
Performance-Driven Partitioning Using Retiming and Replication*
Lung-Taen Lzu, Mznshzne Shzh**, Nan-Chz Chou, Chung-Kuan Cheng, and Walter Ku

Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114

Abstract
We propose a novel paradigm for two-way circuit par-

titioning which minimizes the clock cycle. The replica-
tion technique is suggested for feedback loops to mini-
mize the impacts of intermodule delays and the cross-
ing edges when necessary. A flow timing cut is de-
vised to produce partitions which can be guaranteed to
achieve clock cycles equal their lower bound with re-
spect t o the partitions using retiming. When the clock
cycle optimization is the major objective and feedback
loop sizes are not large, we propose an eficient, easy
to implement algorithm which still guarantees achiev-
ing the lower bound clock cycle with respect to its par-
tition. Experimental results have shown our algorithms
can achieve an average of 15% clock cycle time reduc-
tion compared to the best retimed results produced b y 20
runs on each test case using a Fiduccia-Mattheyses al-
go rat h m.

1 Introduction

A synchronous digital system can be represented by
a dzrected graph, G(V = R U C , E) , where R is the set
of registers and C is the set of combinational blocks.
E is the set of directed edges corresponding to signal
flows in the system. A two-way partition P of G(V, E)
maps V into two modules, (VI , Vz), VI U Vz = V. Due CO
replication, VI and V2 may overlap. An edge e = (U, v)
is a crossing edge of P if one node is in VI and the other
is in V2. We assume registers and non-crossing edges are
of zero delay. The intermodule delay 6 is a technology
dependent constant Given a feedback loop i, let e,, z,
and r, be the sum of combinational block delays, the
sum of edge delays, and the number of registers on loop
i respectively. The zteratzon bound can be defined as [7]:

We make following assumptions in this paper:
L = max ((t2 + d^Z)/rI) v loopi. (1)

1. The intermodule delay is less than the clock period.
2 . Data flow are fine-grained in nature.
3. Replicating nodes from other modules is feasible.
4. There exist external feedback loops between the

primary I/O. Furthermore, there is at least one ex-
tra clock cycle slackness associated with each ex-
ternal feedback.

*This work was supported in part by grants from NSF I/UCR
Center, ICAS and NSF MIP-9117328 as well as AT&T, Hughes,
and Quickturn under MICRO.

**Department of EECS
University of California, Berkeley

Berkeley, California 94720

Although replication can be used to reduce the number
of crossing edges [3], we use it as an effective approach
to avoid extra intermodule delays introduced by cutting
feedback loops. This makes our replication objective
different from [3], which will be discussed in Section 3.

2 The Timing-Optimal Problem

According to assumption 4, we need to consider the
path delay. Let d j , 4, and rj be the sum of functional
block delays, the sum of intermodule delays, and the
number of registers on path j between the primary I/O.
The path d e l a y bound of a circuit is defined by:

V path j between the primary I/O. Then the dominant
delay T of a given circuit partitioned by P is

Let M (P) denote the minimum cycle time of the cir-
cuit partitioned by P , which can be achieved by re-
timing [4, 51. We term a partitioning P bound-optimal
if T = M (P) . A partition P is timing-optimal if
M (P) 5 M(P’) for any other partition P’. Now we
state t h e t iming-opt i m a l partitioning problem as
follows:
Given a datu flow graph G(V = RUC, E) with each node
zii of size(va), size constraint SI and Sz, and intermod-
ule delay 6 , find a timing-optimal partition P = (VI, Vz)
and minimize the number of crossing edges as a sec-
ondary Objective, subject t o IVI~ 5 4 and IV2(5 5’2.

Figs. 1 and 2 illustrate the essence of the timing-
optimal partitioning problem, where registers are repre-
sented by rectangles and are labeled using uppercases.
Combinational blocks are represented by circles and are
labeled using lowercases. Shaded octagons denote cross-
ing edges. We assume combinational block delays are
one unit and intermodule delays 5 are two units. Given
a circuit in Fig. l (a) , the clock cycle is dominated by the
longest combinational delay between registers, which is
from A to B with a delay of 3 units. However, accord-
ing to equation (l), the iteration bound is determined
by the left loop, which is equal to 6/3 = 2. Hence, if we
move B to a new location as indicated by the dashed
line, the longest path is from A to B or from B to C .
Both have a shorter delay of 2 units which equals the
iteration bound.

Suppose we partition the circuit into two parts, mod-
ules I and I1 (Fig. l(b)). The clock cycle is 5 units before
retiming because of the delay on the longest path from

D = max (d j + &) / (r j - I), (2)

T = max(L , D) . (3)

296
1063-6757/93 $03.00 0 1993 IEEE

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 05,2023 at 21:40:24 UTC from IEEE Xplore. Restrictions apply.

Figure 1: (a) Retiming reduces the delay from 3 units o f
original circuit to 2 units. (b) Retiming reduces the delay
of partitioned circuit from 5 to 4 units which is not bound-
optimal.

Figure 2: A bound-optimal and timing-optimal partition
with 2 units delay using retiming.

A to B. Even after retiming which shifts B to its new
location as indicated by the dashed line, the delay is
more than 3 units. In Fig. 2 , before retiming, the clock
cycle is 3 units; hence, compared to Fig. l (b) , a better
choice of partition can automatically reduce the delay.
If we perform the retiming as shown by the dashed lines,
the delay in Fig. 2 is reduced to 2 units which is also
the iteration bound; hence it is bound-optimal. Fur-
thermore, since it can be observed that 2 units delay
is the optimum for the given circuit, Fig. 2 is also a
timing-optimal partitioning; hence is preferred.

3 Theoretical Aspects

For brevity, we omit all proofs in this section, and
refer them to [6]. Given a data flow graph G(V =
R U C , E) , let W (U , w) denote the minimum number of
registers among all paths from combinational nodes U

to w. We call a path pu,v from U to w a critical path if
the number of registers it contained, denoted by w(pU,,,),
equals W (u , w). Let D(u, w) be the maximumtotal prop-
agation delay among all critical paths pu,v . A retiming
of a data flow graph G(V = RUC, E) is an integer label-
ing of combinational nodes: II : C + 2. The retiming
specifies a transformation of the original graph in which
registers are added and removed so as to change the
graph G into a new graph with vertex set V’ = Rn U C.
Let wn(pu,,) denote the number of registers of path p
after retiming II. According to [5] , we have equation
(4), Theorem 1, and Corollary 1:

Theorem 1 Let G(V = RUC, E) be a data-flow graph,
and K be an arbitrary positive real number. Let II be a

wn(pu,tJ) = W (P U , V) + H (V) - W U) . (4)

function from C to integers, i.e., II : C +. 2. Then It
is a legal retiming of G , which can achieve a clock cycle
time of I< in: (1) H (u) - n(w) 5 w (~ ~ , ~) for any path
p f rom combinational nodes U 20 v . (2) II(u) - n (v) 5
~ (p ~ , ~) - 1 f o r any two combinational nodes U and v
such that D(u , w) > K .
Given a graph G(V = R U C, E) and a constant I<, a
new graph G’(V’ = C, E’) can be construct as follows.
Initially, E’ = 8. For any two combinational nodes U

and w, if there exists at least one path from U to w, we
add an edge (u , w) to E’. If D (u , w) > K, we associate
the edge (U , w) a cost W (U , v) - 1. If D(u , v) L I<, edge
(u,w) is assigned cost W (U , W) . We call these opera-
tions the transitive transformation. Hence the following
Corollary comes in order according to Theorem 1.
Corollary 1 Given a graph G(V = R U C, E) and a
constant Ii‘, G can be retimed to achieve a clock cycle
time of Ii’ iff G‘ does not have loop with negative cost.
Given a simple loop !, let te, de, and re denote the total
delay, the total delay of coarse-grained structures, and
the total number of registers in loop ! respectively.
Lemma 1 Given a graph G(V = R U C, E) and a con-
stant Ii‘, if each sample loop ! of G satisfies (te+de)/re <
I<, G can be retimed to achieve a cycle time equals I<.

When partitioning a circuit, crossing edges with de-
lays are introduced into the circuit. Since these delays
cannot be decomposed, a partitioned circuit contains
both fine-grained and coarse-grained nodes. Given a
path p , we term p is cut k-times if there are k crossing
edges in p . From assumption 4, shifting of primary I/O
registers during retiming is allowed.
Theorem 2 Given a partition P ower G(V = RUC, E)
and an intermodule delay d, let T = max(L, D) (equa-
tion (3)). If each path between the primary 1/0 is cut
at most once and each loop is not cut, then P can be
retimed to achieve a clock cycle time of T .
In case that a path is cut more than once, a bound-
optimal circuit cannot be guaranteed using retiming.
More formally, given a partition P over G(V = RUC, E)
and a intermodule delay 6 , let T = max(L, D) (equa-
tion (3)) . If any path between the primary 1 / 0 is cut
more than once, the partition P cannot guarantee to
achieve a clock cycle of T by retiming.

To illustrate the problem complexity, we introduce a
simplified problem:
The simplified timing-optimal partitioning prob-
lem: Given an acyclic graph G(V = RUC, E) wiih each
node wi has size of size(wi), size constraint SI and Sz, a
crossing edge delay 6 , and a constant K , find a two-way
partition P = (V1,Vz) subject to IVll < 5’1, lVzl 5 Sa,
D 5 Ii‘, and each path between the primary 1/0 as cut
at most once, where D is the path delay bound of P de-
f ined in equation (2).
From [6], we have following theorems:
Theorem 4 The simplified timing-optimal partitioning
problem with unit size combinational blocks and zero size

h

297

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 05,2023 at 21:40:24 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Reduce iteration bound L through replication. (a)
Before replication, L = 814 = 2. (b) Replicating B, c, and
C , L = 1218 = 1.5.

registers is NP-complete.
Theorem 5
stated in Section 2 is NIP-complete.

The timzng-optimal partitionzng problem

I #comb. I

4 Heuristics

11 FM I TTC I FTC

Intuitively, network flow based algorithms should cut
paths much fewer times than node-exchange based algo-
rithms such as [a] due to the inject-and-saturate flow na-
ture. Furthermore, the flow-based algorithm is a global-
oricnted partitioning approach. Hence, we propose an
algorithm called the Flow Timing Cut (FTC). By The-
orem 2 , we merge strongly connected components into
supernodes and perform partitioning on the resulted
acyclic graph. However, since we may have huge supern-
odes from the above merging, we apply replication-cut
prior to the partitioning; otherwise we proceed without
replication. ‘l’he algorithm is listed as follows:

1. Condense each strongly connected component in
G (V , E) into one supernode to obtain an acyclic
graph G’(V’, E’);

2. Let tsize= CVEv, size(w) and replicate = 0.2.
If (3 size(supernode) > tsize . replicate)
return(rep1ication-cut(G)); else do (a) to (c):
(a) Invoke saturate-network (GI, A, a) to saturate

GI with flow to get a distance function d for
each node.

(b) Select a partition P according to d.
(c) Adjust P such that each path between the pri-

mary 1/0 is cut at most once.
Procedure replication-cut() basically implements the
idea shown in Fig. 3, which is aimed to reduce the itera-
tion bound (equation (1)) L ; thereby admits higher pos-
sibility minimizing the dominant delay T (equation (3)).
Assuming delays for registers, combinational blocks,
and intermodule S are zero, one, and two units respec-
tively. Suppose we have a partitioned circuit shown in
Fig. 3(a), the corresponding iteration bound L is deter-
mined by cycle B , b , C , e , E , f F , g , B. Since the
total delay in this cycle is 8 and the number of registers
is 4, L = 2. However, if we replicate nodes B , c, and C ,
as shown in Fig. 3(b), the dominant cycle is the whole
circuit with L = l2/8 which is 25% less than Fig. 3(a).

Given a circuit G’, a flow increment A , and a con-
stant a , saturate-network() works as follows. Initially,

4421
3238
5545
4876
3724
3563

s4

875
1422
1045
3465
848
1103

reg I blocks I L I D 1 1 cut I cut I cut
342 I 8280 I 6373 1 5447 (1 2860 1 3144 I 3043
472
521
380
545
357
607

3378
6325
3850

12172
3026
4990

0
2527
4922
4241

0
996

878
2236

1 1467
4889
1175
1304

948
1952
1258
4889
1004
1304

Table 1: Characteristics of test cases and crossing edges cut
by different partitioning algorithms.

we associate each edge with capacity and distance of 1,
and set slack of an edge e = cycle time minus the delay
of e , where cycle time is provided by the designer be-
fore timing optimization. The algorithm then randomly
pick primary input and output nodes s and t , and find a
shortest path from s to t , according to each edge’s dis-
tance. An increment of flow with amount A i s injected
into the path, and the distance of each edge is updated
by an exponential function d(e) = exp(3) to penal-
ize congested edges. Saturated edges are removed from
GI. This flow injection process is repeated until a two-
way partition is obtained. In this paper, we follow [9]
to set A = 0.01 and a = 10.

When the clock cycle optimization is the major ob-
jective and feedback loop sizes are not large, we propose
an eficient and easy to implement algorithm, the topo-
logical timzng cut (TTC). Partitions generated by T T C
will still guarantee to cut the paths between the primary
1/0 at most once. The algorithm is listed below.

1. Same as the step 1 of FTC,
2. Put all nodes of G’ into partition I. Move one node

at a time, by topological order of GI, from partition
I to partition 11. Record the minimum partition P’.

3. Repeat step 2 with the reverse topological order of
GI, get P“.

4. Return min(P’, P’’).

Given a data flow graph G(V = R U C, E) , let m =
JEl , and n = IVI. The complexities for FTC and T T C
are O (m a x ((~ m) , n l o g n , m n) ,) and O(m + nlogn) .
The detail derivation is referred to [6].

5 Experimental Results

We use the same seven industrial circuits from [8] as
our test cases. Five of these circuits contain feedback
loops. However, among these loop-associated circuits,
the sizes of all clusters are relatively small-less than
one tenth the size of its corresponding circuit. Because
of the peculiarity of our test cases, there is no need to
perform the replication for these test cases. We com-
pared our algorithms to the Fiduccia-Mattheyses (FM)
[a]. The results of FM are chosen from the best of 20
runs each. The left partition of Table 1 shows the char-
acteristics of these test cases. The right partition lists
the number of crossing edges cut by various algorithms.

298

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 05,2023 at 21:40:24 UTC from IEEE Xplore. Restrictions apply.

ckt
sl

1 1 7096 8371 9645 I 5818 6161 7275 I 6156 7076 8350
s2 II 6189 7074 7958 II 0 0 0 1 0 0 0 1 0 0 0

FM (T) FM (TI TTC (T) FTC (T)

8181 9456 10730 6373 6373 6373 6373 6373 6373 6373 6373 6373
= 40 60 80 6 = 40 60 80 6 = 40 60 80 6 = 40 60 80 6

I(6189 7074 7958 I 4421 5207 6091 I 4556 5342 6226
s3 11 6101 6801 7501 II 3441 3908 4375 I 2527 2527 2527 I 2527 2527 2527

S5

s6

s7

1) 4638 5338 6038 I 4060 4760 5460 I 4276 4976 5676
s4 11 8149 9258 10367 1 1 4922 4922 4922 I 4922 4922 4922 I 4922 4922 4922

7130 8239 9348 6552 7661 8770 6974 8083 9192
8460 9435 10410 5293 6268 7243 4241 4241 4241 4241 4241 4241

6691 7666 8641 6699 7674 8649 6699 7674 8649

5604 6544 7484 4671 5611 6551 4394 5334 6274
5884 6597 7309 996 996 996 996 996 996 996 996 996

4390 5103 5815 3563 3897 4418 3563 3897 4418

7716 8656 9596 0 0 0 0 0 0 0 0 0

Table 2: Delay information from different partitioning algorithms when assuming 6 = 40, 60, and 80% of T’.

Since, as indicated by [l], the intermodule delay is
increasing to nearly 100% of the clock cycle, we set S to
be of 40, 60, and 80% of T* = max(L, D) which is cal-
culated using equation (3) before partitioning, and used
these values to perform experiments for different algo-
rithms. Table 2 gives the detailed information of our
experiments. In the first row, ? associated with FM
is the maximum delay between registers before retim-
ing. T is derived from equation (3) after partitioning.
However, for FM, T only serves as a lower bound of the
delay. This is because the partitions generated by FM
are likely to be non-bound-optimal. By contrast, the re-
sults produced by our algorithms (FTC and TTC) are
guaranteed to be able to achieve a clock cycle of T . For
Columns 3 - 5 in Table 2, each test case consists of
two row of data. The first and second rows are the it-
eration bound and the path delay bound respectively.
As we mentioned before, there are two test cases which
have no feedback loop, s2 and s6. Hence their iteration
bounds are listed as “0”.

In case that there is no external feedback loop from
the primary output to the primary input, L , calculated
after partitioning, will dominate the clock cycle time
during retiming. However, if L < 6 , then 6 will domi-
nate the clock cycle because 6 is not decomposable. As
a result, when compared to the FM without retiming,
the clock cycle time can be reduced by an average of
57.38% for all our test cases.

From Assumption 4, when compared to the FM, i.e.,
without retiming, the clock cycle time reductions are as
follows. When 6 = 40% of T*, FTC achieved 14.42 -
43.05% with an average of 28.10%. T T C achieved 19.60 - 39.46% with an average of 29.03%. When 6 = 60%
of T”, FTC achieved 12.69 - 40.93% with an average of
26.76%. T T C achieved 17.25 - 40.93% with an average
of 28.74%. When S = 80% of T*, FTC achieved 11.33 -

39.55% with an average of 24.47%. TTC achieved 15.41 - 39.55% with an average of 26.64%.
When compared to the FM with retiming, If 6 = 40%

of T * , FTC achieved -0.12 - 26.38% with an average of
12.85%. TTC achieved -0.12 - 28.57% with an average
of 14.04%. if 6 = 60% of T * , FTC achieved -0.10 -
24.48% with an average of 12.95%. TTC achieved -0.10 - 26.39% with an average of 15.08%. If 6 = 80% of
T*, FTC achieved -0.09 - 24.02% with an average of
11.94%. T T C achieved -0.09 - 24.57% with an average
of 14.3 1 % .

References
[l] D. Doane and P. Franzon ed., Multichrp Module Tech-

nologies and Alternatives -The Basics”, Van Nostrand
Reinhold, New York, 1993, pp. 666 - 667

[a] C. Fiduccia and R. Mattheyses, “A Linear Time
Heuristic for Improving Network Partitions,” Proc. 19th
ACM/IEEE DAC, 1982, pp. 175 - 181.

[3] J. Hwang and A. Gamal, “Optimal Replication for Min-
Cut Partitioning”, Proc. ICCAD, Nov., 1992, pp. 432 -
435.

[4] C. Leiserson and J. Saxe, “Optimizing Synchronous Sys-
tems,” J . VLSI & CS, Vol. 1, No. 1, 1983, pp. 41 - 67.

[5] C. Leiserson and J. Saxe, “Retiming Synchronous Cir-
cuitry,” Algorithmica, Vol. 6, No. 1, 1991, pp. 5 - 35.

[6] L.-T. Liu, N.-C. Chou, and C.-K. Cheng, “Performauce-
Driven System Partitioning,” Technical Report CS93-
290, University of California, San Diego, Apr. 1993.

[7] K.Parhi and D.Messerschmitt, “Static Rate-optimal
Scheduling of Iterative Data-Flow Programs via Opti-
mum Unfolding,” IEEE T. Computers, V.40, N.2, 1991,

[8] M. Shih and E. Kuh “Quadratic Boolean Programming
for Performance-Driven System Partitioning,” Proc. 30th

[9] C.-W. Yeh, C.-K. Cheng, and T.-T. Lin, “A Probabilis-
tic Multicommodity-Flow Solution to Circuit Clustering
Problems,’’ Proc. ICCAD, Nov. 1992, pp. 428 - 431.

pp. 178-195.

ACM/IEEE DAC, 1993, pp. 761-765.

299

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 05,2023 at 21:40:24 UTC from IEEE Xplore. Restrictions apply.

