
20s IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

A a Theoretical
al Solutio

Robert C. Cas-den IV, Member, IEEE, Jianmin Li, Member, IEEE, and Chung-Kuan Cheng, Senior Member, IEEE

Abstract- The global routing problem is formulated as a
multiterminal, multicommodity flow problem with integer flows.
An e-optimal 2-terminal multicommodity flow algorithm with
fractional flows is extended to handle multiterminal commodities.
Our adaptation of this network flow algorithm seeks to maximize
overall routability by minimizing edge congestion as opposed
to conventional techniques which usually seek to minimize wire
length. We show that under certain conditions, our approach
derives an approximate optimal solution. We appty a random-
ized rounding procedure to derive an integer solution from the
fractional multicommodity flow solution. Experimental results
demonstrate that this network flow algorithm can be realistically
used to route industrial sized circuits with reduced congestion.

I. INTRODUCTION
E INVESTIGATE the problem of routing given a
placement and a list of pins to connect. The routing

problem is traditionally broken down into two subproblems:
global routing and detailed routing. Global routing gives the
general paths for the signal nets; detailed routing assigns actual
tracks and vias to the routes. Here we concern ourselves with
the global routing problem.

Ting and Tien [l] employ an iterative improvement algo-
rithm for global routing. Their algorithm starts by routing
each net independently, allowing each net to find its natural
interconnect pattern. It then proceeds to improve the solution
by rerouting nets so that they avoid overflow boundaries. The
authors of this algorithm make several comments. First, they
acknowledge the problem of net ordering in the initialization
step. Second, they indicate how to update overflow boundaries
dynamically when rerouting each net.

Subsequently, much effort [2]-[8] has been expended on
developing a linear programming or multicommodity flow
formulation of the global routing problem. Hu and Shing
[2] extend Ting and Tien’s iterative improvement algorithm
by formulating the global routing problem as a hierarchical
linear program. Each column in the linear program represents
a possible route for some particular net, while each row
represents the utilization of channels. As a result, each column
is a 0-1 vector specifying which channels to use for connecting
some net. To solve the problem practically, they use linear
programming to arrive at an initial solution, and then proceed

Manuscript received August 1, 1991, revised November 14, 1995 This
work was supported in part under grants from NSF project number MIP-
9009260 and MICRO This paper was recommended by Associate Editor M
Marek-Sadowska

R C Carden IV is with the Unisys Corporation, Mlssion Viejo, CA 92691
USA

J Li and C -K Cheng are with the Department of Computer Science and
Engineering, University of California, San Diego, La Jolla, CA 92093 USA

Publisher Item Identifier S 0278-0070(96)01841-6

to deduce an integer solution by selecting, for each net,
the column with the highest fractional value. Because it is
impractical to generate all the possible columns for each net
in advance, Hu and Shing use column generating techniques
[9] to generate potential candidates.

Global routers have been constructed using both multicom-
modity and single-commodity flow models. Shragowitz and
Keel [7] extend Ting and Tien’s global routing algorithm
by formulating it as a multicommodity flow problem. They
generate their initial global routing by solving a multicom-
modity flow problem with the capacity constraints removed.
By dynamically adjusting edge weights with a cost function
which heavily penalizes congested channels, they proceed
to improve their initial solution by solving multicommodity
flow problems which are in turn reduced to a series of
shortest path problems. Meixner and Lauther [lo] observe that
multicommodity flow problem formulations cannot guarantee
integer solutions because flows may be split into portions.
Instead, they use a single-commodity flow formulation to
improve an existing global routing solution by improving a
group of adjoining nets all at once. Meixner and Lauther
observe that an ordering problem still exists, though they claim
that the problem of ordering graph nodes to process is far less
severe than the net ordering problem.

Vannelli [3], [4] applies Karmarkar’s linear programming
algorithm [l 11 to Hu and Shing’s linear programming formula-
tion. Whereas Hu and Sbng use column generating techniques
to reduce the complexity of the problem, Vannelli reduces it by
selecting only minimal rectilinear Steiner trees or near minimal
rectilinear Steiner trees for his matrix. This approach limits
the variety of routes for each net that may be used by the
algorithm. The resulting program runs much faster than an
equivalent simplex implementation.

Karp et aE. [5] give an algorithm for global routing which
uses linear programming followed by randomized rounding,
a technique discussed in detail by Raghavan [12]. They are
able to prove that given an integer program and a linear
programming solution which is optimal, one can deduce an
integer solution within a computable error bound. Raghavan
and Thompson [XI also give a global router which is determin-
istic for 3-pin nets. They incorporate a randomized rounding
algorithm derived from their previous work. Raghavan and
Thompson’s algorithm can be generalized to work on larger
nets, but the total number of Steiner points grows exponentially
as do the number of variables in the integer program. Because
in practice many nets in a global routing problem can contain
50, 100, or even 200 pins, we see that this algorithm, as stated,
is unsuitable for large practical problems. This follows from

0278-0070/96$05.00 0 1996 IEEE

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

CARDEN et al.: A GLOBAL ROUTER WITH A THEORETICAL BOUND ON THE OPTIMAL SOLUTION 209

the observation that a single 20 pin net can require trillions of
variables to be included in the integer program. Therefore, a
heuristic algorithm is needed to reduce the complexity.

While Hu and Shing, as well as Vannelli, attempt to solve
the global routing problem using combinatorial techniques,
there are many papers [6], [13], [14] proposing fast hierarchi-
cal algorithms. By using a slicing structure, they decompose
the problem so that its base case is either a simple 2 x 1 or
2 x 2 case. The slicing continues until the grid equals the
basic unit size.

Lee and Sechen [15] have implemented a global router
specifically designed for sea-of-gates circuits. They produce
their routing by successively refining it, starting first by
minimizing interconnect length, then proceeding to even out
congestion, and conclude by applying a maze routing proce-
dure which removes overflows and reduces congestion. They
handle ordering problems by randomly selecting the next
object to process.

Recently, Chiang et al. [16] have implemented a global
routing algorithm which proceeds as follows. It first assigns
a unique order number to each net such that nets with lower
order numbers will be routed first. Then, it proceeds net by
net, computing a midmax minimal rectilinear Steiner tree
[17]-[19] for that net on a weighted graph. These minimal
rectilinear Steiner trees attempt to minimize the maximum
edge. The weight of an edge is a function of capacity and usage
such that crowded edges have high weights. The resulting algo-
rithm, which is essentially a greedy one pass algorithm, is very
fast with good results against benchmark data. Its midmax
minimal rectilinear Steiner tree algorithm is demonstrated to
be effective in certain cases.

This paper describes a global router based on a multitenni-
nal, multicommodity flow algorithm [20]. We utilize Shahrokhi
and Matula’s algorithm [21] to derive the fractional flow
solution in a relatively short execution period. We extend this
method to handle multiterminal Steiner trees instead of just
shortest paths. Based on Shahrokhi and Matula’s algorithm, we
exhibit, at any stage, the error bound of the current result from
an optimal solution of the linear programming formulation.
We then use a randomized rounding technique to derive a
discrete net connection with& an error bound on the derivation
from the optimal fractional solution. We finish by employing
an iterative procedure to improve the final results. In the
iteration, the cost of each edge is an exponential function of the
congestion. Thus, on these cases, our proceduresfo handle net
ordering and cost assignment on edges answer the problems
proposed by Ting and Tien. The experimental results with
benchmark data show significant improvements over previous
work.

11. PROBLEM FORMULATION

Given a layout problem, we want to generate the global
routing that minimizes the maximum density. We can formu-
late the problem as a linear programming problem. Section
-2.1 gives definitions and notation which are needed for the
problem formulation in Section 2.2. In Section 111, we present
an approximate multicommodity multiterminal flow algorithm
to solve this programming problem.

1,

2.1 Definitions

Let G = (V, E) be a connected graph which is to model
the connectivity of a global routing region. Each edge e E E
has a capacity ~ [e] associated with it. The capacity specifies
the number of nets which may be routed through that edge.
Let N be the set of nets to complete. Assume that these nets
are numbered consecutively, i.e., 1 through r . Each net n E N
contains a set of vertices V, V s .t . I V, I 2 2. Subsequently,
we will use n and e to represent either the elements or the
indices of the nets and edges if no confusion arises.

Let d(e) be a distance function giving the distance of edge
e. The distance we define here should not be confused with
Euclidean or Manhattan distance metrics that are normally
used. If t is a tree, d(t) denotes the distance of the tree, i.e.,
d(t) = C e E t d (e) . We also define d(n) to be the length of
the shortest tree that connects net n. The demand of a net
specifies how many connections must be made for that net.
Thus, each net n has a demand b[n] associated with it. In
general, this value is set to one. However, in problems where
a net n represents a super-net containing s identical nets, b[n]
is set to be s, thus specifying that s distinct connections are
required.

By assuming that G is a finite graph with finite sets V and
E , we observe that any tree connecting a net is simply a subset
of E. Thus, because the power set of E represents all possible
trees within G, we can assume that we can enumerate and
index all possible trees for any given net. We can henceforth
define a matrix A to represent all possible paths for each net.

Let A be a 0-1 matrix specifying all possible trees for all
nets within the graph. Each tree t is represented by a 0-1
column vector of dimension]El, i.e.,

t = (U 1 U 2 ,E,)?

If tree t uses edge e, then the corresponding row is one,
otherwise it is zero. We assume that all possible enumerations
for the first net are listed from left to right, followed by all
possible enumerations for the second net, and so on. As a
result, one may view A as a vector of columns specifying all
the possible trees for net 1, net 2, and so on. Furthermore,
given A, let A, denote a submatrix of trees for net n. The
number of columns within this submatrix is the total number
of possible trees for net n.

Let p 1 , pa, . . . , p , represent the number of trees for nets
1 , 2 , . . . , T , respectively. Let t,, denote the j th tree of net n.
Then, matrix A takes on the following form

A = (Ai A2 . . . A,)

where

A, = (tnl tn2 . . . trip,).

Note that although we list all possible trees in the formula-
tion, in calculation we only need a few throughout the process.
We adopt a column generating technique [2] and [9] which
only requires the generation of the best tree according to the
current distance function.

Given a flow configuration, let f denote a function which
returns the flow associated with its argument. Consequently,
f [t,,] denotes the flow associated with tree t n j ; f [n] denotes

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

the total flow associated with this net, i.e., f [n] = E::, f [tnJ].
In addition, given an edge e , f [e] denotes the total flow
associated with this edge. By defining 6 to be

1,
0, otherwise

if tree t n j uses edge e;
S (t n j , e) =

2.2 Linear Programming Formulation
Let X denote a vector with as many rows as there are

columns in A with its element xnj f [t 7 % j] . The resulting
problem is how to maximize a throughput 3 subject to a set
of constraints.

The following linear program specifies the global routing
problem as a multicommodity multiterminal flow problem.

Minimizeg* subject to
'dn E N , f [n] - b[n] = 0 ,

V n , j , xnj L 0.

'de E E , f [e] - g*c[e] 5 0 ,

Note that the above constraints can be expressed with variables
g* and X , i.e.,

r P ,

Y e E E ,

vn, j ,xnj 2 0.

Z n j S (t n 3 , e) - g*c[el I 0
n=l j=1

The first constraint of the linear program specifies that the
sum of all the flows must be equal to the demand for that
net. Let g* denote the bottleneck of the graph. Thus, g* =
maxeEE (f [e] /c[e]) . We can see that 3 = l / g * . Therefore, we
can see that the second constraint specifies that the throughput
3 must be set so that no edges are overflowed. An equivalent
matrix formulation of this constraint is A x (3 X) 5 G, where
C is a vector of c[e]. In global routing, we require that the
flows be integer valued so that: ' d i , j , xtJ E (0 , l) . However,
this transforms the problem into an integer program which is
known to be NP-complete.

If the solution Z 2 1, we have a fractional routing solution
which is feasible under the current edge capacity constraint.
Suppose Z > 0, then the maximum density of the fractional
routing solution is reduced to maxeEE c[e]/Y. Therefore, we
use the objective function of maximizing Z to generate a
minimal density solution.

111. OUR APPROACH

An c-optimal solution is one which differs from the optimal
solution with a relative error of at most E . Shahrokhi and
Matula [21] propose an c-optimal algorithm to solve the 2-
terminal, multicommodity flow problem. This algorithm, if
directly applied to global routing, requires 2-pin nets and
fractional flow assignments. We present an algorithm which
allows for n-pin nets and ultimately integer valued flows.
This algorithm effectively generates a solution to the integer

program given in Section 2.2 with an error bound. The six
steps, R1 through R6, are described in the following sections.

3.1 Basic Algorithm
Steps R1 through R4 derive a fractional flow solution. Under

certain assumptions (Section 5.2), we can claim an c-optimal
solution. Step R5 then integerizes this solution, identifying any
overflow edges. A stochastic approach is adopted to obtain a
probalistic error bound. Step R6 reroutes the nets to improve
the resulting solution until either there are no more overilow
edges or until it is impossible to improve the solution any
further. Since R6 only improves the solution, we can claim
a theoretical bound on the optimal solution when certain
assumptions (Section 5.2) are met in Rl-R5.

3.2 Fractional Flow Algorithm
The following pseudocode summarizes the flow of control

of the fractional flow algorithm. The first step achieves an
initial feasible solution. The second step updates edge weights
and recomputes Steiner trees, and the third step determines
whether the solution is €-optimal. If so, it then breaks from
the loop and proceeds on to the integerization Step R5. If not,
the fourth step selects a net to reroute and the amount of flow
to be rerouted.

RI-Initialize and compute initial Steiner trees
while not E-optimal do

Algorithm 3.1

R2-compute edge distances and new Steiner trees
R3--check i f €-optimal
R4-select and reroute net

done

3.2.1 R1-Initialization
The goal of this step is to initialize system wide parameters

and to obtain an initial feasible solution. The solution is
feasible in that all demands of each net shall be met. However,
upon completing this step, the solution may not be usable
because the throughput may be less than one.

Initialize System Wide parameters: Given a graph G =
(V,E) and netlist N , initialize all system wide parameters.
Define Cx = C e E ~ c [e] and C, = min,,Ec[e]. Define
bc E C n E ~ b[n]. Define a0 in terms of a user defined constant
E , i.e., 00 E cz~ /16c rc~ . no will be used as the limit on the
smallest fraction of flow to avoid iteration on the trees with
tiny flow. The user input constant E E (0, I] specifies the
amount of error that the user can tolerate. The constant a ,
which is typically set between 0.01 and 100, is a user tunable
parameter. Shahrokhi and Matula specify that a should be set
to 2c$/c,bce. However, this is generally impractical on fixed
precision computers.

d ~ l [e] = l / c [e] , for each edge e E E. In this step,
wider edges are assigned a lower distance.

Compute Initial Steiner Trees: For each net n E N , com-
pute the Steiner tree and make it active with its flow set to be
b[n]. This Steiner tree algorithm is described in Section 4.1.
All edges should be marked as to ensure that distances are
calculated in Step R2.

Initialize Edge Distances: Establish initial distances

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

CARDEN et al.: A GLOBAL ROUTER WITH A THEORETICAL BOUND ON THE OPTIMAL SOLUTION 211

Special Implementation Concerns: It may be desirable to
update edge distances after routing each net. The distance
function will be that of R2. However, in doing this, the order
in which one routes nets becomes important. One heuristic we
use is to route the net with smallest area bounding box first,
and then to proceed onto the larger nets. This approach helps
achieve an initial feasible solution with higher throughput than
if edge distances are not updated. However, the wire length
may become quite large.

3.2.2 R2-Edge Distances and Steiner Trees
Compute New Edge Distances: For each marked edge, i.e.,

any edge e whose utilization f (e) has changed during Step R1
or R4, compute the new distance dRz[e]:

dR2[e] = exp (a (f [e l / c [e l)) .

For each active tree and for each Steiner tree affected by these
edge changes, update their respective lengths.

Improve Steiner Trees: Using the distances computed by
dR2, recompute Steiner trees for each net. The Steiner tree
algorithm used here is described in Section 4.2.

3.2.3 R3-Termination Criteria
Compute Error Bound: Let d(e) and d (n) be defined with

respect to the current distance function dR2. Define g* =
maxeEE (f [e] / c [e]) . Compute throughput Z = l/g*. Define
upper bound xd C e E ~ d (e) c [e] / C n E ~ d(n)b[n] . Define

Check if 6-Optimal: If A 5 6 , the multicommodity solution
is denoted as eoptimal. For each t E T, compute the final flow
configuration function f (t) = f (t) / g * . Goto R5 to derive an
integer solution.

Justijication of Termination Criteria: In theory, Zd serves
as an upper bound on the amount of flow that may be shipped.
Similarly, 3 is the current value which we can achieve. Let i
denote the optimal flow value. A later theorem will assert that
z 5 f 5 X d . Consequently, as A -+ 0, Z + f .

error bound A E zd - z /zd .

-

3.2.4 R4-Net Selection and Rerouting

for net n:
Select Net To Reroute: Let W, define the set of active trees

W, {t E A,lf(t) > O}

We first select a net to be rerouted. That is, for each net n E N ,
let n* denote the longest active tree and let n* denote the
Steiner tree for that net. Determine a net with trees t* and t ,
such that

d(t*) - d(t,) = m a x (d (n *) - d(n,) ln E N)

The net that maximizes the above quantity is to be rerouted.
Determine Flow Change: Compute the net change that

results from shifting flow from d* to d,. Define d,
CeEt,-t* d(e) . Define d* CeEt+-t , d(e) . Compute (T =
C, /2a In d* /d,. For problems with constant edge capacities,
this (T gives the optimal amount of flow to shift so that the
throughput improves.

Partial Rerouting: If f (t *) 2 (T + (TO, then reroute (T units
of flow from t* to t , and set W, = W, U {t*} .

Total Rerouting: Otherwise, reroute all the flow on t* to t , ,
and set W, = W, U { t * } - {t*} .

Mark Changed Entities: Update flow values for t* and t,.
Mark all edges whose flow has changed so as to ensure that
their weights are calculated in Step R2. Goto R2.

3.3 Multicommodity Flow Integerization

The following pseudocode summarizes the flow of control
of the multicmmodity flow integerization Steps R5 and R6.
The first step integerizes the fractional flow solution. The last
step impoves the solution until either no further improvement
is possible, or the solution is valid.

Algorithm 3.2
R5--solution integerixation
while not feasible

done
R6-improve integerized solution

3.3. I RS-Solution Integerization and Termination Criteria

Integerize Nets: Let us assume, for now, that all nets have
a demand of one. For each net n E N , select an active tree
t E W, to make permanent. One approach is some type of
randomized rounding, using the current flow of each active
tree as a probability. For each net n, we select b[n] trees
according to the distribution of the probability. Note that if
b[n] > 1, some trees may be identical.

Identify Overjlow Nets: When finished integerizing, iden-
tify overflow edges e E E such that f (e) > c[e] and define
E {nln E N and 3e E t , s.t. f (e) > c(e)} , where t , is

the set of edges comprising some active tree of net n. Here,
6 denotes the set of overflow nets, i.e., nets which utilize
overflow edges.

Check if Solution Is Feasible: If E = 8, we are finished:
report success. If E # 0, goto R6 to improve the integer
solution.

3.3.2 R6-0ve$ow Set Improvement

The iterative improvement scheme here is similar to [l]
except that the edge distance is an exponential function of the
congestion f (e) / c [e] .

Determine Net Ordering: Sort 5 so that the longest nets are
first. For each net n E 6, we will reroute each overflow tree to
avoid overflow edges. We do this by applying the following
procedures to each overflow tree t of net n.

Reroute Uverjlow Trees: Define f [e] = f (e) - S (t , e) . Thus,
![e] is the net flow after deleting the flow of tree t .

Compute New Edge Distances: This step will reroute ex-
actly one unit of flow from the current tree to a better tree. To
make this work, f adjusts the flow so that if tree t uses that
edge, a new tree may use that edge without additional penalty.
This simulates the computation of d* and d, in R4. Compute
new edge distances dRS[e, t] :

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

Compute New Steiner Tree: Recompute the Steiner tree for
this net using these new edge distances. The Steiner tree
algorithm used here is described in Section 4.2. Decrement
the flow of the old tree by one unit, deactivating it if its flow
is reduced to zero. Make the Steiner tree active with a flow
of one.

Check $Solution Is Feasible: Once we have rerouted all
of the overflow nets, recompute I. If (= 0, we are done
(success). Otherwise, if there is no improvement, we are done
(failure). Otherwise, repeat Step R6.

pseudocode summarizes the algorithm used by Step R6
to improve an integerized solution.

Improvement Scheme Summary: The following

Algorithm 3.3
sort E so that longest nets are f i r s t
f o r each net n E (do

f o r each overflow tree t of n do
compute new edge distances
compute new steiner tree
reroute one unit of f l ow

0
done

recompute and repeat step i f

3.4 Comments
The cost function exp (a(f [e] / c [e])) penalizes nets which

use congested edges, thus encouraging nets to avoid the
congested edges. In particular, our Steiner tree improvement
procedure exploits this property by rerouting the path which
utilizes the most expensive edge. The termination criteria is
extended from the Japanese Theorem [22]. Once Z = Zd,

then Z is the optimum throughput. In R4, CT is the optimal
flow with which to augment t , and to decrernent t*. Thus, on
each iteration, given a net to reroute, we are able to compute
the optimal amount of flow to reroute so as to maximize the
resulting increase of throughput. The constant 00 is used to
ensure that the remaining flow is not too small, as the rerouting
procedure in R4 guarantees that the flow of any tree is no
smaller than 00.

IV. STEINER TREE PROCEDURES

We adopt Prim’s approach to search for Steiner trees. There
are two procedures for creating and maintaining our Steiner
trees. The first procedure creates a Steiner tree from scratch,
while the second procedure improves an existing Steiner tree.
The latter procedure takes advantage of the characteristic that
the most congested edges in the graph are exponentially more
expensive than the less congested edges. Section 4.1 describes
how we build Steiner trees from scratch. Section 4.2 describes
how we improve an existing Steiner tree. Our approach is
similar to Pulleyblank’s approach [23] and can be improved
by applying some of his new techniques.

Note that the distance of an edge is a hnction of edge
congestion, which may not correspond to a physical distance
between the two incident nodes. Therefore, a Steiner tree
algorithm on a rectilinear grid may not apply to our application
even if G(V, E) is a gridded graph.

4.1 Creating a Steiner Tree from Scratch

Given a net n E N , select a vertex v E V, to serve as a
source, and let S = {U). Let T = {v E V,(v S } . Use a
variant of Dijkstra’s shortest path algorithm to find the shortest
path between sets S and T. Let U’ denote the resulting vertex
in T, and let S’ denote the set of intermediate vertices used
in the path between S and T. Set S = S U SI U {d}, and
T = T - {‘U’}. If T # 0, repeat path finding procedure;
otherwise, we are done.

4.2 Improving a Steiner Tree

Given an existing Steiner tree, find the most expensive
path in the tree and delete all degree two edges within
that path. Consequently, all temporary intermediate vertices
should be removed. Let S and T be the sets of vertices from
the two respective subtrees. These sets contain all terminals,
Steiner and intermediate points that form the respective Steiner
subtrees. Use a variant of Dijkstra’s shortest path algorithm to
find the shortest path between sets S and T. Reconnect the
two trees along this new path, and merge sets S and T to
contain any new Steiner points or internal vertices as well as
the union of S and T.

This procedure for improving a Steiner tree is particularly
appropriate for this algorithm. This is because the distance
function used for establishing distances of edges heavily
penalizes paths which use congested edges. Thus, by rerouting
the path using the worst edge, we work on achieving the
desired goal of minimizing overall congestion.

v. SPECIAL CASES AND PROPERTIES OF ALGORITHM

5.1 Two Pin Special Case
Let us assume that the number of pins in a net is restricted

to two. Also, assume that fractional flows are allowed, that
a z 2c:/c,bct, and that the edge capacities are equal to a
given constant. Also, note that

Given these conditions, Shahrokhi and Matula [21] present
a provably t-optimal algorithm for this special case. Their
algorithm simply uses Steps R1 through R4. The following
theorems are proven for this special case by Shahrokhi and
Matula [21].

Theorem 5.1: At Any Stage in the Algorithm: Z 5 2 5 zd.
Theorem 5.2: Given a User Dejned Error Bound t, Let:

A 5 zd - Z//zd. Then the algorithm terminates in polynomial
time with A 5 E .

With these conditions, we can obtain a solution which
deviates from the optimum by t in polynomial time.

5.2 N-Pin Multicommodity Flow with Optimal
Steiner Tree and Fractional Flows

Instead of 2-pin nets, let us assume that we have n-pin
nets. Also, askume that fractional flows are allowed, that
a z 2 c $ / c * b ~ t , and that the edge capacities are equal to
a given constant. Finally, altbough it is NP-complete, let us

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

CARDEN et a/.: A GLOBAL ROUTER WITH A THEORETICAL BOUND ON THE OPTIMAL SOLUTION 213

Name

Diff-411
DX-4/2
Diff-414

assume that it is possible to compute a minimum Steiner tree.
We concern ourselves with Steps R1 through R4.

Lemma 5.3: At any stage in the algorithm, the throughput
3 of any multicommodity multiterminal flow function f and
the distance function d on G with C n E ~ d(n)b[n] > 0 satisfies

Nets Pins per Bounding Edge 6 a Total Length Time
Net Length Capacity [16] [CC] (sec.)

8 2 32 2 0.001 0.1 35 32 0.0
16 2 64 4 0.001 0.1 - 64 0.1
32 2 128 8 0.001 0.1 - 128 0.1

Y , - .
n E N

Remark 5.4: Let 2 denote the optimal throughput. Because
lemma 5.3 is independent of the flow configuration, at any
stage in the algorithm, f 5 2 5 z d .

Theorem 5.5: Algorithm R is a fully polynomial time ap-
proximation scheme and terminates with an €-optimal distance
function.

With these conditions, we can obtain a solution which
deviates from the optimum by E in polynomial time.

Diff-418
Diff-8
Diff-16
Diff-32

5.3 Integerization Properties
We use a probabilistic approach to integerize the flow

configuration. Let us assume that b[n] = 1 for all nets n E N .
For each net, the probability to select one of its active trees
is equal to its flow. We apply the same general techniques for
integerizing our fractional flow algorithm results as Raghavan
and Thompson [12] use for integerizing their linear program
results. As a result, we exhibit the same computable error
bound as [12].

64 2 256 16 0.001 0.1 - 256 0.1
32 2 256 4 0.001 0.1 296 256 ’ 4.9
128 2 2048 9 0.001 0.1 2214 2048 2.8
512 2 16384 20 0.001 0.1 - 16384 90.8

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The multicommodity flow routing algorithm presented ear-
lier has been implemented in the C language on a Sun 4
Sparcstation under Berkeley UNIX. In order to apply our
global router to large designs such as Primaryl and Primary2,
we made a number of optimizations. First of all, we added
an option in our router to update edge weights after routing
each net in Step R1. Because this introduces dependency
relationships, we route the net with the smallest bounding
box first. We find that this improves our initial solution
considerably. Second, on each iteration of R2-R4, we often
choose to reroute more than one net at a time; we call this
block pivoting. Potentially, half or more of the nets will
be rerouted in a single step. We find that this helps speed
convergence. Additionally, we added an option in our router
to perform R5-R6 immediately after R1 to see if a feasible
solution can be achieved without going through the pains of
R2-R4; if not, we have an additional option where users can
limit the total number of iterations to some number such
as 100. The performance given represents times on a Sun
Sparcstation/2.

Our test cases include difficult examples from [18], Pri-
maryl and Primary2 from MCNC, and a multichip module
design from MCC [25]. The difficult example test cases from
[18] contain only two pin nets. A shortest path search can
find the optimal Steiner tree solution for the two pin nets.
Therefore, we can derive the €-optimal solution from R2-R4.
The multichip module design contains 7 11 8 nets. Since there
are many nets connecting the same set of nodes, the grouping

of identical nets into super-nets reduces the number of nets
to 319. It takes 908.9 s to derive an €-optimal solution from
Rl-R4 with E = 0.001. Note that the optimality of this result
is under the assumption that the net connection found relative
to the current distance function is the best possible tree. Since
our Steiner tree algorithm is a heuristic, an optimal Steiner tree
search with an exponential complexity may further improve
the results. Primaryl and Primary2 contain 915 and 3050 nets,
respectively. The size of these two cases force the program to
terminate after 100 iterations before the solutions converge in
R2-R4. By comparing CPU times on the difficult examples
and MCNC, we see that our approach takes about 3 times
longer than the approach in [16].

6.1 Dificult Example Results

We have tested our algorithm against the examples provided
in [18] with results listed in [16], i.e., particular instances of
Difficult-4, Difficult-8, and Difficult-16. On these examples,
we achieve the same densities. These results, therefore, are
evaluated in terms of wire length. A result is optimal if its
wire length equals the bounding length for the problem. In
all three cases, i.e., Difficult-4, Difficult-8, and Difficult-16,
we achieved results superior to [16], [18]. In particular, our
results for Difficult-4, Difficult-8, and Difficult-16 are optimal.
We also created an analogous instance of Difficult-32 to test.
On that example we also achieved an optimal solution. The
first five columns of Table I give the name, number of nets,
number of pins, the bounding length, and the edge capacities of
each difficult example. The next two columns give the values
of E and the initial a that we use. The next two columns give
the total wire lengths achieved by [16] and our algorithm. The
last column of Table I gives the total execution time of our
program. Fig. 1 shows the resulting routing of Difficult-4, one
which uses only 32 units of wire length.

We also tested our program on special instances of Difficult-
4, i.e., ones which specified super-nets, In particular, we
tested examples where each net is specified two, four, and
eight times. We shall refer to these as Difficult-4/2, Difficult-
4/4, and Difficult-4/8, respectively. The program identified
that a particular vertex list of a particular net had already
been specified, so it made the corresponding net a super-
net. In all cases, the program achieved an optimal solution
in terms of wire length. In each case, the initial fractional
solution split the flows between two shortest nonoverlapping
paths. Because the fractional solution is also a valid integer
solution with one, two, and four units of flow assigned to
each route, respectively, no changes except for roundoff error
are made. Table I also shows the results for these examples.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

Fig. 1. A routing of Difficult-4 with wire length 32.

Fig. 2. A routing of Difficult-4 with super-nets.

Fig. 2 shows the resulting routing of Difficult-4 where each net
has been specified two, four, or eight times. The solid route
corresponds to the route specified in Fig. 1, while the dotted
route corresponds to the other possible nonoverlapping route.

6.2 Gate Array Benchmark Example Resulrs
We have also tested two gate array benchmark circuits,

Primaryl and Primary5 from the 1988 JEEE Workshop on
Placement and Routing. To compare our results to [17], [18],
we used the placement as provided by [171. Just as [171 did in
their model, we set the width of the left and right boundaries
to zero. To translate the physical design into the graph-based
model, we impose a uniform grid on the gate array so that
pins of modules are assigned to particular vertices on the grid.
Fig. 3 illustrates how we impose a grid on the gate array when
using approximately as many columns as rows. The resulting
routing goes from vertex to vertex of the grid. Our grid is
similar to the one used in [4].

We tested Primaryl-GA with several different grids, one
using 27 rows and 19 columns as in [17], one using 27 rows
and 27 columns, one using 27 rows and 54 columns, and one
using 27 rows and 106 columns. As the grid becomes finer,
more nets must be routed by the global router, i.e., fewer nets
fall under one grid, and many nets have more pins as fewer

I 3 r l m I I

Fig. 3. Mapping a gate array to a graph.

TABLE I1
BENCHMARK EXAMPLE RESULTS

of the nets' pins fall under one grid. This explains why for
Primaryl-GA, we had to route 792, 822, 859, and 891 of 915
total nets, respectively.

We also tested Primary2-GA with two different grids, one
using 37 rows and 37 columns as in [17], and one using 37
rows and 74 columns. In these examples, we had to route 243 1
and 2698 of 3050 total nets, respectively.
Our results for Pnmaryl-GA are very close to [17]. Our

maximum densities are the same at five and our total net
length is just 3% worse than [17]. Also, we both achieved
the theoretical lower bound for this circuit. Our results for
Primary2-GA tell a different story. On this much larger circuit,
we achieved the theoretical lower bound of nine while [17]
achieved ten, a 10.0% improvement. Our total net length is
also 12.3% shorter than [17].

Table II summarizes our results. The first three columns of
Table II give the name, the number of cells, and the number
of nets in each of the benchmark examples tested. The next
three columns describe the characteristics of the grid that we
superimpose on the graph. In particular, the first two columns
give the number of rows and columns, respectively. The
third column gives the number of nets that the global router
must actually route. The next two columns of Table I1 give
the maximum densities achieved by [17] and our algorithm.
The next two columns of Table I1 give the total net lengths
achieved by [17] and our algorithm. The next two columns
describe particular parameters passed to the program. In all test
cases, we set E to 0.001. The first column specifies the initial
value of a. The second column specifies the total number of
R2-R4 iterations the program was allowed to perform. The
last column of Table I1 gives the total execution time of our
program on a Sun SPARC 20.

We route Primaryl with two different channel capacities:
6 and 5, and route Primary2 with the channel capacities of
9. Table I1 shows only those tests which succeed; we did
attempt to route with smaller channel densities, but these all

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

CARDEN et al.: A GLOBAL ROUTER WITH A THEORETICAL BOUND ON THE OPTIMAL SOLUTION

-- ~~

e (I Fractional Integerwed I Iterations

0 8 0 5 1503 689 689 935 1 64
1 5 2475 736 736 935 3 22

0 5 0 5 1449 878 875 935 3 34
1 5 1117 897 896 935 8 51

0 2 0 5 1170 936 935 935 21 41

~ ~ T i Z T T T 3 & T E & F
uu I n Final Overflow Tme

(sec)
11 3 2324

255 39 425 1
116 12 1980
221 28 7449
25 5 585

ooooo:

0 uu U 0
Fig. 4. A test case provided by MCC.

generated overflow nets. In all cases, we run the program with
the option to update edge weights after routing each net in
R1, then attempt to achieve a feasible integer solution by
running Steps R5-R6, then if necessary proceed with Steps
R2-R4 followed by Steps R5-R6. We also perform block
pivoting.

6.3 Application to Multichip Module Designs

We have tested our program on a multichip module design
provided to us from MCC [25]. This test case, illustrated in
Fig. 4, models a next generation supercomputer on a 6 x 6 inch
substrate with 37 1.5 x 1.5 cm2 gate arrays, and 18 pads. The
netlist contains 7118 signals and 14 659 pins. By using the
global router as an estimator, we can then determine whether
a given pitch for channels will give a feasible routing. The
design uses two layer metal routing with the same pitch for
each layer. We use the placement provided to us by MCC.
It arranges the cells within seven rows and seven columns.
Our grid, therefore, is 7 x 7 with additional rows and columns
provided for the perimeter.

The resulting graph model maps exactly one cell to a grid,
and subsequently all the pins of that cell to that grid. All nets
connect one distinct cell to another distinct cell, that is, no
nets connect one pin of one cell to another pin of the same
cell. The vast majority of the nets are two pin nets.

Because many nets in the design are identical when de-
scribed in terms of graph vertices, we lump identical nets
into a single super-net. To compensate, we set the demand
of that super-net to be the number of nets it represents. For
example, suppose nets 1-6 connect various pins of cells 1
and 4, respectively. We simply treat this as one net with
a demand of 6. The multicommodity flow algorithm then
assigns a flow of 6 units to that net and proceeds to reroute
portions of that flow as dictated. Thus, in the integerization
phase, only the fractional parts of each flow tree need to be
redistributed.

With the test case from MCC (Table 111), the 7118 nets are
reduced to 319 nets, 279 of whom are super-nets. Twelve of
these super-nets have cardinality exceeding 100 with one of
them representing 280 nets. As each net in the MCC test case
represents an average of 22 nets, we find that the error between

TABLE 111
ROUTING OF MCC TEST CASE WITH PITCH 65

(1 1.5 11 ,937 I ,937 11 .935 I ,935 11 750 I 764 11 268 I 46 1) 908.9

~

215

the fractional solution and the subsequent integerized solution
is, in practice, less than 1%.

Specifically, we attempt to do a global routing on this test
case with a track pitch of 65 pm. Our global router, however,
derives a lower bound on the solution by computing the upper
bound on the routing throughput. We used an epsilon value
of 0.01 for this test. The resulting fractional solution value of
,zd is 0.945898 implying that at best, the solution is 94.5898%
feasible, and that with a 1 % margin of error, we can never
hope to use a pitch larger than 61.4834 to achieve a feasible
fractional solution, this with the assumption that the Steiner
tree is limited to the domain of the searched active tree
configurations. Our integer solution 2 is .934959, implying
that a pitch of at most 60.7 will give a feasible routing. With a
pitch of 60 pm, our global router successfully routes this test
case. Consequently, we see that our global router can be used
as an effective estimation procedure.

VII. CONCLUSION

This paper describes a global router based on a multitermi-
nal, multicommodity flow algorithm. We utilize Shahrokhi and
Matula's algorithm [21] to derive the fractional flow solution
in a relatively short execution period. We extend this method
to handle n-pin nets instead of just 2-pin nets. Based on the
[21] algorithm, we exhibit, at any stage, the error bound of the
current result from an optimal solution of the multicommodity
flow problem. We then use a randomized rounding technique
to derive a discrete net connection with an error bound on the
derivation from the optimal fractional solution. We finish by
employing an iterative procedure to improve the final results.

In the iteration, the cost of each edge is an exponential
function of the congestion. Thus, the cost of highly congested
edges dominate the cost of the whole net, which we conjecture
explains why [18], [171 approach of [161 on mitdmax minimal
rectilinear Steiner trees performs quite well in certain cases.
Our adaptation of Shahrokhi and Matula's network flow algo-
rithm [21] can effectively improve the overall routability of
a circuit by minimizing edge congestion. In the iteration, our
flow rerouting procedure can determine the optimal amount
of flow to reroute. We show that our approach derives an
approximate optimal solution under certain conditions. Thus,
on these cases, our procedures to handle net ordering and cost
assignment on edges answer the problems proposed by Ting
and Tien.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF WTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

ACKNOWLEDGMENT [20] R. C. Carden and C. K. Cheng, “A global router using an efficient
approximate multicommodity multiterminal flow algorithm,” in
ACMLEEE Proc. 28th Design Automation Con$, June, 1991, pp.
316321.

problem,” in J. Assoc. Computing Machinery, Apr. 1990, pp. 318-334.
[22] M. v . Lomonosov, “Combinatorial approaches to multiflow problems,”

Discrete Appl. Mathematics, vol. 11, pp. 1-94, 1985.
[23] W. R. Pulleyblank, “Two steiner tree packing problems,” in ACM Proc.

[24] T. C. Hu, Combinatorial Algorithms. Reading, MA: Addison-Wesley,

[25] D. Cobb, private communication, Sept. 1990, MCC, Austin, TX.
[26] R, c. Carden and c, K. Cheng, “Feasibility estimation and

The authors thank T. C. Hu for numerous stimulating
conversations, and the suggestion of E. S. Kuh is highly
appreciated. Also, they are very grateful to M. SmafZadeh and [Z1l F. ShdXokhi and D. W. Matula, “The maximum coXurrent flow

c . Sechen for providing test data. The authors are indebted to
T. Hamada for his help in developing Timberwolf translators

help in preparing some of OUT test data. One Of the authors
(R. C. Carden) wishes to thank N. Dutt and D. Gajski at the
University of California, Irvine, for allowing him access and
time on their computer systems. One of the authors (R. C.
Carden) conducted this research during his Ph.D. program at
the University of California, San Diego.

and in plotting data? appreciate A‘ Leung’s manual 25th Ann, $mp, Theory Computing, 1995, pp, 383-387.

1982.

optimization for multichip module technologies,” in IEEE Proc. 4th
ASIC Con$, Sept. 1991, pp, 1 4 .

REFERENCES

B. S. Ting and B. N. Tien, “Routing techniques for gate array,” IEEE
Trans. Computer-Aided Design, vol. CAD-2, pp. 301-312, Oct. 1983.
T. C. Hu and M. T. Shing, “A decomposition algorithm for circuit ,

routing,” in VU1 Circuit Layout: Theory and Design. T. C. Hu and E.
S. Kuh, Eds., New York IEEE, 1985, pp. 144-152.
A. Vannelli, “An interior point method for solving the global routing
problem,” in IEEE Proc. Custom Integrated Circuits Con$, 1989, pp.

-, “An adaptation of the interior point method for solving the
global routing problem,” IEEE Trans. Computer-Aided Design, vol. 10,
pp. 193-203, Feb. 1991.
R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V.
Vazirani, and V. V. Varizani, “Global wire routing in two-dimensional
arrays,” Algorithmica, vol. 2, pp, 113-129, 1987.
M. Burstein and R. Pelavin, “Hierarchical wire routing,” IEEE Trum.
Computer-Aided Design, vol. CAD-2, pp. 223-234, Oct. 1983.
E. Shragowitz and S. Keel, .“A global router based on a multicommodity
flow model,” Integration, the VLSl J. , vol. 5 , pp. 3-16, 1987.
P. Raghavan and C. D. Thompson, “Multiterminal global routing: A
deterministic approximation scheme,” Algorithmica, vol. 6, pp. 73-82,
1991.
T. C. Hu, Integer Programming and Network Flows. Reading, MA:
Addison-Wesley, 1969.
G. Meixner and U. Lauther, “A new global router based on a flow
model and linear assignment,” in IEEE Proc. Int. Con& Computer-Aided
Design, 1990, pp. 44-41.
N. Karmarkar, “A new polynomial-time algorithm for linear progran-
ming,” Combinatorica, vol. 4, pp. 373-395, 1984.
P. Raghavan, “Lecture notes on randomized algorithms,” Res. Rep.
RC 15340 (#68237) 1/9/90, IBM Res. Div., T. J. Watson Res. Center,
Yorktown Heights, NY, 1990.
E. S. Kuh and M. Marek-Sadowska, “Global routing,” in Layout Design
and Verification, T. Ohtsuki, Ed. Amsterdam, The Netherlands: North
Holland, 1986.
T. M. P m g and R. S. Tsay, “A new approach to sea-of-gates global
routing,” in IEEE Proc. Int. Con$ Computer-Aided Design, 1989, pp.
52-55.
K. W. Lee and C. Sechen, “A global router for sea-of-gates circuits,”
in Proc. European Design Automation Con$, 1991, pp. 242-247.
C. Chiang, M. Sarrafzadeh, and C. K. Wong, “A powerful global router:
Based on Steiner min-max trees,” in IEEE Proc. Int. Con$ Computer-
Aided Design, 1989, pp. 2-5.
C. Chiang, C. K. Wong, and M. Sarrafzadeh, “A weighted steiner tree-
based global router with simultaneous length and density minimization,”
IEEE Trans. Computer-Aided Design, vol. 13, pp. 1461-1469, Dec.
1994.
C. Chiang, M. Sarrafzadeh, and C. K. Wong, “Global routing based on
steiner min-max trees,” IEEE Trans. Computer-Aided Design, vol. 9,
pp. 1318-1325, Dec. 1990.
J. M. Ho, G. Vijayan, and C. K. Wong, “Constructing the optimal
rectilinear steiner tree derivable from a minimum spanning tree,” in
IEEE Proc. Int. Con$ Computer-Aided Design, 1989, pp. 6-9.

3.4.1-3.4.4.

Robert C. Carden IV (S’86-M’91) received the
B.S. degree in mathematics from the University of
California, Irvine in 1983, and the M.S. and Ph.D.
degrees in computer science from the University of
California, San Diego, in 1985 and 1991, respec-
tively.

He worked part-time with BurroughsNnisys Cor-
poration during the summer of 1986 through April
1991. Since April 1991, he has been with the Unisys
Corporation, initially in CAE Integration, and now
as a Principal Engineer in the instruction processor

design group. His current research interests include CAD, programming
languages, and computer system emulation technologies.

Jianmin Li (M’9.5) received the B S , M E , and
Ph D degrees in computer science and engineenng
from Tsinghua University, Beijing, China, in 1988,
1990, and 1993, respectively

He is currently a post-Doctorate with the De-
partment of Computer Science and Engineering,
University of California, San Diego His current
research interests include circuit partitioning, place-
ment, routing, network flow optimization, rapid pro-
totyping systems, neural network, and speech recog-
nition

Chung-Kuan Cheng (S’82-M’84-SM’95) received
the B S and M S degrees in electrical engineenng
from the Natlonal Taiwan Umversity and the Ph D
degree in electrical engineenng and computer sci-
ences from the University of California, Berkeley,
in 1984.

From 1984 to 1986 he was a senior CAD engineer
at Advanced Micro Devices, Inc In 1986, he joined
the University of California, San Diego, where
he is currently an Associate Professor with the
Computer Science and Engineering Department His

research interests include network optirmzatlon and design automatlon on
rmcroelectronic circuits

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 20:22:15 UTC from IEEE Xplore. Restrictions apply.

