears in network.

 Compute 𝐿 = 𝐶 − 1 ×  rows 𝑟Weight(𝑟) − 𝐶.

 Nice result: for a prime rectangle, 𝐿 = # literals saved
 To be precise: if you count literals before extracting this 

single-cube divisor, and after, 𝐿 is how many literals are saved.



Compute Saved Literals: Example
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𝑆 = 𝑎𝑏𝑤 + 𝑎𝑏𝑦

a b w y z

1 2 3 4 5

abw 1 1 1 1 - -

wz 2 - - 1 - 1

aby 3 1 1 - 1 -

𝑅 = 𝑎𝑏𝑤 + 𝑤𝑧

𝑆 = 𝑋𝑤 + 𝑋𝑦

𝑅 = 𝑋𝑤 +𝑤𝑧

𝑋 = 𝑎𝑏

Original # literals: 11

After extraction # literals: 10

# saved: 1

Build 

Matrix

Extraction



Compute Saved Literals: Example
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 Now apply formula 𝐿 = 𝐶 − 1 ×
 rows 𝑟Weight(𝑟) − 𝐶

 𝐶 = # columns in rectangle

 Weight(𝑎𝑏𝑤)

 Weight(𝑎𝑏𝑦)

 𝐿 = 2 − 1 × 2 + 1 − 2 = 1

a b w y z

1 2 3 4 5

abw 1 1 1 1 - -

wz 2 - - 1 - 1

aby 3 1 1 - 1 -

Result by Counting:

# saved: 1

𝑆 = 𝑎𝑏𝑤 + 𝑎𝑏𝑦

𝑅 = 𝑎𝑏𝑤 + 𝑤𝑧

⇒ 2
⇒ 2 (appear twice in the network)

⇒ 1 (appear once in the network)

Correct!



How About Multiple-Cube Factors?
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 Remarkably, a very similar matrix-rectangle-prime concept.

 Make an appropriate matrix. Find prime rectangle. Do 
literal count bookkeeping with numbers associated with 
rows/columns.

 Given: A set of Boolean functions (nodes in a network)

𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒
𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒
𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

 First: find kernels of each of these functions.

 Why? Brayton-McMullen theorem: Multiple-cube factors are 
intersections of the product terms in the kernels for 
each of these functions.



Kernels / Co-Kernels of P,Q,R Example
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 𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒

 Co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔

 Co-kernel 𝑏, kernel 𝑑𝑒 + 𝑓

 Co-kernel 𝑐, kernel 𝑑𝑒 + 𝑔

 Co-kernel 𝑑𝑒, kernel 𝑎 + 𝑏 + 𝑐

 Co-kernel 𝑓, kernel 𝑎 + 𝑏

 Co-kernel 𝑔, kernel 𝑎 + 𝑐

 Co-kernel 1, kernel 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 +
𝑐𝑑𝑒 (trivial, ignore)



Kernels / Co-Kernels of P,Q,R Example
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 𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

 Co-kernel 𝑎, kernel 𝑐𝑒 + 𝑓

 Co-kernel 𝑏, kernel 𝑐𝑒 + 𝑓

 Co-kernel 𝑐𝑒, kernel 𝑎 + 𝑏

 Co-kernel 𝑓, kernel 𝑎 + 𝑏

 Co-kernel 1, kernel 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

 𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

 Co-kernel 𝑑𝑒, kernel 𝑎 + 𝑐

 Note: 𝑅 is not its own kernel, why?

(trivial, ignore)



New Matrix: Co-Kernel-Cube Matrix
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 One row for each unique (function, co-kernel) pair in problem.

 One column for each unique cube among all kernels in problem.

𝑃: co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔
𝑃: co-kernel 𝑏, kernel 𝑑𝑒 + 𝑓
𝑃: co-kernel 𝑐, kernel 𝑑𝑒 + 𝑔
𝑃: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑏 + 𝑐
𝑃: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑃: co-kernel 𝑔, kernel 𝑎 + 𝑐
𝑄: co-kernel 𝑎, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑏, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑐𝑒, kernel 𝑎 + 𝑏
𝑄: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑅: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑐

a b c ce de f g

1 2 3 4 5 6 7

P a 1

P b 2

P c 3

P de 4

P f 5

P g 6

Q a 7

Q b 8

Q ce 9

Q f 10

R de 11

?



Entries in the Co-Kernel-Cube Matrix
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 For each row, take the co-kernel, go look at the associated kernel.

 Look at cubes in this kernel: put “1” in columns that are cubes in 

this kernel; else put “-”

𝑃: co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔
𝑃: co-kernel 𝑏, kernel 𝑑𝑒 + 𝑓
𝑃: co-kernel 𝑐, kernel 𝑑𝑒 + 𝑔
𝑃: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑏 + 𝑐
𝑃: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑃: co-kernel 𝑔, kernel 𝑎 + 𝑐
𝑄: co-kernel 𝑎, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑏, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑐𝑒, kernel 𝑎 + 𝑏
𝑄: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑅: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑐

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -



Entries in the Co-Kernel-Cube Matrix
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 Each row gives the kernel of 

the function (e.g., 𝑃) 
obtained by dividing the co-

kernel (e.g., 𝑎). 

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

𝑃: co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔



Prime Rectangles in Co-Kernel-Cube Matrix

69

 Prime rectangle is again a good divisor: now multiple cube

 Create the multiple cube divisor as sum (OR) of cubes of 

prime rectangle columns.

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

P = (de)•(a+b+stuff1) + rem1

P = (f)•(a+b+stuff2) + rem2

Q = (ce)•(a+b+stuff3) + rem3

Q = (f)•(a+b+stuff4) + rem4

(a+b) is the multiple cube

divisor!



Simple Formula to Get # Literals Saved
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 For each column 𝑐 in rectangle: let Weight(𝑐) = # literals 
in column cube.

 For each row 𝑟 in rectangle: let Weight(𝑟) = 1 + # literals 
in co-kernel label.

 For each “1” covered at row 𝑟 and column 𝑐: AND row co-
kernel and column cube; let Value(𝑟, 𝑐) = # literals in this 
new ANDed product.

 # literals saved is
L

=  

row 𝑟

 

col 𝑐

Value(𝑟, 𝑐) −  

row 𝑟

Weight 𝑟

−  

col 𝑐

Weight(𝑐)



Compute Saved Literals: Example
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𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒

𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

Build

Matrix

𝑋 = 𝑎 + 𝑏

𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

𝑄 = 𝑋𝑓 + 𝑋𝑐𝑒

𝑃 = 𝑋𝑓 + 𝑋𝑑𝑒 + 𝑎𝑔 + 𝑐𝑔 + 𝑐𝑑𝑒

Original # literals: 33

After extraction # literals: 25

# saved: 8



Compute Saved Literals: Example
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 Column weight

 Weight(a) = #literals in “a”

 Weight(b) = #literals in “b”

 Row weight

 Weight((P, de)) = 1+ #literals in “de”

 Weight((P, f)) = 1+ #literals in “f ”

 Weight((Q, ce)) = 1+ #literals in “ce”

 Weight((Q, f)) = 1+ #literals in “f ”

𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒

𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

# saved: 8

⇒ 1

⇒ 1

⇒ 3

⇒ 3

⇒ 2

⇒ 2



Compute Saved Literals: Example
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 Column weight

 Weight(a) = 1; Weight(b) = 1

 Row weight

 Weight((P, de)) = 3; Weight((P, f)) = 2

 Weight((Q, ce)) = 3; Weight((Q, f)) = 2

 Value(r,c): # literals in the product of 

row co-kernel and column cube.

 Apply formula 𝐿 =

 row 𝑟 col 𝑐 Value(𝑟, 𝑐) −
 row 𝑟Weight 𝑟 −  col 𝑐Weight 𝑐

= 20 − 10 − 2 = 8

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

Values

3  3

2  2

3  3

2  2

# saved: 8

Correct!



Details for Both Single/Multiple Cube 

Extraction
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 You can extract a second, third, etc., divisor using same 
matrix.

 Works for both single-cube and multiple-cube divisors.

 …but must update matrix to reflect new Boolean logic 
network.

 Because the node contents are different, and there is a new 
divisor node in network.

 For multiple-cube case, must kernel new divisor nodes to 
update matrix.

 All mechanical. A bit tedious. Just skip it...

 For us: just know how to extract first good divisor is good 
enough.



How to Find Prime Rectangle in Matrix?
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 Greedy heuristics work well for this rectangle covering 
problem.

 Start with a single row rectangle with “good #literal savings”.

 Grow the rectangle alternatively by adding more rows, more 
columns.

 Example: Rudell’s Ping Pong heuristic.

 From his Berkeley PhD dissertation in 1989.

 Very good heuristic:

 < 1% of optimal result.

 10~100x faster than brute force approach.



Rudell’s Ping Pong Heuristic
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1. Pick the best single row (the 1-row rectangle with best 

#literals saved).

2. Look at other rows with 1s in same places (may have 

more 1s). Add the one that maximizes #literals saved. 

Iterate until can’t find any more.

3. Look at other columns with 1s in same places (may have 

more 1s). Add the one that maximizes # literals saved. 

Iterate until can’t find any more.

4. Go to 2.

5. Quit when can’t grow rectangle any more in any direction.



Extraction: Summary
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 Single cube extraction

 Build the cube-literal matrix.

 Each prime rectangle is a good single cube divisor.

 Simple bookkeeping lets us obtain savings in #literals.

 Multiple cube extraction

 Kernel all the expressions in network; build the co-kernel-cube 
matrix.

 Each prime rectangle is a good multiple cube divisor.

 Simple bookkeeping lets us obtain savings in #literals.

 Mechanically, both are rectangle covering problems (very 
like Karnaugh maps!)

 Good heuristics to obtain a good prime rectangle, fast and 
effective.



Aside: How to We Really Do This?
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 Do not use rectangle covering on all kernels/co-kernels

 Too expensive to do rectangle problem on big circuits (>20K gates)

 Too expensive to go compute complete set of kernels, co-kernels

 Often use heuristics to find a “quick” set of likely divisors.

 Don’t fully kernel each node of network: too many cubes to 

consider. Instead, can extract a subset of useful kernels quickly.

 Then, can either do rectangle cover on these smaller problems 

(smaller since fewer things to consider in covering problem)…

 …or, try to do simpler overall network restructuring, e.g., try all 

pairwise substitutions of one node into another node: keep good 

ones, continue in a greedy way.
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Don’t Cares
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 We made progress on multi-level logic by simplifying the 

model.

 Algebraic model: we get rid of a lot of “difficult” Boolean behaviors.

 But we lost some optimality in the process.

 How do we put it back? One surprising answer: Don’t cares

 To help this, extract don’t cares from “surrounding logic,” use them 

inside each node.

 The big difference in multi-level logic

 Don’t cares happen as a natural byproduct of Boolean network 

model: called Implicit Don’t Cares.

 They are all over the place, in fact. Very useful for simplification.

 But they are not explicit. We have to go hunt for them…



Don’t Cares Review: 2-Level
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 In basic digital design...

 Don’t Care (DC) = an input pattern that can never happen

or you don’t care the output if it happens.

 Example: use binary-coded decimals (BCD) to control 

seven-segment digital tube.

x y z w decimal value segment a

0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 2 1

0 0 1 1 3 1

0 1 0 0 4 0

0 1 0 1 5 1

0 1 1 0 6 1

0 1 1 1 7 1

1 0 0 0 8 1

1 0 0 1 9 1

How about input (x,y,z,w)

=(1,0,1,0),(1,0,1,1) …?

Don’t care!



Don’t Cares Review: 2-Level
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 Since patterns (x,y,z,w)=(1,0,1,0), (1,0,1,1), (1,1,0,0), 

(1,1,0,1), (1,1,1,0), (1,1,1,1) are don’t cares, we are free 

to decide whether F=1 or 0, to better optimize F.

x y z w decimal value segment a

0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 2 1

0 0 1 1 3 1

0 1 0 0 4 0

0 1 0 1 5 1

0 1 1 0 6 1

0 1 1 1 7 1

1 0 0 0 8 1

1 0 0 1 9 1

1 0 d 1

0 1 d 1

1 1 d d

1 1 d d

xy
zw

00

01

11

10

00 01 11 10



Don’t Cares (DCs): Multi-level
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 What’s different in multi-level?

 DCs arise implicitly, as a result of the Boolean logic 

network structure.

 We must go find these implicit don’t cares – we must search for 

them explicitly.



Multi-level DCs: Informal Tour
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 Suppose we have a Boolean network and a node 𝑓 in the 
network.

 Can we say anything about don’t cares for node 𝑓?
 No. We don’t know any “context” for surrounding parts of 

network.

 As far as we can tell, all patterns of inputs (X,b,Y) are possible.

 We cannot further simplify the expression for 𝑓.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌



Multi-level DCs: Informal Tour
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 Now suppose we know something about input 𝑋 to 𝑓:
 Node 𝑋 = 𝑎𝑏.
 Also assume 𝑎 and 𝑏 are primary inputs (PIs) and 𝑓 is 

primary output (PO).

 Now can we say something about DCs for node 𝑓...?
 YES!

 Because there are some impossible patterns of (X, b, Y).

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓



Multi-level DCs: Informal Tour
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a b X Can it occur?

0 0 0 Yes

0 0 1 No

0 1 0 Yes

0 1 1 No

1 0 0 Yes

1 0 1 No

1 1 0 No

1 1 1 Yes

b X Can it occur?

0 0

0 1

1 0

1 1

Yes

No

Yes

Yes

The possible input/output 

patterns for node X

Impossible patterns for (X, b, Y) are:

(1, 0, 0) and (1, 0, 1)

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓



Multi-level DCs: Informal Tour
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 Impossible patterns for (X, b, Y) are (1, 0, 0) and (1, 0, 1).

 With them, we can simplify 𝑓.

1 d

1 1 d

Xb
Y

0

1

00 01 11 10

1

1 1 1

Xb
Y

0

1

00 01 11 10

Kmap for 𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

With don’t 

cares

Can be simplified as

𝑓 = 𝑋 + 𝑏𝑌

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓



Multi-level DCs: Informal Tour
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 Now further suppose 𝑌 = 𝑏 + 𝑐.What will happen?

b c Y Can it occur?

0 0 0 Yes

0 0 1 No

0 1 0 No

0 1 1 Yes

1 0 0 No

1 0 1 Yes

1 1 0 No

1 1 1 Yes

b Y Can it occur?

0 0

0 1

1 0

1 1

Yes

No

Yes

Yes

Impossible patterns for (X, b, Y) are:

(0, 1, 0) and (1, 1, 0)

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐
𝑐

𝑓



Multi-level DCs: Informal Tour
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 Impossible patterns for (X, b, Y) are 

 (1,0,0), (1,0,1) (From 𝑋 = 𝑎𝑏)

 (0,1,0), (1,1,0) (From 𝑌 = 𝑏 + 𝑐)

d d d

1 1 d

Xb
Y

0

1

00 01 11 10

1

1 1 1

Xb
Y

0

1

00 01 11 10
With don’t 

cares

𝑓 can be simplified 

as 𝑓 = 𝑏Kmap for 𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐
𝑐

𝑓



Multi-level DCs: Informal Tour
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 Now suppose 𝑓 is not a primary output, 𝑍 is.

 Question: when does the value of the output of node 𝑓
actually affect the primary output 𝑍?

 Or, said conversely: When does it not matter what 𝑓 is?

 Let’s go look at patterns of (𝑓, 𝑋, 𝑑) at node 𝑍...

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍



When Is Z “Sensitive” to Value of f?
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𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

f X d Z Does f affect Z?

0 0 0 0

1 0 0 0

0 0 1 0

1 0 1 0

0 1 0 0

1 1 0 0

0 1 1 0

1 1 1 1

No

No

No

Yes

Can we use this information to 

find new patterns of (𝑋, 𝑏, 𝑌) to 

help us simplify 𝑓 further?

YES!



When Is Z “Sensitive” to Value of f?
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𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

f X d Z Dose f affect Z?

0 0 0 0

1 0 0 0

0 0 1 0

1 0 1 0

0 1 0 0

1 1 0 0

0 1 1 0

1 1 1 1

No

No

No

Yes

What patterns at input to 𝑓
node (i.e., (𝑋, 𝑏, 𝑌)) are DCs, 

because those patterns make 𝑍
output insensitive to changes in 𝑓?

𝑋, 𝑏, 𝑌 = (0,−,−)

This means when 𝑋 = 0, we can set 𝑓
to any value – it won’t change 𝑍. 
So (𝑋, 𝑏, 𝑌) = (0,−,−) is DC of 𝑓!



Multi-level DCs: Informal Tour
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 So, we can use this new DC pattern (0, −,−) to simplify 𝑓 further...

 … with previous DC patterns (1,0,0), (1,0,1), (0,1,0), (1,1,0).

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

d d d d

d 1 1 d

Xb
Y

0

1

00 01 11 10

1

1 1 1

Xb
Y

0

1

00 01 11 10

Kmap for 𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

With don’t 

cares

𝑓 simplified as 1



Final Result: Multi-level DC Tour
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 What happened to 𝑓? 

 Due to network context, it disappeared (𝑓 = 1)!

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

XX

𝑋

𝑏

𝑋 = 𝑎𝑏
𝑎

𝑍 = 𝑑𝑋
𝑑

𝑍



Summary
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 Don’t Cares are implicit in the Boolean network model.

 They arise from the graph structure of the multilevel 
Boolean network model itself.

 Implicit Don’t Cares are powerful.

 They can greatly help simplify the 2-level SOP structure of any 
node.

 Implicit Don’t Cares require computational work to find.

 For this example, we just “stared at the logic” to find the DC 
patterns.

 We need some algorithms to do this automatically!

 This is what we need to study next …



Multi-Level Don’t Cares
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 Don’t Cares are implicit in the Boolean network model.

 They arise from the graph structure of the multilevel 

Boolean network model itself.

 Implicit Don’t Cares are powerful.

 They can greatly help simplify the 2-level SOP structure of any 

node.

 Implicit Don’t Cares require computational work to find.

 We need some algorithms to do this automatically!



3 Types of Implicit DCs
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 Satisfiability don’t cares: SDCs

 Belong to the wires inside the Boolean logic network.

 Used to compute controllability don’t cares (below).

 Controllability don’t cares: CDCs

 Patterns that cannot happen at inputs to a network node.

 Observability don’t cares: ODCs

 Patterns that “mask” outputs.



Controllability don’t cares: CDCs
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 Patterns that cannot happen at inputs to a network 

node.

 Example

 For node 𝑓, 𝑋, 𝑏, 𝑌 = 1,0,0 , (1,0,1) are CDCs.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓



Observability don’t cares: ODCs
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 Input patterns to node that make primary outputs 

insensitive to output of the node.

 Patterns that “mask” outputs.

 Example

 For node 𝑓, 𝑋, 𝑏, 𝑌 = 0,−,− is ODC.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍



Background: Representing DC Patterns
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 How shall we represent DC patterns at a node?

 Answer: As a Boolean function that makes a 1 when the 

inputs are these DCs.

 This is often called a Don’t Care Cover.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓

Don’t care pattern of (X,b,Y)=(1,0,0), (1,0,1)

The don’t care cover is 𝑋 𝑏  𝑌 + 𝑋 𝑏𝑌 = 𝑋 𝑏
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 So, each SDC, CDC, ODC is really just another Boolean 

function, in this strategy.

 Why do it like this?

 Because we can use all the other computational Boolean 

algebra techniques we know (e.g., BDDs), to solve for, and to 

manipulate the DC patterns.

 This turns out to be hugely important to making the 

computation practical.
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 One SDC for every internal wire in Boolean logic network.

 The SDC represents impossible patterns of inputs to, and 

output of, each node.

 If the node function is 𝐹, with inputs 𝑎, 𝑏, 𝑐, write as: 

𝑆𝐹(𝐹, 𝑎, 𝑏, 𝑐).

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐
𝑐

𝑓

𝑆𝑋(𝑋, 𝑎, 𝑏) for impossible patterns of 𝑋, 𝑎, 𝑏.

𝑆𝑌(𝑌, 𝑏, 𝑐) for impossible patterns of 𝑌, 𝑏, 𝑐.
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 Compute an SDC for each output wire from each internal 

Boolean node.

 You want an expression that is 1 when output 𝑋 does not 

equal the Boolean expression for 𝑋.

 This is just: 𝑋⊕ (expression for 𝑋)

 Note #1: expression for 𝑋 doesn’t have 𝑋 in it!

 Note #2: this is the complement of the gate consistency 

function from SAT.

 Example

𝑋 = 𝑎𝑏 + 𝑐

𝑎

𝑏

𝑐

𝑆𝐷𝐶𝑋 = 𝑋⨁ 𝑎𝑏 + 𝑐
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 𝑆𝐷𝐶𝑋 = 𝑋⨁ 𝑎𝑏 + 𝑐 =  𝑋𝑎𝑏 +  𝑋𝑐 + 𝑋 𝑎  𝑐 + 𝑋 𝑏  𝑐

𝑋 = 𝑎𝑏 + 𝑐

𝑎

𝑏

𝑐

One impossible pattern: 𝑋𝑎𝑏𝑐 = 011 −

1

1

−

X=1!
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 SDCs are associated with every internal wire in Boolean 

logic network.

 SDCs explain impossible patterns of input to, and output of, 

each node.

 SDCs are easy to compute.

 SDCs alone are not the Don’t Cares used to simplify nodes.

 We use SDCs to build CDCs, which give impossible patterns 

at input of nodes.
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 Computational recipe:

1. Get all the SDCs on the wires input to this node in Boolean 

logic network.

2. OR together all these SDCs.

3. Universally Quantify away all variables that are NOT used 

inside this node.

𝐹 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)

𝑋1 =…

𝑋2 =…

𝑋𝑛 =…
…

𝐶𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹  

input 𝑋𝑖 to 𝐹

𝑆𝐷𝐶𝑋𝑖
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 Result: Inputs that let  𝐶𝐷𝐶𝐹 = 1 are impossible 

patterns at input to node!

𝐹 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)

𝑋1 =…

𝑋2 =…

𝑋𝑛 =…

…

𝐶𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹  

input 𝑋𝑖 to 𝐹

𝑆𝐷𝐶𝑋𝑖
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 Roughly speaking…

 𝑆𝐷𝐶𝑋𝑖’s explain all the impossible patterns involving 𝑋𝑖 wire 

input to the 𝐹 node.

 OR operation is just the “union” of all these impossible 

patterns involving 𝑋𝑖’s.

 Universal Quantify removes variables not used by 𝐹, and 

does so in the right way: we want patterns that are impossible 

FOR ALL values of these removed variables.

𝐶𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹  

input 𝑋𝑖 to 𝐹

𝑆𝐷𝐶𝑋𝑖
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𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝑓  

input 𝑋𝑖 to 𝑓

𝑆𝐷𝐶𝑋𝑖

Input variables to 𝑓
are 𝑎, 𝑐, 𝑑, 𝑋, 𝑌

This is 𝑏

Obtain CDCs for the node 𝑓



Compute CDCs: Example

110

 What about SDCs on primary inputs?

 They are just 0.

 Why? 𝑆𝐷𝐶𝑎 = 𝑎⨁(expression for 𝑎) = 𝑎⨁𝑎 = 0.

 Thus: SDCs on primary inputs have no impact on OR. We 

can ignore primary inputs.

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑
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 Since we ignore primary inputs, we have …

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝑓  

input 𝑋𝑖 to 𝑓

𝑆𝐷𝐶𝑋𝑖

Only 𝑋, 𝑌

This is 𝑏



Compute CDCs: Example

112

 Thus, we have:

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓 = ∀𝑏 𝑆𝐷𝐶𝑋 + 𝑆𝐷𝐶𝑌 = ∀𝑏 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏

= 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏
𝑏=1
∙ 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏

𝑏=0

=  𝑋 + (𝑌⨁𝑎) ∙ 𝑋⨁𝑎 + 𝑌 =  𝑋𝑎 + 𝑌 𝑎 +  𝑋𝑌
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 𝐶𝐷𝐶𝑓 =  𝑋𝑎 + 𝑌 𝑎 +  𝑋𝑌

 Does it make sense?

 From 𝐶𝐷𝐶𝑓, impossible patterns are 

 (𝑋, 𝑎) = (0,1)

 𝑌, 𝑎 = (1,0)

 𝑋, 𝑌 = (0,1)

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝑎 = 1 ⇒ 𝑋 = 1

𝑎 = 0 ⇒ 𝑌 = 0

𝑋 = 0 ⇒ 𝑎 = 0 && 𝑏 = 0 ⇒ 𝑌 = 0
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 What if there are external DCs for primary inputs 𝑎, 𝑏, 𝑐, 𝑑
for which we just don’t care what 𝑓 does?

 Answer: Just OR these DCs in ( 𝑆𝐷𝐶𝑖) part of CDC 

expression.

 Represent these DCs as a Boolean function that makes a 1 

when the inputs are these DCs.

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

DC:

b=1

c=1

d=1
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 Suppose 𝑏, 𝑐, 𝑑 = (1,1,1) cannot happen.

 How to compute 𝐶𝐷𝐶𝑓 now?

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓 = ∀𝑏 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏 + 𝑏𝑐𝑑

DC:

b=1

c=1

d=1

External DCs as a Boolean function 

that makes a 1 when the pattern is 

impossible.
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 New impossible patterns are

 (𝑎, 𝑐, 𝑑, 𝑋) = (0,1,1,1)

 (𝑐, 𝑑, 𝑌) = (1,1,1)

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓 = ∀𝑏 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏 + 𝑏𝑐𝑑

DC:

b=1

c=1

d=1

=  𝑋𝑎 + 𝑌 𝑎 +  𝑋𝑌 +  𝑎𝑐𝑑𝑋 + 𝑐𝑑𝑌

Make sense?

𝑎 = 0 && 𝑋 = 1 ⇒ 𝑏 = 1
Thus, 𝑏 = 𝑐 = 𝑑 = 1

𝑌 = 1 ⇒ 𝑏 = 1
Thus, 𝑏 = 𝑐 = 𝑑 = 1
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 CDCs give impossible patterns at input to node 𝐹 – use 

as DCs.

 Impossible because of the network structure of the nodes 

feeding node 𝐹.

 CDCs can be computed mechanically from SDCs on wires 

input to 𝐹.

 Internal local CDCs: computed just from SDCs on wires 

into 𝐹.

 External global CDCs: include DC patterns at primary 

inputs.
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 But CDCs still not all the Don’t Cares available to simplify 

nodes.

 𝐶𝐷𝐶𝐹 derived from the structure of nodes “before” node 𝐹.

 We need to look at DCs that derive form nodes “after” node 𝐹.

 These are nodes between the output of 𝐹 and primary 

outputs of overall network.

 These are ODCs.



Observability Don’t Cares (ODCs)
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 ODCs: patterns that mask a node’s output at primary 

output (PO) of the network.

 So, these are not impossible patterns – these patterns can 

occur at node input.

 These patterns make this node’s output not observable at 

primary output.

 “Not observable” for an input pattern means: Boolean value 

of node output does not affect ANY primary output.

𝐹 = 𝑎 𝑏 +  𝑎𝑏𝑏

𝑎

𝐹

𝑍 = 𝑎𝑑𝐹
𝑑

𝑍

𝑂𝐷𝐶𝐹 are patterns of 𝑎, 𝑏 that 

make 𝑍 insensitive to 𝐹’s value.
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 When is primary output 𝑍 insensitive to internal variable 𝐹?

 Means 𝑍 independent of value of 𝐹, given other inputs to 𝑍.

𝐹 = stuff 𝐹

𝑍 depends on 𝐹
𝑍

AND
𝐹 𝑍

0
OR

𝐹 𝑍

1

𝑍 insensitive to 𝐹 if 

any other input = 0

𝑍 insensitive to 𝐹 if 

any other input = 1

How about the general case?
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 What does Boolean difference 

 𝜕𝐹(𝑎, 𝑏,… ,𝑤, 𝑥) 𝜕𝑥 = 𝐹𝑥⊕𝐹𝑥 = 1mean?

 If you apply an input pattern (𝑎, 𝑏, … ,𝑤) that makes  𝜕𝐹 𝜕𝑥 = 1, 
then any change in 𝑥 will force a change in output 𝐹.

 What makes output 𝐹 sensitive to input 𝑥?

 Answer: Any pattern that makes 
𝜕𝐹

𝜕𝑥
= 𝐹𝑥⊕𝐹𝑥 = 1.

Combinational

Logic

𝑎
𝑏

𝑤

𝑥

…

𝐹(𝑎, 𝑏, … ,𝑤, 𝑥)
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 When is primary output 𝑍 insensitive to internal variable 

𝐹?

 Answer: when inputs (other than 𝐹) to 𝑍 make cofactors 

𝑍𝐹 = 𝑍  𝐹.

 Make sense: if cofactors with respect to 𝐹 are same, 𝑍 does 

not depend on 𝐹!

 How to find when cofactors are the same?

 Answer: Solve for 𝑍𝐹⊕𝑍  𝐹 = 1

 Note: 𝑍𝐹 ⊕𝑍  𝐹 = 1 ⇒ 𝑍𝐹⊕𝑍  𝐹 = 1 ⇒
𝜕𝑍

𝜕𝐹
= 1
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 A nice computational recipe:

1. Compute  𝜕𝑍 𝜕𝐹. Any patterns that make  𝜕𝑍 𝜕𝐹 = 1
mask output 𝐹 for 𝑍.

2. Universally Quantify away all variables that are NOT

inputs to the 𝐹 node.

𝑂𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹  𝜕𝑍 𝜕𝐹

𝐹 = stuff 𝐹

𝑍 depends on 𝐹
𝑍
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 Result: Inputs that let  𝑂𝐷𝐶𝐹 = 1mask output 𝐹 for 𝑍, 
i.e., make 𝑍 insensitive to 𝐹.

𝑂𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹  𝜕𝑍 𝜕𝐹

𝐹 = stuff 𝐹

𝑍 depends on 𝐹
𝑍
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 Obtain the ODCs for node 𝐹.

𝐹 = 𝑎 𝑏 +  𝑎𝑏𝑏

𝑎
𝐹

𝑍 = 𝑎𝑏 + 𝐹 𝑏 + 𝐹  𝑐𝑐

𝑍

𝑂𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹  𝜕𝑍 𝜕𝐹

They are 𝑎, 𝑏 This is 𝑐

= ∀𝑐 𝑎𝑏 + 𝐹 𝑏 + 𝐹  𝑐
𝐹=1
⊕ 𝑎𝑏 + 𝐹 𝑏 + 𝐹  𝑐

𝐹=0

= ∀𝑐 (𝑎𝑏 +  𝑐) ⊕ (𝑎𝑏) = 𝑎𝑏
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 𝑂𝐷𝐶𝐹 = 𝑎𝑏

 ODC pattern is (𝑎, 𝑏) = (1,1)

 Make sense! Because when (𝑎, 𝑏) = (1,1), 𝑍 = 1
independent of 𝐹.

𝐹 = 𝑎 𝑏 +  𝑎𝑏𝑏

𝑎
𝐹

𝑍 = 𝑎𝑏 + 𝐹 𝑏 + 𝐹  𝑐𝑐

𝑍
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 Question: what if 𝐹 feeds to many primary outputs?

 Answer: Only patterns that are unobservable at ALL

outputs can be ODCs.

 Computational recipe:

𝐹 = stuff

𝑍1 =…

𝑍2 =…

𝑍𝑛 =…
…

𝑍1

𝑍2

𝑍𝑛

𝑂𝐷𝐶𝐹 = ∀ vars not used in 𝐹  

Output 𝑍𝑖

 𝜕𝑍𝑖 𝜕𝐹

AND all 𝑛 differences for each output 𝑍𝑖.



ODCs: Summary
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 ODCs give input patterns of node 𝐹 that mask 𝐹 at 
primary outputs.

 Not impossible patterns – they can occur.

 Don’t cares because primary output “doesn’t care” what 𝐹 is, 
for these patterns.

 ODCs are can be computed mechanically from  𝜕𝑍𝑖 𝜕𝐹 on all 
outputs connected to 𝐹.

 CDCs + ODCs give the “full” don’t care set used to simplify 
𝐹.
 With these patterns, you can call something like ESPRESSO to 

simplify 𝐹.
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 Yes, if your networks look just like above.

 More precisely, if you only want to get CDCs from nodes 

immediately “before” you.

 And if you only want to get ODCs for one layer of nodes 

between you and output.

𝑍1

𝑍2

𝑍𝑚

…𝐹 = stuff

𝑍1

𝑍2

𝑍𝑚

𝑋1

𝑋2

𝑋𝑛

…

𝑋1

𝑋2

𝑋𝑛



Don’t Cares, In General
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 But, this is what real multi-level logic can look like!

 CDCs are function of all nodes “before” 𝑋.

 ODCs are function of all nodes between 𝑋 and any output.

 In general, we can never get all the DCs for node 𝑋 in a big 
network.

 Representing all this stuff can be explosively large, even with 
BDDs

𝑋



Summary: Getting Network DCs
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 How we really do it? generally do not get all the DCs.

 Lots of tricks that trade off effort (time, memory) with quality 

(how many DCs).

 Example: Can just extract “local CDCs”, which requires 

looking at outputs of immediate precedent vertices and 

computing from the SDC patterns, which is easy.

 There are also incremental, node-by-node algorithms that 

walk the network to compute more of the CDC and ODC set 

for X, but these are more complex.

 For us, knowing these “limited” DC recipes is sufficient.


