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Abstract—The concept of minimum cycle mean (MCM) in a
directed graph has many applications in the design of circuits
and systems. The algorithm by Young, Tarjan, and Orlin (YTO),
when implemented with a binary heap, has been reported to be
the fastest MCM algorithm in practice even when it has higher
asymptotic time complexity than Karp’s algorithm. However, as
an efficient implementation of YTO relies on data redundancy, its
memory usage is higher and could be a prohibitive factor in large
size problems. On the other hand, a typical implementation of
Karp’s algorithm can also be memory hungry, thereby limiting
its application to only small size problems. An early termina-
tion technique from Hartmann and Orlin (HO) can be directly
applied to Karp’s algorithm to improve its runtime performance.
The early termination also allows memory to be allocated on an
on-demand basis, which can reduce the memory requirement of
Karp’s algorithm. In our evaluation based on graphs constructed
from IWLS 2005 benchmark circuits and randomly generated
graphs, we empirically observe that the HO algorithm (or Karp’s
algorithm with early termination technique from the HO algo-
rithm) has much less memory usage than YTO, but it lags behind
YTO in runtime performance. We propose several improvements
to the early termination technique of the HO algorithm. While
further improving its memory advantage over YTO, we signifi-
cantly improve the runtime performance of the HO algorithm to
the extent that the proposed algorithm has runtime performance
that is comparable to YTO for circuit-based graphs and for dense
randomly generated graphs.

Index Terms—Clock network optimization, memory usage,
minimum cycle mean, parametric shortest path algorithm, run-
time performance, VLSI timing optimization.

I. INTRODUCTION

VARIOUS applications in the design of circuits and
systems require computation of minimum cycle mean

(MCM) in a directed graph [4], [7], [8], [15]–[17], [20].
Some important applications are in the areas of clock
network optimization, including clock period minimization,
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slack optimization, and timing analysis [3], [4], [12], [22].
MCM algorithms are also used in other graph algorithms and
applications [18], [19].

Optimizing clock network is an important goal in sequential
circuit design [3]. In sequential circuit, flip-flops or latches
are the sequential elements. Two sequential elements can be
separated by combinational logic gates which have delays.
In a timing constraint graph, sequential elements can be
represented by nodes and skew constraints (i.e., hold and
setup time constraints) between them by directed edges (see
Fig. 1). With ti and tj being the arrival times of the clock
signal to flip-flops FFi and FFj, respectively, the setup and
hold time constraints (see Fig. 1) can be written, respec-
tively, as ti − tj ≤ wji = CP − (tmax

pFF + tmax
comb + tmax

setup) and
tj − ti ≤ wij = (tmin

pFF + tmin
comb) − tmax

hold, where Cp is the clock
period, tmax

pFF (tmin
pFF) and tmax

comb (tmin
pFF) are, respectively, the max-

imum (minimum) propagation delays through flip-flops and
combinational circuits, and tmax

setup and tmax
hold are, respectively,

the maximum setup and hold times of a flip-flop. In the graph
representation, wji and wij are the weights of the directed edges.

Process variations in a sequential circuit can cause setup
and hold time violations [4]. A timing constraint violation
is equivalent to having a negative cycle in the timing con-
straint graph. To make a circuit robust, sufficient tolerance (or
slack) must be added to the timing paths. For example, we
can include a slack or tolerance parameter, denoted as λ in a
setup- and hold-time constraint as follows: ti − tj ≤ wji −λ and
tj − ti ≤ wij − λ. One form of the slack optimization problem
is that of determining the largest λ that could be assigned to
all edges simultaneously without introducing a negative cycle
in the graph.

One can calculate the mean of a cycle in a timing constraint
graph by dividing the sum of edge weights by the number of
edges in the cycle. When an edge participates in a cycle, the
(uniform) slack that all edges in that cycle could be assigned is
the cycle mean. The largest slack that an edge can be assigned
in the smallest among the means of all cycles in which it
participates. Therefore, the largest (uniform) slack, denoted as
λ∗, that could be assigned to all edges in a timing constraint
graph is the minimum among the means of all cycles in a
graph, or the MCM of a graph [13].

There is a more general concept of a parameterized
graph [14] where only some edges are associated with the
parameter λ. If edge e is not parameterized, its weight is w(e);
otherwise, the weight is w(e) − λ. In such a formulation, the
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Fig. 1. Example of a sequential circuit. In a sequential circuit, flip-flops or
latches are the sequential elements. Two sequential elements can be separated
by combinational logic gates which have delays. In a timing constraint graph,
sequential cells can be represented by nodes and skew constraints (i.e., hold
and setup time constraints) between them by edges.

mean of a cycle is obtained by dividing the cycle weight by
the number of parameterized edges in the cycle. For this work,
we assume that all edges in a graph are parameterized, i.e.,
every edge is associated with the parameter λ.

Consider a weighted, directed, and strongly connected graph
G(V, E, w), where V is the node set, E is the edge set, and each
edge e has an associated weight w(e). Karp used dynamic pro-
gramming to calculate MCM exactly in �(|V||E|) time [13]
for a graph where all edges are parameterized. Karp’s algo-
rithm maintains a table of distances. In the table, row k records
the shortest paths to all nodes (from an arbitrary source node)
with exactly k edges, where k can range from 0 to |V|. The
technique of relaxation is used to obtain a k-edge shortest
path from a (k − 1)-edge shortest path, which is similar to an
iteration of the Bellman–Ford algorithm [5]. A typical imple-
mentation of Karp’s algorithm requires a table of size �(|V|2)
to store distances information for the computation of MCM.
Other memory overhead is also necessary when there is a need
to also determine a minimum-mean cycle (a cycle whose mean
is the minimum). As graph size becomes large, the quadratic
memory requirement can be prohibitive.

Karp and Orlin (KO) [14] solved a series of paramet-
ric shortest-path (tree) problem for MCM calculation in
O(|V||E| log |V|) time. We refer to this algorithm as KO. In
this series of shortest-path trees, two consecutive trees dif-
fer by only two edges. KO uses a binary heap to keep track
of the edges that could be moved into the next iteration of
the shortest-path tree. Instead of keeping track of the edges,
Young, Tarjan, and Orlin’s algorithm [21] keeps track of the
nodes for which its incoming edge could change in the next
iteration. We refer to this algorithm as Young, Tarjan, and
Orlin (YTO). With a Fibonacci heap, YTO improves the amor-
tized time complexity to O(|V||E| + |V|2 log |V|). However,
YTO implemented with a binary heap has been reported to be
the fastest MCM algorithm in practice [3], [4], [7], [10], [12]
even when it has higher asymptotic time complexity (i.e.,
O(|V||E| log |V|)) than Karp’s algorithm. Such efficiency in
runtime however comes at the expense of data redundancy.
A state-of-the-art implementation of YTO uses both forward
(outgoing) and reverse (incoming) graphs to store the input
graph information [10]. Although the two structures contain
the same information, they facilitate the faster update of the
binary heap. As two graph structures are maintained, the
memory overhead of YTO is O(|E|).

The O(|E|) overhead of YTO appears leaner than the
�(|V|2) overhead of Karp’s algorithm. However, the over-
head of Karp’s algorithm could be reduced by the early
termination technique in the Hartmann and Orlin’s (HO) algo-
rithm [11], which we refer to as HO. While HO can also handle
graphs where some edges are not parameterized, we focus on
its early termination technique that can improve the runtime
performance and reduce the memory overhead of Karp’s algo-
rithm. Instead of always filling in all |V|+1 rows of the table
of distances as in Karp’s algorithm, HO may terminate earlier
by checking the feasibility of constraints in a dual formulation
of the MCM problem. In addition to improving the runtime
performance, early termination also allows the program to allo-
cate memory on-demand, allocating new rows in the distance
table only when it could not terminate earlier. The memory
usage of Karp’s algorithm can be reduced from �(|V|2) to
O(K|V|), where K is the total number of rows explored.

In our evaluation based on graphs constructed from IWLS
2005 benchmark circuits [2] and randomly generated graphs,
we observe that HO (or Karp’s algorithm with early termina-
tion technique from the HO algorithm) has much less memory
usage than YTO, but lags behind YTO in runtime performance.
While retaining the memory advantage of HO, we propose
improvements to the early termination technique to boost the
overall runtime performance of HO.

There are three steps in the early termination technique of
HO: 1) detection of cycles; 2) calculation of dual vector π ; and
3) checking of feasibility condition. At row k, 0 ≤ k ≤ |V|,
the detection of cycles requires traversal of up to |V| k-edge
shortest paths with a time complexity of O(k|V|). Among all
detected cycles, the cycle with the minimum mean is used to
calculate the dual vector π in O(k|V|) time complexity (see
Section V for details). The checking of feasibility condition
is equivalent to one iteration of the Bellman–Ford algorithm,
which requires O(|E|) time complexity. We propose filtering
techniques that reduce the number of k-edge shortest paths to
be traversed for cycle detection. This allows a best-case O(|V|)
time complexity of cycle detection when none of the k-edge
shortest paths have to be considered while still maintaining the
same worst-case time complexity of O(k|V|). Moreover, we
propose a filtering technique to improve the runtime efficiency
of calculating the dual vector π , achieving again O(|V|) time
complexity at best while maintaining the same worst-case time
complexity of O(k|V|). Furthermore, the proposed algorithm
can carry out the checking of feasibility condition in O(|V|)
time complexity.

We observe that for circuit-based graphs, the proposed algo-
rithm has better runtime performance than HO and produces
comparable results to YTO. For random graphs, the proposed
algorithm has better runtime performance than HO and is com-
parable to YTO as the graph becomes denser. The proposed
algorithm has better memory efficiency compared to both HO
and YTO algorithms.

II. MINIMUM CYCLE MEAN

Consider a weighted, directed graph G(V, E, w) that is
strongly connected. Let w(C) = ∑

e∈C w(e) and τ(C) denote,
respectively, total edge weight and total number of edges of a
cycle C. The cycle mean of C, denoted as λ(C), is defined as
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follows:

λ(C) = w(C)

τ (C)
(1)

which is the total edge weight of the cycle divided by the
number of edges. The MCM λ∗ of G is defined as λ∗ =
minC∈C(λ(C)) where C is the set of all cycles in G. The
problem of finding λ∗ is called the MCM problem [13], [14].

If the graph G is not strongly connected, the MCM can
be obtained by computing the smallest among the MCMs
of all strongly connected components (SCCs) of the graph.
In our presentation of algorithms in the following sections,
we assume that the input graph to an algorithm is strongly
connected.

In the following, we first review the KO and YTO algo-
rithms, as they represent the fastest MCM algorithms. We
then review Karp’s algorithm and the HO algorithm, as they
are similar and are the algorithms we seek to improve in this
work.

III. PARAMETRIC SHORTEST-PATH ALGORITHMS

KO [14] proposed a parametric shortest-path algorithm for
the MCM problem. Based on the observation that λ∗ is the
largest (edge parameter) λ for which G has no negative cycles,
the algorithm starts with λ = −∞ and computes a shortest-
path tree (to all other nodes) from an arbitrary source node.
In each iteration, the algorithm increments λ such that the
shortest-path tree changes by only one edge. In Fig. 2, for
example, for a smaller λ, node v has a shortest path through
node z for the top shortest-path tree whose source node is s.
As λ increases, node v acquires a new shortest path through
node u, as shown in the bottom shortest-path tree. The top and
bottom shortest-path trees differ by the two edges (z, v) and
(u, v). The algorithm terminates when a cycle of zero weight is
detected. This cycle is the minimum-mean cycle, or the cycle
with the minimum mean.

Using a binary heap to keep track of the next edge to be
exchanged with an existing edge in the shortest-path tree, the
algorithm runs in O(|V||E| log |V|) time. YTO’s algorithm [21]
improves the runtime complexity to O(|V||E| + |V|2 log |V|)
(amortized) using two techniques. First, a Fibonacci heap
implementation is used to improve the amortized time com-
plexity of heap operations.

Second, instead of keeping track of the edges to be moved
into the next iteration of the shortest-path tree, the heap keeps
track of the nodes for which its incoming edge could change
in the next iteration. In Fig. 2, for example, as the shortest path
to node v has changed, all nodes in the (shortest path) subtree
of v would be updated with the new shortest-path information.

Because of the changes in the shortest paths to these nodes,
the algorithm has to update information for all nodes in the
heap that are adjacent to the subtree. For a node on the subtree,
this requires accessing all incoming edges to the subtree and
for a node adjacent to the subtree, this requires accessing all
outgoing edges from the subtree [6], [7], [10], [14]. In Fig. 2,
edges that are adjacent to the shortest-path subtree of v are
shown as red dashed arrows.

To access the edges that are adjacent to the nodes in the sub-
tree of v efficiently, state-of-the-art implementations of YTO

Fig. 2. As λ increases, the shortest path from source node s to node v
changes the parent node of v from z to u. The shortest paths to all nodes
in the subtree of v are therefore updated and the algorithm has to update
information for all nodes in the heap that are adjacent to the subtree. For a
node on the subtree, this requires accessing all incoming edges to the subtree
and for a node adjacent to the subtree, this requires accessing all outgoing
edges from the subtree [6], [7], [10], [14]. All adjacent edges to the subtree
are shown as red, dashed arrows.

use both forward (outgoing) and reverse (incoming) graphs to
store the input graph information [7], [10]. As a consequence,
the memory overhead of the YTO algorithm is O(|E|). The
reader may refer [7], [10], [21] for more details of the YTO
algorithm and its implementation. YTO using binary heap has
been reported to be the fastest MCM algorithm [3], [4], [7],
[10], [12]. Our implementation of YTO in this work follows
the pseudocode presented in [7].

IV. KARP’S ALGORITHM

Karp’s dynamic programming algorithm [13] is an exact
algorithm with exact complexity bound to solve the MCM
problem in a directed graph. Given a graph G(V, E, w), any
|V|-edge shortest path, i.e., a path containing exactly |V| edges,
must contain a cycle in it. Karp proved that a minimum-mean
cycle (C) must be present in one of the |V|-edge shortest paths
from an arbitrary source. Note that C may not be a simple
cycle. In fact, if C is of length |V| − k, with 0 ≤ k ≤ |V|−1,
there must be a node, say v on C, whose shortest path from
a source node (s) has exactly k edges, and the |V|-edge
shortest path would include C (starting and ending with v),
as illustrated in Fig. 3. With this, Karp characterized MCM
(λ∗) as

λ∗ = min
v∈V

max
0≤k≤|V|−1

[
D|V|(v) − Dk(v)

|V| − k

]

(2)

where Dk(v) is the weight of k-edge shortest path from the
source node s (arbitrarily chosen) to v. If no such path exists,
Dk(v) = ∞.

Karp’s algorithm uses the following recurrence to compute
the entries in a table of distances (D-table):

Dk(v) = min
(u,v)∈E

[Dk−1(u) + w(u, v)] (3)

for k = 1, 2, . . . , |V|, with the initial conditions that D0(s) =
0 and D0(v) = ∞ for v ∈ V − {s}. We refer to this as a
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Fig. 3. Minimum-mean cycle in a graph has |V| − k edges. Node v on
the cycle has a shortest path (in bold) which contains k edges. The |V|-edge
shortest path includes the cycle.

Algorithm 1: Vertical Relaxation
1 vertical_relaxation(G, D, P, k)
2 for each edge (u, v) ∈ E do
3 if Dk[v] > Dk−1[u] + w(u, v) then
4 Dk[v] = Dk−1[u] + w(u, v)
5 Pk[v] = u
6 end if
7 end for
8 end vertical_relaxation

Algorithm 2: Karp’s Algorithm
Input : Directed graph G(V, E, w), a strongly connected component

(SCC)
Output: Minimum cycle mean λ∗

1 /* Initialization */
2 λ∗ = ∞ /* global variable to store minimum cycle mean */
3 for k = 0 to |V| do
4 for each node v ∈ V do
5 Dk[v] = ∞
6 Pk[v] = −1
7 end for
8 end for
9 D0[s] = 0

10 /* D- and P-tables computation*/
11 for k = 1 to |V| do
12 vertical_relaxation(G, D, P, k)
13 end for

14 /* MCM computation */
15 for each node v ∈ V do
16 if D|V|[v] �= ∞ then
17 λv = −∞
18 for k = 0 to |V| − 1 do
19 λv = max(λv, (D|V|[v] − Dk[v])/(|V| − k))
20 end for
21 λ∗ = min(λ∗, λv)
22 end if
23 end for
24 return λ∗

vertical relaxation (see the pseudocode below) because it uses
the (k − 1)th row to compute the kth row of the D-table. As
we are typically also interested in retrieving the nodes in a
cycle, a P-table is also used to keep track of the parent of a
node in all shortest paths.

Karp’s algorithm is presented in the pseudocode below. We
first initialize D- and P-tables. To compute entries in the tables,
we perform |V| iterations of vertical relaxation. After that, we
compute the MCM based on (2).

An iteration of vertical relaxation takes �(|E|) time. The
total time complexity is therefore �(|V||E|). Notwithstanding
the fact that the algorithm uses only one graph structure (for-
ward or reverse) compared to two structures (forward and
reverse) in YTO, �(|V|2) memory usage in Karp’s algorithm

for storing the D- and P-tables can be prohibitive for large
graph applications. We shall now present the early termination
technique from HO in the next section.

V. EARLY TERMINATION OF KARP’S ALGORITHM (HO)

As we compute rows of the D-table, many cycles may
appear before k reaches |V| and one of them could be the
minimum-mean cycle. A technique for early termination of
Karp’s algorithm was proposed by HO in [11] based on the
following.

Let λmin denote the smallest cycle mean among the cycles
in all k-edge shortest paths. Consider a modified graph
G(V, E, w − λmin), where each edge has its weight reduced
by mean λmin. If λmin = λ∗, a minimum-mean cycle in
G(V, E, w−λmin) has a weight of 0 and a nonminimum-mean
cycle has a positive weight. In other words, the shortest-path
distances from an arbitrary source to all nodes in the modi-
fied graph are well defined. Let π [v].dist denote the shortest
distance from the source node to v in this modified graph.
Additionally, we have π [v].parent and π [v].length to denote,
respectively, the parent node of the shortest distance and the
length (i.e., the number of edges) of the shortest path from the
source node to v in the same graph. We will use them when
we discuss the proposed algorithm. The following constraints
therefore hold:

π [v].dist ≤ π [u].dist + w(u, v) − λmin ∀(u, v) ∈ E (4)

must be satisfied. This is the dual formulation referred to
in [11], and we will refer to π as the dual vector and (4)
as the dual constraints.

If λmin is λ∗ and the shortest paths to all nodes are of length
no greater than k, the shortest path to any node v must be one
of the j-edge shortest paths, 1 ≤ j ≤ k. Therefore, π [ · ] can
be computed using the expression

π [v].dist = min
1≤j≤k

[Dj[v] − jλmin] ∀v ∈ V (5)

and they must satisfy the dual constraints.
On the other hand, if λmin > λ∗, the modified graph

G(V, E, w−λmin
k ) has negative cycles that would violate some

dual constraints. If some shortest paths in the modified graph
have path lengths greater than k, some dual constraints will
also be violated. Therefore, when all dual constraints are sat-
isfied, all shortest paths have been found, and as the shortest
distances are well defined, λmin = λ∗. Consequently, we can
terminate the iterative process of vertical relaxation in Karp’s
algorithm.

It should now be clear that to decide whether Karp’s algo-
rithm can terminate at row k, the HO algorithm has to calculate
λmin, the smallest cycle mean among the cycles in all k-edge
shortest paths, calculate π based on λmin, and check that all
dual constraints are feasible. The steps for the calculation of π

(5) and the feasibility check (4) are straightforward and their
pseudocodes are provided below.

The calculation of π has O(k|V|) time complexity. The
feasibility check has O(|E|) time complexity. In fact, the fea-
sibility check of the dual constraints is equivalent to the check
for negative cycles in the Bellman–Ford algorithm.

We shall now focus on the calculation of λmin. This calcu-
lation requires the detection of cycles in the k-edge shortest
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Algorithm 3: π Calculation
1 πππ_calculation(D, k, λmin)
2 for each node v∈V do
3 π [v].dist = ∞
4 for j = 0 to k do
5 if π [v].dist > Dj[v] − j ∗ λmin then
6 π [v].dist = Dj[v] − j ∗ λmin
7 π [v].parent = Pj[v]
8 π [v].length = j
9 end if

10 end for
11 end for
12 return π

13 end πππ_calculation

Algorithm 4: Feasibility Check
1 feasibility_check(π , λmin)
2 for each edge e = (u, v) ∈ E do
3 if π [v].dist > π [u].dist + w(u, v) − λmin then
4 return false
5 end if
6 end for
7 return true
8 end feasibility_check

paths. Given a k-edge shortest path, we can detect the cycles
in the path using a forward traversal (from the source node) or
backward (from a destination node) [11]. HO suggested sev-
eral techniques for making forward traversal efficient. It was
argued that a forward traversal for a path can be truncated as
soon as a cycle is encountered in that path. Furthermore, to
disallow repeated visits of a shortest path that does not extend
to a shortest path of longer path length, they pruned the path
from future exploration after checking for early termination.
We refer to the version of HO that uses forward traversal for
cycle detection (and the calculation of λmin) as HO/f.

In this work, we adapt the backward traversal method in [6]
and [9] to find a cycle along a path. When we discuss the
proposed method we will explain how our cycle finding strat-
egy also uses some concepts of forward traversal presented
in [11] to eliminate the need for path traversal for cycle detec-
tion. The pseudocode is provided below. Here, the variable
level_array stores the cycle information during traversal. This
array is initialized at the beginning of the main MCM algo-
rithm (see pseudocode HO Algorithm at the end of the section).
An additional array level_stack makes the reinitialization of
level_array efficient.

The pseudocode λmin_calculation_in_a_path is called by
the following pseudocode to compute the λmin at row k.

We are now ready to present the pseudocode for early ter-
mination. To decide whether Karp’s algorithm can terminate
at row k, we have to perform λmin calculation (for all k-edge
shortest paths), π calculation, and feasibility check.

Both λmin calculation and π calculation have O(k|V|) time
complexity and the feasibility check has O(|E|) time com-
plexity. If we perform these three steps at every row, the
worst-case complexity of Karp’s algorithm with early termi-
nation is O(|V|3 + |V||E|). However, with early termination
performed at every power of two, as shown in the pseudocode,
the time complexity is O(|V||E|) for both HO/f and HO/b [11].

Algorithm 5: λmin Calculation in a Path
1 λmin_calculation_in_a_path(D, P, k, vstart , λmin)
2 length = 0
3 v = vstart
4 j = k
5 while j ≥ 0 do
6 if level_array[v] > −1 then
7 λ = (Dlevel_array[v][v] − Dj[v])/(level_array[v] − j)
8 λmin = min(λmin, λ)

9 end if
10 level_array[v] = j
11 level_stack[length] = v
12 + + length
13 v = Pj[v]
14 − − j
15 end while
16 for j = length − 1 to 0 do
17 level_array[level_stack[j]] = −1
18 end for
19 return λmin
20 end λmin_calculation_in_a_path

Algorithm 6: λmin Calculation
1 λmin_calculation(D, P, k)
2 λmin = ∞
3 for each node v∈V do
4 if Dk[v] �= ∞ then
5 λmin = λmin_calculation_in_a_path(D, P, k, v, λmin)
6 end if
7 end for
8 return λmin
9 end λmin_calculation

Algorithm 7: Early Termination
1 early_termination(D, P, k, |V|)
2 if k is a power of 2 or k == |V| then

3 /* λmin calculation */
4 λmin = λmin_calculation(D, P, k)
5 λglobal = λmin /* update λglobal */

6 /* Dual vector π calculation */
7 π = π_calculation(D, k, λglobal)

8 /* Feasibility condition check */
9 return feasibility_check(π , λglobal)

10 end if
11 return false
12 end early_termination

Algorithm 8: Allocate and Initialize Dk and Pk

1 allocate_and_initialize_Dk_and_Pk(k)
2 allocate memory for Dk and Pk
3 for each node v ∈ V do
4 Dk[v] = ∞
5 Pk[v] = −1
6 end for
7 end allocate_and_initialize_Dk_and_Pk

As HO/b is more compatible with Karp’s algorithm (because
of the presence of the P-table), our focus in this work is to
improve the HO/b algorithm, or rather the implementation of
the HO/b algorithm by Dasdan et al. [1], [6], [9] (referred to as
HO/b-D here), note that HO did not provide any pseudocode.
The pseudocode of the HO/b-D algorithm is shown below.

Here, early termination allows memory to be allocated on-
demand instead of a one-time allocation of �(|V|2) memory at
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Algorithm 9: HO/b-D Algorithm (Karp’s Algorithm With
Early Termination)

Input : Directed graph G(V, E, w), a strongly connected component
(SCC)

Output: Minimum cycle mean λ∗
1 /* Initialization */
2 λglobal = ∞ /* global variable to store minimum cycle mean */
3 for each node v ∈ V do
4 level_array[v] = −1 /* global array for λmin calculation */
5 end for
6 allocate_and_initialize_Dk_and_Pk(0)
7 D0[s] = 0

8 /* D- and P-tables computation*/
9 for k = 1 to |V| do

10 allocate_and_initialize_Dk_and_Pk(k)
11 vertical_relaxation(G, D, P, k)
12 if early_termination(D, P, k, |V|) then /* λglobal updated */
13 break
14 end if
15 end for
16 return λglobal

the beginning, as is the case with Karp’s algorithm. With early
termination, memory allocation for additional rows of D- and
P-table is required only when additional vertical relaxations
have to take place. Such on-demand allocation strategy reduces
the memory usage of Karp’s algorithm for D- and P-tables
from �(|V|2) to O(K|V|), where K is the total number of
rows explored. The HO/b-D algorithm and Karp’s algorithm
have the same memory usage for storing the graph using a
single graph structure (forward or reverse).

VI. PROPOSED MCM ALGORITHM

In order to keep the same theoretical time complexity as
Karp’s algorithm in the worst case, HO [11] suggested that
early termination must be checked when k (i.e., number of
rows computed) is a power of two (say 2n with n being inte-
ger). But such an implementation would suffer if the actual
number of rows, sufficient to calculate MCM value falls close
to but larger than a power of two (2n−1). The reason is that the
algorithm would continue to perform vertical relaxation row
after row until it reaches the next power of two (2n) even when
the minimum-mean cycle has already appeared. The cost of
such relaxation could go up significantly, or for that matter
saving on runtime as well as memory usage could be large
if the algorithm is terminated as soon as a sufficient number
of rows have been computed. This is a bottleneck of HO’s
algorithm for large graphs since the cost of vertical relaxation
is O(|E|) for every row. However, we could not perform an
early termination check at every row as the cost of an early
termination check at row k is O(k|V| + |E|). Although there
would be saving on vertical relaxation, the cost on early ter-
mination would increase, negating any benefits of performing
fewer vertical relaxations. We address the issue by proposing
several improvements to early termination such that the early
termination check can be performed at best in O(|V|) time. In
the worst case, the cost of an early termination check at row
k is O(k|V|). However, experimental results show that it is
rare that the proposed early termination check incurs O(k|V|)
worst-case time complexity.

The efficiency of the proposed early termination tech-
nique stems from improvements to π calculation, feasibility

Fig. 4. Filtering of redundant k-edge shortest paths for efficient π calculation.
L1 and L2 represent the j- and j′-edge shortest paths, respectively, with j < j′.
If λmin ≤ λc, where λc is the intersection of L1 and L2, the j′-edge path is
redundant and can be pruned.

check, and λmin calculation. We shall elaborate on these
improvements in the remainder of this section.

A. Efficient π Calculation

Recall that λmin is the smallest cycle mean at row k and
λglobal is the global variable that stores the incumbent smallest
cycle mean. When we obtain a λmin that is less than λglobal
after vertical relaxation at row k, it is necessary to recalculate
the dual vector π in the modified graph G(V, E, w−λmin). At
row k, for a particular node v, we calculate for each j-edge
shortest path, 0 ≤ j ≤ k, πj[v].dist = Dj[v].dist − jλmin, and
pick the minimum among them to be π [v].dist [see (5)].

However, not all j-edge shortest paths have the potential
to become the real shortest path in the modified graph. In
particular, as λmin decreases toward λ∗, many of these paths
can never be the shortest path for lower λmin. We illustrate that
in Fig. 4 where line L1 corresponds to πj[v].dist of the j-edge
shortest path to v and line L2 corresponds to the πj′ [v].dist of
the j′-edge shortest path to v, with j′ > j. The bold contour
shows the dual vector π [v].dist = min(πj[v].dist, πj′ [v].dist)
as λ varies and λc is the intersection of L1 and L2. If λmin
≤ λc, the j′-edge shortest path will never be the shortest path
in the modified graph, therefore, we do not have to keep it.
However, it is necessary to keep both j- and j′-edge shortest
paths if λmin > λc.

Of course, there is no need to compute the intersection point
λc. If πj[v].dist ≤ πj′ [v].dist, the j′-edge shortest path will not
be the shortest path in any of the future modified graphs. We
call it redundant and discard it. This suggests an approach of
scanning the j-edge shortest path in increasing order of j to
filter out paths that will never be the shortest path in any of
the future modified graphs, while keeping track of the index
of the incumbent shortest path, as shown in the pseudocode
efficient_πππ_calculation. Note that the index of a j-edge shortest
path is j, the path length.

In the pseudocode, π_edge[ · ][v] stores the indices of the
irredundant paths and π_stack[v] stores the highest index of
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Algorithm 10: Efficient π Calculation
1 efficient_πππ_calculation(D, k, λmin)
2 for each node v∈V do
3 + + π_stack[v]
4 π_edge[π_stack[v]][v] = k
5 π [v].dist = ∞
6 index_min = −1
7 for i = 0 to π_stack[v] do
8 j = π_edge[i][v]
9 if π [v].dist > Dj[v] − j ∗ λmin then

10 π [v].dist = Dj[v] − j ∗ λmin
11 π [v].parent = Pj[v]
12 π [v].length = j
13 index_min + +
14 π_edge[index_min][v] = j
15 end if
16 end for
17 π_stack[v] = index_min
18 end for
19 return π

20 end efficient_πππ_calculation

valid π_edge[ · ][v], with the assumption that π_stack[v], v ∈
V , has been assigned to −1 at the beginning of the MCM
algorithm to indicate there are no valid paths initially. In lines
3–4, to account for the new k-edge shortest path for node v,
π_stack[v] must be incremented, and π_edge[π_stack[v]][v]
must store the index of the new path, i.e., k.

The variable index_ min indirectly stores the index of the
incumbent shortest path in that π_edge[index_ min ][v] stores
the actual index. When we find a smaller π [v].dist, we
record the index of the shortest path that accounts for that
(lines 9–15). In other words, as we scan the current irredun-
dant paths in the order of increasing path length, any paths
that result in a smaller π [v].dist are kept as irredundant paths
for the calculation of π in the future.

If the filtering is effective, each node in V has only a small
number of irredundant paths essential for π calculation, and at
best the complexity is O(|V|). In the worst case, the filtering
is ineffective and at row k, each node in V has O(k) irredun-
dant paths. Therefore, the worst-case time complexity is still
O(k|V|) at row k.

B. Efficient Feasibility Check With Integrated Update of π

Let us re-examine the dual constraints. Equation (4) effec-
tively “asks” whether node v can be reached from u with
a shorter distance in the modified graph G(V, E, w − λmin),
where λmin is the smallest cycle mean at row k. Since π [v]
and π [u] are calculated using j-edge shortest path, 0 ≤ j ≤ k,
the question becomes that of asking whether we can get a
smaller π [v].dist from a (k + 1)-edge shortest path.

We can obtain a (k + 1)-edge shortest path by performing a
vertical relaxation to fill in Dk+1[·]. Assuming that λmin is still
the smallest cycle mean at row k + 1, and (4) is equivalent to

π [v].dist ≤ Dk+1[v] − (k + 1)λmin ∀v ∈ V. (6)

It should be obvious that the equivalent dual constraints take
only O(|V|) to evaluate instead of O(|E|).

One may argue that the vertical relaxation still takes O(|E|)
and therefore there is no saving. However, if an early termina-
tion check fails, we would have to perform vertical relaxation

Algorithm 11: Efficient Feasibility Check
1 efficient_feasibility_check(π , D, k, λmin)
2 early_termination_flag = true
3 for each node v ∈ V do
4 if π [v].dist > Dk[v] − k ∗ λmin then
5 π [v].dist = Dk[v] − k ∗ λmin
6 π [v].parent = Pk[v]
7 π [v].length = k
8 + + π_stack[v]
9 π_edge[π_stack[v]][v] = k

10 early_termination_flag = false
11 end if
12 end for
13 return early_termination_flag
14 end efficient_feasibility_check

for the next row in any case. Therefore, the only wasteful
O(|E|) efforts are in the last early termination check that suc-
ceeds. All earlier O(|E|) efforts per row account for every
necessary vertical relaxation.

We shall now present the pseudocode for efficient feasibility
check. Assume that we have just completed the vertical relax-
ation at row k and calculated the corresponding λmin. There
are two possible scenarios: λmin = λglobal and λmin < λglobal,
where λglobal is a global variable to store the incumbent small-
est cycle mean. The efficient_feasibility_check pseudocode is
called for the first scenario, assuming that λmin �= ∞.

At this point, the dual vector π stores the shortest dis-
tances to all nodes with path length < k. Since λmin at row
k − 1 and row k are the same, we can apply the equivalent
dual constraints in lines 4–9. Note that the right-hand side
of (6) is similar to the term that appears on the right-hand
side of (5). We can therefore use the right-hand side of (6) to
update the dual vector π (line 5) when there is a violation.
Moreover, as the k-edge shortest path has become the short-
est path in the modified graph G(V, E, w − λmin), we have to
update π_stack[v] and π_edge[π_stack[v]][v] accordingly in
lines 6–7. As we have to maintain the correctness of π for
the next feasibility check at row k + 1, we have to iterate
through all nodes in V and cannot return false immediately
when there is a violation in the equivalent dual constraints,
unlike the pseudocode feasibility_check where we immediately
return false when there is a violation of dual constraints.

In the second scenario, the dual vector π has to be cal-
culated with the new λmin; this is covered in the preceding
section. Recall that in the HO algorithm, a feasibility check is
performed after the calculation of π . In a sense, the calculation
of π is based on rows 0 through k, and the feasibility check
is based on the existence of shortest paths of length k + 1.
Therefore, in the proposed MCM algorithm, we do not per-
form a feasibility check after the calculation of π immediately.
Rather, we will do that after the next vertical relaxation.

Even though we have not presented improvements to effi-
ciently calculate λmin, we have the necessary details to present
the pseudocode for efficient early termination, which is pro-
vided below.

This is called after a vertical relaxation to fill in row k
of D- and P-tables. The smallest cycle mean for all cycles
on k-edge shortest paths are computed using the pseudocode
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Algorithm 12: Efficient Early Termination
1 efficient_early_termination(D, P, k, λglobal)
2 /* λmin calculation */
3 λmin = efficient_λmin_calculation(D, P, k, λglobal)
4 if λglobal > λmin then
5 λglobal = λmin /* update λglobal */

6 /* Dual vector π calculation */
7 π = efficient_π_calculation(D, k, λglobal)
8 else if λmin �= ∞ then
9 /* Feasibility condition check */

10 return efficient_feasibility_check(π , D, k, λglobal)
11 end if
12 return false
13 end efficient_early_termination

efficient_λmin_calculation, the details of which will be pro-
vided in the next section. As mentioned earlier, there are two
cases to be considered: λmin = λglobal and λmin < λglobal.
In the former, we perform an efficient feasibility check, and
update π if necessary. In none of the entries of π is updated,
we can terminate the MCM algorithm; the algorithm contin-
ues otherwise. In the latter, the algorithm cannot terminate.
It has to calculate π based on the smaller λmin and filter out
redundant shortest paths.

C. Efficient λmin Calculation

HO [11] argued that a minimum-mean cycle can be detected
if we follow the predecessor chain back from a k-edge shortest
path for every node v ∈ V until the path contains a cycle. They
also argued that there exists a predecessor chain where every
cycle contained in that chain is a minimum mean cycle. We
make a simple argument that there exists at least one path
that traverses only the cycles (not necessarily identical) with
a minimum mean.

Suppose there is a node on the minimum-mean cycle with
the shortest path to that node defined in the modified graph
[i.e., G(V, E, w−λ∗)]. Since in the modified graph minimum-
mean cycle is a zero-weight cycle, any number of repetitions
of that cycle by extending the shortest path does not add addi-
tional weight. Therefore, this extended path is also a shortest
path of some edges, say k. For example, in Fig. 5, the extended
path (green edges) of the shortest path to node v is also a short-
est path of some edges to v. This path also remains a k-edge
shortest path in the original graph since adding λ∗ to every
edge increases the total distance of all k-edge paths by the
same amount (i.e., k ∗ λ∗). Therefore, there must be a k-edge
shortest path that only has minimum-mean cycles in it.

This essentially means that the backward traversal for a node
can be terminated as soon as a cycle is detected. Therefore, it is
only necessary in the backward traversal of a path to detect the
first simple cycle. We call this incomplete backward traversal.
This helps to cut down on the traversal length. We can perform
an incomplete backward traversal that terminates when the
first cycle is detected, with a break statement between lines
8 and 9 in the pseudocode λmin_calculation_in_a_path. The
implementation in [1], [6], and [9] of HO’s algorithm does not
have a break statement. In other words, the version from [1],
[6], and [9] detects all the simple cycles along a k-edge shortest
path.

Fig. 5. Minimum-mean cycle containing node v occurs in the extended path
beyond the shortest path to v in the modified graph.

Although incomplete traversal is useful, for λmin calcula-
tion at row k, the bottleneck could still be in the detection of
cycles in all k-edge shortest paths. We show that traversals for
some of those k-edge shortest paths are actually redundant.
Therefore, there is no need to consider them.

1) Filtering Based on Karp’s Characterization of MCM:
The first improvement is based on the characterization of
MCM in [13]. Recall that the HO algorithm starts with a λ

that is very large and progressively moves downward to con-
verge to λ∗. The algorithm goes through many cycles whose
means are larger than λ∗. Therefore, an actual minimum-mean
cycle in G(V, E, w) is a negative cycle in the modified graph
G(V, E, w−λglobal) for λglobal > λ∗. It becomes a zero weight
cycle when λglobal reaches λ∗. Before that happens, for any
node (say, v) on the minimum-mean cycle in the original
graph, we can reduce the shortest-path weight to the node by
going through the corresponding negative cycle in the mod-
ified graph. Therefore, the node should have a parent node
also residing on the cycle when the length of the path is long
enough, i.e., when the k-edge shortest path has a large enough
k to contain the minimum-mean cycle. This is illustrated in
Fig. 5. Therefore, the parent node of v at row k in the P-table
must be the same as the parent node of v in the shortest path
from s to v in G(V, E, w − λglobal). Any k-edge shortest path
that does not satisfy this condition can be ignored.

To perform this filtering, we must know the shortest path
from s to every other node in G(V, E, w −λglobal). Remember
this information is already available in π [v] (in dist, parent,
and length as we defined them earlier). Therefore, we will
check for the condition to decide whether we should perform
a backward traversal for cycle detection

Pk[v] = π [v].parent. (7)

2) Filtering Based on λglobal: Another criterion for con-
sidering a k-edge shortest path for traversal is whether the
path can potentially yield a cycle mean that is an MCM.
Based on the available shortest-path information in π [v], the
mean of this possible cycle C is w(C)/τ(C) = (Dk[v] −
Dπ [v].length[v])/(k−π [v].length). If we have the smallest cycle
mean computed so far (up to row k) stored in the variable
λglobal, we would traverse this k-edge shortest path only if the
mean of the potential cycle is less than λglobal

(Dk[v] − Dπ [v].length[v])/(k − π [v].length) < λglobal. (8)

3) Filtering Using Efficient Forward Traversal Strategy
From HO: Some of the paths where cycles have been found
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Fig. 6. There is no need to detect cycles in an extension of a path that
has a cycle detected earlier. At row k, we detect a cycle (red dotted line) by
traversing for node u. We do not have to consider cycle detection and λmin
calculation at nodes v1 and v2.

earlier may get extended. Therefore, the same cycles may be
detected over and over again. First, it is important to not detect
the same cycles as such detections do not help to terminate
the MCM algorithm early. Second, the extensions may result
in new cycles along the path. However, these new cycles also
do not help to terminate the MCM algorithm early as follows.

Suppose the cycle detected earlier is a minimum-mean
cycle, the new cycles that we would detect could also be
minimum-mean cycles. They will result in the same λmin = λ∗
(= λglobal), where λglobal is the global variable to store the
incumbent smallest cycle mean. The only reason that we have
not terminated the MCM is that we have not discovered all
shortest paths. If the cycle detected earlier is not a minimum-
mean cycle, there is no reason to consider traversing the path
since no cycle with minimum-mean value can occur in at least
one such path. This is based on HO’s argument to make for-
ward traversal more efficient that there exists a predecessor
chain where all cycles are minimum-mean cycles.

We can conclude that there is no need to detect cycles along
paths that are extension of paths that contain cycles detected
in the earlier backward traversals of paths. However, if the
traversal of a path has yet to detect a cycle, we must consider
its extended path for cycle detection and λmin calculation.

The example in Fig. 6 illustrates this filtering technique. At
row k, we detect a cycle (red dotted line) by traversing the
k-edge shortest path that ends at node u. That k-edge short-
est path to u is then extended to (k + 1)-edge shortest paths,
arriving at nodes v1 and v2. We do not have to detect cycles
for these two (k + 1)-edge shortest paths when we are at row
k+1. In fact, all future paths (> k+1) that are extended from
the path to u do not have to be considered for cycle detection
and λmin calculation.

To implement the concept, we introduce flags detectedk[v],
v ∈ V , where the variables indicate whether cycles have been
detected at a path that ends at v at row k or earlier. If true
is stored, a cycle has been detected earlier; false otherwise.
Therefore, we perform a backward traversal to detect cycles
at row k for node v only if

detectedk[v] = false. (9)

The filtering of k-edge shortest paths based on (7)–(9) is per-
formed in line 5 of the pseudocode efficient_λmin_calculation.

Algorithm 13: Efficient λmin Calculation
1 efficient_λmin_calculation(D, P, k, λglobal)
2 λmin = λglobal
3 for each node v∈V do
4 detectedk[v] = detectedk−1[Pk[v]]
5 if Pk[v] == π [v].parent and (Dk[v] − Dπ [v].length[v])/(k −

π [v].length) < λmin and detectedk[v] == false then
6 λmin = λmin_calculation_in_a_path(D, P, k, v, λmin)
7 end if
8 end for
9 swap detectedk−1 and detectedk

10 return λmin
11 end efficient_λmin_calculation

Note that detectedk[v], v ∈ V , takes on the flag of its
parent node Pk[v] in line 4 of the pseudocode. In the pseu-
docode λmin_calculation_in_a_path, it may be necessary to
update detectedk[v] when a cycle is detected. Assuming that
the pseudocode λmin_calculation_in_a_path has access to
detectedk[v], it has to set detectedk[v] to true when a cycle is
detected. The following statement has to be inserted between
lines 6 and 7 of the pseudocode λmin_calculation_in_a_path.

detectedk[v] = true

While it is possible to create a table of detected flags,
we use only two arrays detectedk−1[ · ] and detectedk[ · ],
and exchange the two arrays at the end of the pseudocode
efficient_λmin_calculation. In other words, detectedk becomes
detectedk−1 and detectedk−1 serves as detectedk in the next
iteration.

To summarize, we have presented a backward traversal
approach for efficient λmin calculation which unifies some of
the concepts of truncation presented by HO in two separate
approaches of backward and forward traversals for cycle detec-
tion. At best, the time complexity of efficient λmin calculation
is O(|V|) because the filtering may allow us to not traverse
any k-edge shortest paths to detect cycles. Of course, in the
worst case, it will take O(k|V|) to calculate λmin at row k.

D. Pseudo-Source

The concept of a pseudo-source node has been used quite
extensively in the past. Examples include the solution of a system
of difference constraints using the Bellman–Ford algorithm [5],
and the initialization of the shortest-path tree when λ = −∞
in YTO [21]. We first “add” a pseudo-source node to the input
graph and “create” directed edges of weight 0 from this pseudo-
source node to all other nodes in the graph. Here, we assume
that all edge weights are non-negative so that we can directly
apply the concept of the pseudo-source node; otherwise, we
have to transform the edge weights to non-negative values by
subtracting the most negative edge weight from all edges and
at the end, add the offset to the computed MCM value.

Note that the concept of pseudo-source can also be used in
Karp’s algorithm. But the HO/b or even the original Karp’s
algorithms do not make use of that. The benefit of having a
pseudo-source in HO/b can be understood from the fact that
as we search for the minimum-mean cycle, the HO algorithm
must compute row after row to reach a node on the cycle before
it can start going along the cycle. The actual number of rows
to be computed depends on how far the cycle is located from
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Algorithm 14: Proposed MCM Algorithm
Input : Directed graph G(V, E, w), a strongly connected components

(SCC)
Output: Minimum cycle mean λ∗

1 /* Initialization */
2 λglobal = ∞ /* global variable to store minimum cycle mean */
3 allocate_and_initialize_Dk_and_Pk(k = 0)
4 for each node v ∈ V do
5 level_array[v] = −1 /* global array for λmin calculation */
6 detectedk−1[v] = false /* global array for λmin calculation */
7 π_stack[v] = −1 /* global array for π calculation */
8 D0[v] = 0 /* pseudo-source initialization */
9 end for

10 /* D- and P-tables computation */
11 allocate_and_initialize_Dk_and_Pk(k = 1)
12 vertical_relaxation(G, D, P, k=1)
13 for each node ν ε V do
14 π [ν] · parent = Pk=1[ν]
15 + + π_stack[v]
16 π_edge[π_stack[ν]][ν]=1
17 end for
18 for k = 2 to |V| do
19 allocate_and_initialize_Dk_and_Pk(k)
20 vertical_relaxation(G, D, P, k)
21 if efficient_early_termination(D, P, k, λglobal) then /* λglobal

updated */
22 break
23 else if k == |V| /* early termination not successful */
24 λglobal = λmin_calculation(D, P, k)
25 end if
26 end for
27 return λglobal

the source node. Pseudo-source however rids the algorithm of
the computation of rows to reach a node on the cycle.

If the source node s in Fig. 5 is the “added” pseudo-source
node, there will also be “directed edges” from s to other nodes
in the original graph, and all these edges are the shortest paths
to the respective nodes. We do not have to actually create the
pseudo-source node and its edges. Instead, we simply have to
initialize the 0th rows of the D- and P-tables as D0[v] = 0
and P0[v] = −1 for all v ∈ V , assuming that −1 is the label
of the pseudo-source node.

E. Pseudocode of the Proposed MCM Algorithm

The pseudocode of the proposed MCM algorithm is
presented below. Similar to HO/b-D, we first initialize λglobal
and level_array. Moreover, we initialize detectedk−1 and
π_stack. D0 and P0 are allocated and initialized, assum-
ing the presence of a pseudo-source node. Lines 11–26
here are almost identical to lines 9–15 in the HO/b-D
algorithm except three major differences. Before the first
call to efficientλmin_calculation is made in the pseudocode
efficient_early_termination, π [v].parent must be initialized.
Therefore, vertical relaxation for k = 1 must be first carried
out to get P1[v] before we iterate over other values of k in
the loop. Second, we call efficient_early_termination here.
Third, when early termination is not successful (algorithm has
reached k = |V|) λmin_calculation (not the efficient version) is
called directly. It is also important to note in the pseudocode
of the proposed algorithm early termination call is made at
every row.

VII. EXPERIMENTAL RESULTS

We have implemented three algorithms: 1) YTO; 2) HO/b-
D; and 3) the proposed MCM algorithm. All algorithms
are implemented in C++ and compiled with compiler level
optimization (-O3) enabled. Our implementation of YTO is
similar to the pseudocode reported in [7] that uses binary heap.
HO did not provide any pseudocode, but there is a pseudocode
of the HO/b algorithm provided in [1], [6], and [9]. By HO/b-
D, we refer to our implementation of that pseudocode. These
implementations are evaluated on a standalone server, which
is a Linux machine with Intel Xeon CPU E5-2660 (2.60 GHz)
and 66 GB of RAM.

We evaluate the performance using IWLS 2005 benchmark
circuits [2] and randomly generated strongly connected directed
graphs created with a technique prescribed in [7] and [20]. We
will discuss the circuit graph creation in Section VII-C. To
generate a random graph using the technique in [7] and [20],
we first connect all nodes in a circular manner to make the graph
strongly connected. Next, two nodes are randomly selected and
connected by a directed edge. The process continues until the
desired number of edges connections are made. For the edge
weight, random values within a predefined range are generated
and assigned. Unless mentioned otherwise, all reported runtimes
include everything from initializing data structures, reading
graphs, to get the final MCM output.

A. Benchmarking

The YTO algorithm has been implemented by various
groups in the past, targeting different applications [3], [4], [7],
[8], [12], [20], [22]. Dasdan et al. [6]–[8] did a comparative
study of various MCM algorithms and reported YTO to be the
fastest MCM algorithm in practice [7]. The conclusion drawn
in [7] was also corroborated later by Georgiadis et al. [10].
These studies looked at the sparse graph examples.

Dasdan [1] provided us with a working version of the YTO
algorithm. This implementation handles only graphs with inte-
ger edge weights. Even though the integer version can still
handle floating-point edge weights by scaling [10], there may
be some loss in accuracy. We have also observed that the
implementation from [1] cannot handle very large graphs.

As we are interested in more general applications, we pre-
fer a version that can handle floating-point edge weights.
Consequently, we implemented a version of the YTO algo-
rithm that can handle floating-point edge weights, and then
customized it such that it can handle integer edge weights. We
compare the customized version of our implementation against
the implementation from [1]. Fig. 7 shows that our version of
the implementation has better runtime performance, in terms
of the total runtime and the runtime for only MCM calculation,
for dense graphs in (a) and (b) and for sparse graphs in (c). The
runtime for only MCM calculation does not include the time
for reading in the graph and/or other initializations. Fig. 7(c)
shows that our implementation can handle larger graphs than
the implementation from [1]. Therefore, for the remainder of
this section, all results reported under YTO are obtained using
the floating-point version of our implementation.

B. Memory Usage

We first evaluate memory usage of the three algorithms:
1) YTO; 2) HO/b-D; and 3) the proposed algorithm. While
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Fig. 7. Benchmarking our implementation of YTO with the implementation from [1] and [7]. The results for dense graphs are shown in (a) and (b). In (a),
the graph density |E|/|V| is varied from 5 to 900 for |V| = 1K, and in (b), the graph size is varied by changing (|V|, |E|/|V|) from (1K, 550) to (5K, 750).
The results for sparse graphs are shown in (c). In (c), |V| is varied from 7.5K to 240K while |E|/|V| is fixed at 50. The implementation from [1] and [7]
cannot handle large graphs as shown by the missing data in the plot in (c).

Fig. 8. Comparison of memory usage of YTO, HO/b-D, and the proposed MCM algorithm. The results for dense graphs are shown in (a) and (b). In (a),
the graph density |E|/|V| is increased from 50 to 9000 for |V| = 10K, and in (b), the graph size is varied by changing (|V|, |E|/|V|) from (10K, 5K) to (80K,
40K). In (b), HO and the proposed algorithm have much less memory usage compared to YTO. No memory usage is reported for YTO at (80K, 40K) as the
algorithm fails to run to completion. The results for sparse graphs are in (c). |V| is varied from 7.5K to 480K while keeping |E|/|V| fixed at 50.

Karp’s algorithm uses �(|V|2) memory for storing information
in the D- and P-tables [13], HO/b-D and the proposed algo-
rithm can be memory efficient if memory allocation for a row
in a table is done only if the algorithm has to continue to
look for more cycles. Since K, the number of rows computed
in HO/b-D or the proposed algorithm, is much smaller than
|V| in practice, the memory usage is reduced from �(|V|2) to
O(K|V|). Moreover, both HO/b-D and the proposed algorithm
store only one graph structure (forward or reverse). Therefore,
HO/b-D and the proposed algorithm can be more memory
efficient than YTO, which stores both forward (outgoing) and
reverse (incoming) graph structures.

A plot of the typical memory usage of the three algo-
rithms is shown in Fig. 8. One can observe that the proposed
algorithm and HO/b-D both consume much less memory com-
pared to YTO. In fact, for very large graphs, YTO fails to
compute as it runs out of memory. For this reason, there
are missing data points for YTO in Figs. 8–9. For an effi-
cient implementation, YTO requires additional memory space
(beyond two graph structures) [7], as one can see in Fig. 8.
We further observe (not shown here) that the implementation
of YTO from [1] uses more memory than our implementation
of YTO.

We must point out that as the proposed algorithm per-
forms an early termination check at every row, it has lower
memory usage than HO/b-D. While its advantage over HO/b-D

in Fig. 8(a) and (b) is relatively small, the difference is evident
in Fig. 8(c).

We have shown that the proposed algorithm is more memory
efficient than YTO. We shall show that it does so without
losing performance in runtime. In particular, we observe that
the proposed algorithm has comparable runtime to YTO for
graphs built from circuit examples as well as for dense random
graphs.

C. Runtime Performance

To evaluate the performance using practical circuits, timing
constraint graphs are constructed after synthesis of ISCAS89
and OpenCores designs from the IWLS 2005 benchmark [2].
These designs are specified in Verilog using Synopsys tool
chain and a 32-nm technology library. We decompose the
graph into SCCs, and apply the algorithms on these individ-
ual components. Table I provides the circuit graph information.
We present runtime results for the largest SCCs in Table II.
Our algorithm performs better than HO/b-D and is comparable
to YTO.

We now present results on random graphs. In Fig. 9(a), the
density of the graph, |E|/|V|, is varied while in Fig. 9(b), the
graph size is varied by changing (|V|, |E|/|V|) from (10K,
5K) to (80K, 40K). Graphs in Fig. 9(a) and (b) are consid-
ered dense graphs. The proposed algorithm performs better
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TABLE I
INFORMATION OF GRAPHS DERIVED FROM IWLS 2005

BENCHMARK CIRCUITS [2]

TABLE II
RUNTIMES OF YTO, HO/B-D, AND THE PROPOSED ALGORITHM ON

GRAPHS DERIVED FROM IWLS 2005 BENCHMARK CIRCUITS [2]

than HO/b-D and is comparable to YTO. The absence of data
for YTO indicates that YTO has failed to execute because of
excessive memory consumption. Fig. 9(c) compares runtimes
of YTO, HO/b-D, and the proposed algorithm on sparse ran-
dom graphs where |V| is varied from 7.5K to 480K while
keeping |E|/|V| fixed at 50. For sparse graphs, YTO has the
best runtime performance followed by the proposed algorithm.

D. Effectiveness of Efficient Early Termination Techniques

In Table III, we show the improvements resulted from the
filtering techniques in efficient λmin calculation and π calcula-
tion. The improvements are based on the comparisons of two
variants of the proposed MCM algorithm against HO/b-D. The
first variant considers only the efficient λmin calculation and
the second variant considers only the efficient π calculation.
All two variants perform an early termination check when k
is a power of 2. On average over six sets of random graphs,
efficient λmin calculation reduces total traversal length in cycle
detection by 23.49%. The total number of paths considered for
computation of the dual vector π reduces by 48.80%.

TABLE III
IMPROVEMENTS (%) IN EFFICIENT λmin CALCULATION AND IN EFFICIENT

π CALCULATION FOR DENSE RANDOM GRAPHS

In reference to the discussion in Section VI, we now present
the observed time complexities of efficient λmin calculation
and efficient π calculation. For the early termination technique
in HO/b-D, we consider two variants: one is to apply the early
termination check when the row number is a power of two and
one is to apply the early termination check at every row. The
left most blocks of results in Tables IV and V are results from
the first variant when applied to graphs in Fig. 8(a) and (b),
respectively. Three columns of results are included in a block:
1) the number of paths considered for π calculation; 2) the
traversal length for cycle detection in λmin calculation; and
3) the number of rows computed. The middle blocks of results
in Tables IV and V are results from the second variant. The
right most blocks of results in Tables IV and V are results from
the efficient early termination techniques from the proposed
MCM algorithm.

We shall now use K′ to denote the number of rows explored
when we perform an early termination check when the row
number is a power of two and K′′ when we do that at every
row. Clearly, the middle blocks and the rightmost blocks of
results have the same K′′ for every row. In Tables IV and V,
K′′ is less than K′ by 32.27% and 20.93%, respectively.

For the number of paths and traversal length (after normaliz-
ing by the number of rows), we observe that in Table IV, they
remain mostly constant as the number of nodes in the graph
remains constant, while in Table V, the variation is compara-
ble to that of the node size in the graph. Therefore, we can
conclude that the observed complexity of efficient π calcu-
lation or traversal length for cycle detection in efficient λmin
calculation is close to O(|V|).

Therefore, while both efficient λmin calculation and efficient
π calculation have worst-case time complexity O(k|V|) at row
k, the best-case time complexity and the observed average
time complexity are O(|V|). Recall that we have already estab-
lished that the time complexity of efficient feasibility check is
O(|V|) for each row. In other words, the efficient early termi-
nation techniques proposed in this work has the appropriate
time complexity for early termination check to be performed at
every row to reduce the number of vertical relaxations (O(|E|)
for each row) and therefore reduce the overall runtime.

VIII. ANALYSIS

Note that the search for λ∗ happens in opposite direc-
tion in YTO and Karp’s algorithm (or HO and the proposed
algorithm). YTO works by first calculating a shortest-path
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Fig. 9. Comparison of runtime performance of YTO, HO/b-D, and the proposed algorithm on random graphs. The graphs in (a) and (b) are dense. In (a), the
graph density |E|/|V| is varied from 50 to 9000 for |V| = 10K. The proposed algorithm performs better than HO/b-D and is comparable to YTO as the graph
becomes denser. In (b), the graph size is varied by changing (|V|, |E|/|V|) from (10K, 5K) to (80K, 40K). YTO fails for the graph at (80K, 40K) because of
its excessive memory consumption. For sparse graphs in (c), |V| is varied from 7.5K to 480K while |E|/|V| is fixed at 50.

TABLE IV
COMPARING THREE VERSIONS OF EARLY TERMINATION ON THE GRAPHS FROM FIG. 8(A) FOR THE NUMBER OF PATHS CONSIDERED

FOR π CALCULATION (#PATHS), THE TRAVERSAL LENGTH FOR CYCLE DETECTION IN λmin CALCULATION (LENGTH), AND THE NUMBER

OF ROWS COMPUTED (#ROWS)

TABLE V
COMPARING THREE VERSIONS OF EARLY TERMINATION ON THE GRAPHS FROM FIG. 8(B) FOR THE NUMBER OF PATHS CONSIDERED

FOR π CALCULATION (#PATHS), THE TRAVERSAL LENGTH FOR CYCLE DETECTION IN λmin CALCULATION (LENGTH), AND THE NUMBER

OF ROWS COMPUTED (#ROWS)

tree in the graph when λ is −∞ and then maintaining it
as λ increases toward λ∗. The number of shortest-path trees
explored in the course of the algorithm can be as large as
|V|2. For a binary heap-based implementation, the complexity
is O(|V||E| log |V| + |V|2 log |V|). The second term is really
O(T log |V|), where T is the number of trees explored.

On the contrary, the HO algorithm can be terminated as
early as after K′ = max(M, N) number of rows have been
computed. Here, M is the maximum length of the shortest path
in the modified graph [i.e., G(V, E, w−λ∗)] and N = Lsp+Lep,
where Lsp is the length of the shortest path and Lep is the length
of the extended path that contains the cycle (see Fig. 5). The
value of N in the proposed algorithm is smaller than in the HO
algorithm because of the use of pseudo-source (see Section VI-
D) as that effectively removes the term Lsp from N. We define
K′′ to be the number of rows to be computed in the proposed

algorithm. Computation of a row requires running vertical
relaxation. Therefore, the total time complexity for relaxation
is O(K′′(|E|)) in the proposed algorithm. While each vertical
relaxation is computationally more expensive than updating a
shortest-path tree in YTO, K′′ or even K′ are typically much
smaller than T when a graph is dense for the following rea-
son. When a graph is dense, the longest shortest-path length
is likely to be small and there are likely to be many short
cycles. Therefore, K′ or K′′ are likely to be small. On the
other hand, there are many cycles that YTO has to explore
before reaching the minimum. Consequently, there is a good
chance for the proposed algorithm to be comparable to YTO
when a graph is dense. Note that the circuit graphs are usu-
ally sparse. However, most cycles in them are short, as each
is constructed of only two nodes (two sequential elements).
The fact that most cycles in circuit graphs are short gives the
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proposed algorithm a chance to compete with YTO, as we
have seen in the experimental results.

We experimentally observe K′′ to have comparable or bet-
ter scaling profile than T in YTO algorithm when the graph
density and size are changed. Scaling profile of K′′ and K′ are
comparable but average value of K′′ is observed to be much
smaller than K′.

IX. CONCLUSION

Memory usage and runtime performance of Karp’s MCM
algorithm can be improved with the early termination tech-
nique from HO, which we have referred to as HO/b in this
work. We have experimentally observed on IWLS 2005 bench-
mark circuits and randomly generated graphs that the HO/b-D
(i.e., Dasdan’s implementation of HO/b) algorithm consumes
much less memory compared to YTO. But when it comes
to runtime, YTO performs better than HO/b-D. We have
proposed several techniques to improve the early termination
check in the HO/b-D algorithm. These improvements allow
the efficient early termination check to be performed with
O(|V|) time complexity in the best-case scenario. Such effi-
ciency allows the early termination check to be performed
at every row to reduce the cost of vertical relaxation, which
has a best-case time complexity of O(|E|). Consequently,
the proposed algorithm has better runtime performance than
HO/b-D and produces comparable results to YTO for circuit
graphs. For random graphs, the proposed algorithm has bet-
ter runtime performance than HO/b-D and is comparable to
YTO as the graph becomes denser, all these while improving
memory usage of the HO/b-D algorithm.
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