
Reading/Hand-on Assignment 1

1

 Survey of 3 SAT solvers

 MiniSAT, Sweden.

 CHAFF, Princeton University.

 GRASP, University of Michigan.

 3 groups, 1 group per solver.

 Oral presentation (April 14th, in class)

 Technical details.

 Your test run of the solvers + results.

 Written report (due April 19th)

 One copy per group.

Pingqiang Zhou

ShanghaiTech University

Multi-Level Logic Synthesis

Why Multi-level Logic?

3

 Two-level forms are too restrictive.

 It has small delay but large area.

 Area = gates + literals (wires), i.e., things that take space on a

chip.

 Delay = maximum levels of logic gates required to compute

function.

 Two-level is minimum gate delay possible, but usually worst

on area.

Area versus Delay Tradeoff

4

Area

Delay
Multi-level designs =

fewer gates, but > 2 levels

Two-level design = many

gates, but only 2 levels of

logic, so fastest possible

small,

few gates + wires

large,

many gates + wires

fast,

few levels

slower,

many levels

Why Multi-level Logic?

5

 Rarely see 2-level designs for really big things…

 We use 2-level logic mostly for pieces of bigger things.

 Even small things routinely done as multi-level.

 What does a 2-level design with 1000 gates look like?

1 2 3 4 999

1000

This is just NOT going to be the

preferred logic network structure...

Real Multilevel Example

6

 A small design, done by commercial synthesis tool.

Levels1 2 3 4 5 6 7 8 9 10 11

Boolean Logic Network Model

7

 Need more sophisticated model: Boolean Logic Network

 Idea: it’s a graph of connected blocks, like any logic diagram,

but now individual component blocks can be 2-level Boolean

functions in SOP form.

AND

OR

a

b

c

x

y

Ordinary Gate Logic

𝑦 = 𝑥 + 𝑐

𝑥 = 𝑎𝑏
𝑎

𝑏

𝑐
𝑦

𝑥

Primary

Inputs

Primary

Outputs

Internal

Nodes

Boolean Logic Network

𝑥 and 𝑦 are now Boolean function.

Multilevel Logic: What to Optimize?

8

 A simplistic but surprisingly useful metric:

Total literal count

 Count every appearance of every variable on right hand

side of “=” in every internal node.

 Delays also matter, but for this class, only focus on logic

complexity.

𝑋 = 𝑑𝑌 + 𝑍

𝑌 = 𝑏 + 𝑐

𝑎

𝑏

𝑐

𝑄

𝑑

𝑍 = 𝑏𝑐

𝑄 = 𝑎𝑋

#Literals = 9

Optimizing Multilevel Logic: Big Ideas

9

 Again: Boolean logic network is a data structure. What
operators do we need?

 3 basic kinds of operators:

 Simplify network nodes: no change in # of nodes, just simplify
insides, which are SOP form.

 Remove network nodes: take “too small” nodes, substitute
them back into fanouts.

 This is not too hard. This is mostly manipulating the graph,
simple SOP edits.

 Add new network nodes: this is factoring. Take big nodes, split
into smaller nodes.

 This is a big deal. This is new. This is what we need to teach
you…

Simplifying a Node

10

 You already know this! This is 2-level synthesis.

 Just run ESPRESSO on 2-level form inside the node, to

reduce # literals.

 As structural changes happen across network, “insides” of

nodes may present opportunity to simplify.

𝑋 = 𝑎 + 𝑎𝑏 + 𝑏𝑐 𝑋 = 𝑎 + 𝑏𝑐

Removing a Node

11

 Typical case is you have a “small” factor which doesn’t seem

to be worth making it a separate node.

 “Push” it back into its fanouts, make those nodes bigger, and

hope you can use 2-level simplification on them.

𝑍 = 𝑎𝑏

𝑋 = 𝑐𝑍 + 𝑑

𝑌 = 𝑒𝑓𝑍

𝑋 = 𝑐𝑎𝑏 + 𝑑

𝑌 = 𝑒𝑓𝑎𝑏

Adding new Nodes

12

 This is Factoring, this is new, and hard.

 Look at existing nodes, identify common divisors, extract

them, connect as fan-ins.

 Tradeoff: more delay (another level of logic), but

fewer literals (less gate area).

𝑋 = 𝑎𝑏 + 𝑐 + 𝑟

𝑌 = 𝑎𝑏𝑑 + 𝑐𝑑

𝑍 = 𝑎𝑏𝑟𝑠 + 𝑐𝑟𝑠

𝑄 = 𝑎𝑏 + 𝑐

𝑋 = 𝑄 + 𝑟

𝑌 = 𝑄𝑑

𝑍 = 𝑄𝑟𝑠
Divisor

16 Literals 10 Literals

Multi-Level Logic Synthesis

13

 A more common design style.

 Small area, but may have large delay.

 More sophisticated model: Boolean logic network

 3 kinds of optimizing step:

 Simplify a node by 2-level minimization.

 Remove a node by substituting.

 Add a node by factoring.

Multilevel Synthesis Scripts

14

 Multilevel synthesis like 2-level synthesis is heuristic.

 …but it’s also more complex. Write scripts of basic
operators.
 Do several passes of different optimizations over the Boolean logic

network.
 Do some “cleanup” steps to get rid of “too small” nodes (remove

nodes).
 Look for “easy” factors: just look at existing nodes, and try to use

them.
 Look for “hard” factors: do some work to extract them, try them,

and keep the good ones.
 Do 2-level optimization of insides of each logic node in network

(simplify nodes by ESPRESSO).
 Lots of “art” in the engineering of these scripts.

 For us, the one big thing you don’t know: How to factor…

Multi-Level Logic Synthesis

15

 We need a new operator: factoring

 Problem #1: how to do division?

 Solution: Algebraic model and algebraic division

 Algebraic model: Pretending that Boolean expressions

behave like polynomials of real numbers, not like Boolean

algebra.

 Algebraic division: Given a Boolean expression 𝐹 and a

divisor 𝐷, obtain quotient 𝑄 and remainder 𝑅, such that

𝐹 = 𝐷 ⋅ 𝑄 + 𝑅

 Problem #2: how to find good divisors?

 Solution: Kernels.

Another New Model: Algebraic Model

16

 Factoring: How do we really do it?

 Develop another model for Boolean functions, cleverly designed
to let us do this

 Tradeoff: lose some “expressivity” – some aspects of Boolean
behavior and some Boolean optimizations we just cannot do,
but we gain practical factoring.

 New model: Algebraic model

 Term “algebraic” comes from pretending that Boolean
expressions behave like polynomials of real numbers, not
like Boolean algebra.

 Big new Boolean operator: Algebraic Division (or, also
“Weak” Division).

Algebraic Model

17

 Idea: keep just those rules that work for BOTH polynomials

of reals AND Boolean algebra, but get rid of the rest.

Real numbers Boolean algebra

𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 𝑎 + 𝑏 = 𝑏 + 𝑎
𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐
𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐
𝑎 ⋅ 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐
𝑎 ⋅ 1 = 𝑎 𝑎 ⋅ 0 = 0
𝑎 + 0 = 𝑎

Same

𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 𝑎 + 𝑏 = 𝑏 + 𝑎
𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐
𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐
𝑎 ⋅ 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐
𝑎 ⋅ 1 = 𝑎 𝑎 ⋅ 0 = 0
𝑎 + 0 = 𝑎

𝑎 ⋅ 𝑎 = 0 𝑎 + 𝑎 = 1
𝑎 ⋅ 𝑎 = 𝑎 𝑎 + 𝑎 = 𝑎
𝑎 + 1 = 1

𝑎 + 𝑏 𝑎 + 𝑐 = 𝑎 + 𝑏 ⋅ 𝑐

Not

Allowed

Algebraic Model

18

 If we only get to use algebra rules from real numbers…

 Consequence: A variable and its complement must be treated

as totally unrelated.

 Since no expression like 𝑎 + 𝑎 = 1 allowed.

 Aside: this is one of the losses of “expressive power” of Boolean

algebra.

𝐹 = 𝑎𝑏 + 𝑎𝑥 + 𝑏𝑦

𝐹 = 𝑎𝑏 + 𝑅𝑥 + 𝑆𝑦

Let 𝑅 = 𝑎, 𝑆 = 𝑏

Algebraic Model

19

 Idea

 Boolean functions manipulated in SOP form like

polynomials.

 Each product term in such an expression is just a set of

variables, e.g., 𝑎𝑏𝑅𝑦 is the set (𝑎, 𝑏, 𝑅, 𝑦).

 SOP expression itself is just a list of these products

(cubes), e.g., 𝑎𝑏 + 𝑅𝑥 is the list (𝑎𝑏, 𝑅𝑥).

Algebraic Division: Our Model for Factoring

20

 Given function 𝐹 we want to factor as:

𝐹 = 𝐷 ⋅ 𝑄 + 𝑅

 If remainder 𝑅 = 0, we call the divisor as a “factor”.

divisor
quotient remainder

Example: 𝐹 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑒

= (𝑎 + 𝑏)(𝑐 + 𝑑) + 𝑒

divisor quotient remainder

Algebraic Division

21

 Example: 𝐹 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑒

 Want: 𝐹 = 𝐷 ⋅ 𝑄 + 𝑅.

Divisor (𝐷) Quotient (𝑄) Remainder (𝑅) Is 𝐷 Factor?

𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐
+𝑏𝑑 + 𝑒

𝑎 + 𝑏

𝑐 + 𝑑

𝑎

𝑏

𝑐

𝑑

𝑒

Divisor is a factor

if 𝑅 = 0.

1 0 Yes

𝑐 + 𝑑 𝑒 No

No

No

No

No

No

No

𝑒

𝑐 + 𝑑

𝑐 + 𝑑

1

𝑎 + 𝑏

𝑎 + 𝑏

𝑎 + 𝑏

𝑏𝑐 + 𝑏𝑑 + 𝑒

𝑎𝑐 + 𝑎𝑑 + 𝑒

𝑎𝑑 + 𝑏𝑑 + 𝑒

𝑎𝑐 + 𝑏𝑐 + 𝑒

𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Algebraic Division: Very Nice Algorithm

22

 Inputs: A Boolean expression 𝐹 and a divisor 𝐷, represented

as lists of cubes (and each cube as a set of literals).

 Output

 Quotient 𝑄 = 𝐹/𝐷 as a cube list, or empty if 𝑄 = 0.

 Remainder 𝑅 as a cube list, or empty if D was a factor.

 Strategy

 Cube-wise walk through cubes in divisor 𝐷, trying to divide each

of them into 𝐹.

 ... intersect all the division results.

Algebraic Division Algorithm

23

AlgebraicDivision(F, D) { // divide D into F

for (each cube d in divisor D) {

let C = { cubes in F that contain this product term d };

if (C is empty) return (quotient = 0, remainder = F);

let C = cross out literals of cube d in each cube of C;

if (d is the first cube we have looked at in divisor D)

let Q = C;

else Q = Q ∩ C;

}

R = F − (Q • D);
return (quotient = Q, remainder = R);

}

Example:
Cube xyzw contains
product term yz

Example:

Suppose C = xyz + yzw +pqyz

and d = yz. Then crossing

out all the yz parts yields

x + w + pq

Algebraic Division: Example

24

𝐹 = 𝑎𝑥𝑐 + 𝑎𝑥𝑑 + 𝑎𝑥𝑒 + 𝑏𝑐 + 𝑏𝑑 + 𝑑𝑒, 𝐷 = 𝑎𝑥 + 𝑏

𝐹 cube 𝐷 cube: 𝑎𝑥 𝐷 cube: 𝑏

𝑎𝑥𝑐

𝑎𝑥𝑑

𝑎𝑥𝑒

𝑏𝑐

𝑏𝑑

𝑑𝑒

𝑎𝑥𝑐 → 𝑐

𝑎𝑥𝑑 → 𝑑

𝑎𝑥𝑒 → 𝑒

𝐶 = 𝑐 + 𝑑 + 𝑒

−

−

−

−

−

−

𝑏𝑐 → 𝑐

𝑏𝑑 → 𝑑

−

𝐶 = 𝑐 + 𝑑

𝑄 = 𝑐 + 𝑑 + 𝑒 ∩ 𝑐 + 𝑑 = 𝑐 + 𝑑

𝑅 = 𝐹 − 𝑄𝐷 = 𝑎𝑥𝑒 + 𝑑𝑒

Algebraic Division: Warning

25

 Remember: No “Boolean” simplification, only “algebraic”.

 So what? Well, suppose you have this

𝐹 = 𝑎 𝑏 𝑐 + 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐, 𝐷 = 𝑎𝑏 + 𝑐

and you want 𝐹/𝐷.

 You must let 𝑋 = 𝑏 and 𝑌 = 𝑐 and transform 𝐹 and 𝐷 to

something like

𝐹 = 𝑎𝑋𝑌 + 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐, 𝐷 = 𝑎𝑏 + 𝑌

 Because we must treat the true and complement forms of

variables as totally unrelated.

One More Constraint: Redundant Cubes

26

 To do 𝐹/𝐷, function 𝐹 must have no redundant cubes
 Technical definition is: minimal with respect to single-cube

containment.

 Means: no one cube is completely covered by one of the
other cubes in SOP cover.

 E.g., 𝑎𝑏𝑐𝑑 is completely covered by 𝑎𝑏.

 Why no redundant cubes?

 Consider: 𝐹 = 𝑎 + 𝑎𝑏 + 𝑏𝑐 and 𝐷 = 𝑎.
 Note: F has redundant cube 𝑎𝑏.

 What is 𝐹/𝐷 by our algebraic division algorithm?

𝑄 = 𝐹/𝐷 = 1 + 𝑏 However, we don’t have 1+stuff

operation in algebraic model!

One More Constraint: Redundant Cubes

27

 … So, we should remove redundant cubes to make the SOP

minimal with respect to single-cube containment.

 Not hard.

Multilevel Logic Synthesis: Where are We?

28

 For Boolean function 𝐹 and 𝐷, can compute

𝐹 = 𝑄 ∙ 𝐷 + 𝑅 via algebraic model.

 It is great, but still not enough: don’t know how to find a

good divisor 𝐷.

 Another problem: given 𝑛 functions 𝐹1, 𝐹2, … , 𝐹𝑛, find a

set of good common divisors.

𝐹1 = 𝑎𝑏 + 𝑐 + 𝑥

𝐹2 = 𝑎𝑏𝑥 + 𝑐𝑥 + 𝑞

𝐹3 = 𝑎𝑏 + 𝑞

factor 𝑑𝑖 = 𝑎𝑏 + 𝑐

𝐹1 = 𝑑𝑖 + 𝑟

𝐹2 = 𝑑𝑖𝑥 + 𝑞

Divisor
𝐹3 = 𝑎𝑏 + 𝑞

Where to Look for Good Divisors?

29

 Surprisingly, the algebraic model has a beautiful answer.

 One more reason we like it: Has some surprising and elegant
“deep structure”.

 Where to look for divisors of function 𝐹?
 In the set of kernels of 𝐹, denoted 𝐾(𝐹).
 𝐾(𝐹) is another set of 2-level SOP forms which are the special,

foundational structure of any function 𝐹, being interpreted in
our algebraic model.

 How to find a kernel 𝑘 ∈ 𝐾(𝐹)?
 Algebraically divide 𝐹 by one of its co-kernels, 𝑐.

Kernels and Co-Kernels of Function F

30

 Kernel of a Boolean expression 𝐹 is:

 A cube-free quotient 𝑘 obtained by algebraically dividing

𝐹 by a single cube 𝑐.

 This single cube 𝑐 also has a name: it is a co-kernel of function

𝐹.

expression 𝐹divisor 𝐷

quotient 𝑄

…

remainder 𝑅

𝐹 = 𝐷 ⋅ 𝑄 + 𝑅

expression 𝐹𝑐 = 1 cube

kernel 𝑘 (cube-free)

…

remainder 𝑅

𝐹 = 𝑐 ⋅ 𝑘 + 𝑅

Kernels Are Cube-Free…

31

 Cube-free means...?

 You cannot factor out a single cube divisor that leaves no

remainder.

 Technically: has no one cube that is a factor of expression.

 Pick a cube 𝑐. If you can “cross out” 𝑐 in each product term of 𝐹, then

𝐹 is not a kernel.

Expression 𝐹 𝐹 = 𝐷 ⋅ 𝑄 + 𝑅 𝐹 Cube-free?

𝑎

𝑎 + 𝑏

𝑎𝑏 + 𝑎𝑐

𝑎𝑏𝑐 + 𝑎𝑏𝑑

𝑎𝑏 + 𝑎𝑐𝑑 + 𝑏𝑑

𝑎 ⋅ 1 + 0

𝑎 ⋅ (𝑏 + 𝑐) + 0

𝑎𝑏 ⋅ (𝑐 + 𝑑) + 0

--

--

No

No

No

Yes

Yes

Some Kernel Examples

32

 Suppose 𝐹 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑

 Any Boolean function 𝐹 can have many different kernels.

 The set of kernels of 𝐹 is denoted as 𝐾(𝐹).

Divisor cube 𝑑 𝑄 = 𝐹/𝑑 Is 𝑄 a kernel of 𝐹?

1

𝑎

𝑏

𝑎𝑏

𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑

𝑏𝑐 + 𝑏𝑑

𝑎𝑐 + 𝑎𝑑 + 𝑐𝑑

𝑐 + 𝑑

No, has cube = 𝑏 as factor

No, has cube = 𝑏 as factor

Yes! co-kernel = 𝑏

Yes! co-kernel = 𝑎𝑏

Kernels: Why Are They Important?

33

 Big result: Brayton & McMullen Theorem

 From: R. Brayton and C. McMullen, “The decomposition and

factorization of Boolean expressions.” In IEEE International

Symposium on Circuits and Systems, pages 49–54, 1982.

Expressions 𝐹 and 𝐺 have a common multiple-cube divisor 𝑑
if and only if:

there are kernels 𝑘1 ∈ 𝐾(𝐹) and 𝑘2 ∈ 𝐾(𝐺) such that 𝑑 = 𝑘1 ∩ 𝑘2
and 𝑑 is an expression with at least 2 cubes in it (i.e., 𝑘1 and 𝑘2 have

common cubes).

Multiple-Cube Divisors and Kernels

34

 Brayton & McMullen Theorem in words:

 The only place to look for multiple-cube divisors is in the

intersection of kernels!

 Indeed, this intersection of kernels contains all divisors.

𝐹 = stuff

𝐺 = stuff

k1 k2

k3

Kernels of 𝐹

k4 k5

Kernels of 𝐺

Intersect

≥ 2 cubes?

k3
k5

Yes! d=…
Multi-cube

divisor

extracted!

𝑑 = 𝑎𝑏 + 𝑐

𝐹 = new

𝐺 = new

Brayton-McMullen: Informal Illustration

35

F = cube1 • kernel1 + remainder1

G = cube2 • kernel2 + remainder2

F = cube1 • [X + Y + stuff1] + remainder1

G = cube2 • [X + Y + stuff2] + remainder2

F = cube1 • [X + Y] + [cube1•stuff1 + remainder1]

G = cube2 • [X + Y] + [cube2•stuff2 + remainder2]

Assume:

kernel1 ∩ kernel2 = X + Y

d=X+Y
F = cube1•d +…

G = cube2•d +…

Kernels: Real Example

36

𝐹 = 𝑎𝑒 + 𝑏𝑒 + 𝑐𝑑𝑒 + 𝑎𝑏 𝐺 = 𝑎𝑑 + 𝑎𝑒 + 𝑏𝑑 + 𝑏𝑒 + 𝑏𝑐

Kernels Co-kernel

𝑎 + 𝑏 + 𝑐𝑑 𝑒

𝑏 + 𝑒 𝑎

𝑎 + 𝑒 𝑏

𝑎𝑒 + 𝑏𝑒 + 𝑐𝑑𝑒 + 𝑎𝑏 1

Kernels Co-kernel

𝑎 + 𝑏 𝑑 or 𝑒

𝑑 + 𝑒 𝑎

𝑐 + 𝑑 + 𝑒 𝑏

𝑎𝑏 + 𝑎𝑒 + 𝑏𝑑 + 𝑏𝑒
+ 𝑏𝑐

1

Intersecting these 2 kernels: 𝑎 + 𝑏 + 𝑐𝑑 ∩ 𝑎 + 𝑏 = 𝑎 + 𝑏

Kernels: Very Useful, But How To Find?

37

 Another recursive algorithm (“recursive” again!)

 There are 2 more useful properties of kernels we need to see
first…

 Start with a function 𝐹 and a kernel 𝑘1 in 𝐾(𝐹)

F = cube1 • k1 + remainder1

 Then: a new, interesting question: what about 𝐾(𝑘1)?
 𝑘1 is a perfectly nice Boolean expression, so it has got its own

kernels.

 Do these 𝑘1’s kernels have anything interesting to say about
𝐾(𝐹)?

How 𝐾(𝑘1) Relates to 𝐾(𝐹)…

38

 We know this: F = cube1•k1 + remainder1

 Suppose k2 is a kernel in K(k1), then we know

k1 = cube2•k2 + remainder2

 Substitute this expression for k1 in original expression for F

F = cube1•[cube2•k2 + remainder2] + remainder1

 Since cube1•cube2 is itself just another single cube, we have:

F = (cube1•cube2)•[k2] + [cube1•remainder2 + remainder1]

 Conclusion: k2 also a kernel of original F (with

co-kernel cube1•cube2)

There is a Hierarchy of Kernels Inside F

39

 Definition: 𝑘 ∈ 𝐾(𝐹) is

 A level-0 kernel if it contains no kernels inside it except itself.

 In words: Only cube you can pull out, get a cube-free quotient is “1”.

 A level-n kernel if it contains at least one level-(n-1) kernel, and no

other level-n kernels except itself.

 In words: a level-1 kernel only has level-0 kernels inside it. A level-2

kernel only has level-1 and level-0 kernels in it, etc…

𝐹 = stuff

Level-2 kernel

Level-1 kernel

Level-0 kernel

Level-1 kernel

Level-0 kernel Level-0 kernel

Kernel Hierarchy: Example

40

 𝐹 = 𝑎𝑏𝑒 + 𝑎𝑐𝑒 + 𝑑𝑒 + 𝑔ℎ has three kernels:

 𝑘1 = 𝑏 + 𝑐, with co-kernel 𝑎𝑒.

 𝑘2 = 𝑎𝑏 + 𝑎𝑐 + 𝑑, with co-kernel 𝑒.

 𝑘3 = 𝐹 with co-kernel 1.

 Note: 𝑘1 is level 0, 𝑘2 is level 1, and 𝑘3 is level 2.

𝑘1: level 0

𝑘2: level 1

𝑘3 = 𝐹: level 2

Kernels

41

 Second useful result [by Brayton et al.]:

 Co-kernels of a Boolean expression in SOP form correspond

to intersections of 2 or more cubes in this SOP form.

 Note: Intersections here means that we regard a cube as a

set of literals, and look at common subsets of literals.

 This is not like “AND” for products. This just extracts common

literals.

 Example: ace + bce + de + g

ace ∩ bce = ce

ace ∩ bce∩ de = e

 ce is a potential co-kernel

 e is a potential co-kernel

How to Find Kernels Using These 2

Results?

42

 Find the kernels recursively.

 Whenever find one kernel, call FindKernels() on it, to find (if any)

lower level kernels inside.

 Use algebraic division to divide function by potential

co-kernels, to drive recursion.

 Use 2nd result – co-kernels are intersections of the cubes: If there’re

at least 2 cubes, then look at the intersection of those cubes, and use

that intersected result as our potential co-kernel cube.

 One technical point: need to start with a cube-free function F

to make things work right.

 If not cube-free, just divide by biggest common cube to simplify F.

Kernel Algorithm

43

FindKernels(cube-free SOP expression F) {

K = empty;

for (each variable x in F) {

if (there are at least 2 cubes in F that have variable x) {

let S = { cubes in F that have variable x in them };

let co = cube that results from intersection of all cubes in S,

this will be the product of just those literals

that appear in each of these cubes in S;

K = K∪ FindKernels(F / co) ;

}

}

K = K∪ F ;

return(K);
}

Cube-free F is always its own

kernel, with trivial co-kernel = 1

Kernelling Example

44

 𝑎: only 1 cube with 𝑎, no work.

 𝑏: only 1 cube with 𝑏, no work.

 𝑐: two cubes 𝑎𝑐𝑒 and 𝑏𝑐𝑒 with 𝑐.

 𝑐𝑜 = 𝑎𝑐𝑒 ∩ 𝑏𝑐𝑒 = 𝑐𝑒
 𝐹 𝑐𝑜 = 𝑎 + 𝑏
 Recurse on 𝑎 + 𝑏

 𝑑: only 1 cube with 𝑑, no work.

 𝑒: three cubes 𝑎𝑐𝑒, 𝑏𝑐𝑒, and 𝑑𝑒 with 𝑒.

 𝑐𝑜 = 𝑎𝑐𝑒 ∩ 𝑏𝑐𝑒 ∩ 𝑑𝑒 = 𝑒
 𝐹 𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑
 Recurse on 𝑎𝑐 + 𝑏𝑐 + 𝑑

 𝑔: only 1 cube with 𝑔, no work.

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔

FindKernels(F):

for (each var x in F) {

if (x in ≥ 2 cubes in F) {

co = intersection of cubes;

K=K∪FindKernels(F/co) ;

}

}

K = K∪ F ;

return(K);

Kernelling Example (cont.)

45

 Recurse on 𝑎 + 𝑏

 No work for variables 𝑎 and 𝑏, since one cube with 𝑎/𝑏.

 Recurse on 𝑎𝑐 + 𝑏𝑐 + 𝑑

 No work for variables 𝑎, 𝑏, 𝑑, since one cube with 𝑎/𝑏/𝑑.
 𝑐: two cubes 𝑎𝑐 and 𝑏𝑐 with 𝑐.

 𝑐𝑜 = 𝑎𝑐 ∩ 𝑏𝑐 = 𝑐
 𝐹 𝑐𝑜 = 𝑎 + 𝑏
 Recurse on 𝑎 + 𝑏 (the same as above)

Kernelling Example (cont.)

46

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔

𝑎

no work

𝑏 𝑐
𝑑

𝑒

𝑔

𝑐𝑜 = 𝑐𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏
𝑐𝑜 = 𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

no work no work no work

𝑎 𝑏

no work no work

𝑎

no work no work

𝑏

𝑐𝑜 = 𝑐; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

no work𝑐

𝑑

𝑎 𝑏
no work no work

Kernelling Example (cont.)

47

FindKernels(F):

for (each var x in F) {

…

}

K = K∪ F ;

return(K);

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔

𝑐

𝑐𝑜 = 𝑐𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑒

𝑐𝑜 = 𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

𝑐𝑜 = 𝑐; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑐return 𝐾 = {𝑎 + 𝑏}

return 𝐾 = {𝑎 + 𝑏}

return 𝐾 = {𝑎 + 𝑏,
𝑎𝑐 + 𝑏𝑐 + 𝑑}

Kernels 𝐾 = {𝑎 + 𝑏,

𝑎𝑐 + 𝑏𝑐 + 𝑑,
𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔}

Get Co-Kernels

48

 With this algorithm …

 Can find all the kernels and co-kernels too.

 Get co-kernels by ANDing the divisor 𝑐𝑜 cubes up

recursion tree.

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔
𝑐

𝑐𝑜 = 𝑐𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑒

𝑐𝑜 = 𝑒; recurse on

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

𝑐𝑜 = 𝑐; recurse on

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑐
co-kernel:

𝑐𝑒

One Tiny Problem

49

 The algorithm will revisit same kernel multiple times.

 Why? Kernel you get for co-kernel 𝑎𝑏𝑐 is same as for 𝑐𝑏𝑎, but

current algorithm doesn’t know this and will find same

kernel for both co-kernels.

 Solution: remember which variables already tried in co-

kernels. A little extrabook keeping solves this.

𝐹 = 𝑎𝑐𝑒 + 𝑏𝑐𝑒 + 𝑑𝑒 + 𝑔
𝑐

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑒

𝐹/𝑐𝑜 = 𝑎𝑐 + 𝑏𝑐 + 𝑑

𝐹/𝑐𝑜 = 𝑎 + 𝑏

𝑐

Multilevel Synthesis Models: Summary

50

 Boolean network model

 Like a gate network, but each node in network is an SOP form.

 Supports many operations to add, reduce, simplify nodes in
network.

 Algebraic model & algebraic division

 Simplifies Boolean functions to behave like polynomials of reals.

 Divides one Boolean function by another:

F = (divisor D)•(quotient Q) + remainder R

 Kernels / Co-kernels of a function F

 Kernel = cube-free quotient obtained by dividing by a single
cube (co-kernel)

 Intersections of kernels of two functions give all multiple-
cube common divisors (Brayton & McMullen theorem).

Notes

51

 The algebraic model (and division) are not the only

options.

 There are also “Boolean division” models and algorithms that

don’t lose expressivity.

 ..but they are more complex.

 Rich universe of models & methods here.

Good References

52

 R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R.

Wang, “MIS: A Multiple-Level Logic Optimization System,”

IEEE Transactions on CAD of ICs, vol. CAD-6, no. 6, November

1987, pp. 1062-1081.

 Giovanni De Micheli, Synthesis and Optimization of Digital

Circuits, McGraw-Hill, 1994.

Next question:

what are the best common divisors to get?

How Do We Find Good Divisors?

53

 The operator is called extraction.

 Want to extract either single-cube divisor or

multiple-cube divisor from multiple expressions.

 How do we extract good divisors?

 Solution:

 When you want a single-cube divisor, go look for

co-kernels.

 When you want a multiple-cube divisor, go look for

kernels.

Approach Overview

54

 For single cube extraction

 Build a very large matrix of 0s and 1s

 Heuristically look for “prime rectangles” in this matrix

 Each such “prime” is a good common single-cube divisor

 For multiple cube extraction

 Build a (different) very large matrix of 0s and 1s

 Heuristically look for “prime rectangles” in this matrix

 Each such “prime” is a good multiple-cube divisor

 Surprisingly, a lot like Karnaugh maps!

 Except we do it all algorithmically.

Single Cube Extract: Matrix Representation

55

 Given: a set of SOP Boolean equations (P,Q,R).

 Construct the cube-literal matrix as follows:

 One row for each unique product term.

 One column for each unique literal.

 A “1” in the matrix if this product term uses this literal, else a “-”.

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

𝑃 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑒𝑔
𝑄 = 𝑎𝑏𝑓𝑔
𝑅 = 𝑏𝑑 + 𝑒𝑓

Covering this Matrix: Prime Rectangles

56

 A rectangle of a cube-literal matrix is a set of rows R and

columns C that has a ‘1’ in every row/column

intersection.

 Need not be contiguous rows or columns in matrix. Any set of

rows or columns is fine.

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

Covering this Matrix: Prime Rectangles

57

 A prime rectangle is a rectangle that cannot be made any

bigger by adding another row or a column.

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

Prime Rectangle Columns = Divisor!

58

 Primes are “biggest possible” common single-cube divisors.

 Makes sense: columns of the prime rectangle tell you the

literals in the single-cube divisor, while rows tell you which

product terms you can divide!

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

Single-cube divisor:

𝑋 = 𝑎𝑏

Prime Rectangle Columns = Divisor!

59

a b c d e f g

1 2 3 4 5 6 7

abc 1 1 1 1 - - - -

abd 2 1 1 - 1 - - -

eg 3 - - - - 1 - 1

abfg 4 1 1 - - - 1 1

bd 5 - 1 - 1 - - -

ef 6 - - - - 1 1 -

Single-cube divisor:

𝑋 = 𝑎𝑏

𝑃 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑒𝑔
𝑄 = 𝑎𝑏𝑓𝑔
𝑅 = 𝑏𝑑 + 𝑒𝑓

𝑃 = 𝑋𝑐 + 𝑋𝑑 + 𝑒𝑔
𝑄 = 𝑋𝑓𝑔
𝑅 = 𝑏𝑑 + 𝑒𝑓
𝑋 = 𝑎𝑏

Simple Bookkeeping to Track # Literals

60

 Recall: we factor & extract to reduce literals in logic
network.

 Would be nice if there was a simple formula to compute this.

 Indeed, there is:

 Start with a prime rectangle.

 Let 𝐶 = # columns in rectangle.

 For each row 𝑟 in rectangle: let Weight(𝑟) = # times this
product appears in network.

 Compute 𝐿 = 𝐶 − 1 × rows 𝑟Weight(𝑟) − 𝐶.

 Nice result: for a prime rectangle, 𝐿 = # literals saved
 To be precise: if you count literals before extracting this

single-cube divisor, and after, 𝐿 is how many literals are saved.

Compute Saved Literals: Example

61

𝑆 = 𝑎𝑏𝑤 + 𝑎𝑏𝑦

a b w y z

1 2 3 4 5

abw 1 1 1 1 - -

wz 2 - - 1 - 1

aby 3 1 1 - 1 -

𝑅 = 𝑎𝑏𝑤 + 𝑤𝑧

𝑆 = 𝑋𝑤 + 𝑋𝑦

𝑅 = 𝑋𝑤 +𝑤𝑧

𝑋 = 𝑎𝑏

Original # literals: 11

After extraction # literals: 10

saved: 1

Build

Matrix

Extraction

Compute Saved Literals: Example

62

 Now apply formula 𝐿 = 𝐶 − 1 ×
 rows 𝑟Weight(𝑟) − 𝐶

 𝐶 = # columns in rectangle

 Weight(𝑎𝑏𝑤)

 Weight(𝑎𝑏𝑦)

 𝐿 = 2 − 1 × 2 + 1 − 2 = 1

a b w y z

1 2 3 4 5

abw 1 1 1 1 - -

wz 2 - - 1 - 1

aby 3 1 1 - 1 -

Result by Counting:

saved: 1

𝑆 = 𝑎𝑏𝑤 + 𝑎𝑏𝑦

𝑅 = 𝑎𝑏𝑤 + 𝑤𝑧

⇒ 2
⇒ 2 (appear twice in the network)

⇒ 1 (appear once in the network)

Correct!

How About Multiple-Cube Factors?

63

 Remarkably, a very similar matrix-rectangle-prime concept.

 Make an appropriate matrix. Find prime rectangle. Do
literal count bookkeeping with numbers associated with
rows/columns.

 Given: A set of Boolean functions (nodes in a network)

𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒
𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒
𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

 First: find kernels of each of these functions.

 Why? Brayton-McMullen theorem: Multiple-cube factors are
intersections of the product terms in the kernels for
each of these functions.

Kernels / Co-Kernels of P,Q,R Example

64

 𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒

 Co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔

 Co-kernel 𝑏, kernel 𝑑𝑒 + 𝑓

 Co-kernel 𝑐, kernel 𝑑𝑒 + 𝑔

 Co-kernel 𝑑𝑒, kernel 𝑎 + 𝑏 + 𝑐

 Co-kernel 𝑓, kernel 𝑎 + 𝑏

 Co-kernel 𝑔, kernel 𝑎 + 𝑐

 Co-kernel 1, kernel 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 +
𝑐𝑑𝑒 (trivial, ignore)

Kernels / Co-Kernels of P,Q,R Example

65

 𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

 Co-kernel 𝑎, kernel 𝑐𝑒 + 𝑓

 Co-kernel 𝑏, kernel 𝑐𝑒 + 𝑓

 Co-kernel 𝑐𝑒, kernel 𝑎 + 𝑏

 Co-kernel 𝑓, kernel 𝑎 + 𝑏

 Co-kernel 1, kernel 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

 𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

 Co-kernel 𝑑𝑒, kernel 𝑎 + 𝑐

 Note: 𝑅 is not its own kernel, why?

(trivial, ignore)

New Matrix: Co-Kernel-Cube Matrix

66

 One row for each unique (function, co-kernel) pair in problem.

 One column for each unique cube among all kernels in problem.

𝑃: co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔
𝑃: co-kernel 𝑏, kernel 𝑑𝑒 + 𝑓
𝑃: co-kernel 𝑐, kernel 𝑑𝑒 + 𝑔
𝑃: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑏 + 𝑐
𝑃: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑃: co-kernel 𝑔, kernel 𝑎 + 𝑐
𝑄: co-kernel 𝑎, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑏, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑐𝑒, kernel 𝑎 + 𝑏
𝑄: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑅: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑐

a b c ce de f g

1 2 3 4 5 6 7

P a 1

P b 2

P c 3

P de 4

P f 5

P g 6

Q a 7

Q b 8

Q ce 9

Q f 10

R de 11

?

Entries in the Co-Kernel-Cube Matrix

67

 For each row, take the co-kernel, go look at the associated kernel.

 Look at cubes in this kernel: put “1” in columns that are cubes in

this kernel; else put “-”

𝑃: co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔
𝑃: co-kernel 𝑏, kernel 𝑑𝑒 + 𝑓
𝑃: co-kernel 𝑐, kernel 𝑑𝑒 + 𝑔
𝑃: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑏 + 𝑐
𝑃: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑃: co-kernel 𝑔, kernel 𝑎 + 𝑐
𝑄: co-kernel 𝑎, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑏, kernel 𝑐𝑒 + 𝑓
𝑄: co-kernel 𝑐𝑒, kernel 𝑎 + 𝑏
𝑄: co-kernel 𝑓, kernel 𝑎 + 𝑏
𝑅: co-kernel 𝑑𝑒, kernel 𝑎 + 𝑐

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

Entries in the Co-Kernel-Cube Matrix

68

 Each row gives the kernel of

the function (e.g., 𝑃)
obtained by dividing the co-

kernel (e.g., 𝑎).

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

𝑃: co-kernel 𝑎, kernel 𝑑𝑒 + 𝑓 + 𝑔

Prime Rectangles in Co-Kernel-Cube Matrix

69

 Prime rectangle is again a good divisor: now multiple cube

 Create the multiple cube divisor as sum (OR) of cubes of

prime rectangle columns.

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

P = (de)•(a+b+stuff1) + rem1

P = (f)•(a+b+stuff2) + rem2

Q = (ce)•(a+b+stuff3) + rem3

Q = (f)•(a+b+stuff4) + rem4

(a+b) is the multiple cube

divisor!

Simple Formula to Get # Literals Saved

70

 For each column 𝑐 in rectangle: let Weight(𝑐) = # literals
in column cube.

 For each row 𝑟 in rectangle: let Weight(𝑟) = 1 + # literals
in co-kernel label.

 For each “1” covered at row 𝑟 and column 𝑐: AND row co-
kernel and column cube; let Value(𝑟, 𝑐) = # literals in this
new ANDed product.

 # literals saved is
L

=

row 𝑟

col 𝑐

Value(𝑟, 𝑐) −

row 𝑟

Weight 𝑟

−

col 𝑐

Weight(𝑐)

Compute Saved Literals: Example

71

𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒

𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

Build

Matrix

𝑋 = 𝑎 + 𝑏

𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

𝑄 = 𝑋𝑓 + 𝑋𝑐𝑒

𝑃 = 𝑋𝑓 + 𝑋𝑑𝑒 + 𝑎𝑔 + 𝑐𝑔 + 𝑐𝑑𝑒

Original # literals: 33

After extraction # literals: 25

saved: 8

Compute Saved Literals: Example

72

 Column weight

 Weight(a) = #literals in “a”

 Weight(b) = #literals in “b”

 Row weight

 Weight((P, de)) = 1+ #literals in “de”

 Weight((P, f)) = 1+ #literals in “f ”

 Weight((Q, ce)) = 1+ #literals in “ce”

 Weight((Q, f)) = 1+ #literals in “f ”

𝑃 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑔 + 𝑐𝑔 + 𝑎𝑑𝑒 + 𝑏𝑑𝑒 + 𝑐𝑑𝑒

𝑄 = 𝑎𝑓 + 𝑏𝑓 + 𝑎𝑐𝑒 + 𝑏𝑐𝑒

𝑅 = 𝑎𝑑𝑒 + 𝑐𝑑𝑒

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

saved: 8

⇒ 1

⇒ 1

⇒ 3

⇒ 3

⇒ 2

⇒ 2

Compute Saved Literals: Example

73

 Column weight

 Weight(a) = 1; Weight(b) = 1

 Row weight

 Weight((P, de)) = 3; Weight((P, f)) = 2

 Weight((Q, ce)) = 3; Weight((Q, f)) = 2

 Value(r,c): # literals in the product of

row co-kernel and column cube.

 Apply formula 𝐿 =

 row 𝑟 col 𝑐 Value(𝑟, 𝑐) −
 row 𝑟Weight 𝑟 − col 𝑐Weight 𝑐

= 20 − 10 − 2 = 8

a b c ce de f g

1 2 3 4 5 6 7

P a 1 - - - - 1 1 1

P b 2 - - - - 1 1 -

P c 3 - - - - 1 - 1

P de 4 1 1 1 - - - -

P f 5 1 1 - - - - -

P g 6 1 - 1 - - - -

Q a 7 - - - 1 - 1 -

Q b 8 - - - 1 - 1 -

Q ce 9 1 1 - - - - -

Q f 10 1 1 - - - - -

R de 11 1 - 1 - - - -

Values

3 3

2 2

3 3

2 2

saved: 8

Correct!

Details for Both Single/Multiple Cube

Extraction

74

 You can extract a second, third, etc., divisor using same
matrix.

 Works for both single-cube and multiple-cube divisors.

 …but must update matrix to reflect new Boolean logic
network.

 Because the node contents are different, and there is a new
divisor node in network.

 For multiple-cube case, must kernel new divisor nodes to
update matrix.

 All mechanical. A bit tedious. Just skip it...

 For us: just know how to extract first good divisor is good
enough.

How to Find Prime Rectangle in Matrix?

75

 Greedy heuristics work well for this rectangle covering
problem.

 Start with a single row rectangle with “good #literal savings”.

 Grow the rectangle alternatively by adding more rows, more
columns.

 Example: Rudell’s Ping Pong heuristic.

 From his Berkeley PhD dissertation in 1989.

 Very good heuristic:

 < 1% of optimal result.

 10~100x faster than brute force approach.

Rudell’s Ping Pong Heuristic

76

1. Pick the best single row (the 1-row rectangle with best

#literals saved).

2. Look at other rows with 1s in same places (may have

more 1s). Add the one that maximizes #literals saved.

Iterate until can’t find any more.

3. Look at other columns with 1s in same places (may have

more 1s). Add the one that maximizes # literals saved.

Iterate until can’t find any more.

4. Go to 2.

5. Quit when can’t grow rectangle any more in any direction.

Extraction: Summary

77

 Single cube extraction

 Build the cube-literal matrix.

 Each prime rectangle is a good single cube divisor.

 Simple bookkeeping lets us obtain savings in #literals.

 Multiple cube extraction

 Kernel all the expressions in network; build the co-kernel-cube
matrix.

 Each prime rectangle is a good multiple cube divisor.

 Simple bookkeeping lets us obtain savings in #literals.

 Mechanically, both are rectangle covering problems (very
like Karnaugh maps!)

 Good heuristics to obtain a good prime rectangle, fast and
effective.

Aside: How to We Really Do This?

78

 Do not use rectangle covering on all kernels/co-kernels

 Too expensive to do rectangle problem on big circuits (>20K gates)

 Too expensive to go compute complete set of kernels, co-kernels

 Often use heuristics to find a “quick” set of likely divisors.

 Don’t fully kernel each node of network: too many cubes to

consider. Instead, can extract a subset of useful kernels quickly.

 Then, can either do rectangle cover on these smaller problems

(smaller since fewer things to consider in covering problem)…

 …or, try to do simpler overall network restructuring, e.g., try all

pairwise substitutions of one node into another node: keep good

ones, continue in a greedy way.

References

79

 R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang,
“MIS: A Multiple-Level Logic Optimization System,” IEEE
Transactions on CAD of ICs, vol. CAD-6, no. 6, November 1987, pp.
1062-1081.

 Giovanni De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

 R.K. Brayton, R. Rudell, A.S. Vincentelli, and A. Wang, "Multi-
Level Logic Optimization and the Rectangular Covering
Problem," Proceedings of the International Conference on
Computer Aided Design, pp. 66-69, 1987.

 Richard Rudell, Logic Synthesis for VLSI Design, PhD Thesis, Dept of
EECS, University of California at Berkeley, 1989.

 Srinivas Devadas, Abhijit Gosh, Kurt Keutzer, Logic Synthesis,
McGraw Hill Inc., 1994.

Don’t Cares

80

 We made progress on multi-level logic by simplifying the

model.

 Algebraic model: we get rid of a lot of “difficult” Boolean behaviors.

 But we lost some optimality in the process.

 How do we put it back? One surprising answer: Don’t cares

 To help this, extract don’t cares from “surrounding logic,” use them

inside each node.

 The big difference in multi-level logic

 Don’t cares happen as a natural byproduct of Boolean network

model: called Implicit Don’t Cares.

 They are all over the place, in fact. Very useful for simplification.

 But they are not explicit. We have to go hunt for them…

Don’t Cares Review: 2-Level

81

 In basic digital design...

 Don’t Care (DC) = an input pattern that can never happen

or you don’t care the output if it happens.

 Example: use binary-coded decimals (BCD) to control

seven-segment digital tube.

x y z w decimal value segment a

0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 2 1

0 0 1 1 3 1

0 1 0 0 4 0

0 1 0 1 5 1

0 1 1 0 6 1

0 1 1 1 7 1

1 0 0 0 8 1

1 0 0 1 9 1

How about input (x,y,z,w)

=(1,0,1,0),(1,0,1,1) …?

Don’t care!

Don’t Cares Review: 2-Level

82

 Since patterns (x,y,z,w)=(1,0,1,0), (1,0,1,1), (1,1,0,0),

(1,1,0,1), (1,1,1,0), (1,1,1,1) are don’t cares, we are free

to decide whether F=1 or 0, to better optimize F.

x y z w decimal value segment a

0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 2 1

0 0 1 1 3 1

0 1 0 0 4 0

0 1 0 1 5 1

0 1 1 0 6 1

0 1 1 1 7 1

1 0 0 0 8 1

1 0 0 1 9 1

1 0 d 1

0 1 d 1

1 1 d d

1 1 d d

xy
zw

00

01

11

10

00 01 11 10

Don’t Cares (DCs): Multi-level

83

 What’s different in multi-level?

 DCs arise implicitly, as a result of the Boolean logic

network structure.

 We must go find these implicit don’t cares – we must search for

them explicitly.

Multi-level DCs: Informal Tour

84

 Suppose we have a Boolean network and a node 𝑓 in the
network.

 Can we say anything about don’t cares for node 𝑓?
 No. We don’t know any “context” for surrounding parts of

network.

 As far as we can tell, all patterns of inputs (X,b,Y) are possible.

 We cannot further simplify the expression for 𝑓.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

Multi-level DCs: Informal Tour

85

 Now suppose we know something about input 𝑋 to 𝑓:
 Node 𝑋 = 𝑎𝑏.
 Also assume 𝑎 and 𝑏 are primary inputs (PIs) and 𝑓 is

primary output (PO).

 Now can we say something about DCs for node 𝑓...?
 YES!

 Because there are some impossible patterns of (X, b, Y).

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓

Multi-level DCs: Informal Tour

86

a b X Can it occur?

0 0 0 Yes

0 0 1 No

0 1 0 Yes

0 1 1 No

1 0 0 Yes

1 0 1 No

1 1 0 No

1 1 1 Yes

b X Can it occur?

0 0

0 1

1 0

1 1

Yes

No

Yes

Yes

The possible input/output

patterns for node X

Impossible patterns for (X, b, Y) are:

(1, 0, 0) and (1, 0, 1)

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓

Multi-level DCs: Informal Tour

87

 Impossible patterns for (X, b, Y) are (1, 0, 0) and (1, 0, 1).

 With them, we can simplify 𝑓.

1 d

1 1 d

Xb
Y

0

1

00 01 11 10

1

1 1 1

Xb
Y

0

1

00 01 11 10

Kmap for 𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

With don’t

cares

Can be simplified as

𝑓 = 𝑋 + 𝑏𝑌

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓

Multi-level DCs: Informal Tour

88

 Now further suppose 𝑌 = 𝑏 + 𝑐.What will happen?

b c Y Can it occur?

0 0 0 Yes

0 0 1 No

0 1 0 No

0 1 1 Yes

1 0 0 No

1 0 1 Yes

1 1 0 No

1 1 1 Yes

b Y Can it occur?

0 0

0 1

1 0

1 1

Yes

No

Yes

Yes

Impossible patterns for (X, b, Y) are:

(0, 1, 0) and (1, 1, 0)

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐
𝑐

𝑓

Multi-level DCs: Informal Tour

89

 Impossible patterns for (X, b, Y) are

 (1,0,0), (1,0,1) (From 𝑋 = 𝑎𝑏)

 (0,1,0), (1,1,0) (From 𝑌 = 𝑏 + 𝑐)

d d d

1 1 d

Xb
Y

0

1

00 01 11 10

1

1 1 1

Xb
Y

0

1

00 01 11 10
With don’t

cares

𝑓 can be simplified

as 𝑓 = 𝑏Kmap for 𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐
𝑐

𝑓

Multi-level DCs: Informal Tour

90

 Now suppose 𝑓 is not a primary output, 𝑍 is.

 Question: when does the value of the output of node 𝑓
actually affect the primary output 𝑍?

 Or, said conversely: When does it not matter what 𝑓 is?

 Let’s go look at patterns of (𝑓, 𝑋, 𝑑) at node 𝑍...

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

When Is Z “Sensitive” to Value of f?

91

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

f X d Z Does f affect Z?

0 0 0 0

1 0 0 0

0 0 1 0

1 0 1 0

0 1 0 0

1 1 0 0

0 1 1 0

1 1 1 1

No

No

No

Yes

Can we use this information to

find new patterns of (𝑋, 𝑏, 𝑌) to

help us simplify 𝑓 further?

YES!

When Is Z “Sensitive” to Value of f?

92

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

f X d Z Dose f affect Z?

0 0 0 0

1 0 0 0

0 0 1 0

1 0 1 0

0 1 0 0

1 1 0 0

0 1 1 0

1 1 1 1

No

No

No

Yes

What patterns at input to 𝑓
node (i.e., (𝑋, 𝑏, 𝑌)) are DCs,

because those patterns make 𝑍
output insensitive to changes in 𝑓?

𝑋, 𝑏, 𝑌 = (0,−,−)

This means when 𝑋 = 0, we can set 𝑓
to any value – it won’t change 𝑍.
So (𝑋, 𝑏, 𝑌) = (0,−,−) is DC of 𝑓!

Multi-level DCs: Informal Tour

93

 So, we can use this new DC pattern (0, −,−) to simplify 𝑓 further...

 … with previous DC patterns (1,0,0), (1,0,1), (0,1,0), (1,1,0).

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

d d d d

d 1 1 d

Xb
Y

0

1

00 01 11 10

1

1 1 1

Xb
Y

0

1

00 01 11 10

Kmap for 𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

With don’t

cares

𝑓 simplified as 1

Final Result: Multi-level DC Tour

94

 What happened to 𝑓?

 Due to network context, it disappeared (𝑓 = 1)!

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

XX

𝑋

𝑏

𝑋 = 𝑎𝑏
𝑎

𝑍 = 𝑑𝑋
𝑑

𝑍

Summary

95

 Don’t Cares are implicit in the Boolean network model.

 They arise from the graph structure of the multilevel
Boolean network model itself.

 Implicit Don’t Cares are powerful.

 They can greatly help simplify the 2-level SOP structure of any
node.

 Implicit Don’t Cares require computational work to find.

 For this example, we just “stared at the logic” to find the DC
patterns.

 We need some algorithms to do this automatically!

 This is what we need to study next …

Multi-Level Don’t Cares

96

 Don’t Cares are implicit in the Boolean network model.

 They arise from the graph structure of the multilevel

Boolean network model itself.

 Implicit Don’t Cares are powerful.

 They can greatly help simplify the 2-level SOP structure of any

node.

 Implicit Don’t Cares require computational work to find.

 We need some algorithms to do this automatically!

3 Types of Implicit DCs

97

 Satisfiability don’t cares: SDCs

 Belong to the wires inside the Boolean logic network.

 Used to compute controllability don’t cares (below).

 Controllability don’t cares: CDCs

 Patterns that cannot happen at inputs to a network node.

 Observability don’t cares: ODCs

 Patterns that “mask” outputs.

Controllability don’t cares: CDCs

98

 Patterns that cannot happen at inputs to a network

node.

 Example

 For node 𝑓, 𝑋, 𝑏, 𝑌 = 1,0,0 , (1,0,1) are CDCs.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓

Observability don’t cares: ODCs

99

 Input patterns to node that make primary outputs

insensitive to output of the node.

 Patterns that “mask” outputs.

 Example

 For node 𝑓, 𝑋, 𝑏, 𝑌 = 0,−,− is ODC.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐𝑐

𝑓

𝑍 = 𝑑𝑋𝑓
𝑑

𝑍

Background: Representing DC Patterns

100

 How shall we represent DC patterns at a node?

 Answer: As a Boolean function that makes a 1 when the

inputs are these DCs.

 This is often called a Don’t Care Cover.

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏
𝑌

𝑋 = 𝑎𝑏
𝑎

𝑓

Don’t care pattern of (X,b,Y)=(1,0,0), (1,0,1)

The don’t care cover is 𝑋 𝑏 𝑌 + 𝑋 𝑏𝑌 = 𝑋 𝑏

Background: Representing DC Patterns

101

 So, each SDC, CDC, ODC is really just another Boolean

function, in this strategy.

 Why do it like this?

 Because we can use all the other computational Boolean

algebra techniques we know (e.g., BDDs), to solve for, and to

manipulate the DC patterns.

 This turns out to be hugely important to making the

computation practical.

SDCs: They “Belong” to the Wires

102

 One SDC for every internal wire in Boolean logic network.

 The SDC represents impossible patterns of inputs to, and

output of, each node.

 If the node function is 𝐹, with inputs 𝑎, 𝑏, 𝑐, write as:

𝑆𝐹(𝐹, 𝑎, 𝑏, 𝑐).

𝑓 = 𝑋𝑏 + 𝑏𝑌 + 𝑋𝑌

𝑋

𝑏

𝑌

𝑋 = 𝑎𝑏
𝑎

𝑌 = 𝑏 + 𝑐
𝑐

𝑓

𝑆𝑋(𝑋, 𝑎, 𝑏) for impossible patterns of 𝑋, 𝑎, 𝑏.

𝑆𝑌(𝑌, 𝑏, 𝑐) for impossible patterns of 𝑌, 𝑏, 𝑐.

SDCs: How to Compute

103

 Compute an SDC for each output wire from each internal

Boolean node.

 You want an expression that is 1 when output 𝑋 does not

equal the Boolean expression for 𝑋.

 This is just: 𝑋⊕ (expression for 𝑋)

 Note #1: expression for 𝑋 doesn’t have 𝑋 in it!

 Note #2: this is the complement of the gate consistency

function from SAT.

 Example

𝑋 = 𝑎𝑏 + 𝑐

𝑎

𝑏

𝑐

𝑆𝐷𝐶𝑋 = 𝑋⨁ 𝑎𝑏 + 𝑐

SDCs: Example

104

 𝑆𝐷𝐶𝑋 = 𝑋⨁ 𝑎𝑏 + 𝑐 = 𝑋𝑎𝑏 + 𝑋𝑐 + 𝑋 𝑎 𝑐 + 𝑋 𝑏 𝑐

𝑋 = 𝑎𝑏 + 𝑐

𝑎

𝑏

𝑐

One impossible pattern: 𝑋𝑎𝑏𝑐 = 011 −

1

1

−

X=1!

SDCs: Summary

105

 SDCs are associated with every internal wire in Boolean

logic network.

 SDCs explain impossible patterns of input to, and output of,

each node.

 SDCs are easy to compute.

 SDCs alone are not the Don’t Cares used to simplify nodes.

 We use SDCs to build CDCs, which give impossible patterns

at input of nodes.

How to Compute CDCs?

106

 Computational recipe:

1. Get all the SDCs on the wires input to this node in Boolean

logic network.

2. OR together all these SDCs.

3. Universally Quantify away all variables that are NOT used

inside this node.

𝐹 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)

𝑋1 =…

𝑋2 =…

𝑋𝑛 =…
…

𝐶𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹

input 𝑋𝑖 to 𝐹

𝑆𝐷𝐶𝑋𝑖

How to Compute CDCs?

107

 Result: Inputs that let 𝐶𝐷𝐶𝐹 = 1 are impossible

patterns at input to node!

𝐹 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)

𝑋1 =…

𝑋2 =…

𝑋𝑛 =…

…

𝐶𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹

input 𝑋𝑖 to 𝐹

𝑆𝐷𝐶𝑋𝑖

CDCs: Why Does This Work?

108

 Roughly speaking…

 𝑆𝐷𝐶𝑋𝑖’s explain all the impossible patterns involving 𝑋𝑖 wire

input to the 𝐹 node.

 OR operation is just the “union” of all these impossible

patterns involving 𝑋𝑖’s.

 Universal Quantify removes variables not used by 𝐹, and

does so in the right way: we want patterns that are impossible

FOR ALL values of these removed variables.

𝐶𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹

input 𝑋𝑖 to 𝐹

𝑆𝐷𝐶𝑋𝑖

Compute CDCs: Example

109

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝑓

input 𝑋𝑖 to 𝑓

𝑆𝐷𝐶𝑋𝑖

Input variables to 𝑓
are 𝑎, 𝑐, 𝑑, 𝑋, 𝑌

This is 𝑏

Obtain CDCs for the node 𝑓

Compute CDCs: Example

110

 What about SDCs on primary inputs?

 They are just 0.

 Why? 𝑆𝐷𝐶𝑎 = 𝑎⨁(expression for 𝑎) = 𝑎⨁𝑎 = 0.

 Thus: SDCs on primary inputs have no impact on OR. We

can ignore primary inputs.

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

Compute CDCs: Example

111

 Since we ignore primary inputs, we have …

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝑓

input 𝑋𝑖 to 𝑓

𝑆𝐷𝐶𝑋𝑖

Only 𝑋, 𝑌

This is 𝑏

Compute CDCs: Example

112

 Thus, we have:

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓 = ∀𝑏 𝑆𝐷𝐶𝑋 + 𝑆𝐷𝐶𝑌 = ∀𝑏 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏

= 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏
𝑏=1
∙ 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏

𝑏=0

= 𝑋 + (𝑌⨁𝑎) ∙ 𝑋⨁𝑎 + 𝑌 = 𝑋𝑎 + 𝑌 𝑎 + 𝑋𝑌

Compute CDCs: Example

113

 𝐶𝐷𝐶𝑓 = 𝑋𝑎 + 𝑌 𝑎 + 𝑋𝑌

 Does it make sense?

 From 𝐶𝐷𝐶𝑓, impossible patterns are

 (𝑋, 𝑎) = (0,1)

 𝑌, 𝑎 = (1,0)

 𝑋, 𝑌 = (0,1)

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝑎 = 1 ⇒ 𝑋 = 1

𝑎 = 0 ⇒ 𝑌 = 0

𝑋 = 0 ⇒ 𝑎 = 0 && 𝑏 = 0 ⇒ 𝑌 = 0

How to Handle External CDCs?

114

 What if there are external DCs for primary inputs 𝑎, 𝑏, 𝑐, 𝑑
for which we just don’t care what 𝑓 does?

 Answer: Just OR these DCs in (𝑆𝐷𝐶𝑖) part of CDC

expression.

 Represent these DCs as a Boolean function that makes a 1

when the inputs are these DCs.

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

DC:

b=1

c=1

d=1

Handling External CDCs: Example

115

 Suppose 𝑏, 𝑐, 𝑑 = (1,1,1) cannot happen.

 How to compute 𝐶𝐷𝐶𝑓 now?

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓 = ∀𝑏 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏 + 𝑏𝑐𝑑

DC:

b=1

c=1

d=1

External DCs as a Boolean function

that makes a 1 when the pattern is

impossible.

Handling External CDCs: Example

116

 New impossible patterns are

 (𝑎, 𝑐, 𝑑, 𝑋) = (0,1,1,1)

 (𝑐, 𝑑, 𝑌) = (1,1,1)

𝑓 = 𝑋𝑐 + 𝑌𝑑 + 𝑎𝑐𝑑𝑏 𝑌 = 𝑎𝑏

𝑎 𝑋 = 𝑎 + 𝑏

𝑐

𝑓

𝑑

𝐶𝐷𝐶𝑓 = ∀𝑏 𝑋⨁ 𝑎 + 𝑏 + 𝑌⨁𝑎𝑏 + 𝑏𝑐𝑑

DC:

b=1

c=1

d=1

= 𝑋𝑎 + 𝑌 𝑎 + 𝑋𝑌 + 𝑎𝑐𝑑𝑋 + 𝑐𝑑𝑌

Make sense?

𝑎 = 0 && 𝑋 = 1 ⇒ 𝑏 = 1
Thus, 𝑏 = 𝑐 = 𝑑 = 1

𝑌 = 1 ⇒ 𝑏 = 1
Thus, 𝑏 = 𝑐 = 𝑑 = 1

CDCs: Summary

117

 CDCs give impossible patterns at input to node 𝐹 – use

as DCs.

 Impossible because of the network structure of the nodes

feeding node 𝐹.

 CDCs can be computed mechanically from SDCs on wires

input to 𝐹.

 Internal local CDCs: computed just from SDCs on wires

into 𝐹.

 External global CDCs: include DC patterns at primary

inputs.

CDCs: Summary (cont.)

118

 But CDCs still not all the Don’t Cares available to simplify

nodes.

 𝐶𝐷𝐶𝐹 derived from the structure of nodes “before” node 𝐹.

 We need to look at DCs that derive form nodes “after” node 𝐹.

 These are nodes between the output of 𝐹 and primary

outputs of overall network.

 These are ODCs.

Observability Don’t Cares (ODCs)

119

 ODCs: patterns that mask a node’s output at primary

output (PO) of the network.

 So, these are not impossible patterns – these patterns can

occur at node input.

 These patterns make this node’s output not observable at

primary output.

 “Not observable” for an input pattern means: Boolean value

of node output does not affect ANY primary output.

𝐹 = 𝑎 𝑏 + 𝑎𝑏𝑏

𝑎

𝐹

𝑍 = 𝑎𝑑𝐹
𝑑

𝑍

𝑂𝐷𝐶𝐹 are patterns of 𝑎, 𝑏 that

make 𝑍 insensitive to 𝐹’s value.

Primary Output Insensitive to F

120

 When is primary output 𝑍 insensitive to internal variable 𝐹?

 Means 𝑍 independent of value of 𝐹, given other inputs to 𝑍.

𝐹 = stuff 𝐹

𝑍 depends on 𝐹
𝑍

AND
𝐹 𝑍

0
OR

𝐹 𝑍

1

𝑍 insensitive to 𝐹 if

any other input = 0

𝑍 insensitive to 𝐹 if

any other input = 1

How about the general case?

Recall: Boolean Difference

121

 What does Boolean difference

 𝜕𝐹(𝑎, 𝑏,… ,𝑤, 𝑥) 𝜕𝑥 = 𝐹𝑥⊕𝐹𝑥 = 1mean?

 If you apply an input pattern (𝑎, 𝑏, … ,𝑤) that makes 𝜕𝐹 𝜕𝑥 = 1,
then any change in 𝑥 will force a change in output 𝐹.

 What makes output 𝐹 sensitive to input 𝑥?

 Answer: Any pattern that makes
𝜕𝐹

𝜕𝑥
= 𝐹𝑥⊕𝐹𝑥 = 1.

Combinational

Logic

𝑎
𝑏

𝑤

𝑥

…

𝐹(𝑎, 𝑏, … ,𝑤, 𝑥)

Z Insensitive to F

122

 When is primary output 𝑍 insensitive to internal variable

𝐹?

 Answer: when inputs (other than 𝐹) to 𝑍 make cofactors

𝑍𝐹 = 𝑍 𝐹.

 Make sense: if cofactors with respect to 𝐹 are same, 𝑍 does

not depend on 𝐹!

 How to find when cofactors are the same?

 Answer: Solve for 𝑍𝐹⊕𝑍 𝐹 = 1

 Note: 𝑍𝐹 ⊕𝑍 𝐹 = 1 ⇒ 𝑍𝐹⊕𝑍 𝐹 = 1 ⇒
𝜕𝑍

𝜕𝐹
= 1

How to Compute ODCs?

123

 A nice computational recipe:

1. Compute 𝜕𝑍 𝜕𝐹. Any patterns that make 𝜕𝑍 𝜕𝐹 = 1
mask output 𝐹 for 𝑍.

2. Universally Quantify away all variables that are NOT

inputs to the 𝐹 node.

𝑂𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹 𝜕𝑍 𝜕𝐹

𝐹 = stuff 𝐹

𝑍 depends on 𝐹
𝑍

How to Compute ODCs?

124

 Result: Inputs that let 𝑂𝐷𝐶𝐹 = 1mask output 𝐹 for 𝑍,
i.e., make 𝑍 insensitive to 𝐹.

𝑂𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹 𝜕𝑍 𝜕𝐹

𝐹 = stuff 𝐹

𝑍 depends on 𝐹
𝑍

Compute ODCs: Example

125

 Obtain the ODCs for node 𝐹.

𝐹 = 𝑎 𝑏 + 𝑎𝑏𝑏

𝑎
𝐹

𝑍 = 𝑎𝑏 + 𝐹 𝑏 + 𝐹 𝑐𝑐

𝑍

𝑂𝐷𝐶𝐹(𝑋1, … , 𝑋𝑛) = ∀ vars not used in 𝐹 𝜕𝑍 𝜕𝐹

They are 𝑎, 𝑏 This is 𝑐

= ∀𝑐 𝑎𝑏 + 𝐹 𝑏 + 𝐹 𝑐
𝐹=1
⊕ 𝑎𝑏 + 𝐹 𝑏 + 𝐹 𝑐

𝐹=0

= ∀𝑐 (𝑎𝑏 + 𝑐) ⊕ (𝑎𝑏) = 𝑎𝑏

Check: Does this ODC Make Sense?

126

 𝑂𝐷𝐶𝐹 = 𝑎𝑏

 ODC pattern is (𝑎, 𝑏) = (1,1)

 Make sense! Because when (𝑎, 𝑏) = (1,1), 𝑍 = 1
independent of 𝐹.

𝐹 = 𝑎 𝑏 + 𝑎𝑏𝑏

𝑎
𝐹

𝑍 = 𝑎𝑏 + 𝐹 𝑏 + 𝐹 𝑐𝑐

𝑍

ODCs: More General Case

127

 Question: what if 𝐹 feeds to many primary outputs?

 Answer: Only patterns that are unobservable at ALL

outputs can be ODCs.

 Computational recipe:

𝐹 = stuff

𝑍1 =…

𝑍2 =…

𝑍𝑛 =…
…

𝑍1

𝑍2

𝑍𝑛

𝑂𝐷𝐶𝐹 = ∀ vars not used in 𝐹

Output 𝑍𝑖

 𝜕𝑍𝑖 𝜕𝐹

AND all 𝑛 differences for each output 𝑍𝑖.

ODCs: Summary

128

 ODCs give input patterns of node 𝐹 that mask 𝐹 at
primary outputs.

 Not impossible patterns – they can occur.

 Don’t cares because primary output “doesn’t care” what 𝐹 is,
for these patterns.

 ODCs are can be computed mechanically from 𝜕𝑍𝑖 𝜕𝐹 on all
outputs connected to 𝐹.

 CDCs + ODCs give the “full” don’t care set used to simplify
𝐹.
 With these patterns, you can call something like ESPRESSO to

simplify 𝐹.

Multi-Level Don’t Cares: Are We Done?

129

 Yes, if your networks look just like above.

 More precisely, if you only want to get CDCs from nodes

immediately “before” you.

 And if you only want to get ODCs for one layer of nodes

between you and output.

𝑍1

𝑍2

𝑍𝑚

…𝐹 = stuff

𝑍1

𝑍2

𝑍𝑚

𝑋1

𝑋2

𝑋𝑛

…

𝑋1

𝑋2

𝑋𝑛

Don’t Cares, In General

130

 But, this is what real multi-level logic can look like!

 CDCs are function of all nodes “before” 𝑋.

 ODCs are function of all nodes between 𝑋 and any output.

 In general, we can never get all the DCs for node 𝑋 in a big
network.

 Representing all this stuff can be explosively large, even with
BDDs

𝑋

Summary: Getting Network DCs

131

 How we really do it? generally do not get all the DCs.

 Lots of tricks that trade off effort (time, memory) with quality

(how many DCs).

 Example: Can just extract “local CDCs”, which requires

looking at outputs of immediate precedent vertices and

computing from the SDC patterns, which is easy.

 There are also incremental, node-by-node algorithms that

walk the network to compute more of the CDC and ODC set

for X, but these are more complex.

 For us, knowing these “limited” DC recipes is sufficient.

