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Optimal Wire Sizing and Buffer Insertion for 
Low Power and a Generalized Delay Model 

John Lillis, Chung-Kuan Cheng, Senior Member, IEEE, and Ting-Ting Y. Lin, Member, IEEE 

Abstruct- We present efficient, optimal algorithms for timing 
optimization by discrete wire sizing and buffer insertion. Our 
algorithms are able to minimize a cost function subject to given 
timing constraints; we focus on minimization of dynamic power 
dissipation, but the algorithm is also easily adaptable to, for 
example, area minimization. In addition, the algorithm efficiently 
computes the complete, optimal power-delay trade-off curve for 
added design flexibility. An extension of our basic algorithm ac- 
commodates a generalized delay model which takes into account 
the effect of signal slew on buffer delay which can contribute 
substantially to overall delay. To the best of our knowledge, 
our approach represents the first work on buffer insertion to 
incorporate signal slew into the delay model while guaranteeing 
optimality. The effectiveness of these methods is demonstrated 
experimentally. 

NOMENCLATURE 
A routing tree rooted at node U .  

The left and right children of node v ,  respec- 
tively. 
Tree edge (wire) from node v to its parent. 
Length of edge e. 
Capacitance of edge e. 
Input capacitance of sink 'U. 

Resistance of edge e. 
Input capacitance of buffer b. 
Output resistance of buffer b or gate g. 
Intrinsic delay of buffer b or gate g. 
Polarity; usually referring to a signal, p = 1 
meaning inverted. 
Polarity of buffer b; P b  = 1 indicating b is an 
inverter, P b  = 0 otherwise. 
Required arrival time of sink node U. 
Largest possible wire width (1 . . . W are possi- 
ble). 
Buffer library. 
Set of leaves of tree T.  

I. INTRODUCTION 

IMING optimization techniques for VLSI circuits have T received much attention in recent years due to increas- 
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ingly aggressive designs and the impact of technological trends 
such as shrinking geometries. Among these techniques are 
performance driven placement and routing, gate sizing, buffer 
insertion (often referred to as fanout optimization in pre-layout 
works), and wire sizing. In this work, we focus on wire sizing 
and buffer insertion 

Wire Sizing: Automatic sizing of wire widths is an at- 
tractive technique for timing optimization in signal nets, 
particularly with the advent of submicron technology. The 
benefit of wire sizing lies in the fact that, with shrinking 
geometries, wire resistance is now a significant contributor 
to overall delay. As a result, it makes sense to tune the 
widths of wires to balance the trade-off between added ca- 
pacitance and decreased resistance. Wire sizing can be of 
significant benefit for both on-chip and for inter-chip (e.g., 
MCM) interconnects. 

Cong, Leung, Zhou, and Koh provided several studies of 
wire sizing in [4], [2], and [3] and demonstrated the potential 
of wire sizing in improving delay. In these works, the problem 
was formulated as the task of minimizing the weighted sum of 
the source-to-sink Elmore delays for a set of identified critical 
sinks in a given routing tree. The weighting coefficients are 
presumably provided by the user. Under this formulation, they 
prove several properties which lead to an O ( n T )  algorithm 
for a net with n segments each having r possible widths. 
The authors also propose a greedy heuristic procedure with 
run time of O(n3r). Cong et al. also attack the problem of 
incorporating a cost function such as area or power. Their 
formulation is, again, a weighted sum of their stated timing 
objective function and the cost function. 

Later, in [12], Sapatnekar studied the more common metric 
of maximum source-to-sink delay-or, more generally, the task 
of minimizing cost subject to given timing constraints. He 
noted that the key property of separability used by Cong and 
Leung in designing their algorithm did not hold for this case. 
In addition, the property of monotonicity utilized by Cong et 
al. does not apply when the length of all wire segments is not 
identical. In the same paper, Sapatnekar proposed a geometric 
programming formulation of the maximum delay, continu- 
ous wire-sizing problem followed by a mapping heuristic to 
discretize the solution. 

Later, in [8], a dynamic programming algorithm which 
exploited the fact that the lengths of wire segments are discrete 
in nature (i.e., that they are integer multiples of a basic grid 
length) was given. This led to the observation that, over all 
possible width assignments to a subtree, the number of distinct 
capacitive values at the root is polynomially bounded. This 
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Max Req-Time Min Power 
O(nmW2) O(nmW2) 

O(n21BI2) O( IB 1n3c&,, log( ncmax )) 

TABLE I 

yielded a polynomial time minimum delay wire sizing dynamic 
programming algorithm. However, power considerations were 
not explicitly taken into account. 

Buffer Insertion: Research on buffer insertion includes the 
early works of Berman et al., [I], Touati [16j, and van 
Ginneken [17]. Other contributions in this area include [9], 
[14], [8j, and [7j. With the exceptions of [17j, [7], and more 
recently [SI, these works have focussed on timing optimization 
prior to layout by imposing buffer trees on the network. 
There are important engineering considerations associated 
with such an approach. Perhaps most important among these 
considerations are the difficulty of accurately taking into 
account the resistive and capacitive effects of interconnect, 
as observed in [7j, and potential routability problems created 
by pre-layout buffer trees as mentioned in [ 1 j. 

As a result of these practical considerations, we focus 
on a post-layout methodology where topological information 
is available. Previous work on post-layout buffer insertion 
includes [17], in which van Ginneken gave an elegant poly- 
nomial time algorithm for delay-optimal buffer insertion into 
a given topology. He extended his algorithm to minimize the 
number of buffers subject to given timing constraints. He noted 
that this extension was not, in general, polynomial, but that 
efficient run-time was observed in practice. Implementation 
details of this extension were not given. His algorithm did not 
consider the effect of signal slew on buffer delay. 

In [8], a delay-optimal algorithm for simultaneous buffer 
insertion and wire sizing was given. However, neither power 
(nor area) considerations nor signal slew were taken into 
account. 

Contributions of This Paper: In this paper, we present ef- 
ficient algorithms for wire sizing, buffer insertion, and both 
techniques simultaneously. Our main contributions are sum- 
marized as follows. 

We give optimal, polynomial-time algorithms for the min 
power wire sizing problem and the simultaneous wire siz- 
ing, buffer insertion problem. This includes computation 
of the entire power-delay curve and a novel data-structure 
for efficiently pruning suboptimal solutions. 
We incorporate signal slew into the buffer delay model 
by manipulation of piecewise linear functions. 

In this work, timing constraints are given explicitly as 
required arrival times at the sinks of the net rather than as 
coefficients of a weighted sum of the sink delays. We suggest 
that computation of the entire power-delay trade-off curve is 
of practical significance as it provides added flexibility to the 
designer. 

The incorporation of signal slew is also significant since its 
contribution to total delay can be over 50% (see e.g., [6j) and 
therefore, cannot be neglected in practice. 

The ability to use inverters as buffers rather than resorting 
to pairs of inverters to ensure proper signal polarity is also of 
practical utility. 

The complexity of our algorithms without signal slew taken 
into account is summarized in Table I. 

In the table, n is the number of sinks in the net, m is the 
number of sizeable wire segments, and e,,, is the largest 
possible capacitive value of any component in the tree. Set B 
is the given buffer library and W is the largest multiple of the 
basic wire width allowed. Where O(ck,,) is a component of 
the complexity, we assume the capacitive parameters of the 
problem are given as or translated into polynomially-bounded 
integers. As such, these algorithms are pseudopolynomial. 
However, in these cases, the bounds are very pessimistic 
versus observed behavior. 

When signal slew is incorporated into the delay model, we 
are not able to give polynomial bounds due to degenerate 
situations. However, in practice, we observe these algorithms 
to perform similarly to their simpler counterparts-usually a 
constant factor slower. 

To the best of our knowledge, this work represents the most 
efficient optimal algorithms to date for these problems. We 
also improve on the results of [8] in terms of run-time when 
minimizing maximum delay independent of power is the goal. 

Our algorithms adopt a bottom-up dynamic programming 
approach. Rather than computing a single solution for each 
subtree, we compute a set of solutions where each member 
of the set is characterized by both the timing properties and 
capacitance of the associated solution. Solution sets are kept 
small by employing an observation made by van Ginneken 
[I71 which essentially says that when combining the solution 
sets of a node’s left and right children to create a new 
solution set, the new set need not consider all pairs of left and ’ 
right solutions; rather only a linear number of pairs need be 
considered since one branch will always dominate. In addition, 
when minimizing power, we employ a similar observation to 
identify inherently suboptimal solutions and thereby drastically 
reduce the size of solution sets. This property is identified 
efficiently by use of a novel tree data-structure. Generalizations 
of these techniques are developed to handle the case where 
slew is taken into account. 

The remainder of the paper is organized as follows. 
Section I1 gives delay models and problem formulations. 
Section I11 gives the overall algorithmic framework. 
Section IV addresses the min-delay/max-required / time 
formulation. Section V generalizes the algorithm to minimize 
power subject to timing constraints. Section VI generalizes 
the algorithm further to account for the contribution of 
signal slew to delay by the manipulation of piecewise linear 
functions. Section VI1 gives experimental results and we 
conclude in Section VIII. 
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11. MODELS AND PROBLEM FORMULATION 

A. Delay Models 

As in previous works, we adopt the Elmore delay model 
[5] for interconnect delay and standard RC models for buffer 
delay. 

For a given routing tree possibly containing buffers, delay 
along a root-sink path is made of 1) delay along wires and 2) 
delay through buffers and the driving gate. The computation 
of these delays is detailed in the following. 

The capacitance c, and resistance re of wire segment e 
having width we are given as 

ce = ale . we 

where a and /3 are characteristic constants.' 
To compute the Elmore delay of a wire e, in tree T ,  we 

first recursively define c(T,), the total lumped capacitance of 
T,, as follows: 

re = ple /we  

Intuitively, c(T,) is simply 

if v is a sink node 
else if buffer b placed at U 

otherwise. 
(1) 

the capacitive load seen at 
v-i.e., the sum of the loads of the left and right subtrees, 
c(Tq,l), and c(T,(,)), and the capacitance of the wires to 
those subtrees, cei(,) and ceT(l)). Given this notation, the Elmore 
delay of wire e,, is defined as 

elmore(e,) = rev (3 + c ( ~ , ) ) .  

Similarly, the delay through a buffer b at node v in a basic 
model is determined by the parameters c(T,), b's intrinsic 
(load independent) delay d b  and output resistance rb. The delay 
through the buffer with load cl on its output is 

buf-delay(b, cl) = db + Q C ~ .  

The key to buffer insertion in optimizing delay is the well- 
known isolation property of buffers exhibited in (1). Namely, 
the capacitance of a subtree rooted at a buffer, as seen by 
ancestors in the tree, is determined entirely by the input 
capacitance of that buffer. In other words, the buffer decouples 
the capacitance of its descendants from its ancestors by the 
buffer. 

A common generalization of this basic buffer delay model 
includes an additive term to account for the slew of the signal 
entering the buffer. One model for this delay is the product of a 
buffer dependent constant and the load delay of the previous 
stage, DLprev--i.e., the RC delay of the driving buffer. Thus 
we denote the augmented delay equation as 

buf-delaySl,,(b, cl)  = buf-delay(b, q )  + XbDLprev. (2) 

This and similar models have been proposed in various con- 
texts (e.g., [15], [7]).  An extension of our algorithms to 
accommodate this delay model is discussed in Section VI. 

'While our algorithms are presented with this model, we note that it is not 
key--e.g., such phenomenon as fringe capacitance can be taken into account. 

B. Maximum Required Time Formulation 

We adopt maximization of required arrival time at the root 
of the net as our timing metric. The required arrival time at 
node v, q(T,), is the latest time at which the input(s) of v must 
be available for the required arrival times of all sinks in T, 
to be met. This measure is particularly useful since it allows 
a straightforward application of our algorithms to optimize 
a combinational network by proceeding in bottom-up order. 
Formally, q(T,) is defined as 

min (qu - delay(v, U ) ) .  
= uEleaves(T,) 

If the required arrival time, q(T) at the root is nonnegative, 
the tree T is said to meet its timing requirements. Note 
that the required time formulation is a generalization of the 
maximum delay formulation-i.e., if q, = 0 for each sink v 
then maxdelay = -q(T). 

C. Minimizing Power Subject to Timing Requirements 

is given in [18] as 
The dynamic power dissipation for CMOS technology Pd 

where CL is load capacitance and f, is the switching fre- 
quency. Thus, with respect to buffer insertion and wire sizing, 
total capacitance is the correct measure of dynamic power 
dissipation since f, and VDD are unaffected by these methods. 

If we let Ctotal be the total capacitance associated with a 
buffered and sized routing tree we have the following problem 

minimize Ctotal 
subject to q(T) 2 0. 

Alternatively, an attractive approach to the problem is to 
provide the designer with a power-delay trade-off curve from 
which the desired solution may be chosen. 

Implicitly, we have assumed that dynamic power dissipation 
dominates short-circuit power dissipation. We justify this by 
the assumption that design techniques have been employed to 
eliminate or drastically reduce short-circuit power dissipation. 

111. ALGORITHMIC FRAMEWORK 
We first give the framework for a high level dynamic 

programming algorithm into which all subsequent algorithms 
will fit. The framework covers all variants of interest. For 
instance, if we are only interested in wire sizing, we simply 
run the algorithm with an empty buffer library B. The specific 
algorithms will differ in their implementation of the basic 
routines called by the general algorithm and the characteristics 
of the solution sets they compute. 

This general dynamic programming algorithm GDPO is 
given as pseudocode in Fig. 1. The algorithm computes the 
solution sets S b o t ( V )  and Stop(v). The set Sbot('U) can be 
thought of as the set of solutions for subtree Tu, including the 
possibility of inserting a buffer at U. Similarly, the set Sto,(v) 
can be thought of as the set of solutions for T, augmented by 
the wire from its parent e, and including possible sizing of e,. 
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Algorithm GDP(T,B,W) 
Foreach node v E T In topological ordei from leaves to root 

If ti IS a leaf 

Else 

If U IS not the root 

Else /* v is the root */ 

Compute Sb,,(V) eBase_Case(v) 

Compute shot ( v )  c Boltom-Soietzons(~, St,, ( [ ( v ) ) ,  Stop (?-(U)))  

Compute Stop(v) + Top.Solutzons(v, Sbot(U)) 

Compute OptzmulSoln(v, Shot ( U ) )  

Fig. 1. General algorithm structure. 

with superscript “+” contain solutions where we assume the 
incoming signal is noninverted and the sets with superscript 
“-” contain solutions where the incoming signal is assumed 
to be inverted. 

pairs. Intuitively, the English meaning of these sets is, for 
example, 

The solutions themselves are loud, required-ti 

( e ,  q )  E S&t(v) e “There exists an assignment to T, 
with upward load c and required time 
q at ‘U when the incoming signal is 

The four procedures Base-Case( ), Bot-Solutions( }, 
not inverted.” 

Top-Solutions( ), and Optimal-Soh( ) are routines which 
inductively compute solution sets from the solution sets of 
descendants. For each particular algorithm, these sets are 
parameterized differently. Intuitively, these routines can be 
thought of as follows: 

An important initial observation made by van Ginneken [ 171 
. is the following. 

Property4.1: For ( c , q ) ,  (c’,q’) E S, if c’ 2 c and q’ i q 
then (c’,q) is suboptimal. 

This is clear since a larger load can only worsen delay of 
ancestor components. In words, we always prefer smaller load 
and larger required time. Suppose these sets are arranged in 
increasing order of load. This leads to the following property. 

Property 4.2: Any load-required-time set S in increasing 
order of load, may be replaced by S’ C S where S’ is strictly 
increasing in required time. 

We maintain this sorted order as an invariant so that we 

In the context of our algorithmic framework, we fully 

Base-Case() Compute the sing1eton set giving 
evant parameters at sink v. 
Given sets for left and right 

‘Orrlpute the Set 

the possibility Of inserting a 
buffer at v. 
Given the solution set at v, construct 

wire e,. 

lect the best 
with the driver. 

TopSolutions() 
the solution set for augmented by may easily exploit this 

optimulSoln~) Given the set at the root, se- specify the algorithm as follows. Recall that c, and q, are 
when combined the input capa 

as possible to ensure do 

plest scenario: maxi- 
time at the root of the tree 

dissipation subject 
e basic RC “.kA. 

roblems with the generalized b with unbuffered solutions at W. We then perform merging 
and additional pruning in lines 21-23. Also note that the final 

We give the implementation of TopSolutions( ) in Fig. 3. 
We examine all pairings of widths w for wire e,  (having length 

the effect Of In each Of these 
ses, the algorithms are sketched based on the framework of step is also linear since the sets are in sorted order. 

this section. 

Iv .  MAXIMIZING REQUIRED ARRIVAL TIME 
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Algorithm: BollomSolutrons(u, Siop ( I (  U)), S l o P ( ~ ( u ) ) )  

1. 

3. Let SI = Sl+o,(/(v)) 

4. Let S, = S:~ , (T(V))  

5 .  

/* First compute unbuffered solutions */ 
2. S;ot(w) + 0 

/* ,Sc, S, are indexed and ordered by c */ 
G .  
7. 

9. 
10. 
11. 

12. 

13. 
14. 
15 
16 
17. 

a. 

i + - l ; j + - l  
While ( i  5 IScj and j 5 ISPI) 

Let (cr, nr) = Sc[i] 
Let (G, n T )  = S,bl 
st;o,(4 + St;&) U {(cc + Cr, min(qr, 4 r ) ) l  
If (ql  5 qr)  

i + i + l  
I f  (qT 5 q l )  

j + j + l  

/* Left Critical */ 

/* Right Critical */ 

Compute Siol(w) analogously 
/* Now compute buffered solutions */ 
Foreach buffer b E B 

If b is an inverter 
Find ( c ,  q )  E S;o,(u) s.1. 

Fig. 2. Bottom-Solutions( ) routine for max required time. 

Algorithm: Top-Solutions(v, Sbol(w))  

1. s;o,(tJ) - 0  
2 .  Foreach ( c , q )  E Sf;o,(w),w E {l..W} in increasing 

order of c’ = c + awlew 

S,+,,(U) + Sl+,,(v) U {(?, P - ellnore(e, 1)) 
/* elmore delay evaluated at width UI */ 

4. Compute S;o,(w) analogously 

Fig. 3. Top-Solutions( ) routine for max required time 

To construct the solution achieving this timing, we recur- 
sively revisit the tree to determine which choices of buffering 
and wire sizing yield the optimal solution. This is accom- 
plished by storing with each ( e ,  q )  pair, local information 
indicating the choices which led to that solution. 

Comments: For simplicity, we have presented our algo- 
rithm in terms of a binary tree, but note that the algorithm 
is easily applied to general trees. One straightforward method 
to achieve this is to convert a nonbinary tree to an equivalent 
binary tree simply by adding zero-length wires. For instance, 
suppose we have a node v with fanout 3 to nodes A, B, and 
C.  We replace v with two nodes U’ and v” where node U’ 
will have children A and B, and U” will have children C 
and U’ with the wire from v” to v’ having length zero. The 
algorithm can be modified to prohibit the placement of buffers 
at particular nodes-v’ in this case. 

Another issue is that, as described, the algorithm assumes 
exactly one sizeable wire segment between nodes and buffer 
insertion only at nodes in the tree. However, the algorithm is 
generalizable to accommodate multiple sizeable segments in a 
single wire and buffer insertion within a wire by introduction 
of intermediate nodes. 

We further note that the algorithm can easily be extended 
to allow for optimal sizing of the driving gate if desired. 
However, it should be realized that such sizing may have 
global effects by altering the input capacitance of the driver, 
thereby affecting the timing requirements and the system as 
a whole. 

These comments apply to subsequent algorithms in this 
paper. 

A. Run-Time 

We analyze the running time of the basic algorithm in three 

1) IBI = 0, W > 1 (Wire sizing alone). 
2) 1BI 2 1, W = 1 (Buffer insertion alone). 
3) IBI 2 1, W > 1 (Both methods). 
In scenario 1) (wire sizing alone), we introduce the notion 

of “basic grid-width” to analyze the complexity. 
Property 4.3: In scenario l), the size of each load- 

required-time set S is bounded by mW where m is the 
total number of basic grid lengths in the tree. 

This can be seen by considering that the load at node v car1 
be expressed as 

scenarios: 

c(T,) = Sink-Load + Interconnect-Load 

where Sink-Load is fixed and Interconnect-Load = y w, 
where wz E { 1 . . . W }  is the width of the ith wire and y 
is a constant derived from Q, the basic grid length and the 
minimum width. Thus, the load is entirely determined by w,, 
which can take on any integer value in range of m . . + mW. 
This gives an upper-bound of mW on the sizes of the load- 
required-time sets the algorithm computes since it bounds the 
number of distinct load values. Thus, even though there are 
an exponential number of width assignments, there are only 
a polynomial number of distinct resulting loads. The resulting 
run-time is O(nW(mW)) = O(nmW2). In the case where 
every sizeable segment is of identical size, we have O(n2W2) 
since n = m in such a case. 

Scenario 2) is a generalization of the situation for the 
algorithm of van Ginneken [17]. Since W = 1 in this case, 
computation of Stop sets is trivial. Thus, the size of the 
Shot sets is the key factor in the run-time. We first state the 
following properties alluded to earlier. 

Property 4.4: For Sbot(v), let Sl and S, be the Stop sets 
of U’S left and right children respectively of the same polarity. 
The following inequality holds: ISbo,(v)l 5 lSll + IS,( + IBI. 

Property 4.5: In scenario 2), for all load-required-time sets 

These properties, coupled with the fact that the merging 
operation is linear in + ISJ, gives an overall worst-case 
complexity of O(nlBl(n + IBln)) = O(n21B12). 

Scenario 3) is complicated by the fact that the input ca- 
pacitance of the buffers may not be simple multiples of the 
capacitance of a unit-length wire. However, in practice, it is 
reasonable to assume that capacitive values can be linearly 
mapped onto a polynomially-bounded integer domain with 
sufficient precision or are given as such. In such a situation, we 
introduce another value emax, which is the largest capacitance 

S,  IS1 I n + nlBI. 
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possible among the individual components of the tree (e.g., it 
may be the capacitance of the longest wire at the maximum 
width). Under this formulation, we upper bound the size of 
the load-required-time sets by ne,,, and the overall run-time 
by O(n2c,,,(max(W, IBI))). In practice, observed run-times 
are typically much less than this bound. 

v. MINIMIZING POWER FOR GIVEN TIMING CONSTRAINTS 

We now extend the algorithm to accommodate dynamic 
power considerations. For clarity, we present this and subse- 
quent algorithms without regard to signal polarity. Application 
of the ideas of the previous section is straightforward. We note 
also that the extension presented in this section can easily be 
modified by minimizing the area subject to timing constraints. 

The first issue is how to parameterize the solution sets. Now 
we are not only concerned with the load and required-time of 
a sub-solution, but also the power it consumes. 

Therefore, solution sets Shot (v) and Stop ( U )  now contain 
pairs ( p ,  S,) where p is power consumption as a capacitive 
value, and S, is an ordered set of load, required time pairs 
( c , q )  as in the previous algorithm. For example, ( p , S )  E 
P b o t ( v )  indicates that for power p and every (c, q )  E S, there 
exists an assignment for T, consuming power p ,  presenting 
load c upward and yielding required time q at v. 

We organize these sets first by sorting them in increasing 
order of power. Each set S, is ordered by load c as in the 
basic algorithm. 

One might think that the sets S, are typically singleton 
sets; however, this is not the case. Because many different 
configurations may consume precisely the same power (by, 
for example, assigning an identical set of buffers to different 
locations), these sets can be quite dense. 

Recalling that for dynamic power dissipation, capacitance is 
the correct measure and e, is the “power” associated with sink 
v,  Base-Case(v) simply sets S b o t ( U )  = { ( e u ,  ( ( c u , q u ) } ) } .  

Pseudocode for Bottom-Solutions( ) is given in Fig. 4. We 
visit all possible values of total power consumption at v. 
These values are from among the buffered and unbuffered 
configurations. We introduce the notion of a “nonbuffer” to 
unify the notation. In this case, we explicitly sort the values 
p = pl + p ,  + pb. However, we observe that the number of 
such distinct values p is often orders of magnitude less than 
the worst case (quadratic). Because of this observation, we 
utilize a hash table to make an initial pass over all pairs to 
extract the distinct values which we then sort. This avoids an 
expensive sorting operation. 

Top-Solutions( ) is implemented in a similar manner; its 
pseudocode appears in Fig. 5. 

As described, these algorithms implement two types of 
pruning. First we prune solutions ( c , q )  E S, for a power 
p in the same way as before by Property 4.2. However, an 
additional pruning condition is utilized in Figs. 4 and 5 on 
lines 9 and 6 respectively. This pruning is captured in the 
following property. 

Property 5.1: For solution (e ,  q )  consuming power p ,  if 3 
solution (e’, 4’) where p‘ < p ,  c’ 5 e, and q’ 2 q, then the 
solution ( e ,  q )  is suboptimal. 

Algorithm: BottomSolulaons(v, Stop(1(u)),  Stop(~(v))) 
1. Let B’ = B U {$] 

/* 4 indicates “no buffer”, cd = 0 */ 
2.  s b o l ( w )  + 0 
3. Foreach  triple   PI,^,,) E Siop(( (v ) ) ,  ( P ~ ,  Spy) E Siop(~(u)), b E B‘ 

5. I f ( b i t 4 )  

7. S‘ - { ( C B ,  4’11 

9. S’-S’\I(c,q)ES’I3(c’,q’) E S p ’ , P ‘ < p , c ’ 5 c , q ‘ 1 q }  

10. 
11. 
12. 
13. E k e  

in increasing order of p = pi + p ,  + c) 
Combine S,, , S,, as in lines 7-12 of Figure 2 to give S’ 4. 

G. Find ( e ,¶ )  E S’ s.t.  q’ = q - butdelay(b,c) is maximized 

8. Else 

/* where (P’ ,  sp,) E shot(") */ 
If ( p ,  S,) E Sbot(u) 

s, - s, U S‘ 
(previous triple gave same p )  

Prune S‘ by property 5.2 

Fig. 4. Bottom-SoZutions( ) routine for low power 

Algorithm: TopSoluiions(v, Sboi(v)) 
1. 
2 .  

S,,,(v) = { ( p , 0 ) l p  is a possible power} 
Foreach pair w t 1..I/v, (pbot,Spb,,) 6 Shot 

in increasing order of p = pbol + awl,* 
3.  
4. 

Foreach  (c. q )  E S bot 
S, - S, U { ( e +  awi,,,,q - elmore(e,))} 
/* elmore delay evaluated at. width w */ 

5. 
6. Sp - S P \ { ( c , ( 1 ) E S p l ~ ( ~ ‘ , q ‘ )  t S p , l ~ ’ < ~ , c ‘ i c , q ’ > q }  

Prune S, by Property 5.2 

/* where (P’, sp,) E stop(u) */ 
7. If(& # 0) 
E .  Sto,(v) + S l o p ( ” )  U {(P,Sp)I 

Fig. 5. Top-Solutions( ) routine for low power. 

The application of this property has proven essential in 
giving reasonable running times in practice. Efficient detection 
of Property 5.1 is addressed subsequently. 

We implement Optimal-Soln(v, Shot ( U ) )  simply by select- 
ing the lowest power unbuffered solution at the root giving 
required-time q(T) 2 0 when paired with the driver. Alterna- 
tively, this set of unbuffered solutions gives the full trade-off 
curve. 

Detection of Property 5. I :  When computing the load- 
required-time set s, for power p in the previous algorithms, 
we have already computed the load-required-time sets S,, 
for all p’ < p .  We now want a data-structure to efficiently 
determine, for each ( e ,  q )  E S,, if Property 5.1 holds. Since 
the solution sets can grow to be of substantial size, a linear 
scan to detect this property would likely be a disaster. 

Since we visit the power values in order, we know that the 
entries in the data structure are for power values p’ < p .  Thus, 
the data structure need only concern itself with c and q values. 

Thus, we need a data structure which efficiently supports 
the following operations: 

* insert(c, 4): update the data structure to reflect solution 

sub-opt(c, 4): retums TRUE if 3(c’, 4’) previously in- 

Such a data-structure solves a special case o f  the orthogonal 
range query problem from computational geometry (see e.g., 
[ 191). Our problem is a special case in the sense that we need 

(c, 4 )  

serted s.t. e‘ 5 c and q’ > q, FALSE otherwise. 
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not retrieve or count all (e’, q’)’s  satisfying the property, and 
the subspace we are interested in is defined by two inequalities, 
c’ 5 c and q’ 2 q,  rather than four. In other words, our 
subspace is the intersection of the half-planes formed by 
the inequalities rather than a rectangle formed by four such 
inequalities. These special properties of our problem allow us 
to support the operations above in O(1ogm) time and O(m) 
space for m entries by use of an augmented binary search tree. 
In contrast, the fastest known approaches to the general 2-D 
orthogonal range query problem also run in O(1ogm) time 
but use O(m1ogm) space. 

To support the operations, we order a binary search tree by 
load values c. At each node t of the search tree, we store the 
load value c and the largest q value at t or in the left subtree 
t. We refer to this value as t.ql-max. Given this augmentation, 
insert( ) is easily implemented recursively and sub-opt( ) can 
be implemented by examining the four following cases with 
respect to c ,q  (given), and t.c and t.ql-max stored at the 
current node in the tree (boundary conditions are not given 
for clarity) 

c < t.c, q < t.ql-max Explore left subtree 
c < t .c,  q > t.ql-max Return FALSE 
c > t .c,  q < t.ql-max Return TRUE 
c > t.c, q > t.ql-max Explore right subtree. 

By following these guidelines recursively down the search tree, 
we can detect the property in time proportional to the depth 
of the tree. 

A. Run Time 

With respect to wire-sizing alone, i.e., IBI = 0, we notice 
that p = c for every power-load-required-time triple since 
there is no decoupling by buffers. Thus the basic algorithm 
is sufficient to solve the low-power problem: we get power 
minimization “for free.” 

In the general case of simultaneous wire sizing and buffer 
insertion (or buffer insertion alone if W = l), we have to 
take into account the quadratic nature of the algorithm. Since 
we examine all pairs of power values from the left and right 
children, the solution sets are no longer assured to be linear 
in size. However, when the capacitive values are given as 
polynomially-bounded integers, or can be mapped to such, 
once again we can show the run-time of the algorithm to be 
polynomial. 

As in Section IV-A, let cmax be the largest possible 
capacitive value among the components. Under this sce- 
nario, we bound the number of load-required-time pairs 
at a node by (nemax)’. This gives an overall run time 
bound of O(n(lB1 + W)(ncmax)’ log(ncma,)) O((lBl + 
W)(n3ekax log(ncmax))). The log factor is an artifact of the 
sorting performed on the power values. 

In practice, we observe much better run times as a result 
of the additional pruning described in the previous section 
(and not included in this analysis since we cannot prove it 
improves the worst case performance). 

Fig. 6 .  Piecewise linear function modeling effect of signal slew. 

VI. ACCOUNTING FOR SIGNAL SLEW 

We now give a further generalization of the algorithm to 
account for the effect of signal slew on buffer delay. The 
key to our approach is the manipulation of piecewise linear 
functions to model the effect of signal slew. 

Overview: By (2), buffer delay is augmented by the term 
A ~ D L ~ ~ ~ ~  (recall that A b  is a characteristic constant of buffer 
b and that Dhprev is the RC delay of the previous stage). 
Since our algorithm proceeds in bottom-up order, this is an 
unknown value when computing the delay associated with a 
buffer. Conceptually, we would like to support queries of the 
form “What is the optimal solution at w with capacitance c 
and D L ~ ~ ~ ~  = x?’ 

Since A ~ D L ~ ~ ~ ~  is linear in Dhprev, we utilize piece- 
wise linear functions to model this effect. Where we pre- 
viously had load-required-time pairs ( e ,  q ) ,  we now have 
load-required-timefunc pairs (e ,  f )  where f is a piecewise 
linear function; f ( 5 )  = q is the optimal required time q at ‘U 

for load c and D L ~ ~ ~ ~  = x. 
We illustrate the modeling of delay by a piecewise linear 

function in Fig. 6. Fig. 6(b) shows the piecewise linear delay 
function f at node w in Fig. 6(a). The left and right subtrees 
have maximum delays of five and four units, respectively, 
when D L ~ ~ ~ ~  = 0. However, since the left and right subtrees 
are driven by different buffer types, they have different sen- 
sitivities At and A,. The straight lines in Fig. 6(b) correspond 
to the two delay functions contributed by the two subtrees 
with slopes corresponding to the sensitivities A1 and A,. The 
resulting delay function f at node w is shown as a solid line, 
which is the max of the two. Thus, different values of D L ~ ~ ~ ~  
can result in different critical paths. 

We represent a piecewise linear function f by a linked list 
of quadruples (20, yo, s ,  each quadruple is a segment 
starting at point (20 ,  yo) ending at Z e d  and having slope s. 

Our manipulation of piecewise linear functions is based on 
three basic operations: 

f =Pwl-max(fl, f 2 )  f(.) = max(f1(z), f Z ( 2 ) )  Vx 
f =Pwl-min(fl, f z )  e f(.) = min(f1(5), fz(.)) vx 
f’ =pwl-addscalar(f, d) U f’(x) = f ( z )  + d Vx. 
The first two of these operations can be performed in a 

manner similar to the merging of two sorted lists in linear 
time by stepping through the lists and examining points of 
intersection. Further, they can be generalized to operate on sets 
of functions rather than pairs by repeated application, giving, 
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for example, pwlLmax(f1,. . . , fk). The third operation is 
achieved simply by adding d to the starting g-coordinate (yo) 
of each segment in the function. 

With respect to the dynamic programming algorithm, we 
must also associate with each segment in the piecewise linear 
function f the relevant configuration information which yields 
the solution (e.g., wire-width, buffer type). 

The algorithm modifications are summarized as follows: 
1) Where we had load-required-time pairs (e ,  q ) ,  we now 

have load-required-time~unc pairs ( e ,  f ). 
2 )  Where we computed scalar max and min operations on 

arrival times q, we now compute pwlmax and pwlmin 
operations on piecewise linear functions. 

3) Where we eliminated suboptimal solutions (e ,  q )  by 
Properties 4.2 and 5.1, we now eliminate suboptimal 
portions of solutions (e ,  f )  by analogous properties. 
These suboptimal solutions now give required arrival 
time of --oo for certain values of D L ~ ~ ~ ~ .  

A detailed description of the generalized algorithm follows. 
For generality, we focus on the low power formulation of the 
problem. 

Pruning Operations: Before presenting Bottom-Solu- 
tions( ) and Top-Solutions( ), we first discuss the basic pruning 
operations used in the algorithm. 

Previously, a basic operation in our algorithms was the 
merging of two load-required-time sets. If we had two sets 
5’1 and 5’2 where the solutions in each set consumed identical 
power p (or we were not concerned with power), we computed 
a new set S1,2 = (5’1 U S2)\S* where S* was a set of provably 
suboptimal solutions by Property 4.2; i.e., (e ,  q )  E S* implied 
that 3(c’, q’) E S1,z s.t. c’ 5 e and q’ 2 q.  

We generalize this concept for load-require&time\_func 
sets. The property analogous to Property 4.2 is the following: 

Property 6.1: Let load-required-time set S = { (cl, f1) 

,..-,(em,fm)) be ordered by load; i.e., ci < ci+l. For 
( c i ,  f i )  E S let f,! be defined as 

f & )  = { fi(.) ifPWl”fl(X), 
-00, otherwise. 

We may replace ( c i ,  fi) E S with ( c i ,  fl) while maintaining 
optimality. Further, if f l ( z )  = --03 ‘dx, then ( c i , f i )  may be 
eliminated altogether. 

This property is implemented in Fig. 7 as the routine 
Merge-Load_Func-Sets( ) and is used by both Bot- 
tom-Solutions( ) and Top-Solutions( ). 

In addition, the previous low power algorithm utilized a 
more general pruning method given by Property 5.1 which 
said that, for a pair of solutions ( p ,  e ,  q )  and (p’, e’, q’), if 
p < p’, c 5 e’, and q 2 q’, then (p’, e’, 4’) is suboptimal 
and may be eliminated. The analogous property for the slew 
sensitive generalization is as follows. 

Property 6.2: For a solution ( p ,  e ,  f ) ,  let S’ be the set of all 
other solutions s.t. ( p i ,  ci, f i )  E S’ iff that p i  < p and ci 5 e. 
Further, let fmax = pwlLmax(fi) over all ( p i ,  c i ,  f i )  E S’. In 
a manner similar to Property 6.1, we may replace f with 

Algorithm: Merge-Load-Fu2loc.S’ets(S~, 5’2) 
Let S‘ t SI US, 
fmax(z) = --CO Vz 
Foreach ( c ,  f) E S’ in increasing order of c 

Let f’(2:) = f(z) iff(.) > fmax(s) 

S‘ + S’ \{(e ,  f)l 
f’(z) = -CO otherwise 

If 32 

/* Otherwise,  ( e ,  f’) zs useless */ 

s.t. f’(.) # -cc 
S’+S’U{ (C, f , ) }  

fmax - pwlmax(fm=,, . f)  
Return S’ 

Fig. 7. 
same power). 

Algorithm for merging load-func sets (presumably consuming the 

Algorithm: Botlom.Sohlions(v, Stop ( l (v)) ,  ,StOp(r(n))) 
8’ - B U {q5} where q5 indicates “no buffer”, cg = 0 
Shot(") - ’d 
Foreach triple (pi,Spz1 E Stop(l(u)),(pr,sJ,,) E stop(l.(v)),b E B’ 

in increasing order of p = pi + p,. + C6 
/* Let ( c r , f ~ )  Gp, and ( e v ,  J?) E S,, be indexed */ 
/* E.g. (~$1, f~[i]) is the ith smallest load in */ 
/* and corresponding piece-wise linear function in S,, */ 
For i = l..IS,,I 

If ( 2  = 1) 
7 - 1  

Let j be the smallest index s.t f ~ [ i  - 1 ] ( z )  < f , . [ j ] ( z )  for some J 

Else 

While 3z s.t. fFb](z) < fr[i](z) 
Imin -~wlmin(fi[i l ,  f&l) 
If (6 = +) 

f’ +- Jmin 
e’ + CI [i] + c, [ j ]  

2: + (CI [;I + CP [jl) ’ 7-6 

e’ - a [ i ]  + c&] 

S‘ - S’ U { (c ’ ,  Y)} 
j - j + l  

Else 

y t fmin(x) /* Req. arrival time a t  output of buffer “1 
q C q - ( c I [ i ] + C , [ j l ) T b - d b  

Let f’(x) = q - X b i  Vx /* One segment pwl func. */ 

Prune solutions in S‘ per Property 7.2 

If (3(P1s~) 6 Shot) 
Shot + Shot - {(Pb 
SL - Merge-Load-FuncSets(S‘, S,) 
sbot - Sbot U {(P,si)} 

Shot - sbot {(P, s’)} 
Else /* New power value */ 

Fig. 8. Bottom-SoZutions( routine for low power and signal slew. 

Again, if f ‘ ( z )  = -00 ‘dz, then ( p ,  c, f )  may be eliminated 
entirely. 

A generalization of the data-structure in Section V is be 
presented later in this section to e€ficiently implement the 
pruning of Property 6.2. 

Finally, we give pseudocode for Bottom-Solutions( 1 and 
TopSolutions( ) in Figs. 8 and 9, respectively. The routines 
follow the previous versions quite closely. However, because 
Properties 6.1 and 6.2 introduce partially defined functions, 
there is no total order on the (e ,  f )  sets. Therefore, when 
combining solutions of children, we may look at all such pairs 
in the worst case rather than performing a simple “merge” 
as previously (Fig. 2, lines 7-12). This can be seen in the 
for loop of Bottom-Solutions( ) in Fig. 8-for a particular 
f~[i], we must find the appropriate f T [ j ] ’ s  to pair with f i [ i ] .  
In the worst case, all j ’ s  may be candidates-and this may 
hold for all i ’ s .  However, in practice, these sets tend to 
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Algorithm: Top Solulions(v, Sbot(w)) 

1 Stop(.) - 43 
2 
3 
4 
6 
6 

8 

Foreach pair w E 1. W ,  (phot, Spbo,) E ."bot in increasing order o f p  = phot + owl,. 
Foreach ( c ,  f) E SPbot 

Prune sub-optimal solutions from Sp by Property 7 1 
Prune sub-optimal solutions from S, by Propeity 7 2 

S,  - S, U { ( e +  awl,",pwl.addscalar(f -Plmore(e, ))} (at width ui hp = 43 initially) 

7 If (SP # 0) 
Stop(U) - %o,(~)  U {(P> %)I 

Fig. 9. Top-Solutions( ) routine for low power and signal slew. 

Algorithm: Prop7.Z(t, e ,  f) 
if l=NULL return f 
else if c < t .c 

else if e 2 t . c  
return Prop'l.t?(t.feft, c ,  f )  

Define f' as: 
f'(z) = f ( z )  i f f ( 2 )  t-fimas(z) 
f'(z) = --03 otherwise 

return f' 

return Propll .&(t.nght,  c, f') 

if (f'(z) = -CO Vz or t.c = e) 

else 

Fig. 10. Implementation of Property 6.2. 

%rev '% %rev - 
Fig. 11. Effect of inserting a buffer. 

remain linear in size. A related issue is the complexity of the 
functions themselves. In principle, the size of the functions 
can grow exponentially. However, again we do not observe 
this phenomenon in practice. 

Examples: To give intuition on the operation of the algo- 
rithm, we now give some illustrations. Fig. 11 shows function 
f having load c before and after buffer b is considered for 
insertion at U as is performed in Bottom\_Solutions( ). Since b 
will drive load c, D L ~ ~ ~ ~  for its descendants is CTb. Therefore, 
the required arrival time at the output of the buffer is t l .  
Subtracting the buffer delay buf-delay, we have the required 
arrival time function at the input of the buffer shown as a solid 
line in the right figure with slope -Ab. 

Fig. 12 illustrates the operation of combining left and right 
("top") solutions. For some values of D L ~ ~ ~ ~ ,  the left subtree 
is critical, and for others, the right is. The solid line in the 
graph on the right shows the function resulting from the 
pwl-min function to capture the combination of these two 
solutions. 

Implementation of Property 6.2: We now give a generaliza- 
tion of the data-structure of Section V to implement Property 
6.2. Given a set of pairs (e%,  fi) and a candidate pair (e ,  f ) ,  
we want to efficiently compute f '  as described in Property 

--.._ - - _ _  
fr 

. 

Fig. 12. Combination of left and right solutions. 

\ -.__ 

2.5416 4.8 5.0 5 2  5.4 
Power (nF) 

Fig. 13. Power-Delay curve for a 20 sink net. 

6.2. (Recall that as the algorithm is organized, the power p 
associated with (e ,  f )  is strictly greater than each p ,  associated 
with each (e t ,  f%)). 

To accomplish this, we alter the previous augmented tree 
data structure to store the pair (tee, t.fi-max) at each tree node t 
rather than ( t s c ,  t.ql-max). As before, the search tree is ordered 
by e. The piecewise linear function t . fi-max is pwlLmax(f%) 
over all f t  where (e,, fi) resides either at t (e% = t . c) or in 
its left subtree. 

Pseudocode implementing Property 6.2 is given in 
Fig. 10-i.e., given ( c , f ) ,  we return the portions of f 
which are not suboptimal in the form of f ' .  Updating the 
data-structure can be done by recursively traversing the 
search tree and updating the fi-max function at each node 
as we go. 

The complexity of these operations is logarithmic in the 
number of entries in the data structure multiplied by the 
average complexity of the piecewise linear operations (which 
has been very small in our experiments). 
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VII. EXPERIMENTAL RESULTS off curve with no additional complexity. The algorithm can 

390 

we have implemented our algorithms under the cmx 
environment on a Sun SPARC 20 workstation. we ran our d- 
gorithms on randomly generated routing topologies of various 
sizes with nonuniform segment lengths. In these experiments, 

easily be adapted to perform area minimization. In addition, 
we incorporate the contribution of signal slew into the delay 
model which has been shown to be a significant contributor 
to 

2 0 7 2 0 7  0 2  
2 8 7  0 8  

4 3 7 3 4 7  1 3  
4 7 0 3 9 5  3 8  
5 5 9 3 7 3  G 8  
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