
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31, NO. 3, MARCH 1996 431

Optimal Wire Sizing and Buffer Insertion for
Low Power and a Generalized Delay Model

John Lillis, Chung-Kuan Cheng, Senior Member, IEEE, and Ting-Ting Y. Lin, Member, IEEE

Abstruct- We present efficient, optimal algorithms for timing
optimization by discrete wire sizing and buffer insertion. Our
algorithms are able to minimize a cost function subject to given
timing constraints; we focus on minimization of dynamic power
dissipation, but the algorithm is also easily adaptable to, for
example, area minimization. In addition, the algorithm efficiently
computes the complete, optimal power-delay trade-off curve for
added design flexibility. An extension of our basic algorithm ac-
commodates a generalized delay model which takes into account
the effect of signal slew on buffer delay which can contribute
substantially to overall delay. To the best of our knowledge,
our approach represents the first work on buffer insertion to
incorporate signal slew into the delay model while guaranteeing
optimality. The effectiveness of these methods is demonstrated
experimentally.

NOMENCLATURE
A routing tree rooted at node U .

The left and right children of node v , respec-
tively.
Tree edge (wire) from node v to its parent.
Length of edge e.
Capacitance of edge e.
Input capacitance of sink 'U.

Resistance of edge e.
Input capacitance of buffer b.
Output resistance of buffer b or gate g.
Intrinsic delay of buffer b or gate g.
Polarity; usually referring to a signal, p = 1
meaning inverted.
Polarity of buffer b; P b = 1 indicating b is an
inverter, P b = 0 otherwise.
Required arrival time of sink node U.
Largest possible wire width (1 . . . W are possi-
ble).
Buffer library.
Set of leaves of tree T.

I. INTRODUCTION

IMING optimization techniques for VLSI circuits have T received much attention in recent years due to increas-

Manuscript received October 20, 1995; revised November 30, 1995. This
work was supported in part by Grants from the NSF project MI€'-9315794
and California MICRO program.

J. Lillis and C.-K. Cheng are with the Department of Computer Science and
Engineering, University of California, San Diego, La Jolla, CA 92093-01 14
USA.

T.-T. Y. Lin is with the Department of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093-0407 USA.

Publisher Item Identifier S 0018-9200(96)02468-7.

ingly aggressive designs and the impact of technological trends
such as shrinking geometries. Among these techniques are
performance driven placement and routing, gate sizing, buffer
insertion (often referred to as fanout optimization in pre-layout
works), and wire sizing. In this work, we focus on wire sizing
and buffer insertion

Wire Sizing: Automatic sizing of wire widths is an at-
tractive technique for timing optimization in signal nets,
particularly with the advent of submicron technology. The
benefit of wire sizing lies in the fact that, with shrinking
geometries, wire resistance is now a significant contributor
to overall delay. As a result, it makes sense to tune the
widths of wires to balance the trade-off between added ca-
pacitance and decreased resistance. Wire sizing can be of
significant benefit for both on-chip and for inter-chip (e.g.,
MCM) interconnects.

Cong, Leung, Zhou, and Koh provided several studies of
wire sizing in [4], [2], and [3] and demonstrated the potential
of wire sizing in improving delay. In these works, the problem
was formulated as the task of minimizing the weighted sum of
the source-to-sink Elmore delays for a set of identified critical
sinks in a given routing tree. The weighting coefficients are
presumably provided by the user. Under this formulation, they
prove several properties which lead to an O (n T) algorithm
for a net with n segments each having r possible widths.
The authors also propose a greedy heuristic procedure with
run time of O(n3r). Cong et al. also attack the problem of
incorporating a cost function such as area or power. Their
formulation is, again, a weighted sum of their stated timing
objective function and the cost function.

Later, in [12], Sapatnekar studied the more common metric
of maximum source-to-sink delay-or, more generally, the task
of minimizing cost subject to given timing constraints. He
noted that the key property of separability used by Cong and
Leung in designing their algorithm did not hold for this case.
In addition, the property of monotonicity utilized by Cong et
al. does not apply when the length of all wire segments is not
identical. In the same paper, Sapatnekar proposed a geometric
programming formulation of the maximum delay, continu-
ous wire-sizing problem followed by a mapping heuristic to
discretize the solution.

Later, in [8], a dynamic programming algorithm which
exploited the fact that the lengths of wire segments are discrete
in nature (i.e., that they are integer multiples of a basic grid
length) was given. This led to the observation that, over all
possible width assignments to a subtree, the number of distinct
capacitive values at the root is polynomially bounded. This

0018-9200/96$05.00 0 1996 IEEE

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

438

wire-sizing
buffer-insertion

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31, NO. 3, MARCH 1996

Max Req-Time Min Power
O(nmW2) O(nmW2)

O(n21BI2) O(IB 1n3c&,, log(ncmax))

TABLE I

yielded a polynomial time minimum delay wire sizing dynamic
programming algorithm. However, power considerations were
not explicitly taken into account.

Buffer Insertion: Research on buffer insertion includes the
early works of Berman et al., [I], Touati [16j, and van
Ginneken [17]. Other contributions in this area include [9],
[14], [8j, and [7j. With the exceptions of [17j, [7], and more
recently [SI, these works have focussed on timing optimization
prior to layout by imposing buffer trees on the network.
There are important engineering considerations associated
with such an approach. Perhaps most important among these
considerations are the difficulty of accurately taking into
account the resistive and capacitive effects of interconnect,
as observed in [7j, and potential routability problems created
by pre-layout buffer trees as mentioned in [1 j.

As a result of these practical considerations, we focus
on a post-layout methodology where topological information
is available. Previous work on post-layout buffer insertion
includes [17], in which van Ginneken gave an elegant poly-
nomial time algorithm for delay-optimal buffer insertion into
a given topology. He extended his algorithm to minimize the
number of buffers subject to given timing constraints. He noted
that this extension was not, in general, polynomial, but that
efficient run-time was observed in practice. Implementation
details of this extension were not given. His algorithm did not
consider the effect of signal slew on buffer delay.

In [8], a delay-optimal algorithm for simultaneous buffer
insertion and wire sizing was given. However, neither power
(nor area) considerations nor signal slew were taken into
account.

Contributions of This Paper: In this paper, we present ef-
ficient algorithms for wire sizing, buffer insertion, and both
techniques simultaneously. Our main contributions are sum-
marized as follows.

We give optimal, polynomial-time algorithms for the min
power wire sizing problem and the simultaneous wire siz-
ing, buffer insertion problem. This includes computation
of the entire power-delay curve and a novel data-structure
for efficiently pruning suboptimal solutions.
We incorporate signal slew into the buffer delay model
by manipulation of piecewise linear functions.

In this work, timing constraints are given explicitly as
required arrival times at the sinks of the net rather than as
coefficients of a weighted sum of the sink delays. We suggest
that computation of the entire power-delay trade-off curve is
of practical significance as it provides added flexibility to the
designer.

The incorporation of signal slew is also significant since its
contribution to total delay can be over 50% (see e.g., [6j) and
therefore, cannot be neglected in practice.

The ability to use inverters as buffers rather than resorting
to pairs of inverters to ensure proper signal polarity is also of
practical utility.

The complexity of our algorithms without signal slew taken
into account is summarized in Table I.

In the table, n is the number of sinks in the net, m is the
number of sizeable wire segments, and e,,, is the largest
possible capacitive value of any component in the tree. Set B
is the given buffer library and W is the largest multiple of the
basic wire width allowed. Where O(ck,,) is a component of
the complexity, we assume the capacitive parameters of the
problem are given as or translated into polynomially-bounded
integers. As such, these algorithms are pseudopolynomial.
However, in these cases, the bounds are very pessimistic
versus observed behavior.

When signal slew is incorporated into the delay model, we
are not able to give polynomial bounds due to degenerate
situations. However, in practice, we observe these algorithms
to perform similarly to their simpler counterparts-usually a
constant factor slower.

To the best of our knowledge, this work represents the most
efficient optimal algorithms to date for these problems. We
also improve on the results of [8] in terms of run-time when
minimizing maximum delay independent of power is the goal.

Our algorithms adopt a bottom-up dynamic programming
approach. Rather than computing a single solution for each
subtree, we compute a set of solutions where each member
of the set is characterized by both the timing properties and
capacitance of the associated solution. Solution sets are kept
small by employing an observation made by van Ginneken
[I71 which essentially says that when combining the solution
sets of a node’s left and right children to create a new
solution set, the new set need not consider all pairs of left and ’
right solutions; rather only a linear number of pairs need be
considered since one branch will always dominate. In addition,
when minimizing power, we employ a similar observation to
identify inherently suboptimal solutions and thereby drastically
reduce the size of solution sets. This property is identified
efficiently by use of a novel tree data-structure. Generalizations
of these techniques are developed to handle the case where
slew is taken into account.

The remainder of the paper is organized as follows.
Section I1 gives delay models and problem formulations.
Section I11 gives the overall algorithmic framework.
Section IV addresses the min-delay/max-required / time
formulation. Section V generalizes the algorithm to minimize
power subject to timing constraints. Section VI generalizes
the algorithm further to account for the contribution of
signal slew to delay by the manipulation of piecewise linear
functions. Section VI1 gives experimental results and we
conclude in Section VIII.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

LILLlS et al.: OPTIMAL WIRE SIZING AND BUFFER INSERTION FOR LOW POWER AND A GENERALIZED DELAY MODEL 439

11. MODELS AND PROBLEM FORMULATION

A. Delay Models

As in previous works, we adopt the Elmore delay model
[5] for interconnect delay and standard RC models for buffer
delay.

For a given routing tree possibly containing buffers, delay
along a root-sink path is made of 1) delay along wires and 2)
delay through buffers and the driving gate. The computation
of these delays is detailed in the following.

The capacitance c, and resistance re of wire segment e
having width we are given as

ce = ale . we

where a and /3 are characteristic constants.'
To compute the Elmore delay of a wire e, in tree T , we

first recursively define c(T,), the total lumped capacitance of
T,, as follows:

re = ple /we

Intuitively, c(T,) is simply

if v is a sink node
else if buffer b placed at U

otherwise.
(1)

the capacitive load seen at
v-i.e., the sum of the loads of the left and right subtrees,
c(Tq,l), and c(T,(,)), and the capacitance of the wires to
those subtrees, cei(,) and ceT(l)). Given this notation, the Elmore
delay of wire e,, is defined as

elmore(e,) = rev (3 + c (~ ,)) .

Similarly, the delay through a buffer b at node v in a basic
model is determined by the parameters c(T,), b's intrinsic
(load independent) delay d b and output resistance rb. The delay
through the buffer with load cl on its output is

buf-delay(b, cl) = db + Q C ~ .

The key to buffer insertion in optimizing delay is the well-
known isolation property of buffers exhibited in (1). Namely,
the capacitance of a subtree rooted at a buffer, as seen by
ancestors in the tree, is determined entirely by the input
capacitance of that buffer. In other words, the buffer decouples
the capacitance of its descendants from its ancestors by the
buffer.

A common generalization of this basic buffer delay model
includes an additive term to account for the slew of the signal
entering the buffer. One model for this delay is the product of a
buffer dependent constant and the load delay of the previous
stage, DLprev--i.e., the RC delay of the driving buffer. Thus
we denote the augmented delay equation as

buf-delaySl,,(b, cl) = buf-delay(b, q) + XbDLprev. (2)

This and similar models have been proposed in various con-
texts (e.g., [15], [7]). An extension of our algorithms to
accommodate this delay model is discussed in Section VI.

'While our algorithms are presented with this model, we note that it is not
key--e.g., such phenomenon as fringe capacitance can be taken into account.

B. Maximum Required Time Formulation

We adopt maximization of required arrival time at the root
of the net as our timing metric. The required arrival time at
node v, q(T,), is the latest time at which the input(s) of v must
be available for the required arrival times of all sinks in T,
to be met. This measure is particularly useful since it allows
a straightforward application of our algorithms to optimize
a combinational network by proceeding in bottom-up order.
Formally, q(T,) is defined as

min (qu - delay(v, U)) .
= uEleaves(T,)

If the required arrival time, q(T) at the root is nonnegative,
the tree T is said to meet its timing requirements. Note
that the required time formulation is a generalization of the
maximum delay formulation-i.e., if q, = 0 for each sink v
then maxdelay = -q(T).

C. Minimizing Power Subject to Timing Requirements

is given in [18] as
The dynamic power dissipation for CMOS technology Pd

where CL is load capacitance and f, is the switching fre-
quency. Thus, with respect to buffer insertion and wire sizing,
total capacitance is the correct measure of dynamic power
dissipation since f, and VDD are unaffected by these methods.

If we let Ctotal be the total capacitance associated with a
buffered and sized routing tree we have the following problem

minimize Ctotal
subject to q(T) 2 0.

Alternatively, an attractive approach to the problem is to
provide the designer with a power-delay trade-off curve from
which the desired solution may be chosen.

Implicitly, we have assumed that dynamic power dissipation
dominates short-circuit power dissipation. We justify this by
the assumption that design techniques have been employed to
eliminate or drastically reduce short-circuit power dissipation.

111. ALGORITHMIC FRAMEWORK
We first give the framework for a high level dynamic

programming algorithm into which all subsequent algorithms
will fit. The framework covers all variants of interest. For
instance, if we are only interested in wire sizing, we simply
run the algorithm with an empty buffer library B. The specific
algorithms will differ in their implementation of the basic
routines called by the general algorithm and the characteristics
of the solution sets they compute.

This general dynamic programming algorithm GDPO is
given as pseudocode in Fig. 1. The algorithm computes the
solution sets S b o t (V) and Stop(v). The set Sbot('U) can be
thought of as the set of solutions for subtree Tu, including the
possibility of inserting a buffer at U. Similarly, the set Sto,(v)
can be thought of as the set of solutions for T, augmented by
the wire from its parent e, and including possible sizing of e,.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL 31, NO 3 , MARCH 1996

Algorithm GDP(T,B,W)
Foreach node v E T In topological ordei from leaves to root

If ti IS a leaf

Else

If U IS not the root

Else /* v is the root */

Compute Sb,,(V) eBase_Case(v)

Compute shot (v) c Boltom-Soietzons(~, St,, ([(v)) , Stop (?-(U)))

Compute Stop(v) + Top.Solutzons(v, Sbot(U))

Compute OptzmulSoln(v, Shot (U))

Fig. 1. General algorithm structure.

with superscript “+” contain solutions where we assume the
incoming signal is noninverted and the sets with superscript
“-” contain solutions where the incoming signal is assumed
to be inverted.

pairs. Intuitively, the English meaning of these sets is, for
example,

The solutions themselves are loud, required-ti

(e , q) E S&t(v) e “There exists an assignment to T,
with upward load c and required time
q at ‘U when the incoming signal is

The four procedures Base-Case(), Bot-Solutions(},
not inverted.”

Top-Solutions(), and Optimal-Soh() are routines which
inductively compute solution sets from the solution sets of
descendants. For each particular algorithm, these sets are
parameterized differently. Intuitively, these routines can be
thought of as follows:

An important initial observation made by van Ginneken [171
. is the following.

Property4.1: For (c , q) , (c’,q’) E S, if c’ 2 c and q’ i q
then (c’,q) is suboptimal.

This is clear since a larger load can only worsen delay of
ancestor components. In words, we always prefer smaller load
and larger required time. Suppose these sets are arranged in
increasing order of load. This leads to the following property.

Property 4.2: Any load-required-time set S in increasing
order of load, may be replaced by S’ C S where S’ is strictly
increasing in required time.

We maintain this sorted order as an invariant so that we

In the context of our algorithmic framework, we fully

Base-Case() Compute the sing1eton set giving
evant parameters at sink v.
Given sets for left and right

‘Orrlpute the Set

the possibility Of inserting a
buffer at v.
Given the solution set at v, construct

wire e,.

lect the best
with the driver.

TopSolutions()
the solution set for augmented by may easily exploit this

optimulSoln~) Given the set at the root, se- specify the algorithm as follows. Recall that c, and q, are
when combined the input capa

as possible to ensure do

plest scenario: maxi-
time at the root of the tree

dissipation subject
e basic RC “.kA.

roblems with the generalized b with unbuffered solutions at W. We then perform merging
and additional pruning in lines 21-23. Also note that the final

We give the implementation of TopSolutions() in Fig. 3.
We examine all pairings of widths w for wire e, (having length

the effect Of In each Of these
ses, the algorithms are sketched based on the framework of step is also linear since the sets are in sorted order.

this section.

Iv . MAXIMIZING REQUIRED ARRIVAL TIME

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

LILLIS et al.: OPTIMAL WIRE SIZING AND BUFFER INSERTION FOR LOW POWER AND A GENERALlZED DELAY MODEL 44 1

Algorithm: BollomSolutrons(u, Siop (I (U)), S l o P (~ (u)))

1.

3. Let SI = Sl+o,(/(v))

4. Let S, = S:~ , (T(V))

5 .

/* First compute unbuffered solutions */
2. S;ot(w) + 0

/* ,Sc, S, are indexed and ordered by c */
G .
7.

9.
10.
11.

12.

13.
14.
15
16
17.

a.

i + - l ; j + - l
While (i 5 IScj and j 5 ISPI)

Let (cr, nr) = Sc[i]
Let (G, n T) = S,bl
st;o,(4 + St;&) U {(cc + Cr, min(qr, 4 r)) l
If (ql 5 qr)

i + i + l
I f (qT 5 q l)

j + j + l

/* Left Critical */

/* Right Critical */

Compute Siol(w) analogously
/* Now compute buffered solutions */
Foreach buffer b E B

If b is an inverter
Find (c , q) E S;o,(u) s.1.

Fig. 2. Bottom-Solutions() routine for max required time.

Algorithm: Top-Solutions(v, Sbol(w))

1. s;o,(tJ) - 0
2 . Foreach (c , q) E Sf;o,(w),w E {l..W} in increasing

order of c’ = c + awlew

S,+,,(U) + Sl+,,(v) U {(?, P - ellnore(e, 1))
/* elmore delay evaluated at width UI */

4. Compute S;o,(w) analogously

Fig. 3. Top-Solutions() routine for max required time

To construct the solution achieving this timing, we recur-
sively revisit the tree to determine which choices of buffering
and wire sizing yield the optimal solution. This is accom-
plished by storing with each (e , q) pair, local information
indicating the choices which led to that solution.

Comments: For simplicity, we have presented our algo-
rithm in terms of a binary tree, but note that the algorithm
is easily applied to general trees. One straightforward method
to achieve this is to convert a nonbinary tree to an equivalent
binary tree simply by adding zero-length wires. For instance,
suppose we have a node v with fanout 3 to nodes A, B, and
C. We replace v with two nodes U’ and v” where node U’
will have children A and B, and U” will have children C
and U’ with the wire from v” to v’ having length zero. The
algorithm can be modified to prohibit the placement of buffers
at particular nodes-v’ in this case.

Another issue is that, as described, the algorithm assumes
exactly one sizeable wire segment between nodes and buffer
insertion only at nodes in the tree. However, the algorithm is
generalizable to accommodate multiple sizeable segments in a
single wire and buffer insertion within a wire by introduction
of intermediate nodes.

We further note that the algorithm can easily be extended
to allow for optimal sizing of the driving gate if desired.
However, it should be realized that such sizing may have
global effects by altering the input capacitance of the driver,
thereby affecting the timing requirements and the system as
a whole.

These comments apply to subsequent algorithms in this
paper.

A. Run-Time

We analyze the running time of the basic algorithm in three

1) IBI = 0, W > 1 (Wire sizing alone).
2) 1BI 2 1, W = 1 (Buffer insertion alone).
3) IBI 2 1, W > 1 (Both methods).
In scenario 1) (wire sizing alone), we introduce the notion

of “basic grid-width” to analyze the complexity.
Property 4.3: In scenario l), the size of each load-

required-time set S is bounded by mW where m is the
total number of basic grid lengths in the tree.

This can be seen by considering that the load at node v car1
be expressed as

scenarios:

c(T,) = Sink-Load + Interconnect-Load

where Sink-Load is fixed and Interconnect-Load = y w,
where wz E { 1 . . . W } is the width of the ith wire and y
is a constant derived from Q, the basic grid length and the
minimum width. Thus, the load is entirely determined by w,,
which can take on any integer value in range of m . . + mW.
This gives an upper-bound of mW on the sizes of the load-
required-time sets the algorithm computes since it bounds the
number of distinct load values. Thus, even though there are
an exponential number of width assignments, there are only
a polynomial number of distinct resulting loads. The resulting
run-time is O(nW(mW)) = O(nmW2). In the case where
every sizeable segment is of identical size, we have O(n2W2)
since n = m in such a case.

Scenario 2) is a generalization of the situation for the
algorithm of van Ginneken [17]. Since W = 1 in this case,
computation of Stop sets is trivial. Thus, the size of the
Shot sets is the key factor in the run-time. We first state the
following properties alluded to earlier.

Property 4.4: For Sbot(v), let Sl and S, be the Stop sets
of U’S left and right children respectively of the same polarity.
The following inequality holds: ISbo,(v)l 5 lSll + IS,(+ IBI.

Property 4.5: In scenario 2), for all load-required-time sets

These properties, coupled with the fact that the merging
operation is linear in + ISJ, gives an overall worst-case
complexity of O(nlBl(n + IBln)) = O(n21B12).

Scenario 3) is complicated by the fact that the input ca-
pacitance of the buffers may not be simple multiples of the
capacitance of a unit-length wire. However, in practice, it is
reasonable to assume that capacitive values can be linearly
mapped onto a polynomially-bounded integer domain with
sufficient precision or are given as such. In such a situation, we
introduce another value emax, which is the largest capacitance

S, IS1 I n + nlBI.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

442 E E E JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31, NO. 3, MARCH 1996

possible among the individual components of the tree (e.g., it
may be the capacitance of the longest wire at the maximum
width). Under this formulation, we upper bound the size of
the load-required-time sets by ne,,, and the overall run-time
by O(n2c,,,(max(W, IBI))). In practice, observed run-times
are typically much less than this bound.

v. MINIMIZING POWER FOR GIVEN TIMING CONSTRAINTS

We now extend the algorithm to accommodate dynamic
power considerations. For clarity, we present this and subse-
quent algorithms without regard to signal polarity. Application
of the ideas of the previous section is straightforward. We note
also that the extension presented in this section can easily be
modified by minimizing the area subject to timing constraints.

The first issue is how to parameterize the solution sets. Now
we are not only concerned with the load and required-time of
a sub-solution, but also the power it consumes.

Therefore, solution sets Shot (v) and Stop (U) now contain
pairs (p , S,) where p is power consumption as a capacitive
value, and S, is an ordered set of load, required time pairs
(c , q) as in the previous algorithm. For example, (p , S) E
P b o t (v) indicates that for power p and every (c, q) E S, there
exists an assignment for T, consuming power p , presenting
load c upward and yielding required time q at v.

We organize these sets first by sorting them in increasing
order of power. Each set S, is ordered by load c as in the
basic algorithm.

One might think that the sets S, are typically singleton
sets; however, this is not the case. Because many different
configurations may consume precisely the same power (by,
for example, assigning an identical set of buffers to different
locations), these sets can be quite dense.

Recalling that for dynamic power dissipation, capacitance is
the correct measure and e, is the “power” associated with sink
v, Base-Case(v) simply sets S b o t (U) = { (e u , ((c u , q u) }) } .

Pseudocode for Bottom-Solutions() is given in Fig. 4. We
visit all possible values of total power consumption at v.
These values are from among the buffered and unbuffered
configurations. We introduce the notion of a “nonbuffer” to
unify the notation. In this case, we explicitly sort the values
p = pl + p , + pb. However, we observe that the number of
such distinct values p is often orders of magnitude less than
the worst case (quadratic). Because of this observation, we
utilize a hash table to make an initial pass over all pairs to
extract the distinct values which we then sort. This avoids an
expensive sorting operation.

Top-Solutions() is implemented in a similar manner; its
pseudocode appears in Fig. 5.

As described, these algorithms implement two types of
pruning. First we prune solutions (c , q) E S, for a power
p in the same way as before by Property 4.2. However, an
additional pruning condition is utilized in Figs. 4 and 5 on
lines 9 and 6 respectively. This pruning is captured in the
following property.

Property 5.1: For solution (e , q) consuming power p , if 3
solution (e’, 4’) where p‘ < p , c’ 5 e, and q’ 2 q, then the
solution (e , q) is suboptimal.

Algorithm: BottomSolulaons(v, Stop(1(u)), Stop(~(v)))
1. Let B’ = B U {$]

/* 4 indicates “no buffer”, cd = 0 */
2. s b o l (w) + 0
3. Foreach triple PI,^,,) E Siop(((v)) , (P ~ , Spy) E Siop(~(u)), b E B‘

5. I f (b i t 4)

7. S‘ - { (C B , 4’11

9. S’-S’\I(c,q)ES’I3(c’,q’) E S p ’ , P ‘ < p , c ’ 5 c , q ‘ 1 q }

10.
11.
12.
13. E k e

in increasing order of p = pi + p , + c)
Combine S,, , S,, as in lines 7-12 of Figure 2 to give S’ 4.

G. Find (e ,¶) E S’ s.t. q’ = q - butdelay(b,c) is maximized

8. Else

/* where (P’ , sp,) E shot(") */
If (p , S,) E Sbot(u)

s, - s, U S‘
(previous triple gave same p)

Prune S‘ by property 5.2

Fig. 4. Bottom-SoZutions() routine for low power

Algorithm: TopSoluiions(v, Sboi(v))
1.
2 .

S,,,(v) = { (p , 0) l p is a possible power}
Foreach pair w t 1..I/v, (pbot,Spb,,) 6 Shot

in increasing order of p = pbol + awl,*
3.
4.

Foreach (c. q) E S bot
S, - S, U { (e + awi,,,,q - elmore(e,))}
/* elmore delay evaluated at. width w */

5.
6. Sp - S P \ { (c , (1) E S p l ~ (~ ‘ , q ‘) t S p , l ~ ’ < ~ , c ‘ i c , q ’ > q }

Prune S, by Property 5.2

/* where (P’, sp,) E stop(u) */
7. If(& # 0)
E . Sto,(v) + S l o p (”) U {(P,Sp)I

Fig. 5. Top-Solutions() routine for low power.

The application of this property has proven essential in
giving reasonable running times in practice. Efficient detection
of Property 5.1 is addressed subsequently.

We implement Optimal-Soln(v, Shot (U)) simply by select-
ing the lowest power unbuffered solution at the root giving
required-time q(T) 2 0 when paired with the driver. Alterna-
tively, this set of unbuffered solutions gives the full trade-off
curve.

Detection of Property 5. I : When computing the load-
required-time set s, for power p in the previous algorithms,
we have already computed the load-required-time sets S,,
for all p’ < p . We now want a data-structure to efficiently
determine, for each (e , q) E S,, if Property 5.1 holds. Since
the solution sets can grow to be of substantial size, a linear
scan to detect this property would likely be a disaster.

Since we visit the power values in order, we know that the
entries in the data structure are for power values p’ < p . Thus,
the data structure need only concern itself with c and q values.

Thus, we need a data structure which efficiently supports
the following operations:

* insert(c, 4): update the data structure to reflect solution

sub-opt(c, 4): retums TRUE if 3(c’, 4’) previously in-

Such a data-structure solves a special case o f the orthogonal
range query problem from computational geometry (see e.g.,
[191). Our problem is a special case in the sense that we need

(c, 4)

serted s.t. e‘ 5 c and q’ > q, FALSE otherwise.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

LILLIS et al.: OPTIMAL WIRE SIZING AND BUFFER INSERTION FOR LOW POWER AND A GENERALIZED DELAY MODEL 443

not retrieve or count all (e’, q’)’s satisfying the property, and
the subspace we are interested in is defined by two inequalities,
c’ 5 c and q’ 2 q, rather than four. In other words, our
subspace is the intersection of the half-planes formed by
the inequalities rather than a rectangle formed by four such
inequalities. These special properties of our problem allow us
to support the operations above in O(1ogm) time and O(m)
space for m entries by use of an augmented binary search tree.
In contrast, the fastest known approaches to the general 2-D
orthogonal range query problem also run in O(1ogm) time
but use O(m1ogm) space.

To support the operations, we order a binary search tree by
load values c. At each node t of the search tree, we store the
load value c and the largest q value at t or in the left subtree
t. We refer to this value as t.ql-max. Given this augmentation,
insert() is easily implemented recursively and sub-opt() can
be implemented by examining the four following cases with
respect to c ,q (given), and t.c and t.ql-max stored at the
current node in the tree (boundary conditions are not given
for clarity)

c < t.c, q < t.ql-max Explore left subtree
c < t .c, q > t.ql-max Return FALSE
c > t .c, q < t.ql-max Return TRUE
c > t.c, q > t.ql-max Explore right subtree.

By following these guidelines recursively down the search tree,
we can detect the property in time proportional to the depth
of the tree.

A. Run Time

With respect to wire-sizing alone, i.e., IBI = 0, we notice
that p = c for every power-load-required-time triple since
there is no decoupling by buffers. Thus the basic algorithm
is sufficient to solve the low-power problem: we get power
minimization “for free.”

In the general case of simultaneous wire sizing and buffer
insertion (or buffer insertion alone if W = l), we have to
take into account the quadratic nature of the algorithm. Since
we examine all pairs of power values from the left and right
children, the solution sets are no longer assured to be linear
in size. However, when the capacitive values are given as
polynomially-bounded integers, or can be mapped to such,
once again we can show the run-time of the algorithm to be
polynomial.

As in Section IV-A, let cmax be the largest possible
capacitive value among the components. Under this sce-
nario, we bound the number of load-required-time pairs
at a node by (nemax)’. This gives an overall run time
bound of O(n(lB1 + W)(ncmax)’ log(ncma,)) O((lBl +
W)(n3ekax log(ncmax))). The log factor is an artifact of the
sorting performed on the power values.

In practice, we observe much better run times as a result
of the additional pruning described in the previous section
(and not included in this analysis since we cannot prove it
improves the worst case performance).

Fig. 6 . Piecewise linear function modeling effect of signal slew.

VI. ACCOUNTING FOR SIGNAL SLEW

We now give a further generalization of the algorithm to
account for the effect of signal slew on buffer delay. The
key to our approach is the manipulation of piecewise linear
functions to model the effect of signal slew.

Overview: By (2), buffer delay is augmented by the term
A ~ D L ~ ~ ~ ~ (recall that A b is a characteristic constant of buffer
b and that Dhprev is the RC delay of the previous stage).
Since our algorithm proceeds in bottom-up order, this is an
unknown value when computing the delay associated with a
buffer. Conceptually, we would like to support queries of the
form “What is the optimal solution at w with capacitance c
and D L ~ ~ ~ ~ = x?’

Since A ~ D L ~ ~ ~ ~ is linear in Dhprev, we utilize piece-
wise linear functions to model this effect. Where we pre-
viously had load-required-time pairs (e , q) , we now have
load-required-timefunc pairs (e , f) where f is a piecewise
linear function; f (5) = q is the optimal required time q at ‘U

for load c and D L ~ ~ ~ ~ = x.
We illustrate the modeling of delay by a piecewise linear

function in Fig. 6. Fig. 6(b) shows the piecewise linear delay
function f at node w in Fig. 6(a). The left and right subtrees
have maximum delays of five and four units, respectively,
when D L ~ ~ ~ ~ = 0. However, since the left and right subtrees
are driven by different buffer types, they have different sen-
sitivities At and A,. The straight lines in Fig. 6(b) correspond
to the two delay functions contributed by the two subtrees
with slopes corresponding to the sensitivities A1 and A,. The
resulting delay function f at node w is shown as a solid line,
which is the max of the two. Thus, different values of D L ~ ~ ~ ~
can result in different critical paths.

We represent a piecewise linear function f by a linked list
of quadruples (20, yo, s , each quadruple is a segment
starting at point (20 , yo) ending at Z e d and having slope s.

Our manipulation of piecewise linear functions is based on
three basic operations:

f =Pwl-max(fl, f 2) f(.) = max(f1(z), f Z (2)) Vx
f =Pwl-min(fl, f z) e f(.) = min(f1(5), fz(.)) vx
f’ =pwl-addscalar(f, d) U f’(x) = f (z) + d Vx.
The first two of these operations can be performed in a

manner similar to the merging of two sorted lists in linear
time by stepping through the lists and examining points of
intersection. Further, they can be generalized to operate on sets
of functions rather than pairs by repeated application, giving,

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

444 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31, NO. 3, MARCH 1996

for example, pwlLmax(f1,. . . , fk). The third operation is
achieved simply by adding d to the starting g-coordinate (yo)
of each segment in the function.

With respect to the dynamic programming algorithm, we
must also associate with each segment in the piecewise linear
function f the relevant configuration information which yields
the solution (e.g., wire-width, buffer type).

The algorithm modifications are summarized as follows:
1) Where we had load-required-time pairs (e , q) , we now

have load-required-time~unc pairs (e , f).
2) Where we computed scalar max and min operations on

arrival times q, we now compute pwlmax and pwlmin
operations on piecewise linear functions.

3) Where we eliminated suboptimal solutions (e , q) by
Properties 4.2 and 5.1, we now eliminate suboptimal
portions of solutions (e , f) by analogous properties.
These suboptimal solutions now give required arrival
time of --oo for certain values of D L ~ ~ ~ ~ .

A detailed description of the generalized algorithm follows.
For generality, we focus on the low power formulation of the
problem.

Pruning Operations: Before presenting Bottom-Solu-
tions() and Top-Solutions(), we first discuss the basic pruning
operations used in the algorithm.

Previously, a basic operation in our algorithms was the
merging of two load-required-time sets. If we had two sets
5’1 and 5’2 where the solutions in each set consumed identical
power p (or we were not concerned with power), we computed
a new set S1,2 = (5’1 U S2)\S* where S* was a set of provably
suboptimal solutions by Property 4.2; i.e., (e , q) E S* implied
that 3(c’, q’) E S1,z s.t. c’ 5 e and q’ 2 q.

We generalize this concept for load-require&time_func
sets. The property analogous to Property 4.2 is the following:

Property 6.1: Let load-required-time set S = { (cl, f1)

,..-,(em,fm)) be ordered by load; i.e., ci < ci+l. For
(c i , f i) E S let f,! be defined as

f &) = { fi(.) ifPWl”fl(X),
-00, otherwise.

We may replace (c i , fi) E S with (c i , fl) while maintaining
optimality. Further, if f l (z) = --03 ‘dx, then (c i , f i) may be
eliminated altogether.

This property is implemented in Fig. 7 as the routine
Merge-Load_Func-Sets() and is used by both Bot-
tom-Solutions() and Top-Solutions().

In addition, the previous low power algorithm utilized a
more general pruning method given by Property 5.1 which
said that, for a pair of solutions (p , e , q) and (p’, e’, q’), if
p < p’, c 5 e’, and q 2 q’, then (p’, e’, 4’) is suboptimal
and may be eliminated. The analogous property for the slew
sensitive generalization is as follows.

Property 6.2: For a solution (p , e , f) , let S’ be the set of all
other solutions s.t. (p i , ci, f i) E S’ iff that p i < p and ci 5 e.
Further, let fmax = pwlLmax(fi) over all (p i , c i , f i) E S’. In
a manner similar to Property 6.1, we may replace f with

Algorithm: Merge-Load-Fu2loc.S’ets(S~, 5’2)
Let S‘ t SI US,
fmax(z) = --CO Vz
Foreach (c , f) E S’ in increasing order of c

Let f’(2:) = f(z) iff(.) > fmax(s)

S‘ + S’ \{(e , f)l
f’(z) = -CO otherwise

If 32

/* Otherwise, (e , f’) zs useless */

s.t. f’(.) # -cc
S’+S’U{ (C, f ,) }

fmax - pwlmax(fm=,, . f)
Return S’

Fig. 7.
same power).

Algorithm for merging load-func sets (presumably consuming the

Algorithm: Botlom.Sohlions(v, Stop (l (v)) , ,StOp(r(n)))
8’ - B U {q5} where q5 indicates “no buffer”, cg = 0
Shot(") - ’d
Foreach triple (pi,Spz1 E Stop(l(u)),(pr,sJ,,) E stop(l.(v)),b E B’

in increasing order of p = pi + p,. + C6
/* Let (c r , f ~) Gp, and (e v , J?) E S,, be indexed */
/* E.g. (~$1, f~[i]) is the ith smallest load in */
/* and corresponding piece-wise linear function in S,, */
For i = l..IS,,I

If (2 = 1)
7 - 1

Let j be the smallest index s.t f ~ [i - 1] (z) < f , . [j] (z) for some J

Else

While 3z s.t. fFb](z) < fr[i](z)
Imin -~wlmin(fi[i l , f&l)
If (6 = +)

f’ +- Jmin
e’ + CI [i] + c, [j]

2: + (CI [;I + CP [jl) ’ 7-6

e’ - a [i] + c&]

S‘ - S’ U { (c ’ , Y)}
j - j + l

Else

y t fmin(x) /* Req. arrival time a t output of buffer “1
q C q - (c I [i] + C , [j l) T b - d b

Let f’(x) = q - X b i Vx /* One segment pwl func. */

Prune solutions in S‘ per Property 7.2

If (3(P1s~) 6 Shot)
Shot + Shot - {(Pb
SL - Merge-Load-FuncSets(S‘, S,)
sbot - Sbot U {(P,si)}

Shot - sbot {(P, s’)}
Else /* New power value */

Fig. 8. Bottom-SoZutions(routine for low power and signal slew.

Again, if f ‘ (z) = -00 ‘dz, then (p , c, f) may be eliminated
entirely.

A generalization of the data-structure in Section V is be
presented later in this section to e€ficiently implement the
pruning of Property 6.2.

Finally, we give pseudocode for Bottom-Solutions(1 and
TopSolutions() in Figs. 8 and 9, respectively. The routines
follow the previous versions quite closely. However, because
Properties 6.1 and 6.2 introduce partially defined functions,
there is no total order on the (e , f) sets. Therefore, when
combining solutions of children, we may look at all such pairs
in the worst case rather than performing a simple “merge”
as previously (Fig. 2, lines 7-12). This can be seen in the
for loop of Bottom-Solutions() in Fig. 8-for a particular
f~[i], we must find the appropriate f T [j] ’ s to pair with f i [i] .
In the worst case, all j ’ s may be candidates-and this may
hold for all i ’ s . However, in practice, these sets tend to

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

LILLIS et al.: OPTIMAL WIRE SIZING AND BUFFER INSERTION FOR LOW POWER AND A GENERALIZED DELAY MODEL 445

Algorithm: Top Solulions(v, Sbot(w))

1 Stop(.) - 43
2
3
4
6
6

8

Foreach pair w E 1. W , (phot, Spbo,) E ."bot in increasing order o f p = phot + owl,.
Foreach (c , f) E SPbot

Prune sub-optimal solutions from Sp by Property 7 1
Prune sub-optimal solutions from S, by Propeity 7 2

S, - S, U { (e + awl,",pwl.addscalar(f -Plmore(e,))} (at width ui hp = 43 initially)

7 If (SP # 0)
Stop(U) - %o,(~) U {(P> %)I

Fig. 9. Top-Solutions() routine for low power and signal slew.

Algorithm: Prop7.Z(t, e , f)
if l=NULL return f
else if c < t .c

else if e 2 t . c
return Prop'l.t?(t.feft, c , f)

Define f' as:
f'(z) = f (z) i f f (2) t-fimas(z)
f'(z) = --03 otherwise

return f'

return Propll .&(t.nght, c, f')

if (f'(z) = -CO Vz or t.c = e)

else

Fig. 10. Implementation of Property 6.2.

%rev '% %rev -
Fig. 11. Effect of inserting a buffer.

remain linear in size. A related issue is the complexity of the
functions themselves. In principle, the size of the functions
can grow exponentially. However, again we do not observe
this phenomenon in practice.

Examples: To give intuition on the operation of the algo-
rithm, we now give some illustrations. Fig. 11 shows function
f having load c before and after buffer b is considered for
insertion at U as is performed in Bottom_Solutions(). Since b
will drive load c, D L ~ ~ ~ ~ for its descendants is CTb. Therefore,
the required arrival time at the output of the buffer is t l .
Subtracting the buffer delay buf-delay, we have the required
arrival time function at the input of the buffer shown as a solid
line in the right figure with slope -Ab.

Fig. 12 illustrates the operation of combining left and right
("top") solutions. For some values of D L ~ ~ ~ ~ , the left subtree
is critical, and for others, the right is. The solid line in the
graph on the right shows the function resulting from the
pwl-min function to capture the combination of these two
solutions.

Implementation of Property 6.2: We now give a generaliza-
tion of the data-structure of Section V to implement Property
6.2. Given a set of pairs (e%, fi) and a candidate pair (e , f) ,
we want to efficiently compute f ' as described in Property

--.._ - - _ _
fr

.

Fig. 12. Combination of left and right solutions.

\ -.__

2.5416 4.8 5.0 5 2 5.4
Power (nF)

Fig. 13. Power-Delay curve for a 20 sink net.

6.2. (Recall that as the algorithm is organized, the power p
associated with (e , f) is strictly greater than each p , associated
with each (e t , f%)).

To accomplish this, we alter the previous augmented tree
data structure to store the pair (tee, t.fi-max) at each tree node t
rather than (t s c , t.ql-max). As before, the search tree is ordered
by e. The piecewise linear function t . fi-max is pwlLmax(f%)
over all f t where (e,, fi) resides either at t (e% = t . c) or in
its left subtree.

Pseudocode implementing Property 6.2 is given in
Fig. 10-i.e., given (c , f) , we return the portions of f
which are not suboptimal in the form of f ' . Updating the
data-structure can be done by recursively traversing the
search tree and updating the fi-max function at each node
as we go.

The complexity of these operations is logarithmic in the
number of entries in the data structure multiplied by the
average complexity of the piecewise linear operations (which
has been very small in our experiments).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

446

K= 1 K=2 K=4 K=8

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL 31, NO 3, MARCH 1996

K=16 K=32 MAX

n B I S I B I S I B I S I B I S I B I S I B I S CPU

VII. EXPERIMENTAL RESULTS off curve with no additional complexity. The algorithm can

390

we have implemented our algorithms under the cmx
environment on a Sun SPARC 20 workstation. we ran our d-
gorithms on randomly generated routing topologies of various
sizes with nonuniform segment lengths. In these experiments,

easily be adapted to perform area minimization. In addition,
we incorporate the contribution of signal slew into the delay
model which has been shown to be a significant contributor
to

2 0 7 2 0 7 0 2
2 8 7 0 8

4 3 7 3 4 7 1 3
4 7 0 3 9 5 3 8
5 5 9 3 7 3 G 8

discretization was done on an arbitrarily large integer domain
(e.g., 1 OOOOOO), and yet impressive run-times were obtained. REFERENCES

Since our algorithms derive optimal solutions, the main
focus of our experiments were run-time, the nature of the [I] C. L. Berman, J. L. Carter, and K. F. Day, “The fanout problem: From

theory to practice,” in Advanced Research in VLSI: Proc. 1989 Decennial
Caltech Conf, C. L. Seitz Ed., MIT Press, Mar. 1989, pp. 69-99.

[21 J. J. Cong and K. S . Leung, “Optimal wiresizing under Elmore delay
model,” IEEE Trans. Computer-Aided Design, vol. 14, no. 3, pp.
321-336. 1995.

trade-off curves, and the effect of signal slew.
We used five different buffer types; the smallest (1x) buffer

having T b = 3170 R, cb = 10 fF, d b = 300 ps and Ab = .08.
The largest buffer was 8X. Intrinsic delay d b was identical for
all buffers and A b was assumed to be inversely proportional
to width (largest A b beiing 0.8, smallest 0.1). Our experiments
used a variety of wire widths from 0.5 pm to 5 pm (additional
benefit typically wasn’t observed for our test cases beyond this
width). In these experiments, we used maximum delay as the
metric (i.e., all required times of sinks were zero).

Fig. 13 shows the optimal power versus delay curve for
a 20 sink net. We utilized both wire sizing and buffer in-
sertion on this example, Observed run times for nets of
this size are typically in the 20-30 second range. The un-
sizedhnbuffered delay is at ‘the left-most point and the min-
imum delay solution is at the right-most point of the curve.
Clearly much better engineering choices.apPear at the ‘‘elbow”
of the curve.

‘I’ Here we
show the importance of taking slew into account for buffer

~ ~ optimization,” IEEE Trans. Computer-Aided Design, pp- 270-281, Mar.
1987.

VI L. N. P. R. Suaris, and H.-G. Fang, “A methodology and
algorithms for post-placement delay optimization,” in Proc. ACMiIEEE
Design Automation Con$, 1994, pp. 327-332.

[8] J. Lillis, C. K. Cheng, and T. T. Lin, “Optimal and efficient buffer
insertion and wire sizing,” in Proc. Custom Integrated Circuits Con$,
1995, pp. 259-262.

[9] S. Lin and M. Marek:Sadowska, “A fast and efficient algorithm for
determining fanout trees in large networks,” in Proc. 1st European
Design Automation Con$, 1990, pp. 539-544.

[lo] J . Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in RC
tree networks,” IEEE Trans. Comuuter-Aided Design, vol. 2. no. 3, DD.

Our second set Of experiments appear in

insertion. We performed experiments on nets ranging from 10
to 30 sinks. The other variable was a scaling factor K , which
is a coefficient for Ab. We replace each X b with K X b . For
each K we have two columns: B is the result of running the
basic algorithm for min delay and evaluating the delay of the
resulting tree taking slew into account and S is the result of
the extended algorithm of Section V. The right-most column
is the worst run-time among all experiments in that row. As K
and n grow, we see large variation between observed delays,
approaching 50% in one case. For the 10 sink net, the critical
path never included any buffers accounting for the identical
delays.

VIII. CONCLUSION

We have presented efficient algorithms for optimal wire
sizing and buffer insertion. We adopt the flexible problem
formulation of minimizing power shbject to timing constraints
and alternatively, can compute the entire power-delay trade-

[3] 3. J. CO& and C.-K. Koh, “Simultaneous driver and wire sizing for
performance and power optimization” IEEE Trans. VLSI Syst., vol. 2,
no. 4, pp. 408425, Dec. 1994.

[4] J. J. Cong, K. S. Leung, and D. Zhou, “Performance-driven interconnect
design based on distributed RC delay model,” in Proc. ACMilEEE
Design Automation Conf. 1993, pp. 606-611.

[5] W. C. Elmore, “The transient response of damped linear network with
particular regard to wideband amplifiers,” J. Applied Physics, vol. 19, _ _
pp. 55-63, 1948.

161 N. Hedenstiema and K. 0. Jeppson, “CMOS circuit speed and buffer

I_

202-211, 1983.
1111 T. Sakurai, “A unified theory for mixed CMOS/BiCMOS buffer opti-

mzation,” IEEE J Solid-State Circuits, vol 27, no 7, pp 1014-1019,
July 1992

[12] S S Sapatnekar, “RC interconnect optimization under the Elmore
delay model,” in Proc ACM/IEEE Design Automation Conf, 1994, pp

[I31 J C Shah and S S Sapatnekar, “Wiresizing and buffer sizing for
power-delay tradeoffs using a sensitivity based heuristic,” Tech Rep
IS U-CPRE-95-SSO1, Dept Electrical and Computer Engineering, Iowa
State University, Ames IA 50011

[14] K J Singh and A Sangiovanni-Vincentelli, “A heuristic algorithm for
the fanout problem,” in Proc 27th ACM/IEEE Design Automation Conf,
1990, pp 357-360

[15] Synopsys 3 1 Release Manual Appendix B, “Static timng analysis ‘’
1161 H J Touati, “Performance oriented technology mapping,” Ph D dlsser-

tation, Memo UChWERL M90/109, Dept of Electrical Engineering and
Computer Science, UC Berkeley, Nov 28, 1990

[I71 L P P P van Ginneken, “Buffer placement in distributed RC-tree
networks for mnimal Elmore delay,” in Proc Int Symp on Circuits
and Systems, 1990, pp 865-868

[18] N H E Weste and K Eshraghian, Principles of CMOS VLSI Design
Readmg, MA Addison-Wesley, pp 231-237, 1993

[I91 F F Yao, “Computational Geometry,” Handbook of Theoretical Com
puter Science, Elsevier Science, ch 7, vol A, 1990

387-391

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

LILLIS et al.: OPTIMAL WIRE SIZING AND BUFFER INSERTION FOR LOW POWER AND A GENERALIZED DELAY MODEL 441

John Lillis received the B.S. degree in computer
science from the University of Washington, Seattle,
in 1989 and the M.S. degree in computer science
from the University of California, San Diego, in
1992. He is currently working toward the Ph.D.
degree in the Computer Science Department at the
University of Califomia, San Diego.

His research interests are in computer aided de-
sign of VLSI circuits and combinatorial optimiza-
tion.

Chung-Kuan Cheng (S’82-M184-SM’95) received
the B.S. and M.S. degrees in electrical engineering
from National Taiwan University, and the Ph.D. de-
gree in electrical engineering and computer sciences
from University of California, Berkeley, in 1984.

From 1984 to 1986 he was a senior CAD engineer
at Advanced Micro Devices Inc. In 1986, he joined
the University of California, San Diego, where he
is currently an Associate Professor in the Computer
Science and Engineering Department. His research
interests include network optimization and design

Ting-Ting Y. Lin (S’84-M’87) received the B.S.
degree from National Chiao-Tung University,
Hsinchu, Taiwan, R.O.C. and the Ph.D. degree
in computer engineering from Carnegie Mellon
University, Pittsburgh, PA.

She is an Assistant Professor in the Department
of Electrical and Computer Engineering at the
University of California, San Diego. Her research
interests include design automation, VLSI testing,
fault modeling, and system dependability.

Dr. Lin is a member of Sigma Xi.

automation on microelectronic circuits.

AIDED DESIGN.
Dr. Cheng is an Associate Editor of IEEE TRANSACTIONS ON COMPUTER

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

