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Abstract- The global routing problem is formulated as a 
multiterminal, multicommodity flow problem with integer flows. 
An e-optimal 2-terminal multicommodity flow algorithm with 
fractional flows is extended to handle multiterminal commodities. 
Our adaptation of this network flow algorithm seeks to maximize 
overall routability by minimizing edge congestion as opposed 
to conventional techniques which usually seek to minimize wire 
length. We show that under certain conditions, our approach 
derives an approximate optimal solution. We appty a random- 
ized rounding procedure to derive an integer solution from the 
fractional multicommodity flow solution. Experimental results 
demonstrate that this network flow algorithm can be realistically 
used to route industrial sized circuits with reduced congestion. 

I. INTRODUCTION 
E INVESTIGATE the problem of routing given a 
placement and a list of pins to connect. The routing 

problem is traditionally broken down into two subproblems: 
global routing and detailed routing. Global routing gives the 
general paths for the signal nets; detailed routing assigns actual 
tracks and vias to the routes. Here we concern ourselves with 
the global routing problem. 

Ting and Tien [l]  employ an iterative improvement algo- 
rithm for global routing. Their algorithm starts by routing 
each net independently, allowing each net to find its natural 
interconnect pattern. It then proceeds to improve the solution 
by rerouting nets so that they avoid overflow boundaries. The 
authors of this algorithm make several comments. First, they 
acknowledge the problem of net ordering in the initialization 
step. Second, they indicate how to update overflow boundaries 
dynamically when rerouting each net. 

Subsequently, much effort [2]-[8] has been expended on 
developing a linear programming or multicommodity flow 
formulation of the global routing problem. Hu and Shing 
[2] extend Ting and Tien’s iterative improvement algorithm 
by formulating the global routing problem as a hierarchical 
linear program. Each column in the linear program represents 
a possible route for some particular net, while each row 
represents the utilization of channels. As a result, each column 
is a 0-1 vector specifying which channels to use for connecting 
some net. To solve the problem practically, they use linear 
programming to arrive at an initial solution, and then proceed 
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to deduce an integer solution by selecting, for each net, 
the column with the highest fractional value. Because it is 
impractical to generate all the possible columns for each net 
in advance, Hu and Shing use column generating techniques 
[9] to generate potential candidates. 

Global routers have been constructed using both multicom- 
modity and single-commodity flow models. Shragowitz and 
Keel [7] extend Ting and Tien’s global routing algorithm 
by formulating it as a multicommodity flow problem. They 
generate their initial global routing by solving a multicom- 
modity flow problem with the capacity constraints removed. 
By dynamically adjusting edge weights with a cost function 
which heavily penalizes congested channels, they proceed 
to improve their initial solution by solving multicommodity 
flow problems which are in turn reduced to a series of 
shortest path problems. Meixner and Lauther [lo] observe that 
multicommodity flow problem formulations cannot guarantee 
integer solutions because flows may be split into portions. 
Instead, they use a single-commodity flow formulation to 
improve an existing global routing solution by improving a 
group of adjoining nets all at once. Meixner and Lauther 
observe that an ordering problem still exists, though they claim 
that the problem of ordering graph nodes to process is far less 
severe than the net ordering problem. 

Vannelli [3], [4] applies Karmarkar’s linear programming 
algorithm [l 11 to Hu and Shing’s linear programming formula- 
tion. Whereas Hu and Sbng use column generating techniques 
to reduce the complexity of the problem, Vannelli reduces it by 
selecting only minimal rectilinear Steiner trees or near minimal 
rectilinear Steiner trees for his matrix. This approach limits 
the variety of routes for each net that may be used by the 
algorithm. The resulting program runs much faster than an 
equivalent simplex implementation. 

Karp et aE. [5] give an algorithm for global routing which 
uses linear programming followed by randomized rounding, 
a technique discussed in detail by Raghavan [12]. They are 
able to prove that given an integer program and a linear 
programming solution which is optimal, one can deduce an 
integer solution within a computable error bound. Raghavan 
and Thompson [XI also give a global router which is determin- 
istic for 3-pin nets. They incorporate a randomized rounding 
algorithm derived from their previous work. Raghavan and 
Thompson’s algorithm can be generalized to work on larger 
nets, but the total number of Steiner points grows exponentially 
as do the number of variables in the integer program. Because 
in practice many nets in a global routing problem can contain 
50, 100, or even 200 pins, we see that this algorithm, as stated, 
is unsuitable for large practical problems. This follows from 
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the observation that a single 20 pin net can require trillions of 
variables to be included in the integer program. Therefore, a 
heuristic algorithm is needed to reduce the complexity. 

While Hu and Shing, as well as Vannelli, attempt to solve 
the global routing problem using combinatorial techniques, 
there are many papers [6], [13], [14] proposing fast hierarchi- 
cal algorithms. By using a slicing structure, they decompose 
the problem so that its base case is either a simple 2 x 1 or 
2 x 2 case. The slicing continues until the grid equals the 
basic unit size. 

Lee and Sechen [15] have implemented a global router 
specifically designed for sea-of-gates circuits. They produce 
their routing by successively refining it, starting first by 
minimizing interconnect length, then proceeding to even out 
congestion, and conclude by applying a maze routing proce- 
dure which removes overflows and reduces congestion. They 
handle ordering problems by randomly selecting the next 
object to process. 

Recently, Chiang et al. [16] have implemented a global 
routing algorithm which proceeds as follows. It first assigns 
a unique order number to each net such that nets with lower 
order numbers will be routed first. Then, it proceeds net by 
net, computing a midmax minimal rectilinear Steiner tree 
[17]-[19] for that net on a weighted graph. These minimal 
rectilinear Steiner trees attempt to minimize the maximum 
edge. The weight of an edge is a function of capacity and usage 
such that crowded edges have high weights. The resulting algo- 
rithm, which is essentially a greedy one pass algorithm, is very 
fast with good results against benchmark data. Its midmax 
minimal rectilinear Steiner tree algorithm is demonstrated to 
be effective in certain cases. 

This paper describes a global router based on a multitenni- 
nal, multicommodity flow algorithm [20]. We utilize Shahrokhi 
and Matula’s algorithm [21] to derive the fractional flow 
solution in a relatively short execution period. We extend this 
method to handle multiterminal Steiner trees instead of just 
shortest paths. Based on Shahrokhi and Matula’s algorithm, we 
exhibit, at any stage, the error bound of the current result from 
an optimal solution of the linear programming formulation. 
We then use a randomized rounding technique to derive a 
discrete net connection with& an error bound on the derivation 
from the optimal fractional solution. We finish by employing 
an iterative procedure to improve the final results. In the 
iteration, the cost of each edge is an exponential function of the 
congestion. Thus, on these cases, our proceduresfo handle net 
ordering and cost assignment on edges answer the problems 
proposed by Ting and Tien. The experimental results with 
benchmark data show significant improvements over previous 
work. 

11. PROBLEM FORMULATION 

Given a layout problem, we want to generate the global 
routing that minimizes the maximum density. We can formu- 
late the problem as a linear programming problem. Section 
-2.1 gives definitions and notation which are needed for the 
problem formulation in Section 2.2. In Section 111, we present 
an approximate multicommodity multiterminal flow algorithm 
to solve this programming problem. 

1, 

2.1 Definitions 

Let G = (V, E )  be a connected graph which is to model 
the connectivity of a global routing region. Each edge e E E 
has a capacity ~ [ e ]  associated with it. The capacity specifies 
the number of nets which may be routed through that edge. 
Let N be the set of nets to complete. Assume that these nets 
are numbered consecutively, i.e., 1 through r .  Each net n E N 
contains a set of vertices V, V s .t . I V, I 2 2. Subsequently, 
we will use n and e to represent either the elements or the 
indices of the nets and edges if no confusion arises. 

Let d( e) be a distance function giving the distance of edge 
e. The distance we define here should not be confused with 
Euclidean or Manhattan distance metrics that are normally 
used. If t is a tree, d(t) denotes the distance of the tree, i.e., 
d(t) = C e E t d ( e ) .  We also define d(n) to be the length of 
the shortest tree that connects net n. The demand of a net 
specifies how many connections must be made for that net. 
Thus, each net n has a demand b[n] associated with it. In 
general, this value is set to one. However, in problems where 
a net n represents a super-net containing s identical nets, b[n] 
is set to be s, thus specifying that s distinct connections are 
required. 

By assuming that G is a finite graph with finite sets V and 
E ,  we observe that any tree connecting a net is simply a subset 
of E.  Thus, because the power set of E represents all possible 
trees within G, we can assume that we can enumerate and 
index all possible trees for any given net. We can henceforth 
define a matrix A to represent all possible paths for each net. 

Let A be a 0-1 matrix specifying all possible trees for all 
nets within the graph. Each tree t is represented by a 0-1 
column vector of dimension ]El, i.e., 

t = ( U 1  U 2  . . .  . ,E,)? 

If tree t uses edge e, then the corresponding row is one, 
otherwise it is zero. We assume that all possible enumerations 
for the first net are listed from left to right, followed by all 
possible enumerations for the second net, and so on. As a 
result, one may view A as a vector of columns specifying all 
the possible trees for net 1, net 2, and so on. Furthermore, 
given A, let A, denote a submatrix of trees for net n. The 
number of columns within this submatrix is the total number 
of possible trees for net n. 

Let p 1 ,  pa,  . . . , p ,  represent the number of trees for nets 
1 , 2 ,  . . . , T ,  respectively. Let t,, denote the j th  tree of net n. 
Then, matrix A takes on the following form 

A =  (Ai A2 . . .  A,) 

where 

A, = (tnl tn2 . . . trip,). 

Note that although we list all possible trees in the formula- 
tion, in calculation we only need a few throughout the process. 
We adopt a column generating technique [2]  and [9] which 
only requires the generation of the best tree according to the 
current distance function. 

Given a flow configuration, let f denote a function which 
returns the flow associated with its argument. Consequently, 
f [t,,] denotes the flow associated with tree t n j ;  f [n] denotes 
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the total flow associated with this net, i.e., f [n] = E::, f [tnJ]. 
In addition, given an edge e ,  f [e] denotes the total flow 
associated with this edge. By defining 6 to be 

1, 
0, otherwise 

if tree t n j  uses edge e;  
S ( t n j ,  e )  = 

2.2 Linear Programming Formulation 
Let X denote a vector with as many rows as there are 

columns in A with its element xnj f [ t 7 % j ] .  The resulting 
problem is how to maximize a throughput 3 subject to a set 
of constraints. 

The following linear program specifies the global routing 
problem as a multicommodity multiterminal flow problem. 

Minimizeg* subject to 
'dn E N ,  f [n] - b[n] = 0 ,  

V n , j ,  xnj L 0. 

'de E E ,  f [e] - g*c[e] 5 0 ,  

Note that the above constraints can be expressed with variables 
g* and X ,  i.e., 

r P ,  

Y e  E E ,  

vn, j ,xnj  2 0. 

Z n j S ( t n 3 ,  e )  - g*c[el I 0 
n=l j=1 

The first constraint of the linear program specifies that the 
sum of all the flows must be equal to the demand for that 
net. Let g* denote the bottleneck of the graph. Thus, g* = 
maxeEE (f  [e] /c[e]) .  We can see that 3 = l / g * .  Therefore, we 
can see that the second constraint specifies that the throughput 
3 must be set so that no edges are overflowed. An equivalent 
matrix formulation of this constraint is A x ( 3 X )  5 G, where 
C is a vector of c[e]. In global routing, we require that the 
flows be integer valued so that: ' d i , j ,  xtJ E (0 , l ) .  However, 
this transforms the problem into an integer program which is 
known to be NP-complete. 

If the solution Z 2 1, we have a fractional routing solution 
which is feasible under the current edge capacity constraint. 
Suppose Z > 0, then the maximum density of the fractional 
routing solution is reduced to maxeEE c[e]/Y.  Therefore, we 
use the objective function of maximizing Z to generate a 
minimal density solution. 

111. OUR APPROACH 

An c-optimal solution is one which differs from the optimal 
solution with a relative error of at most E .  Shahrokhi and 
Matula [21] propose an c-optimal algorithm to solve the 2- 
terminal, multicommodity flow problem. This algorithm, if 
directly applied to global routing, requires 2-pin nets and 
fractional flow assignments. We present an algorithm which 
allows for n-pin nets and ultimately integer valued flows. 
This algorithm effectively generates a solution to the integer 

program given in Section 2.2 with an error bound. The six 
steps, R1 through R6, are described in the following sections. 

3.1 Basic Algorithm 
Steps R1 through R4 derive a fractional flow solution. Under 

certain assumptions (Section 5.2), we can claim an c-optimal 
solution. Step R5 then integerizes this solution, identifying any 
overflow edges. A stochastic approach is adopted to obtain a 
probalistic error bound. Step R6 reroutes the nets to improve 
the resulting solution until either there are no more overilow 
edges or until it is impossible to improve the solution any 
further. Since R6 only improves the solution, we can claim 
a theoretical bound on the optimal solution when certain 
assumptions (Section 5.2) are met in Rl-R5. 

3.2 Fractional Flow Algorithm 
The following pseudocode summarizes the flow of control 

of the fractional flow algorithm. The first step achieves an 
initial feasible solution. The second step updates edge weights 
and recomputes Steiner trees, and the third step determines 
whether the solution is €-optimal. If so, it then breaks from 
the loop and proceeds on to the integerization Step R5. If not, 
the fourth step selects a net to reroute and the amount of flow 
to be rerouted. 

RI-Initialize and compute initial Steiner  trees  
while not E-optimal do 

Algorithm 3.1 

R2-compute edge distances and new Steiner  trees 
R3--check i f  €-optimal 
R4-select and reroute net 

done 

3.2.1 R1-Initialization 
The goal of this step is to initialize system wide parameters 

and to obtain an initial feasible solution. The solution is 
feasible in that all demands of each net shall be met. However, 
upon completing this step, the solution may not be usable 
because the throughput may be less than one. 

Initialize System Wide parameters: Given a graph G = 
(V,E)  and netlist N ,  initialize all system wide parameters. 
Define Cx = C e E ~ c [ e ]  and C, = min,,Ec[e]. Define 
bc E C n E ~  b[n]. Define a0 in terms of a user defined constant 
E ,  i.e., 00 E cz~ /16c rc~ .  no will be used as the limit on the 
smallest fraction of flow to avoid iteration on the trees with 
tiny flow. The user input constant E E (0, I] specifies the 
amount of error that the user can tolerate. The constant a ,  
which is typically set between 0.01 and 100, is a user tunable 
parameter. Shahrokhi and Matula specify that a should be set 
to 2c$/c,bce. However, this is generally impractical on fixed 
precision computers. 

d ~ l [ e ]  = l / c [ e ] ,  for each edge e E E.  In this step, 
wider edges are assigned a lower distance. 

Compute Initial Steiner Trees: For each net n E N ,  com- 
pute the Steiner tree and make it active with its flow set to be 
b[n]. This Steiner tree algorithm is described in Section 4.1. 
All edges should be marked as to ensure that distances are 
calculated in Step R2. 

Initialize Edge Distances: Establish initial distances 
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Special Implementation Concerns: It may be desirable to 
update edge distances after routing each net. The distance 
function will be that of R2. However, in doing this, the order 
in which one routes nets becomes important. One heuristic we 
use is to route the net with smallest area bounding box first, 
and then to proceed onto the larger nets. This approach helps 
achieve an initial feasible solution with higher throughput than 
if edge distances are not updated. However, the wire length 
may become quite large. 

3.2.2 R2-Edge Distances and Steiner Trees 
Compute New Edge Distances: For each marked edge, i.e., 

any edge e whose utilization f ( e )  has changed during Step R1 
or R4, compute the new distance dRz[e]: 

dR2[e] = exp ( a ( f [ e l / c [ e l ) ) .  

For each active tree and for each Steiner tree affected by these 
edge changes, update their respective lengths. 

Improve Steiner Trees: Using the distances computed by 
dR2, recompute Steiner trees for each net. The Steiner tree 
algorithm used here is described in Section 4.2. 

3.2.3 R3-Termination Criteria 
Compute Error Bound: Let d(e)  and d ( n )  be defined with 

respect to the current distance function dR2. Define g* = 
maxeEE ( f [ e ] / c [ e ] ) .  Compute throughput Z = l/g*. Define 
upper bound xd C e E ~  d ( e ) c [ e ] / C n E ~  d(n)b[n] .  Define 

Check if 6-Optimal: If A 5 6 ,  the multicommodity solution 
is denoted as eoptimal. For each t E T,  compute the final flow 
configuration function f ( t )  = f ( t ) / g * .  Goto R5 to derive an 
integer solution. 

Justijication of Termination Criteria: In theory, Zd serves 
as an upper bound on the amount of flow that may be shipped. 
Similarly, 3 is the current value which we can achieve. Let i 
denote the optimal flow value. A later theorem will assert that 
z 5 f 5 X d .  Consequently, as A -+ 0, Z + f .  

error bound A E zd - z /zd .  

- 

3.2.4 R4-Net Selection and Rerouting 

for net n: 
Select Net To Reroute: Let W, define the set of active trees 

W, {t E A,lf(t) > O} 

We first select a net to be rerouted. That is, for each net n E N ,  
let n* denote the longest active tree and let n* denote the 
Steiner tree for that net. Determine a net with trees t* and t ,  
such that 

d( t*)  - d(t,) = m a x ( d ( n * )  - d(n,) ln  E N )  

The net that maximizes the above quantity is to be rerouted. 
Determine Flow Change: Compute the net change that 

results from shifting flow from d* to d,. Define d,  
CeEt,-t* d(e) .  Define d* CeEt+-t ,  d(e) .  Compute (T = 
C, /2a In d* /d,. For problems with constant edge capacities, 
this (T gives the optimal amount of flow to shift so that the 
throughput improves. 

Partial Rerouting: If f ( t * )  2 (T + (TO, then reroute (T units 
of flow from t* to t ,  and set W, = W, U {t*} .  

Total Rerouting: Otherwise, reroute all the flow on t* to t ,  , 
and set W, = W, U { t * }  - {t*} .  

Mark Changed Entities: Update flow values for t* and t,. 
Mark all edges whose flow has changed so as to ensure that 
their weights are calculated in Step R2. Goto R2. 

3.3 Multicommodity Flow Integerization 

The following pseudocode summarizes the flow of control 
of the multicmmodity flow integerization Steps R5 and R6. 
The first step integerizes the fractional flow solution. The last 
step impoves the solution until either no further improvement 
is possible, or the solution is valid. 

Algorithm 3.2 
R5--solution integerixation 
while  not  feasible 

done 
R6-improve integerized solution 

3.3. I RS-Solution Integerization and Termination Criteria 

Integerize Nets: Let us assume, for now, that all nets have 
a demand of one. For each net n E N ,  select an active tree 
t E W, to make permanent. One approach is some type of 
randomized rounding, using the current flow of each active 
tree as a probability. For each net n, we select b[n] trees 
according to the distribution of the probability. Note that if 
b[n] > 1, some trees may be identical. 

Identify Overjlow Nets: When finished integerizing, iden- 
tify overflow edges e E E such that f ( e )  > c[e] and define 
E {nln E N and 3e  E t ,  s.t. f ( e )  > c(e)} ,  where t ,  is 

the set of edges comprising some active tree of net n. Here, 
6 denotes the set of overflow nets, i.e., nets which utilize 
overflow edges. 

Check if Solution Is Feasible: If E = 8, we are finished: 
report success. If E # 0, goto R6 to improve the integer 
solution. 

3.3.2 R6-0ve$ow Set Improvement 

The iterative improvement scheme here is similar to [l] 
except that the edge distance is an exponential function of the 
congestion f ( e ) / c [ e ] .  

Determine Net Ordering: Sort 5 so that the longest nets are 
first. For each net n E 6, we will reroute each overflow tree to 
avoid overflow edges. We do this by applying the following 
procedures to each overflow tree t of net n. 

Reroute Uverjlow Trees: Define f [ e ]  = f ( e ) - S ( t ,  e ) .  Thus, 
![e] is the net flow after deleting the flow of tree t .  

Compute New Edge Distances: This step will reroute ex- 
actly one unit of flow from the current tree to a better tree. To 
make this work, f adjusts the flow so that if tree t uses that 
edge, a new tree may use that edge without additional penalty. 
This simulates the computation of d* and d, in R4. Compute 
new edge distances dRS[e, t ] :  
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Compute New Steiner Tree: Recompute the Steiner tree for 
this net using these new edge distances. The Steiner tree 
algorithm used here is described in Section 4.2. Decrement 
the flow of the old tree by one unit, deactivating it if its flow 
is reduced to zero. Make the Steiner tree active with a flow 
of one. 

Check $Solution Is Feasible: Once we have rerouted all 
of the overflow nets, recompute I. If ( = 0, we are done 
(success). Otherwise, if there is no improvement, we are done 
(failure). Otherwise, repeat Step R6. 

pseudocode summarizes the algorithm used by Step R6 
to improve an integerized solution. 

Improvement Scheme Summary: The following 

Algorithm 3.3 
sort E so that  longest nets  are f i r s t  
f o r  each net n E ( do 

f o r  each overflow tree t of n do 
compute new edge distances 
compute new steiner tree 
reroute one unit of f l ow  

# 0 
done 

recompute and repeat step i f  

3.4 Comments 
The cost function exp (a(  f [e] / c [e] ) )  penalizes nets which 

use congested edges, thus encouraging nets to avoid the 
congested edges. In particular, our Steiner tree improvement 
procedure exploits this property by rerouting the path which 
utilizes the most expensive edge. The termination criteria is 
extended from the Japanese Theorem [22]. Once Z = Zd, 

then Z is the optimum throughput. In R4, CT is the optimal 
flow with which to augment t ,  and to decrernent t*. Thus, on 
each iteration, given a net to reroute, we are able to compute 
the optimal amount of flow to reroute so as to maximize the 
resulting increase of throughput. The constant 00 is used to 
ensure that the remaining flow is not too small, as the rerouting 
procedure in R4 guarantees that the flow of any tree is no 
smaller than 00. 

IV. STEINER TREE PROCEDURES 

We adopt Prim’s approach to search for Steiner trees. There 
are two procedures for creating and maintaining our Steiner 
trees. The first procedure creates a Steiner tree from scratch, 
while the second procedure improves an existing Steiner tree. 
The latter procedure takes advantage of the characteristic that 
the most congested edges in the graph are exponentially more 
expensive than the less congested edges. Section 4.1 describes 
how we build Steiner trees from scratch. Section 4.2 describes 
how we improve an existing Steiner tree. Our approach is 
similar to Pulleyblank’s approach [23] and can be improved 
by applying some of his new techniques. 

Note that the distance of an edge is a hnction of edge 
congestion, which may not correspond to a physical distance 
between the two incident nodes. Therefore, a Steiner tree 
algorithm on a rectilinear grid may not apply to our application 
even if G(V, E )  is a gridded graph. 

4.1 Creating a Steiner Tree from Scratch 

Given a net n E N ,  select a vertex v E V, to serve as a 
source, and let S = {U). Let T = {v E V,(v S } .  Use a 
variant of Dijkstra’s shortest path algorithm to find the shortest 
path between sets S and T.  Let U’ denote the resulting vertex 
in T,  and let S’ denote the set of intermediate vertices used 
in the path between S and T. Set S = S U SI U {d}, and 
T = T - {‘U’}. If T # 0, repeat path finding procedure; 
otherwise, we are done. 

4.2 Improving a Steiner Tree 

Given an existing Steiner tree, find the most expensive 
path in the tree and delete all degree two edges within 
that path. Consequently, all temporary intermediate vertices 
should be removed. Let S and T be the sets of vertices from 
the two respective subtrees. These sets contain all terminals, 
Steiner and intermediate points that form the respective Steiner 
subtrees. Use a variant of Dijkstra’s shortest path algorithm to 
find the shortest path between sets S and T.  Reconnect the 
two trees along this new path, and merge sets S and T to 
contain any new Steiner points or internal vertices as well as 
the union of S and T.  

This procedure for improving a Steiner tree is particularly 
appropriate for this algorithm. This is because the distance 
function used for establishing distances of edges heavily 
penalizes paths which use congested edges. Thus, by rerouting 
the path using the worst edge, we work on achieving the 
desired goal of minimizing overall congestion. 

v. SPECIAL CASES AND PROPERTIES OF ALGORITHM 

5.1 Two Pin Special Case 
Let us assume that the number of pins in a net is restricted 

to two. Also, assume that fractional flows are allowed, that 
a z 2c:/c,bct, and that the edge capacities are equal to a 
given constant. Also, note that 

Given these conditions, Shahrokhi and Matula [21] present 
a provably t-optimal algorithm for this special case. Their 
algorithm simply uses Steps R1 through R4. The following 
theorems are proven for this special case by Shahrokhi and 
Matula [21]. 

Theorem 5.1: At Any Stage in the Algorithm: Z 5 2 5 zd. 
Theorem 5.2: Given a User Dejned Error Bound t, Let: 

A 5 zd - Z//zd. Then the algorithm terminates in polynomial 
time with A 5 E .  

With these conditions, we can obtain a solution which 
deviates from the optimum by t in polynomial time. 

5.2 N-Pin Multicommodity Flow with Optimal 
Steiner Tree and Fractional Flows 

Instead of 2-pin nets, let us assume that we have n-pin 
nets. Also, askume that fractional flows are allowed, that 
a z 2 c $ / c * b ~ t ,  and that the edge capacities are equal to 
a given constant. Finally, altbough it is NP-complete, let us 
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Name 

Diff-411 
DX-4/2 
Diff-414 

assume that it is possible to compute a minimum Steiner tree. 
We concern ourselves with Steps R1 through R4. 

Lemma 5.3: At any stage in the algorithm, the throughput 
3 of any multicommodity multiterminal flow function f and 
the distance function d on G with C n E ~  d(n)b[n] > 0 satisfies 

Nets Pins per Bounding Edge 6 a Total Length Time 
Net Length Capacity [16] [CC] (sec.) 

8 2 32 2 0.001 0.1 35 32 0.0 
16 2 64 4 0.001 0.1 - 64 0.1 
32 2 128 8 0.001 0.1 - 128 0.1 

Y , - .  
n E N  

Remark 5.4: Let 2 denote the optimal throughput. Because 
lemma 5.3 is independent of the flow configuration, at any 
stage in the algorithm, f 5 2 5 z d .  

Theorem 5.5: Algorithm R is a fully polynomial time ap- 
proximation scheme and terminates with an €-optimal distance 
function. 

With these conditions, we can obtain a solution which 
deviates from the optimum by E in polynomial time. 

Diff-418 
Diff-8 
Diff-16 
Diff-32 

5.3 Integerization Properties 
We use a probabilistic approach to integerize the flow 

configuration. Let us assume that b[n] = 1 for all nets n E N .  
For each net, the probability to select one of its active trees 
is equal to its flow. We apply the same general techniques for 
integerizing our fractional flow algorithm results as Raghavan 
and Thompson [12] use for integerizing their linear program 
results. As a result, we exhibit the same computable error 
bound as [12]. 

64 2 256 16 0.001 0.1 - 256 0.1 
32 2 256 4 0.001 0.1 296 256 ’ 4.9 
128 2 2048 9 0.001 0.1 2214 2048 2.8 
512 2 16384 20 0.001 0.1 - 16384 90.8 

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

The multicommodity flow routing algorithm presented ear- 
lier has been implemented in the C language on a Sun 4 
Sparcstation under Berkeley UNIX. In order to apply our 
global router to large designs such as Primaryl and Primary2, 
we made a number of optimizations. First of all, we added 
an option in our router to update edge weights after routing 
each net in Step R1. Because this introduces dependency 
relationships, we route the net with the smallest bounding 
box first. We find that this improves our initial solution 
considerably. Second, on each iteration of R2-R4, we often 
choose to reroute more than one net at a time; we call this 
block pivoting. Potentially, half or more of the nets will 
be rerouted in a single step. We find that this helps speed 
convergence. Additionally, we added an option in our router 
to perform R5-R6 immediately after R1 to see if a feasible 
solution can be achieved without going through the pains of 
R2-R4; if not, we have an additional option where users can 
limit the total number of iterations to some number such 
as 100. The performance given represents times on a Sun 
Sparcstation/2. 

Our test cases include difficult examples from [18], Pri- 
maryl and Primary2 from MCNC, and a multichip module 
design from MCC [25]. The difficult example test cases from 
[18] contain only two pin nets. A shortest path search can 
find the optimal Steiner tree solution for the two pin nets. 
Therefore, we can derive the €-optimal solution from R2-R4. 
The multichip module design contains 7 11 8 nets. Since there 
are many nets connecting the same set of nodes, the grouping 

of identical nets into super-nets reduces the number of nets 
to 319. It takes 908.9 s to derive an €-optimal solution from 
Rl-R4 with E = 0.001. Note that the optimality of this result 
is under the assumption that the net connection found relative 
to the current distance function is the best possible tree. Since 
our Steiner tree algorithm is a heuristic, an optimal Steiner tree 
search with an exponential complexity may further improve 
the results. Primaryl and Primary2 contain 915 and 3050 nets, 
respectively. The size of these two cases force the program to 
terminate after 100 iterations before the solutions converge in 
R2-R4. By comparing CPU times on the difficult examples 
and MCNC, we see that our approach takes about 3 times 
longer than the approach in [16]. 

6.1 Dificult Example Results 

We have tested our algorithm against the examples provided 
in [18] with results listed in [16], i.e., particular instances of 
Difficult-4, Difficult-8, and Difficult-16. On these examples, 
we achieve the same densities. These results, therefore, are 
evaluated in terms of wire length. A result is optimal if its 
wire length equals the bounding length for the problem. In 
all three cases, i.e., Difficult-4, Difficult-8, and Difficult-16, 
we achieved results superior to [16], [18]. In particular, our 
results for Difficult-4, Difficult-8, and Difficult-16 are optimal. 
We also created an analogous instance of Difficult-32 to test. 
On that example we also achieved an optimal solution. The 
first five columns of Table I give the name, number of nets, 
number of pins, the bounding length, and the edge capacities of 
each difficult example. The next two columns give the values 
of E and the initial a that we use. The next two columns give 
the total wire lengths achieved by [16] and our algorithm. The 
last column of Table I gives the total execution time of our 
program. Fig. 1 shows the resulting routing of Difficult-4, one 
which uses only 32 units of wire length. 

We also tested our program on special instances of Difficult- 
4, i.e., ones which specified super-nets, In particular, we 
tested examples where each net is specified two, four, and 
eight times. We shall refer to these as Difficult-4/2, Difficult- 
4/4, and Difficult-4/8, respectively. The program identified 
that a particular vertex list of a particular net had already 
been specified, so it made the corresponding net a super- 
net. In all cases, the program achieved an optimal solution 
in terms of wire length. In each case, the initial fractional 
solution split the flows between two shortest nonoverlapping 
paths. Because the fractional solution is also a valid integer 
solution with one, two, and four units of flow assigned to 
each route, respectively, no changes except for roundoff error 
are made. Table I also shows the results for these examples. 
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Fig. 1. A routing of Difficult-4 with wire length 32. 

Fig. 2. A routing of Difficult-4 with super-nets. 

Fig. 2 shows the resulting routing of Difficult-4 where each net 
has been specified two, four, or eight times. The solid route 
corresponds to the route specified in Fig. 1, while the dotted 
route corresponds to the other possible nonoverlapping route. 

6.2 Gate Array Benchmark Example Resulrs 
We have also tested two gate array benchmark circuits, 

Primaryl and Primary5 from the 1988 JEEE Workshop on 
Placement and Routing. To compare our results to [17], [18], 
we used the placement as provided by [171. Just as [171 did in 
their model, we set the width of the left and right boundaries 
to zero. To translate the physical design into the graph-based 
model, we impose a uniform grid on the gate array so that 
pins of modules are assigned to particular vertices on the grid. 
Fig. 3 illustrates how we impose a grid on the gate array when 
using approximately as many columns as rows. The resulting 
routing goes from vertex to vertex of the grid. Our grid is 
similar to the one used in [4]. 

We tested Primaryl-GA with several different grids, one 
using 27 rows and 19 columns as in [17], one using 27 rows 
and 27 columns, one using 27 rows and 54 columns, and one 
using 27 rows and 106 columns. As the grid becomes finer, 
more nets must be routed by the global router, i.e., fewer nets 
fall under one grid, and many nets have more pins as fewer 

I 3 r l m  I I 

Fig. 3. Mapping a gate array to a graph. 

TABLE I1 
BENCHMARK EXAMPLE RESULTS 

of the nets' pins fall under one grid. This explains why for 
Primaryl-GA, we had to route 792, 822, 859, and 891 of 915 
total nets, respectively. 

We also tested Primary2-GA with two different grids, one 
using 37 rows and 37 columns as in [17], and one using 37 
rows and 74 columns. In these examples, we had to route 243 1 
and 2698 of 3050 total nets, respectively. 
Our results for Pnmaryl-GA are very close to [17]. Our 

maximum densities are the same at five and our total net 
length is just 3% worse than [17]. Also, we both achieved 
the theoretical lower bound for this circuit. Our results for 
Primary2-GA tell a different story. On this much larger circuit, 
we achieved the theoretical lower bound of nine while [17] 
achieved ten, a 10.0% improvement. Our total net length is 
also 12.3% shorter than [17]. 

Table II summarizes our results. The first three columns of 
Table II give the name, the number of cells, and the number 
of nets in each of the benchmark examples tested. The next 
three columns describe the characteristics of the grid that we 
superimpose on the graph. In particular, the first two columns 
give the number of rows and columns, respectively. The 
third column gives the number of nets that the global router 
must actually route. The next two columns of Table I1 give 
the maximum densities achieved by [17] and our algorithm. 
The next two columns of Table I1 give the total net lengths 
achieved by [17] and our algorithm. The next two columns 
describe particular parameters passed to the program. In all test 
cases, we set E to 0.001. The first column specifies the initial 
value of a. The second column specifies the total number of 
R2-R4 iterations the program was allowed to perform. The 
last column of Table I1 gives the total execution time of our 
program on a Sun SPARC 20. 

We route Primaryl with two different channel capacities: 
6 and 5, and route Primary2 with the channel capacities of 
9. Table I1 shows only those tests which succeed; we did 
attempt to route with smaller channel densities, but these all 
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-- ~~ 

e (I Fractional Integerwed I Iterations 

0 8  0 5  1503 689 689 935 1 64 
1 5  2475 736 736 935 3 22 

0 5  0 5  1449 878 875 935 3 34 
1 5  1117 897 896 935 8 51 

0 2  0 5  1170 936 935 935 21 41 

~ ~ T i Z T T T 3 & T E & F  
uu I n  Final Overflow Tme 

(sec ) 
11 3 2324 

255 39 425 1 
116 12 1980 
221 28 7449 
25 5 585  

ooooo: 

0 uu U 0  
Fig. 4. A test case provided by MCC. 

generated overflow nets. In all cases, we run the program with 
the option to update edge weights after routing each net in 
R1, then attempt to achieve a feasible integer solution by 
running Steps R5-R6, then if necessary proceed with Steps 
R2-R4 followed by Steps R5-R6. We also perform block 
pivoting. 

6.3 Application to Multichip Module Designs 

We have tested our program on a multichip module design 
provided to us from MCC [25]. This test case, illustrated in 
Fig. 4, models a next generation supercomputer on a 6 x 6 inch 
substrate with 37 1.5 x 1.5 cm2 gate arrays, and 18 pads. The 
netlist contains 7118 signals and 14 659 pins. By using the 
global router as an estimator, we can then determine whether 
a given pitch for channels will give a feasible routing. The 
design uses two layer metal routing with the same pitch for 
each layer. We use the placement provided to us by MCC. 
It arranges the cells within seven rows and seven columns. 
Our grid, therefore, is 7 x 7 with additional rows and columns 
provided for the perimeter. 

The resulting graph model maps exactly one cell to a grid, 
and subsequently all the pins of that cell to that grid. All nets 
connect one distinct cell to another distinct cell, that is, no 
nets connect one pin of one cell to another pin of the same 
cell. The vast majority of the nets are two pin nets. 

Because many nets in the design are identical when de- 
scribed in terms of graph vertices, we lump identical nets 
into a single super-net. To compensate, we set the demand 
of that super-net to be the number of nets it represents. For 
example, suppose nets 1-6 connect various pins of cells 1 
and 4, respectively. We simply treat this as one net with 
a demand of 6. The multicommodity flow algorithm then 
assigns a flow of 6 units to that net and proceeds to reroute 
portions of that flow as dictated. Thus, in the integerization 
phase, only the fractional parts of each flow tree need to be 
redistributed. 

With the test case from MCC (Table 111), the 7118 nets are 
reduced to 319 nets, 279 of whom are super-nets. Twelve of 
these super-nets have cardinality exceeding 100 with one of 
them representing 280 nets. As each net in the MCC test case 
represents an average of 22 nets, we find that the error between 

TABLE 111 
ROUTING OF MCC TEST CASE WITH PITCH 65 

(1 1.5 11 ,937 I ,937 11 .935 I ,935 11 750 I 764 11 268 I 46 1) 908.9 

~ 

215 

the fractional solution and the subsequent integerized solution 
is, in practice, less than 1%. 

Specifically, we attempt to do a global routing on this test 
case with a track pitch of 65 pm. Our global router, however, 
derives a lower bound on the solution by computing the upper 
bound on the routing throughput. We used an epsilon value 
of 0.01 for this test. The resulting fractional solution value of 
,zd is 0.945898 implying that at best, the solution is 94.5898% 
feasible, and that with a 1 %  margin of error, we can never 
hope to use a pitch larger than 61.4834 to achieve a feasible 
fractional solution, this with the assumption that the Steiner 
tree is limited to the domain of the searched active tree 
configurations. Our integer solution 2 is .934959, implying 
that a pitch of at most 60.7 will give a feasible routing. With a 
pitch of 60 pm, our global router successfully routes this test 
case. Consequently, we see that our global router can be used 
as an effective estimation procedure. 

VII. CONCLUSION 

This paper describes a global router based on a multitermi- 
nal, multicommodity flow algorithm. We utilize Shahrokhi and 
Matula's algorithm [21] to derive the fractional flow solution 
in a relatively short execution period. We extend this method 
to handle n-pin nets instead of just 2-pin nets. Based on the 
[21] algorithm, we exhibit, at any stage, the error bound of the 
current result from an optimal solution of the multicommodity 
flow problem. We then use a randomized rounding technique 
to derive a discrete net connection with an error bound on the 
derivation from the optimal fractional solution. We finish by 
employing an iterative procedure to improve the final results. 

In the iteration, the cost of each edge is an exponential 
function of the congestion. Thus, the cost of highly congested 
edges dominate the cost of the whole net, which we conjecture 
explains why [18], [ 171 approach of [ 161 on mitdmax minimal 
rectilinear Steiner trees performs quite well in certain cases. 
Our adaptation of Shahrokhi and Matula's network flow algo- 
rithm [21] can effectively improve the overall routability of 
a circuit by minimizing edge congestion. In the iteration, our 
flow rerouting procedure can determine the optimal amount 
of flow to reroute. We show that our approach derives an 
approximate optimal solution under certain conditions. Thus, 
on these cases, our procedures to handle net ordering and cost 
assignment on edges answer the problems proposed by Ting 
and Tien. 
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