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Abstract 
We propose a novel paradigm for two-way circuit par- 

titioning which minimizes the clock cycle. The replica- 
tion technique is suggested for  feedback loops to mini- 
mize the impacts of intermodule delays and the cross- 
ing edges when necessary. A flow timing cut is de-  
vised to produce partitions which can be guaranteed to 
achieve clock cycles equal their lower bound with re- 
spect t o  the partitions using retiming. When the clock 
cycle optimization is the major objective and feedback 
loop sizes are not large, we propose an eficient, easy 
to implement algorithm which still guarantees achiev- 
ing the lower bound clock cycle with respect to its par- 
tition. Experimental results have shown our algorithms 
can achieve an average of 15% clock cycle time reduc- 
tion compared to the best retimed results produced b y  20 
runs on each test case using a Fiduccia-Mattheyses al- 
go rat h m.  

1 Introduction 

A synchronous digital system can be represented by 
a dzrected graph, G(V = R U C ,  E ) ,  where R is the set 
of registers and C is the set of combinational blocks. 
E is the set of directed edges corresponding to signal 
flows in the system. A two-way partition P of G(V, E )  
maps V into two modules, (VI , Vz), VI U Vz = V. Due CO 
replication, VI and V2 may overlap. An edge e = (U, v )  
is a crossing edge of P if one node is in VI and the other 
is in V2. We assume registers and non-crossing edges are 
of zero delay. The intermodule delay 6 is a technology 
dependent constant Given a feedback loop i, let e,, z, 
and r, be the sum of combinational block delays, the 
sum of edge delays, and the number of registers on loop 
i respectively. The zteratzon bound can be defined as [7]: 

We make following assumptions in this paper: 
L = max ((t2 + d^Z)/rI) v loopi.  (1) 

1. The intermodule delay is less than the clock period. 
2 .  Data flow are fine-grained in nature. 
3. Replicating nodes from other modules is feasible. 
4. There exist external feedback loops between the 

primary I/O. Furthermore, there is at least one ex- 
tra clock cycle slackness associated with each ex- 
ternal feedback. 
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Although replication can be used to  reduce the number 
of crossing edges [3], we use it as an effective approach 
to avoid extra intermodule delays introduced by cutting 
feedback loops. This makes our replication objective 
different from [3], which will be discussed in Section 3. 

2 The Timing-Optimal Problem 

According to assumption 4, we need to consider the 
path delay. Let d j ,  4, and rj be the sum of functional 
block delays, the sum of intermodule delays, and the 
number of registers on path j between the primary I/O. 
The path d e l a y  bound of a circuit is defined by: 

V path j between the primary I/O. Then the dominant 
delay T of a given circuit partitioned by P is 

Let M ( P )  denote the minimum cycle time of the cir- 
cuit partitioned by P ,  which can be achieved by re- 
timing [4, 51. We term a partitioning P bound-optimal 
if T = M ( P ) .  A partition P is timing-optimal if 
M ( P )  5 M(P’)  for any other partition P’. Now we 
state t h e  t iming-opt i m a l  partitioning problem as 
follows: 
Given a datu flow graph G(V = RUC, E )  with each node 
zii of size(va), size constraint SI and Sz, and intermod- 
ule delay 6 ,  find a timing-optimal partition P = (VI, Vz) 
and minimize the number of crossing edges as a sec- 
ondary Objective, subject t o  IVI~ 5 4 and IV2( 5 5’2. 

Figs. 1 and 2 illustrate the essence of the timing- 
optimal partitioning problem, where registers are repre- 
sented by rectangles and are labeled using uppercases. 
Combinational blocks are represented by circles and are 
labeled using lowercases. Shaded octagons denote cross- 
ing edges. We assume combinational block delays are 
one unit and intermodule delays 5 are two units. Given 
a circuit in Fig. l ( a ) ,  the clock cycle is dominated by the 
longest combinational delay between registers, which is 
from A to  B with a delay of 3 units. However, accord- 
ing to  equation (l), the iteration bound is determined 
by the left loop, which is equal to 6/3 = 2. Hence, if we 
move B to a new location as indicated by the dashed 
line, the longest path is from A to B or from B to  C .  
Both have a shorter delay of 2 units which equals the 
iteration bound. 

Suppose we partition the circuit into two parts, mod- 
ules I and I1 (Fig. l(b)). The clock cycle is 5 units before 
retiming because of the delay on the longest path from 

D = max (d j  + & ) / ( r j  - I), ( 2 )  

T = max(L ,  D )  . (3) 
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Figure 1: (a) Retiming reduces the delay from 3 units o f  
original circuit to 2 units. (b) Retiming reduces the delay 
of partitioned circuit from 5 to 4 units which is not bound- 
optimal. 

Figure 2:  A bound-optimal and timing-optimal partition 
with 2 units delay using retiming. 

A to B. Even after retiming which shifts B to its new 
location as indicated by the dashed line, the delay is 
more than 3 units. In Fig. 2 ,  before retiming, the clock 
cycle is 3 units; hence, compared to Fig. l (b) ,  a better 
choice of partition can automatically reduce the delay. 
If we perform the retiming as shown by the dashed lines, 
the delay in Fig. 2 is reduced to 2 units which is also 
the iteration bound; hence it is bound-optimal. Fur- 
thermore, since it can be observed that 2 units delay 
is the optimum for the given circuit, Fig. 2 is also a 
timing-optimal partitioning; hence is preferred. 

3 Theoretical Aspects 

For brevity, we omit all proofs in this section, and 
refer them to [6]. Given a data flow graph G(V = 
R U C ,  E ) ,  let W ( U ,  w) denote the minimum number of 
registers among all paths from combinational nodes U 

to w. We call a path pu,v from U to w a critical path if 
the number of registers it contained, denoted by w(pU,,,), 
equals W ( u ,  w). Let D(u,  w) be the maximumtotal prop- 
agation delay among all critical paths pu,v .  A retiming 
of a data flow graph G(V = RUC, E )  is an integer label- 
ing of combinational nodes: II : C + 2. The retiming 
specifies a transformation of the original graph in which 
registers are added and removed so as to change the 
graph G into a new graph with vertex set V’ = Rn U C. 
Let wn(pu,,) denote the number of registers of path p 
after retiming II. According to [ 5 ] ,  we have equation 
(4), Theorem 1, and Corollary 1: 

Theorem 1 Let G(V = RUC,  E )  be a data-flow graph, 
and K be an arbitrary positive real number. Let II be a 

wn(pu,tJ) = W ( P U , V )  + H ( V )  - W U ) .  (4) 

function from C to integers, i.e., II : C +. 2. Then It 
is a legal retiming of G ,  which can achieve a clock cycle 
time of I< in: (1) H ( u )  - n(w) 5 w ( ~ ~ , ~ )  for  any path 
p f rom combinational nodes U 20 v .  (2) II(u) - n ( v )  5 
~ ( p ~ , ~ )  - 1 f o r  any two combinational nodes U and v 
such that D(u ,  w) > K .  
Given a graph G(V = R U C, E )  and a constant I<, a 
new graph G’(V’ = C, E’) can be construct as follows. 
Initially, E’ = 8. For any two combinational nodes U 

and w, if there exists at  least one path from U to w, we 
add an edge ( u , w )  to E’. If D ( u , w )  > K, we associate 
the edge ( U ,  w) a cost W ( U ,  v)  - 1. If D(u ,  v )  L I<, edge 
(u,w) is assigned cost W ( U , W ) .  We call these opera- 
tions the transitive transformation. Hence the following 
Corollary comes in order according to Theorem 1. 
Corollary 1 Given a graph G(V = R U C, E )  and a 
constant Ii‘, G can be retimed to achieve a clock cycle 
time of Ii’ iff G‘ does not have loop with negative cost. 
Given a simple loop !, let te, de, and re denote the total 
delay, the total delay of coarse-grained structures, and 
the total number of registers in loop ! respectively. 
Lemma 1 Given a graph G(V = R U C, E )  and a con- 
stant Ii‘, if each sample loop ! of G satisfies (te+de)/re < 
I<, G can be retimed to achieve a cycle time equals I<. 

When partitioning a circuit, crossing edges with de- 
lays are introduced into the circuit. Since these delays 
cannot be decomposed, a partitioned circuit contains 
both fine-grained and coarse-grained nodes. Given a 
path p ,  we term p is cut k-times if there are k crossing 
edges in p .  From assumption 4, shifting of primary I/O 
registers during retiming is allowed. 
Theorem 2 Given a partition P ower G(V = RUC,  E) 
and an intermodule delay d,  let T = max(L, D )  (equa- 
tion (3)). If each path between the primary 1/0 is cut 
at most once and each loop is not cut, then P can be 
retimed to achieve a clock cycle time of T .  
In case that a path is cut more than once, a bound- 
optimal circuit cannot be guaranteed using retiming. 
More formally, given a partition P over G(V = RUC, E )  
and a intermodule delay 6 ,  let T = max(L, D )  (equa- 
tion (3)) .  If any path between the primary 1 / 0  is cut 
more than once, the partition P cannot guarantee to 
achieve a clock cycle of T by retiming. 

To illustrate the problem complexity, we introduce a 
simplified problem: 
The simplified timing-optimal partitioning prob- 
lem: Given an acyclic graph G(V = RUC, E )  wiih each 
node wi has size of size(wi), size constraint SI and Sz, a 
crossing edge delay 6 ,  and a constant K ,  find a two-way 
partition P = (V1,Vz) subject to IVll < 5’1, lVzl 5 Sa, 
D 5 Ii‘, and each path between the primary 1/0 as cut 
at most once, where D is the path delay bound of P de-  
f ined in equation (2). 
From [6], we have following theorems: 
Theorem 4 The simplified timing-optimal partitioning 
problem with unit size combinational blocks and zero size 

h 
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Figure 3: Reduce iteration bound L through replication. (a) 
Before replication, L = 814 = 2. (b)  Replicating B,  c,  and 
C ,  L = 1218 = 1.5. 

registers is NP-complete. 
Theorem 5 
stated in Section 2 is NIP-complete. 

The timzng-optimal partitionzng problem 

# I #comb. I 

4 Heuristics 

11 FM I TTC I FTC 

Intuitively, network flow based algorithms should cut 
paths much fewer times than node-exchange based algo- 
rithms such as [a] due to the inject-and-saturate flow na- 
ture. Furthermore, the flow-based algorithm is a global- 
oricnted partitioning approach. Hence, we propose an 
algorithm called the Flow Timing Cut (FTC). By The- 
orem 2 ,  we merge strongly connected components into 
supernodes and perform partitioning on the resulted 
acyclic graph. However, since we may have huge supern- 
odes from the above merging, we apply replication-cut 
prior to the partitioning; otherwise we proceed without 
replication. ‘l’he algorithm is listed as follows: 

1. Condense each strongly connected component in 
G ( V , E )  into one supernode to obtain an acyclic 
graph G’(V’, E’); 

2. Let tsize= CVEv, size(w) and replicate = 0.2. 
If (3 size(supernode) > tsize . replicate) 
return(rep1ication-cut(G)); else do (a) to (c): 
(a) Invoke saturate-network (GI, A,  a )  to saturate 

GI with flow to get a distance function d for 
each node. 

(b) Select a partition P according to d. 
(c) Adjust P such that each path between the pri- 

mary 1/0 is cut at  most once. 
Procedure replication-cut() basically implements the 
idea shown in Fig. 3,  which is aimed to reduce the itera- 
tion bound (equation (1)) L ;  thereby admits higher pos- 
sibility minimizing the dominant delay T (equation (3)). 
Assuming delays for registers, combinational blocks, 
and intermodule S are zero, one, and two units respec- 
tively. Suppose we have a partitioned circuit shown in 
Fig. 3(a), the corresponding iteration bound L is deter- 
mined by cycle B ,  b ,  C ,  e ,  E ,  f F ,  g ,  B.  Since the 
total delay in this cycle is 8 and the number of registers 
is 4, L = 2. However, if we replicate nodes B ,  c, and C ,  
as shown in Fig. 3(b), the dominant cycle is the whole 
circuit with L = l2/8 which is 25% less than Fig. 3(a). 

Given a circuit G’, a flow increment A ,  and a con- 
stant a ,  saturate-network() works as follows. Initially, 

4421 
3238 
5545 
4876 
3724 
3563 

s4 

875 
1422 
1045 
3465 
848 
1103 

reg I blocks I L I D 1 1  cut I cut I cut 
342 I 8280 I 6373 1 5447 ( 1  2860 1 3144 I 3043 
472 
521 
380 
545 
357 
607 

3378 
6325 
3850 

12172 
3026 
4990 

0 
2527 
4922 
4241 

0 
996 

878 
2236 

1 1467 
4889 
1175 
1304 

948 
1952 
1258 
4889 
1004 
1304 

Table 1: Characteristics of test cases and crossing edges cut 
by different partitioning algorithms. 

we associate each edge with capacity and distance of 1, 
and set slack of an edge e = cycle time minus the delay 
of e ,  where cycle time is provided by the designer be- 
fore timing optimization. The algorithm then randomly 
pick primary input and output nodes s and t ,  and find a 
shortest path from s to  t ,  according to  each edge’s dis- 
tance. An increment of flow with amount A i s  injected 
into the path, and the distance of each edge is updated 
by an exponential function d(e )  = exp( 3) to  penal- 
ize congested edges. Saturated edges are removed from 
GI. This flow injection process is repeated until a two- 
way partition is obtained. In this paper, we follow [9] 
to set A = 0.01 and a = 10. 

When the clock cycle optimization is the major ob- 
jective and feedback loop sizes are not large, we propose 
an eficient and easy to implement algorithm, the topo- 
logical timzng cut (TTC). Partitions generated by T T C  
will still guarantee to cut the paths between the primary 
1/0 at most once. The algorithm is listed below. 

1. Same as the step 1 of FTC, 
2.  Put all nodes of G’ into partition I. Move one node 

at  a time, by topological order of GI, from partition 
I to partition 11. Record the minimum partition P’. 

3. Repeat step 2 with the reverse topological order of 
GI, get P“. 

4. Return min(P’, P’’). 

Given a data flow graph G(V = R U C, E ) ,  let m = 
JEl , and n = IVI. The complexities for FTC and T T C  
are O ( m a x ( ( ~ m ) , n l o g n , m n ) , )  and O(m + nlogn) .  
The detail derivation is referred to [6]. 

5 Experimental Results 

We use the same seven industrial circuits from [8] as 
our test cases. Five of these circuits contain feedback 
loops. However, among these loop-associated circuits, 
the sizes of all clusters are relatively small-less than 
one tenth the size of its corresponding circuit. Because 
of the peculiarity of our test cases, there is no need to 
perform the replication for these test cases. We com- 
pared our algorithms to  the Fiduccia-Mattheyses (FM) 
[a].  The results of FM are chosen from the best of 20 
runs each. The left partition of Table 1 shows the char- 
acteristics of these test cases. The right partition lists 
the number of crossing edges cut by various algorithms. 
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ckt 
sl  

1 1  7096 8371 9645 I 5818 6161 7275 I 6156 7076 8350 
s2 II 6189 7074 7958 II 0 0 0 1  0 0 0 1  0 0 0 

FM (T )  FM (TI TTC (T) FTC (T) 

8181 9456 10730 6373 6373 6373 6373 6373 6373 6373 6373 6373 
= 40 60 80 6 = 40 60 80 6 = 40 60 80 6 = 40 60 80 6 

I( 6189 7074 7958 I 4421 5207 6091 I 4556 5342 6226 
s3 11 6101 6801 7501 II 3441 3908 4375 I 2527 2527 2527 I 2527 2527 2527 

S5 

s6 

s7 

1) 4638 5338 6038 I 4060 4760 5460 I 4276 4976 5676 
s4 11 8149 9258 10367 1 1  4922 4922 4922 I 4922 4922 4922 I 4922 4922 4922 

7130 8239 9348 6552 7661 8770 6974 8083 9192 
8460 9435 10410 5293 6268 7243 4241 4241 4241 4241 4241 4241 

6691 7666 8641 6699 7674 8649 6699 7674 8649 

5604 6544 7484 4671 5611 6551 4394 5334 6274 
5884 6597 7309 996 996 996 996 996 996 996 996 996 

4390 5103 5815 3563 3897 4418 3563 3897 4418 

7716 8656 9596 0 0 0 0 0 0 0 0 0 

Table 2: Delay information from different partitioning algorithms when assuming 6 = 40, 60, and 80% of T’. 

Since, as indicated by [l], the intermodule delay is 
increasing to nearly 100% of the clock cycle, we set S to 
be of 40, 60, and 80% of T* = max(L, D )  which is cal- 
culated using equation (3) before partitioning, and used 
these values to perform experiments for different algo- 
rithms. Table 2 gives the detailed information of our 
experiments. In the first row, ? associated with FM 
is the maximum delay between registers before retim- 
ing. T is derived from equation (3) after partitioning. 
However, for FM, T only serves as a lower bound of the 
delay. This is because the partitions generated by FM 
are likely to be non-bound-optimal. By contrast, the re- 
sults produced by our algorithms (FTC and TTC)  are 
guaranteed to be able to achieve a clock cycle of T .  For 
Columns 3 - 5 in Table 2, each test case consists of 
two row of data. The first and second rows are the it- 
eration bound and the path delay bound respectively. 
As we mentioned before, there are two test cases which 
have no feedback loop, s2 and s6. Hence their iteration 
bounds are listed as “0”. 

In case that  there is no external feedback loop from 
the primary output to the primary input, L ,  calculated 
after partitioning, will dominate the clock cycle time 
during retiming. However, if L < 6 ,  then 6 will domi- 
nate the clock cycle because 6 is not decomposable. As 
a result, when compared to  the FM without retiming, 
the clock cycle time can be reduced by an average of 
57.38% for all our test cases. 

From Assumption 4, when compared to  the FM, i.e., 
without retiming, the clock cycle time reductions are as 
follows. When 6 = 40% of T*,  FTC achieved 14.42 - 
43.05% with an average of 28.10%. T T C  achieved 19.60 - 39.46% with an average of 29.03%. When 6 = 60% 
of T”, FTC achieved 12.69 - 40.93% with an average of 
26.76%. T T C  achieved 17.25 - 40.93% with an average 
of 28.74%. When S = 80% of T*, FTC achieved 11.33 - 

39.55% with an average of 24.47%. TTC achieved 15.41 - 39.55% with an average of 26.64%. 
When compared to the FM with retiming, If 6 = 40% 

of T * ,  FTC achieved -0.12 - 26.38% with an average of 
12.85%. TTC achieved -0.12 - 28.57% with an average 
of 14.04%. if 6 = 60% of T * ,  FTC achieved -0.10 - 
24.48% with an average of 12.95%. TTC achieved -0.10 - 26.39% with an average of 15.08%. If 6 = 80% of 
T*,  FTC achieved -0.09 - 24.02% with an average of 
11.94%. T T C  achieved -0.09 - 24.57% with an average 
of 14.3 1 % . 
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