Reading/Hand-on Assignment 1

- Survey of 3 SAT solvers
- MiniSAT, Sweden.
- CHAFF, Princeton University.
- GRASP, University of Michigan.
- 3 groups, 1 group per solver.
- Oral presentation (April 14 ${ }^{\text {th }}$, in class)
- Technical details.
- Your test run of the solvers + results.
- Written report (due April $19^{\text {th }}$)
- One copy per group.

Multi-Level Logic Synthesis

Pingqiang Zhou
ShanghaiTech University

Why Multi-level Logic?

- Two-level forms are too restrictive.
- It has small delay but large area.
- Area $=$ gates + literals (wires), i.e., things that take space on a chip.
- Delay = maximum levels of logic gates required to compute function.
- Two-level is minimum gate delay possible, but usually worst on area.

Area versus Delay Tradeoff

Delay | Multi-level designs $=$ |
| :--- |
| many levels |
| fewer gates, but >2 levels |
| few levels |\(\xrightarrow[\begin{array}{l}Two-level design=many

gates, but only 2 levels of

logic, so fastest possible\end{array}]{\substack{small,

few gates+ wires}}\)| Area |
| :--- |
| large, |
| many gates + wires |

Why Multi-level Logic?

- Rarely see 2-level designs for really big things...
- We use 2-level logic mostly for pieces of bigger things.
- Even small things routinely done as multi-level.
- What does a 2-level design with 1000 gates look like?

This is just NOT going to be the preferred logic network structure...

Real Multilevel Example

- A small design, done by commercial synthesis tool.

Boolean Logic Network Model

- Need more sophisticated model: Boolean Logic Network
- Idea: it's a graph of connected blocks, like any logic diagram, but now individual component blocks can be 2-level Boolean functions in SOP form.

Ordinary Gate Logic

Boolean Logic Network

Multilevel Logic: What to Optimize?

- A simplistic but surprisingly useful metric: Total literal count
- Count every appearance of every variable on right hand side of "=" in every internal node.
- Delays also matter, but for this class, only focus on logic complexity.

Optimizing Multilevel Logic: Big Ideas

- Again: Boolean logic network is a data structure. What operators do we need?
- 3 basic kinds of operators:
- Simplify network nodes: no change in \# of nodes, just simplify insides, which are SOP form.
- Remove network nodes: take "too small" nodes, substitute them back into fanouts.
- This is not too hard. This is mostly manipulating the graph, simple SOP edits.
- Add new network nodes: this is factoring. Take big nodes, split into smaller nodes.
- This is a big deal. This is new. This is what we need to teach you...

Simplifying a Node

- You already know this! This is 2-level synthesis.
- Just run ESPRESSO on 2-level form inside the node, to reduce \# literals.
- As structural changes happen across network, "insides" of nodes may present opportunity to simplify.

Removing a Node

- Typical case is you have a "small" factor which doesn't seem to be worth making it a separate node.
- "Push" it back into its fanouts, make those nodes bigger, and hope you can use 2-level simplification on them.

Adding new Nodes

- This is Factoring, this is new, and hard.
- Look at existing nodes, identify common divisors, extract them, connect as fan-ins.
- Tradeoff: more delay (another level of logic), but fewer literals (less gate area).
$X=a b+c+r$

$$
Y=a b d+c d
$$

$$
Z=a b r s+c r s
$$

Multi-Level Logic Synthesis

- A more common design style.
- Small area, but may have large delay.
- More sophisticated model: Boolean logic network
- 3 kinds of optimizing step:
- Simplify a node by 2-level minimization.
- Remove a node by substituting.
- Add a node by factoring.

Multilevel Synthesis Scripts

- Multilevel synthesis like 2-level synthesis is heuristic.
- ...but it's also more complex. Write scripts of basic operators.
- Do several passes of different optimizations over the Boolean logic network.
- Do some "cleanup" steps to get rid of "too small" nodes (remove nodes).
- Look for "easy" factors: just look at existing nodes, and try to use them.
- Look for "hard" factors: do some work to extract them, try them, and keep the good ones.
- Do 2-level optimization of insides of each logic node in network (simplify nodes by ESPRESSO).
- Lots of "art" in the engineering of these scripts.
- For us, the one big thing you don't know: How to factor...

Multi-Level Logic Synthesis

- We need a new operator: factoring
- Problem \#1: how to do division?
- Solution: Algebraic model and algebraic division
- Algebraic model: Pretending that Boolean expressions behave like polynomials of real numbers, not like Boolean algebra.
- Algebraic division: Given a Boolean expression F and a divisor D, obtain quotient Q and remainder R, such that

$$
F=D \cdot Q+R
$$

- Problem \#2: how to find good divisors?
- Solution: Kernels.

Another New Model: Algebraic Model

- Factoring: How do we really do it?
- Develop another model for Boolean functions, cleverly designed to let us do this
- Tradeoff: lose some "expressivity" - some aspects of Boolean behavior and some Boolean optimizations we just cannot do, but we gain practical factoring.
- New model: Algebraic model
- Term "algebraic" comes from pretending that Boolean expressions behave like polynomials of real numbers, not like Boolean algebra.
- Big new Boolean operator: Algebraic Division (or, also "Weak" Division).

Algebraic Model

- Idea: keep just those rules that work for BOTH polynomials of reals AND Boolean algebra, but get rid of the rest.

Real numbers

$$
\begin{gathered}
a \cdot b=b \cdot a \quad a+b=b+a \\
a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
a+(b+c)=(a+b)+c \\
a \cdot(b+c)=a \cdot b+a \cdot c \\
a \cdot 1=a \quad a \cdot 0=0 \\
a+0=a
\end{gathered}
$$

Boolean algebra

$$
\begin{gathered}
a \cdot b=b \cdot a \quad a+b=b+a \\
a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
a+(b+c)=(a+b)+c \\
a \cdot(b+c)=a \cdot b+a \cdot c \\
a \cdot 1=a \quad a \cdot 0=0 \\
a+0=a
\end{gathered}
$$

Allowed

$$
\begin{gathered}
a \cdot \bar{a}=0 a+\bar{a}=1 \\
a \cdot a=a \quad a+a=a \\
a+1=1 \\
(a+b)(a+c)=a+b \cdot c
\end{gathered}
$$

Algebraic Model

- If we only get to use algebra rules from real numbers...
- Consequence: A variable and its complement must be treated as totally unrelated.
- Since no expression like $a+\bar{a}=1$ allowed.

$$
\begin{aligned}
& F=a b+\bar{a} x+\bar{b} y \\
& F=a b+R x+S y
\end{aligned}
$$

- Aside: this is one of the losses of "expressive power" of Boolean algebra.

Algebraic Model

- Idea
- Boolean functions manipulated in SOP form like polynomials.
- Each product term in such an expression is just a set of variables, e.g., $a b R y$ is the set (a, b, R, y).
- SOP expression itself is just a list of these products (cubes), e.g., $a b+R x$ is the list $(a b, R x)$.

Algebraic Division: Our Model for Factoring

- Given function F we want to factor as:

- If remainder $R=0$, we call the divisor as a "factor".

$$
\begin{aligned}
\text { Example: } F= & a c+a d+b c+b d+e \\
= & (a+b)(c+d)+e \\
& \uparrow_{\text {divisor }} \uparrow_{\text {quotient }} \uparrow_{\text {remainder }}
\end{aligned}
$$

Algebraic Division

- Example: $F=a c+a d+b c+b d+e$

Divisor is a factor if $R=0$.

- Want: $F=D \cdot Q+R$.

Divisor (D)	Quotient (Q)	Remainder (R)	Is D Factor?
$a c+a d+b c$ $+b d+e$	1	0	Yes
$a+b$	$c+d$	e	No
$c+d$	$a+b$	e	No
a	$c+d$	$b c+b d+e$	No
b	$c+d$	$a c+a d+e$	No
c	$a+b$	$a d+b d+e$	No
d	$a+b$	$a c+b c+e$	No
e	1	$a c+a d+b c+b d$	No

Algebraic Division: Very Nice Algorithm

- Inputs: A Boolean expression F and a divisor D, represented as lists of cubes (and each cube as a set of literals).
- Output
- Quotient $Q=F / D$ as a cube list, or empty if $Q=0$.
- Remainder R as a cube list, or empty if D was a factor.
- Strategy
- Cube-wise walk through cubes in divisor D, trying to divide each of them into F.
- ... intersect all the division results.

Algebraic Division Algorithm

AlgebraicDivision(F, D) \{ / / divide D into F for (each cube d in divisor D$)$ \{

Example:

Cube xyzw contains product term yz
let $C=\{$ cubes in F that contain this product term $d\}$;
if (C is empty) return (quotient $=0$, remainder $=\mathrm{F}$);
let $C=$ cross out literals of cube d in each cube of C;
if (d is the first cube we have looked at in divisor Dry

$$
\operatorname{let} Q=C ;
$$

$$
\text { else } \mathrm{Q}=\mathrm{Q} \cap \mathrm{C}
$$

\}
$\mathrm{R}=\mathrm{F}-(\mathrm{Q} \cdot \mathrm{D}) ;$
return (quotient $=\mathrm{Q}$, remainder $=\mathrm{R}$); \}

Example:

Suppose $\mathbf{C}=\mathbf{x y z}+\mathbf{y z w}+\mathbf{p q y z}$ and $\mathbf{d}=\mathbf{y z}$. Then crossing out all the $y z$ parts yields $\mathbf{x}+\mathbf{w}+\mathbf{p q}$

Algebraic Division: Example

$$
F=a x c+a x d+a x e+b c+b d+d e, D=a x+b
$$

F cube	D cube: $a x$	D cube: b
$a x c$	$a x c \rightarrow c$	-
$a x d$	$a x d \rightarrow d$	-
$a x e$	$a x e \rightarrow e$	-
$b c$	-	$b c \rightarrow c$
$b d$	-	$b d \rightarrow d$
$d e$	-	-

$$
\begin{aligned}
& \quad C=c+d+e \quad C=c+d \\
& Q=(c+d+e) \cap(c+d)=c+d \\
& R=F-Q D=\text { axe }+d e
\end{aligned}
$$

Algebraic Division: Warning

- Remember: No "Boolean" simplification, only "algebraic".
- So what? Well, suppose you have this

$$
F=a \bar{b} \bar{c}+a b+a c+b c, D=a b+\bar{c}
$$

and you want F / D.

- You must let $X=\bar{b}$ and $Y=\bar{c}$ and transform F and D to something like

$$
F=a X Y+a b+a c+b c, D=a b+Y
$$

- Because we must treat the true and complement forms of variables as totally unrelated.

One More Constraint: Redundant Cubes

- To do F / D, function F must have no redundant cubes
- Technical definition is: minimal with respect to single-cube containment.
- Means: no one cube is completely covered by one of the other cubes in SOP cover.
- E.g., $a b c d$ is completely covered by $a b$.
- Why no redundant cubes?
- Consider: $F=a+a b+b c$ and $D=a$.
- Note: F has redundant cube $a b$.
- What is F / D by our algebraic division algorithm?

$$
Q=F / D=1+b \quad \begin{aligned}
& \text { However, we don't have } 1+\text { stuff } \\
& \text { operation in algebraic model! }
\end{aligned}
$$

One More Constraint: Redundant Cubes

- ... So, we should remove redundant cubes to make the SOP minimal with respect to single-cube containment.
- Not hard.

Multilevel Logic Synthesis: Where are We?

- For Boolean function F and D, can compute $F=Q \cdot D+R$ via algebraic model.
- It is great, but still not enough: don't know how to find a good divisor D.
- Another problem: given n functions $F_{1}, F_{2}, \ldots, F_{n}$, find a set of good common divisors.

$$
F_{1}=a b+c+x
$$

$$
F_{2}=a b x+c x+q
$$

Where to Look for Good Divisors?

- Surprisingly, the algebraic model has a beautiful answer.
- One more reason we like it: Has some surprising and elegant "deep structure".
- Where to look for divisors of function F ?
- In the set of kernels of F, denoted $K(F)$.
- $K(F)$ is another set of 2-level SOP forms which are the special, foundational structure of any function F, being interpreted in our algebraic model.
- How to find a kernel $k \in K(F)$?
- Algebraically divide F by one of its co-kernels, c.

Kernels and Co-Kernels of Function F

- Kernel of a Boolean expression F is:
- A cube-free quotient k obtained by algebraically dividing F by a single cube c.
- This single cube C also has a name: it is a co-kernel of function F.

Kernels Are Cube-Free...

- Cube-free means...?
- You cannot factor out a single cube divisor that leaves no remainder.
- Technically: has no one cube that is a factor of expression.
- Pick a cube C. If you can "cross out" C in each product term of F, then F is not a kernel.

Expression F	$F=D \cdot Q+R$	F Cube-free?
a	$a \cdot 1+0$	No
$a+b$	--	Yes
$a b+a c$	$a \cdot(b+c)+0$	No
$a b c+a b d$	$a b \cdot(c+d)+0$	No
$a b+a c d+b d$	--	Yes

Some Kernel Examples

- Suppose $F=a b c+a b d+b c d$

Divisor cube d	$Q=F / d$	Is Q a kernel of $F ?$
1	$a b c+a b d+b c d$	No, has cube $=b$ as factor
a	$b c+b d$	No, has cube $=b$ as factor
b	$a c+a d+c d$	Yes! co-kernel $=b$
$a b$	$c+d$	Yes! co-kernel $=a b$

- Any Boolean function F can have many different kernels.
- The set of kernels of F is denoted as $K(F)$.

Kernels: Why Are They Important?

- Big result: Brayton \& McMullen Theorem
- From: R. Brayton and C. McMullen, "The decomposition and factorization of Boolean expressions." In IEEE International Symposium on Circuits and Systems, pages 49-54, 1982.

Expressions F and G have a common multiple-cube divisor d if and only if: there are kernels $k 1 \in K(F)$ and $k 2 \in K(G)$ such that $d=k 1 \cap k 2$ and d is an expression with at least 2 cubes in it (i.e., $k 1$ and $k 2$ have common cubes).

Multiple-Cube Divisors and Kernels

- Brayton \& McMullen Theorem in words:
- The only place to look for multiple-cube divisors is in the intersection of kernels!
- Indeed, this intersection of kernels contains all divisors.

Brayton-McMullen: Informal Illustration

$\mathrm{F}=$ cube $1 \cdot$ kernel $1+$ remainder 1
$\mathrm{G}=$ cube $2 \cdot$ kernel $2+$ remainder 2

Assume:

kernel1 \cap kernel2 $=X+Y$
$\mathrm{F}=$ cube $1 \cdot[\mathbf{X}+\mathrm{Y}+$ stuff1 $]+$ remainder 1
$\mathrm{G}=$ cube $2 \cdot[\mathbf{X}+\mathbf{Y}+$ stuff2 $]+$ remainder2

$\mathrm{F}=$ cube $1 \cdot[\mathbf{X}+\mathbf{Y}]+[$ cube $1 \cdot$ stuff1 + remainder 1$]$
$\mathrm{G}=$ cube $2 \cdot[\mathbf{X}+\mathbf{Y}]+[$ cube2 \cdot stuff2 + remainder2 $]$

$$
d=X+Y
$$

$$
F=\text { cube } 1 \cdot d+
$$

Kernels: Real Example

$$
F=a e+b e+c d e+a b
$$

$$
G=a d+a e+b d+b e+b c
$$

Kernels	Co-kernel
$\square a+b+c d$	e
$b+e$	a
$a+e$	b
$a e+b e+c d e+a \mathrm{D}$	1

Kernels	Co-kernel
$a+b$	d or e
$d+e$	a
$c+d+e$	b
$a b+a e+b d+b e$ $+b$	1

Intersecting these 2 kernels: $(a+b+c d) \cap(a+b)=a+b$

Kernels: Very Useful, But How To Find?

- Another recursive algorithm ("recursive" again!)
- There are 2 more useful properties of kernels we need to see first...
- Start with a function F and a kernel $k 1$ in $K(F)$

$$
\mathrm{F}=\text { cube } 1 \cdot \mathrm{k} 1+\text { remainder } 1
$$

- Then: a new, interesting question: what about $K(k 1)$?
- $k 1$ is a perfectly nice Boolean expression, so it has got its own kernels.
- Do these $k 1$'s kernels have anything interesting to say about $K(F)$?

How $K(k 1)$ Relates to $K(F)$...

- We know this: $\mathrm{F}=$ cube $1 \cdot \mathrm{k} 1+$ remainder 1
- Suppose k 2 is a kernel in $\mathrm{K}(\mathrm{k} 1)$, then we know

$$
\mathrm{k} 1=\text { cube } 2 \cdot \mathrm{k} 2+\text { remainder } 2
$$

- Substitute this expression for k 1 in original expression for F

$$
\mathrm{F}=\text { cube } 1 \cdot[\text { cube } 2 \bullet \mathrm{k} 2+\text { remainder } 2]+\text { remainder } 1
$$

- Since cube $1{ }^{\bullet}$ cube 2 is itself just another single cube, we have: $\mathrm{F}=($ cube $1 \cdot$ cube 2$) \bullet[\mathrm{k} 2]+[$ cube $1 \bullet$ remainder $2+$ remainder 1$]$
- Conclusion: k2 also a kernel of original F (with co-kernel cube $1 \bullet^{\circ}$ cube2)

There is a Hierarchy of Kernels Inside F

- Definition: $k \in K(F)$ is
- A level-0 kernel if it contains no kernels inside it except itself.
- In words: Only cube you can pull out, get a cube-free quotient is " 1 ".
- A level-n kernel if it contains at least one level-(n-1) kernel, and no other level-n kernels except itself.
- In words: a level-1 kernel only has level-0 kernels inside it. A level-2 kernel only has level- 1 and level- 0 kernels in it, etc...

Kernel Hierarchy: Example

- $F=a b e+a c e+d e+g h$ has three kernels:
- $k 1=b+c$, with co-kernel $a e$.
- $k 2=a b+a c+d$, with co-kernel e.
- $k 3=F$ with co-kernel 1 .
- Note: $k 1$ is level $0, k 2$ is level 1 , and $k 3$ is level 2 .
$k 3=F:$ level 2
k2: level 1
$k 1$: level 0

Kernels

- Second useful result [by Brayton et al.]:
- Co-kernels of a Boolean expression in SOP form correspond to intersections of 2 or more cubes in this SOP form.
- Note: Intersections here means that we regard a cube as a set of literals, and look at common subsets of literals.
- This is not like "AND" for products. This just extracts common literals.
- Example: ace + bce + de +g

$$
\begin{aligned}
& \text { ace } \cap \text { bce }=\text { ce } \quad \rightarrow \text { ce is a potential co-kernel } \\
& \text { ace } \cap \text { bce } \cap \mathrm{de}=\mathrm{e} \rightarrow \mathrm{e} \text { is a potential co-kernel }
\end{aligned}
$$

How to Find Kernels Using These 2 Results?

- Find the kernels recursively.
- Whenever find one kernel, call FindKernels() on it, to find (if any) lower level kernels inside.
- Use algebraic division to divide function by potential co-kernels, to drive recursion.
- Use $2^{\text {nd }}$ result - co-kernels are intersections of the cubes: If there're at least 2 cubes, then look at the intersection of those cubes, and use that intersected result as our potential co-kernel cube.
- One technical point: need to start with a cube-free function F to make things work right.
- If not cube-free, just divide by biggest common cube to simplify F.

Kernel Algorithm

FindKernels(cube-free SOP expression F) \{
$K=$ empty;
for (each variable \mathbf{x} in \mathbf{F}) \{
if (there are at least 2 cubes in \mathbf{F} that have variable \mathbf{x}) \{ let $S=\{$ cubes in F that have variable x in them $\}$;
let $\mathbf{c o}=$ cube that results from intersection of all cubes in S, this will be the product of just those literals that appear in each of these cubes in S;
$\mathbf{K}=\mathbf{K} \cup$ FindKernels(F/co);
\}
\}
$\mathbf{K}=\mathbf{K} \cup \mathbf{F}$; return(\mathbf{K});

Cube-free F is always its own kernel, with trivial co-kernel = 1

Kernelling Example

$$
F=a c e+b c e+d e+g
$$

- a : only 1 cube with a, no work.
- b : only 1 cube with b, no work.
- c : two cubes ace and bce with c.
- co =ace \cap bce $=c e$
- $F / c o=a+b$
- Recurse on $a+b$
- d : only 1 cube with d, no work.
- e : three cubes $a c e, b c e$, and $d e$ with e.
- co $=$ ace $\cap b c e \cap d e=e$
- $F / c o=a c+b c+d$
- Recurse on $a c+b c+d$
- g : only 1 cube with g, no work.

Kernelling Example (cont.)

- Recurse on $a+b$
- No work for variables a and b, since one cube with a / b.
- Recurse on $a c+b c+d$
- No work for variables a, b, d, since one cube with $a / b / d$.
- c : two cubes $a c$ and $b c$ with c.
- $c o=a c \cap b c=c$
- $F / c o=a+b$
- Recurse on $a+b$ (the same as above)

Kernelling Example (cont.)

Kernelling Example (cont.)

FindKernels(F):
for (each var \mathbf{x} in \mathbb{F}) \{
$\mathbf{K}=\mathbf{K} \cup \mathbf{F}$;
return(\mathbf{K});

$$
F=a c e+b c e+d e+g
$$

Kernels $K=\{a+b, \quad$ return $K=\{a+b$, $a c+b c+d\}$ $a c e+b c e+d e+g\}$

$$
c o=e ; \text { recuse on }
$$

$$
F / c o=a c+b c+d
$$

$$
c o=c e ; \text { recurse on }
$$

$$
F / c o=a+b
$$

$$
\text { return } K=\{a+b\}
$$

$$
c o=c ; \text { recurve on }
$$

$$
F / c o=a+b
$$

Get Co-Kernels

- With this algorithm ...
- Can find all the kernels and co-kernels too.
- Get co-kernels by ANDing the divisor CO cubes up recursion tree.

One Tiny Problem

- The algorithm will revisit same kernel multiple times.
- Why? Kernel you get for co-kernel $a b c$ is same as for $c b a$, but current algorithm doesn't know this and will find same kernel for both co-kernels.
- Solution: remember which variables already tried in cokernels. A little extrabook keeping solves this.

Multilevel Synthesis Models: Summary

- Boolean network model
- Like a gate network, but each node in network is an SOP form.
- Supports many operations to add, reduce, simplify nodes in network.
- Algebraic model \& algebraic division
- Simplifies Boolean functions to behave like polynomials of reals.
- Divides one Boolean function by another:

$$
\mathrm{F}=(\text { divisor } \mathrm{D}) \bullet(\text { quotient } \mathrm{Q})+\text { remainder } \mathrm{R}
$$

- Kernels / Co-kernels of a function F
- Kernel = cube-free quotient obtained by dividing by a single cube (co-kernel)
- Intersections of kernels of two functions give all multiplecube common divisors (Brayton \& McMullen theorem).

Notes

- The algebraic model (and division) are not the only options.
- There are also "Boolean division" models and algorithms that don't lose expressivity.
- ..but they are more complex.
- Rich universe of models \& methods here.

Good References

- R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, "MIS: A Multiple-Level Logic Optimization System," IEEE Transactions on CAD of ICs, vol. CAD-6, no. 6, November 1987, pp. 1062-1081.
- Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

Next question:
what are the best common divisors to get?

How Do We Find Good Divisors?

- The operator is called extraction.
- Want to extract either single-cube divisor or multiple-cube divisor from multiple expressions.
- How do we extract good divisors?
- Solution:
- When you want a single-cube divisor, go look for co-kernels.
- When you want a multiple-cube divisor, go look for kernels.

Approach Overview

- For single cube extraction
- Build a very large matrix of 0 s and 1 s
- Heuristically look for "prime rectangles" in this matrix
- Each such "prime" is a good common single-cube divisor
- For multiple cube extraction
- Build a (different) very large matrix of 0 s and 1 s
- Heuristically look for "prime rectangles" in this matrix
- Each such "prime" is a good multiple-cube divisor
- Surprisingly, a lot like Karnaugh maps!
- Except we do it all algorithmically.

Single Cube Extract: Matrix Representation

- Given: a set of SOP Boolean equations (P, Q,R).
- Construct the cube-literal matrix as follows:
- One row for each unique product term.
- One column for each unique literal.
- A " 1 " in the matrix if this product term uses this literal, else a "-".

$$
\begin{aligned}
& P=a b c+a b d+e g \\
& Q=a b f g \\
& R=b d+e f
\end{aligned}
$$

		a	b	c	d	e	f
a							
		1	2	3	4	5	6
7							
abc	1	1	1	1	-	-	-
abd	2	1	1	-	1	-	-
eg	3	-	-	-	-	1	-
abfg	4	1	1	-	-	-	1
bd	5	-	1	-	1	-	-
ef	6	-	-	-	-	1	1

Covering this Matrix: Prime Rectangles

- A rectangle of a cube-literal matrix is a set of rows R and columns C that has a ' 1 ' in every row/column intersection.
- Need not be contiguous rows or columns in matrix. Any set of rows or columns is fine.

Covering this Matrix: Prime Rectangles

- A prime rectangle is a rectangle that cannot be made any bigger by adding another row or a column.

	a 1	b	3	d	e	6	9 7
abc 1	1	1	1	-	-	-	-
abd 2	1	1		1	-	-	-
eg 3	-	-		-	1	-	1
abfg 4	1	1		-	-	1	1
bd 5		1		1	-	-	-
ef 6	-	-	-	-	1	1	-

Prime Rectangle Columns = Divisor!

- Primes are "biggest possible" common single-cube divisors.
- Makes sense: columns of the prime rectangle tell you the literals in the single-cube divisor, while rows tell you which product terms you can divide!

	a 1	b	3	d 4	e 5	f	9 7
abc 1	1	1	1			-	
abd 2	1	1	-	1	-	-	-
eg 3	-	-		-	1	-	1
abfg 4	1	1	-	-	-	1	1
bd 5		1		1	-	-	-
ef 6	-	-	-	-	1	1	-

Single-cube divisor:

$$
X=a b
$$

Prime Rectangle Columns = Divisor!

	a	b	C	d	e	f	$\frac{9}{7}$
abc 1	1	1	1	-	-	-	-
abd 2	1	1	-	1	-	-	-
eg 3	-	-	-	-	1	-	1
abfg 4	1	1	-	-	-	1	1
bd 5		1	-	1	-	-	-
ef 6	-	-	-	-	1	1	-

> Single-cube divisor:

$$
X=a b
$$

$$
\begin{aligned}
& P=a b c+a b d+e g \\
& Q=a b f g \\
& R=b d+e f
\end{aligned} \quad \begin{aligned}
& P=X c+X d+e g \\
& Q=X f g \\
& R=b d+e f \\
& X=a b
\end{aligned}
$$

Simple Bookkeeping to Track \# Literals

- Recall: we factor \& extract to reduce literals in logic network.
- Would be nice if there was a simple formula to compute this.
- Indeed, there is:
- Start with a prime rectangle.
- Let $C=\#$ columns in rectangle.
- For each row r in rectangle: let $\operatorname{Weight}(r)=\#$ times this product appears in network.
- Compute $L=(C-1) \times\left[\sum_{\text {rows } r} \operatorname{Weight}(r)\right]-C$.
- Nice result: for a prime rectangle, $L=\#$ literals saved
- To be precise: if you count literals before extracting this single-cube divisor, and after, L is how many literals are saved.

Compute Saved Literals: Example

$$
R=a b w+w z
$$

$S=a b w+a b y$

\# saved: 1

After extraction \# literals: 10

Compute Saved Literals: Example

$$
R=a b w+w z
$$

$S=a b w+a b y$

Result by Counting: \# saved: 1

- Now apply formula $L=(C-1) \times$ $\left[\sum_{\text {rows } r} \operatorname{Weight}(r)\right]-C$
- $C=\#$ columns in rectangle $\Rightarrow 2$
- Weight $(a b w) \Rightarrow 2$ (appear twice in the network)
- Weight $(a b y) \Rightarrow 1$ (appear once in the network)
- $L=(2-1) \times(2+1)-2=1 \quad$ Correct!

How About Multiple-Cube Factors?

- Remarkably, a very similar matrix-rectangle-prime concept.
- Make an appropriate matrix. Find prime rectangle. Do literal count bookkeeping with numbers associated with rows/columns.
- Given: A set of Boolean functions (nodes in a network)

$$
\begin{aligned}
& P=a f+b f+a g+c g+a d e+b d e+c d e \\
& Q=a f+b f+a c e+b c e \\
& R=a d e+c d e
\end{aligned}
$$

- First: find kernels of each of these functions.
- Why? Brayton-McMullen theorem: Multiple-cube factors are intersections of the product terms in the kernels for each of these functions.

Kernels / Co-Kernels of P,Q,R Example

- $P=a f+b f+a g+c g+a d e+b d e+c d e$
- Co-kernel a, kernel $d e+f+g$
- Co-kernel b, kernel $d e+f$
- Co-kernel c, kernel $d e+g$
- Co-kernel $d e$, kernel $a+b+c$
- Co-kernel f, kernel $a+b$
- Co-kernel g, kernel $a+c$
- Co-kernel 1, kernel $a f+b f+a g+c g+a d e+b d e+$ cde (trivial, ignore)

Kernels / Co-Kernels of P,Q,R Example

- $Q=a f+b f+a c e+b c e$
- Co-kernel a, kernel $c e+f$
- Co-kernel b, kernel $c e+f$
- Co-kernel ce, kernel $a+b$
- Co-kernel f, kernel $a+b$
- Co-kernel 1, kernel $a f+b f+a c e+b c e \quad$ (trivial, ignore)
- $R=a d e+c d e$
- Co-kernel de, kernel $a+c$
- Note: R is not its own kernel, why?

New Matrix: Co-Kernel-Cube Matrix

- One row for each unique (function, co-kernel) pair in problem.
- One column for each unique cube among all kernels in problem.
P : co-kernel a, kernel $d e+f+g$
P : co-kernel b, kernel $d e+f$
P : co-kernel c, kernel $d e+g$
P : co-kernel $d e$, kernel $a+b+c$
P : co-kernel f, kernel $a+b$
P : co-kernel g, kernel $a+c$
Q : co-kernel a, kernel $c e+f$
Q : co-kernel b, kernel $c e+f$
Q : co-kernel ce, kernel $a+b$
Q : co-kernel f, kernel $a+b$
R : co-kernel $d e$, kernel $a+c$

| | | | a | b | c | $c e$ | de | f | g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| P | a | 1 | | | | | | | |
| P | b | 2 | | | | | | | |
| P | c | 3 | | | | | | | |
| P | de | 4 | | | | | | | |
| P | f | 5 | | | | $?$ | | | |
| P | g | 6 | | | | | | | |
| Q | a | 7 | | | | | | | |
| Q | b | 8 | | | | | | | |
| Q | $c e$ | 9 | | | | | | | |
| Q | f | 10 | | | | | | | |
| R | de | 11 | | | | | | | |

Entries in the Co-Kernel-Cube Matrix

- For each row, take the co-kernel, go look at the associated kernel.
- Look at cubes in this kernel: put "1" in columns that are cubes in this kernel; else put "-"
P : co-kernel a, kernel $d e+f+g$
$P:$ co-kernel b, kernel $d e+f$
P : co-kernel c, kernel $d e+g$
P : co-kernel de, kernel $a+b+c$
P : co-kernel f, kernel $a+b$
P : co-kernel g, kernel $a+c$
Q : co-kernel a, kernel $c e+f$
Q : co-kernel b, kernel $c e+f$
Q : co-kernel $c e$, kernel $a+b$
Q : co-kernel f, kernel $a+b$
R : co-kernel $d e$, kernel $a+c$

			a	b	c	$c e$	de	f	g
		1	2	3	4	5	6	7	
P	a	1	-	-	-	-	1	1	1
P	b	2	-	-	-	-	1	1	-
P	c	3	-	-	-	-	1	-	1
P	de	4	1	1	1	-	-	-	-
P	f	5	1	1	-	-	-	-	-
P	g	6	1	-	1	-	-	-	-
Q	a	7	-	-	-	1	-	1	-
Q	b	8	-	-	-	1	-	1	-
Q	$c e$	9	1	1	-	-	-	-	-
Q	f	10	1	1	-	-	-	-	-
R	de	11	1	-	1	-	-	-	-

Entries in the Co-Kernel-Cube Matrix

- Each row gives the kernel of the function (e.g., P) obtained by dividing the cokernel (e.g., a).
P : co-kernel a, kernel $d e+f+g$

	a b c $c e$ de f g 1 2 3 4 5 6 7							
P a 1	-	-	-		1	1		1
P P b 2	-				1	1		-
P c 3	-	-	-	-	1			1
P de 4	1	1	1		-			
P f 5	1	1	-		-			
P $\quad \mathrm{g} 6$	1	-	1	-	-			-
Q a 7	-	-	-	1	-	1		
Q b 8	-	-		1	-	1		-
Q ce 9	1	1						
Q f 10	1	1	-					
R de 11	1	-	1	-	-			

Prime Rectangles in Co-Kernel-Cube Matrix

- Prime rectangle is again a good divisor: now multiple cube
- Create the multiple cube divisor as sum (OR) of cubes of prime rectangle columns.

Simple Formula to Get \# Literals Saved

- For each column c in rectangle: let Weight $(c)=\#$ literals in column cube.
- For each row r in rectangle: let $\operatorname{Weight}(r)=1+\#$ literals in co-kernel label.
- For each " 1 " covered at row r and column c : AND row cokernel and column cube; let $\operatorname{Value}(r, c)=\#$ literals in this new ANDed product.
- \# literals saved is

$$
\begin{aligned}
& =\sum_{\text {row } r} \sum_{\operatorname{col} c} \operatorname{Value}(r, c)-\sum_{\operatorname{row} r} \text { Weight }(r) \\
& -\sum_{\operatorname{col} c} \operatorname{Weight}(c)
\end{aligned}
$$

Compute Saved Literals: Example

$P=a f+b f+a g+c g+a d e+b d e+c d e$
$Q=a f+b f+a c e+b c e$
$R=a d e+c d e$

Original \# literals: 33

$$
P=X f+X d e+a g+c g+c d e
$$

$X=a+b \rightarrow Q=X f+X c e$
After extraction \# literals: 25

Compute Saved Literals: Example

			a	b	c	$c e$	$d e$	f	g
		1	2	3	4	5	6	7	
P	a	1	-	-	-	-	1	1	1
P	b	2	-	-	-	-	1	1	-
P	c	3	-	-	-	-	1	-	1
P	de	4	1	1	1	-	-	-	-
P	f	5	1	1	-	-	-	-	-
P	g	6	1	-	1	-	-	-	-
Q	a	7	-	-	-	1	-	1	-
Q	b	8	-	-	-	1	-	1	-
Q	$c e$	9	1	1	-	-	-	-	-
Q	f	10	1	1	-	-	-	-	-
R	de	11	1	-	1	-	-	-	-

$P=a f+b f+a g+c g+a d e+b d e+c d e$
$Q=a f+b f+a c e+b c e$
$R=a d e+c d e$

\# saved: 8

- Column weight
- Weight(a) $=$ \#literals in "a" $\Rightarrow 1$
- Weight(b) $=$ \#literals in "b" $\Rightarrow 1$
- Row weight
- Weight $((\mathrm{P}$, de $))=1+$ \#literals in "de" $\Rightarrow 3$
- Weight $((\mathrm{P}, \mathrm{f}))=1+\#$ literals in " f " $\Rightarrow 2$
- Weight $((\mathrm{Q}, \mathrm{ce}))=1+\#$ literals in "ce" $\Rightarrow 3$
- Weight $((\mathrm{Q}, \mathrm{f}))=1+$ \#literals in " f " $\Rightarrow 2$

Compute Saved Literals: Example

	a 1	b	$\begin{array}{ccccc}c & \text { ce de } \\ 3 & 4 & 5 & 6\end{array}$	9 7
P a 1	-	-	-11	1
P b 2	-	-	Values	-
$P \quad$ c 3	-	-		1
P de 4	1	1	33	
P f 5	1	1	22	
P g 6	1			
Q a 7	-	-	1-1	
Q b 8	-		1	-
Q ce 9	1	1	33	-
Q f 10	1	1	22	
R de 11	1	-	- - -	-

\# saved: 8

- Column weight
- Weight(a) $=1$; Weight $(\mathrm{b})=1$
- Row weight
- $\operatorname{Weight}((\mathrm{P}, \mathrm{de}))=3 ; \operatorname{Weight}((\mathrm{P}, \mathrm{f}))=2$
- $\operatorname{Weight}((\mathrm{Q}, \mathrm{ce}))=3 ; \operatorname{Weight}((\mathrm{Q}, \mathrm{f}))=2$
- Value(r,c): \# literals in the product of row co-kernel and column cube.
- Apply formula $L=$
$\sum_{\text {row } r} \sum_{\text {col } c} \operatorname{Value}(r, c)-$
$\sum_{\text {row } r} \operatorname{Weight}(r)-\sum_{\text {col } c} \operatorname{Weight}(c)$

$$
=20-10-2=8
$$

Correct!

Details for Both Single/Multiple Cube Extraction

- You can extract a second, third, etc., divisor using same matrix.
- Works for both single-cube and multiple-cube divisors.
- ...but must update matrix to reflect new Boolean logic network.
- Because the node contents are different, and there is a new divisor node in network.
- For multiple-cube case, must kernel new divisor nodes to update matrix.
- All mechanical. A bit tedious. Just skip it...
- For us: just know how to extract first good divisor is good enough.

How to Find Prime Rectangle in Matrix?

- Greedy heuristics work well for this rectangle covering problem.
- Start with a single row rectangle with "good \#literal savings".
- Grow the rectangle alternatively by adding more rows, more columns.
- Example: Rudell's Ping Pong heuristic.
- From his Berkeley PhD dissertation in 1989.
- Very good heuristic:
- $<1 \%$ of optimal result.
- 10~100x faster than brute force approach.

Rudell's Ping Pong Heuristic

1. Pick the best single row (the 1 -row rectangle with best \#literals saved).
2. Look at other rows with 1 s in same places (may have more 1s). Add the one that maximizes \#literals saved. Iterate until can't find any more.
3. Look at other columns with 1 s in same places (may have more 1s). Add the one that maximizes \# literals saved. Iterate until can't find any more.
4. Go to 2.
5. Quit when can't grow rectangle any more in any direction.

Extraction: Summary

- Single cube extraction
- Build the cube-literal matrix.
- Each prime rectangle is a good single cube divisor.
- Simple bookkeeping lets us obtain savings in \#literals.
- Multiple cube extraction
- Kernel all the expressions in network; build the co-kernel-cube matrix.
- Each prime rectangle is a good multiple cube divisor.
- Simple bookkeeping lets us obtain savings in \#literals.
- Mechanically, both are rectangle covering problems (very like Karnaugh maps!)
- Good heuristics to obtain a good prime rectangle, fast and effective.

Aside: How to We Really Do This?

- Do not use rectangle covering on all kernels/co-kernels
- Too expensive to do rectangle problem on big circuits ($>20 \mathrm{~K}$ gates)
- Too expensive to go compute complete set of kernels, co-kernels
- Often use heuristics to find a "quick" set of likely divisors.
- Don't fully kernel each node of network: too many cubes to consider. Instead, can extract a subset of useful kernels quickly.
- Then, can either do rectangle cover on these smaller problems (smaller since fewer things to consider in covering problem)...
- ...or, try to do simpler overall network restructuring, e.g., try all pairwise substitutions of one node into another node: keep good ones, continue in a greedy way.

References

- R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R.Wang, "MIS: A Multiple-Level Logic Optimization System," IEEE Transactions on CAD of ICs, vol. CAD-6, no. 6, November 1987, pp. 1062-1081.
- Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
- R.K. Brayton, R. Rudell, A.S. Vincentelli, and A. Wang, "MultiLevel Logic Optimization and the Rectangular Covering Problem," Proceedings of the International Conference on Computer Aided Design, pp. 66-69, 1987.
- Richard Rudell, Logic Synthesis for VLSI Design, PhD Thesis, Dept of EECS, University of California at Berkeley, 1989.
- Srinivas Devadas, Abhijit Gosh, Kurt Keutzer, Logic Synthesis, McGraw Hill Inc., 1994.

Don't Cares

- We made progress on multi-level logic by simplifying the model.
- Algebraic model: we get rid of a lot of "difficult" Boolean behaviors.
- But we lost some optimality in the process.
- How do we put it back? One surprising answer: Don't cares
- To help this, extract don't cares from "surrounding logic," use them inside each node.
- The big difference in multi-level logic
- Don't cares happen as a natural byproduct of Boolean network model: called Implicit Don't Cares.
- They are all over the place, in fact. Very useful for simplification.
- But they are not explicit. We have to go hunt for them...

Don’t Cares Review: 2-Level

- In basic digital design...
- Don't Care (DC) = an input pattern that can never happen or you don't care the output if it happens.
- Example: use binary-coded decimals (BCD) to control seven-segment digital tube.

How about input ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$)
$=(1,0,1,0),(1,0,1,1) \ldots$?

xyzw	decimal value	segment a
0000	0	1
0001	1	0
0010	2	1
0011	3	1
0100	4	0
0101	5	1
0110	6	1
0111	7	1
1000	8	1
1001	9	1

Don't Cares Review: 2-Level

- Since patterns $(x, y, z, w)=(1,0,1,0),(1,0,1,1),(1,1,0,0)$, $(1,1,0,1),(1,1,1,0),(1,1,1,1)$ are don't cares, we are free to decide whether $\mathrm{F}=1$ or 0 , to better optimize F .

xyzw	decimal value	segment a
0000	0	1
0001	1	0
0010	2	1
0011	3	1
0100	4	0
0101	5	1
0110	6	1
0111	7	1
1000	8	1
1001	9	1

$z^{x y}$				10
00	1	0	d	1
01	0	1	d	1
11	1	1	d	d
10	1	1	d	d

Don’t Cares (DCs): Multi-level

- What's different in multi-level?
- DCs arise implicitly, as a result of the Boolean logic network structure.
- We must go find these implicit don't cares - we must search for them explicitly.

Multi-level DCs: Informal Tour

- Suppose we have a Boolean network and a node f in the network.

- Can we say anything about don't cares for node f ?
- No. We don't know any "context" for surrounding parts of network.
- As far as we can tell, all patterns of inputs (X,b,Y) are possible.
- We cannot further simplify the expression for f.

Multi-level DCs: Informal Tour

- Now suppose we know something about input X to f :
- Node $X=a b$.
- Also assume a and b are primary inputs (PIs) and f is primary output (PO).

- Now can we say something about DCs for node $f \ldots$?
- YES!
- Because there are some impossible patterns of (X, b, Y).

Multi-level DCs: Informal Tour

The possible input/output patterns for node X

a	b	X	Can it occur?
0	0	0	Yes
0	0	1	No
0	1	0	Yes
0	1	1	No
1	0	0	Yes
1	0	1	No
1	1	0	No
1	1	1	Yes

b	X	Can it occur?
0	0	Yes
0	1	No
1	0	Yes
1	1	Yes

Impossible patterns for $(\mathrm{X}, \mathrm{b}, \mathrm{Y})$ are: $(1,0,0)$ and $(1,0,1)$

Multi-level DCs: Informal Tour

- Impossible patterns for $(\mathrm{X}, \mathrm{b}, \mathrm{Y})$ are $(1,0,0)$ and $(1,0,1)$.
- With them, we can simplify f.

Kmap for $f=X b+b Y+X Y$

Multi-level DCs: Informal Tour

- Now further suppose $Y=b+c$. What will happen?

b	c	Y	Can it occur?
0	0	0	Yes
0	0	1	No
0	1	0	No
0	1	1	Yes
1	0	0	No
1	0	1	Yes
1	1	0	No
1	1	1	Yes

b	Y	Can it occur?
0	0	Yes
0	1	Yes
1	0	No
1	1	Yes

Impossible patterns for $(\mathrm{X}, \mathrm{b}, \mathrm{Y})$ are:
$(0,1,0)$ and $(1,1,0)$

Multi-level DCs: Informal Tour

- Impossible patterns for ($\mathrm{X}, \mathrm{b}, \mathrm{Y}$) are
- ($1,0,0$), ($1,0,1$) (From $X=a b)$
- $(0,1,0),(1,1,0)($ From $Y=b+c)$

Kmap for $f=X b+b Y+X Y$
f can be simplified

$$
\text { as } f=b
$$

Xb			
Y 00			
0	d	d	d
1	1	1	d

Multi-level DCs: Informal Tour

- Now suppose f is not a primary output, Z is.

- Question: when does the value of the output of node f actually affect the primary output Z ?
- Or, said conversely: When does it not matter what f is?
- Let's go look at patterns of (f, X, d) at node $Z \ldots$

When Is Z "Sensitive" to Value of f?

f	X	d	Z	Does f affect Z?
0	0	0	0	No
1	0	0	0	
0	0	1	0	No
1	0	1	0	
0	1	0	0	No
1	1	0	0	
0	1	1	0	Yes
1	1	1	1	

Can we use this information to find new patterns of (X, b, Y) to help us simplify f further?

YES!

When Is Z "Sensitive" to Value of f?

What patterns at input to f node (i.e., (X, b, Y)) are DCs, because those patterns make Z output insensitive to changes in f ?

$$
(X, b, Y)=(0,-,-)
$$

This means when $X=0$, we can set f to any value - it won't change Z. So $(X, b, Y)=(0,-,-)$ is DC of $f!$

Multi-level DCs: Informal Tour

- So, we can use this new DC pattern $(0,-,-)$ to simplify f further...
- ... with previous DC patterns $(1,0,0),(1,0,1),(0,1,0),(1,1,0)$.

Kmap for $f=X b+b Y+X Y$
f simplified as 1

Xb			
		11	10
0		1	
1	1	1	1

Final Result: Multilevel DC Tour

- What happened to f ?
- Due to network context, it disappeared $(f=1)$!

Summary

- Don't Cares are implicit in the Boolean network model.
- They arise from the graph structure of the multilevel Boolean network model itself.
- Implicit Don't Cares are powerful.
- They can greatly help simplify the 2-level SOP structure of any node.
- Implicit Don’t Cares require computational work to find.
- For this example, we just "stared at the logic" to find the DC patterns.
- We need some algorithms to do this automatically!
- This is what we need to study next ...

Multi-Level Don’t Cares

- Don't Cares are implicit in the Boolean network model.
- They arise from the graph structure of the multilevel Boolean network model itself.
- Implicit Don't Cares are powerful.
- They can greatly help simplify the 2-level SOP structure of any node.
- Implicit Don't Cares require computational work to find.
- We need some algorithms to do this automatically!

3 Types of Implicit DCs

- Satisfiability don't cares: SDCs
- Belong to the wires inside the Boolean logic network.
- Used to compute controllability don't cares (below).
- Controllability don't cares: CDCs
- Patterns that cannot happen at inputs to a network node.
- Observability don't cares: ODCs
- Patterns that "mask" outputs.

Controllability don’t cares: CDCs

- Patterns that cannot happen at inputs to a network node.
- Example
- For node $f,(X, b, Y)=(1,0,0),(1,0,1)$ are CDCs.

Observability don’t cares: ODCs

- Input patterns to node that make primary outputs insensitive to output of the node.
- Patterns that "mask" outputs.
- Example
- For node $f,(X, b, Y)=(0,-,-)$ is ODC.

Background: Representing DC Patterns

- How shall we represent DC patterns at a node?
- Answer: As a Boolean function that makes a 1 when the inputs are these DCs.
- This is often called a Don't Care Cover.

Don't care pattern of $(\mathrm{X}, \mathrm{b}, \mathrm{Y})=(1,0,0),(1,0,1)$
The don't care cover is $X \bar{b} \bar{Y}+X \bar{b} Y=X \bar{b}$

Background: Representing DC Patterns

- So, each SDC, CDC, ODC is really just another Boolean function, in this strategy.
- Why do it like this?
- Because we can use all the other computational Boolean algebra techniques we know (e.g., BDDs), to solve for, and to manipulate the DC patterns.
- This turns out to be hugely important to making the computation practical.

SDCs: They "Belong" to the Wires

- One SDC for every internal wire in Boolean logic network.
- The SDC represents impossible patterns of inputs to, and output of, each node.
- If the node function is F, with inputs a, b, c, write as:
$S_{F}(F, a, b, c)$.
$S_{X}(X, a, b)$ for impossible patterns of X, a, b.

SDCs: How to Compute

- Compute an SDC for each output wire from each internal Boolean node.
- You want an expression that is 1 when output X does not equal the Boolean expression for X.
- This is just: $X \oplus$ (expression for X)
- Note \#1: expression for X doesn't have X in it!
- Note \#2: this is the complement of the gate consistency function from SAT.
- Example

$$
S D C_{X}=X \oplus(a b+c)
$$

SDCs: Example

- $S D C_{X}=X \oplus(a b+c)=\bar{X} a b+\bar{X} c+X \bar{a} \bar{c}+X \bar{b} \bar{c}$

1

One impossible pattern: $X a b c=011-$

SDCs: Summary

- SDCs are associated with every internal wire in Boolean logic network.
- SDCs explain impossible patterns of input to, and output of, each node.
- SDCs are easy to compute.
- SDCs alone are not the Don't Cares used to simplify nodes.
- We use SDCs to build CDCs, which give impossible patterns at input of nodes.

How to Compute CDCs?

- Computational recipe:

1. Get all the SDCs on the wires input to this node in Boolean logic network.
2. OR together all these SDCs.
3. Universally Quantify away all variables that are NOT used inside this node.

$$
C D C_{F}\left(X_{1}, \ldots, X_{n}\right)=(\forall \text { vars not used in } F)\left[\sum_{\text {input } X_{i} \text { to } F} S D C_{X_{i}}\right]
$$

How to Compute CDCs?

$C D C_{F}\left(X_{1}, \ldots, X_{n}\right)=(\forall$ vars not used in $F)\left[\sum_{\text {input } X_{i} \text { to } F} S D C_{X_{i}}\right]$

- Result: Inputs that let $C D C_{F}=1$ are impossible patterns at input to node!

CDCs: Why Does This Work?

$C D C_{F}\left(X_{1}, \ldots, X_{n}\right)=(\forall$ vars not used in $F)\left[\sum_{\text {input } X_{i} \text { to } F} S D C_{X_{i}}\right]$

- Roughly speaking...
- $S D C_{X_{i}}$'s explain all the impossible patterns involving X_{i} wire input to the F node.
- OR operation is just the "union" of all these impossible patterns involving X_{i} 's.
- Universal Quantify removes variables not used by F, and does so in the right way: we want patterns that are impossible FOR ALL values of these removed variables.

Compute CDCs: Example

Obtain CDCs for the node f

$C D C_{f}\left(X_{1}, \ldots, X_{n}\right)=(\underbrace{\forall \text { vars not used in } f}_{\text {This is } b})[\underbrace{\sum_{\text {input } X_{i} \text { to } f} S D C_{X_{i}}}]$
Input variables to f

Compute CDCs: Example

- What about SDCs on primary inputs?
- They are just 0.
- Why? $S D C_{a}=a \oplus($ expression for $a)=a \oplus a=0$.
- Thus: SDCs on primary inputs have no impact on OR. We can ignore primary inputs.

Compute CDCs: Example

- Since we ignore primary inputs, we have ...

Compute CDCs: Example

- Thus, we have:

$$
\begin{aligned}
& C D C_{f}=(\forall b)\left[S D C_{X}+S D C_{Y}\right]=(\forall b)[[X \oplus(a+b)]+[Y \oplus a b]] \\
& =[[X \oplus(a+b)]+[Y \oplus a b]]_{b=1} \cdot[[X \oplus(a+b)]+[Y \oplus a b]]_{b=0} \\
& =[\bar{X}+(Y \oplus a)] \cdot[(X \oplus a)+Y]=\bar{X} a+Y \bar{a}+\bar{X} Y
\end{aligned}
$$

Compute CDCs: Example

- $C D C_{f}=\bar{X} a+Y \bar{a}+\bar{X} Y$
- Does it make sense?
- From $C D C_{f}$, impossible patterns are
- $(X, a)=(0,1) \quad a=1 \Rightarrow X=1$
- $(Y, a)=(1,0) \quad a=0 \Rightarrow Y=0$
- $(X, Y)=(0,1) \quad X=0 \Rightarrow a=0 \& \& b=0 \Rightarrow Y=0$

How to Handle External CDCs?

- What if there are external DCs for primary inputs a, b, c, d for which we just don't care what f does?
- Answer: Just OR these DCs in $\left(\sum S D C_{i}\right)$ part of CDC expression.
- Represent these DCs as a Boolean function that makes a 1 when the inputs are these DCs.

$$
\begin{aligned}
& \mathrm{DC}: \\
& b=1 \\
& c=1 \\
& d=1
\end{aligned}
$$

Handling External CDCs: Example

- Suppose $(b, c, d)=(1,1,1)$ cannot happen.
- How to compute $C D C_{f}$ now?

External DCs as a Boolean function that makes a 1 when the pattern is impossible.

Handling External CDCs: Example

- New impossible patterns are

Make sense?

- $(a, c, d, X)=(0,1,1,1) \quad a=0 \& \& X=1 \Rightarrow b=1$

Thus, $b=c=d=1$

- $(c, d, Y)=(1,1,1) \quad Y=1 \Rightarrow b=1$

CDCs: Summary

- CDCs give impossible patterns at input to node F - use as DCs.
- Impossible because of the network structure of the nodes feeding node F.
- CDCs can be computed mechanically from SDCs on wires input to F.
- Internal local CDCs: computed just from SDCs on wires into F.
- External global CDCs: include DC patterns at primary inputs.

CDCs: Summary (cont.)

- But CDCs still not all the Don't Cares available to simplify nodes.
- $C D C_{F}$ derived from the structure of nodes "before" node F.
- We need to look at DCs that derive form nodes "after" node F.
- These are nodes between the output of F and primary outputs of overall network.
- These are ODCs.

Observability Don’t Cares (ODCs)

- ODCs: patterns that mask a node's output at primary output (PO) of the network.
- So, these are not impossible patterns - these patterns can occur at node input.
- These patterns make this node's output not observable at primary output.
- "Not observable" for an input pattern means: Boolean value of node output does not affect ANY primary output.

Primary Output Insensitive to F

- When is primary output Z insensitive to internal variable F ?
- Means Z independent of value of F, given other inputs to Z.

Z insensitive to F if any other input $=0$

Z insensitive to F if any other input $=1$

How about the general case?

Recall: Boolean Difference

- What does Boolean difference $\partial F(a, b, \ldots, w, x) / \partial x=F_{x} \oplus F_{\bar{x}}=1$ mean?
- If you apply an input pattern (a, b, \ldots, w) that makes $\partial F / \partial x=1$, then any change in x will force a change in output F.
- What makes output F sensitive to input x ?
- Answer: Any pattern that makes $\frac{\partial F}{\partial x}=F_{x} \oplus F_{\bar{x}}=1$.

Z Insensitive to F

- When is primary output Z insensitive to internal variable F ?
- Answer: when inputs (other than F) to Z make cofactors $Z_{F}=Z_{\bar{F}}$.
- Make sense: if cofactors with respect to F are same, Z does not depend on F !
- How to find when cofactors are the same?
- Answer: Solve for $Z_{F} \bar{\bigoplus} Z_{\bar{F}}=1$
- Note: $Z_{F} \bar{\oplus} Z_{\bar{F}}=1 \Rightarrow \overline{Z_{F} \oplus Z_{\bar{F}}}=1 \Rightarrow \frac{\overline{\partial Z}}{\partial F}=1$

How to Compute ODCs?

- A nice computational recipe:

1. Compute $\overline{\partial Z / \partial F}$. Any patterns that make $\overline{\partial Z / \partial F}=1$ mask output F for Z.
2. Universally Quantify away all variables that are NOT inputs to the F node.

$O D C_{F}\left(X_{1}, \ldots, X_{n}\right)=(\forall$ vars not used in $F)[\overline{\partial Z / \partial F}]$

How to Compute ODCs?

$O D C_{F}\left(X_{1}, \ldots, X_{n}\right)=(\forall$ vars not used in $F)[\overline{\partial Z / \partial F}]$

- Result: Inputs that let $O D C_{F}=1$ mask output F for Z, i.e., make Z insensitive to F.

Compute ODCs: Example

- Obtain the ODCs for node F.

$$
\begin{aligned}
& O D C_{F}(\underbrace{\left(X_{1}, \ldots, X_{n}\right)}_{\text {They are } a, b}=(\underbrace{\forall \text { vars not used in } F}_{\text {This is } c})[\overline{\partial Z / \partial F}] \\
= & (\forall c)\left[\begin{array}{l}
(a b+F \bar{b}+F \bar{c})_{F=1} \oplus(a b+F \bar{b}+F \bar{c})_{F=0}
\end{array}\right] \\
= & (\forall c)[\overline{(a b+\bar{c}) \oplus(a b)}]=a b
\end{aligned}
$$

Check: Does this ODC Make Sense?

- $O D C_{F}=a b$
- ODC pattern is $(a, b)=(1,1)$
- Make sense! Because when $(a, b)=(1,1), Z=1$ independent of F.

ODCs: More General Case

- Question: what if F feeds to many primary outputs?
- Answer: Only patterns that are unobservable at ALL outputs can be ODCs.

- Computational recipe:

AND all n differences for each output Z_{i}.

ODCs: Summary

- ODCs give input patterns of node F that mask F at primary outputs.
- Not impossible patterns - they can occur.
- Don't cares because primary output "doesn't care" what F is, for these patterns.
- ODCs are can be computed mechanically from $\overline{\partial Z_{i} / \partial F}$ on all outputs connected to F.
- CDCs + ODCs give the "full" don't care set used to simplify F.
- With these patterns, you can call something like ESPRESSO to simplify F.

Multi-Level Don’t Cares: Are We Done?

- Yes, if your networks look just like above.
- More precisely, if you only want to get CDCs from nodes immediately "before" you.
- And if you only want to get ODCs for one layer of nodes between you and output.

Don't Cares, In General

- But, this is what real multi-level logic can look like!
- CDCs are function of all nodes "before" X.
- ODCs are function of all nodes between X and any output.
- In general, we can never get all the DCs for node X in a big network.
- Representing all this stuff can be explosively large, even with BDDs

Summary: Getting Network DCs

- How we really do it? generally do not get all the DCs.
- Lots of tricks that trade off effort (time, memory) with quality (how many DCs).
- Example: Can just extract "local CDCs", which requires looking at outputs of immediate precedent vertices and computing from the SDC patterns, which is easy.
- There are also incremental, node-by-node algorithms that walk the network to compute more of the CDC and ODC set for X , but these are more complex.
- For us, knowing these "limited" DC recipes is sufficient.

