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Let D = (V, E) be a digraph with n vertices and m arcs. For each e E E there is an associated cost
ce and a transit time te; Ce can be arbitrary, but we require t to be a non-negative integer. The cost
to time ratio of a cycle C is X(C) = 3 ec ceCeec t. Let E' c E denote the set of arcs e with te > 0,
let T = max{tv: (u, v) E} for each vertex u, and let T = uev T. We give a new algorithm for
finding a cycle C with the minimum cost to time ratio X(C). The algorithm's (T(m + n log n))
running time is dominated by O(T) shortest paths calculations on a digraph with non-negative arc
lengths. Further, we consider early termination of the algorithm and a faster O(Tm) algorithm in
case E - E' is acyclic, i.e., in case each cycle has a strictly positive transit time, which gives an
O(n2 ) algorithm for a class of cyclic staffing problems considered by Bartholdi et al. The algorithm
can be seen to be an extension of the O(nm) algorithm of Karp for the case in which t = 1 for all
e E E, which is the problem of calculating a minimum mean cycle. Our algorithm can also be
modified to solve the related parametric shortest paths problem in O(T(m + n log n)) time. © 1993
by John Wiley & Sons, Inc.

1. INTRODUCTION

Let D = (V, E) be a digraph with n vertices and m
arcs. A walk is a forwardly directed arc progression
from an initial vertex to a terminal vertex. A cycle is
a walk in which the initial vertex is equal to the terminal
vertex. A path is a walk in which no vertex is repeated.
For each e E E there is an associated cost ce and a
transit time t; Ce can be arbitrary, but we require te to
be a non-negative integer. Let E' C E denote the set
of arcs e with te > 0, let T, = max{t,,o: (u, v) E E} for
each vertex u, and let T = ,,EV T,,. Note that T is an
upper bound on the transit time of each path and cycle
in D.

The cost to time ratio X(C) of a cycle C is XeC Ce/

eC te. Let X* = minc X(C), where C ranges over all

cycles in D; X* is called the minimum cost to time ratio.
If we adopt the convention that the minimum over the
empty set is xc and that c/O = +x depending on whether
c > 0 or c < 0, then X* can be interpreted as the largest
value of X for which the digraph D has no cycles of
negative length with respect to the lengths ce(X) = Ce

- te for e E E. (Throughout the paper, we will refer
to ce(A) as the length of arc e, even if ce(X) < 0.) If X*
is finite, then we call any cycle C with X(C) = X* a
minimum cost to time ratio cycle.

The problem of finding a minimum cost to time ratio
cycle has previously been studied by Burns [4], Dantzig
et al. [5], Fox [8], Golitschek [12, 13], Hartmann [15],
Ishii et al. [16], Karp [17], Karp and Orlin [18], Karza-
nov [19], Lawler [20, 21] and Megiddo [23]. In the final
section of this paper, we discuss an application of the
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568 HARTMANN AND ORLIN

minimum cost to time ratio cycle problem with small
integral transit times given in Bartholdi et al. [2]. Other
applications of the minimum cost to time ratio cycle
problem can be found in Boros et al. [3], Burns [4],
Dantzig et al. [5], Graves and Orlin [14], Lockyear and
Ebeling [22], Orlin and Rothblum [24], Richey [25] and
Spaelti and Liebling [26]. In most of these applications,
the transit times are small integers and each cycle has
a strictly positive transit time.

The main contribution of this paper is an improve-
ment and extension of the O(n3 ) algorithm developed
by Karp and Orlin for solving a special case of the
minimum cost to time ratio cycle problem. It has the
following features:

1. It finds the minimum cost to time ratio X*, and if
X* is finite, it also determines a minimum cost to
time ratio cycle.

2. The algorithm solves the problem as O(T) shortest
paths problems on a related digraph, with a running
time of O(T(m + n log n)). In case that each cycle
has a strictly positive transit time, the running time
can be further improved to O(Tm).

3. In many cases, the algorithm terminates far earlier
than indicated by the worst-case running time; this
feature improves upon algorithms by Karp [17] and
Karp and Orlin [18]

4. The algorithm can be applied to the cyclic staffing
problem, and improves the best previous running
time.

This also improves on Megiddo's O(n2m log n) algo-
rithm for the general minimum cost to time ratio cycle
problem when the transit times are integers which are
not much larger than n.

Under the assumptions that E - E' contains no
negative-cost cycle, te = 1 for all e E E' and there is
a path from s to each v E V, Karp and Orlin [18] give
O(n3 ) and O(nm log n) algorithms for computing the
length of the shortest paths from s to each vertex v E
V parametrically in X, where the length of an arc e is
Ce(A). As a byproduct, these algorithms yield the
value X*. Young et al. [27] use Fibonacci heaps to im-
prove the running time of the second algorithm to
O(nm + n2 log n). Our algorithm can be modified to
solve this more general problem in O(T(m + n log n))
time.

2. PRELIMINARY REDUCTIONS

Dantzig et al. [5] formulate the minimum cost to time
ratio cycle problem as the linear programming prob-
lem

minimize eEE Ce Xe

subject to IeEE teXe = 1
(1)

Ax = 0

x -0,

where A is the vertex-arc incidence matrix of D. The
dual of this problem is the linear programming problem

maximize 

(2)subject to Xt(,i,v) - rT, + rVu -< C(uv)

for all (u, v) E E.

The minimum cost to time ratio X* can be computed
as the optimal value of (1) or (2), and it is possible to
obtain a minimum cost to time ratio cycle from an
optimal solution to either problem.

If X* and r* are an optimal solution to (2), we can
find a cycle C with X(C) = t* in O(n + m) time as
follows. First note that (2) implies that X(C) = X* if
and only if C n E' 0 and C c E", where E" C E is
the set of arcs (u, v) with c(u,,) = K t(,,u) - rT + 7r*.
To find an arc (u, v) E E' which lies on such a cycle,
we first find the strongly connected components of the
digraph with arc set E" - E' in O(n + m) time and
look for an arc (u, v) E E" n E' with both u and v in
the same strongly connected component. If there is no
such arc, we contract the strongly connected compo-
nents. Then any directed cycle C C E" must contain
an arc (u, v) E E'. We can find a path P from v to u
consisting of arcs in E" in O(n + m) time; adding
(u, v) to P yields a minimum cost to time ratio cycle.
(If instead we have an optimal solution x* to (1), we
can let E" consist of those arcs e with Xe > 0.)

The dual constraints (2) can also be written as rv -
mU + C(u,,)(A) for all (u, v) E E, the familiar necessary
conditions for the shortest paths problem with lengths
Ce(K). Therefore if > X* there will be a negative-
length cycle, and if -< K* the shortest path distances
from a vertex s yield a dual feasible rr. Lawler [20, 21]
used this as the basis for a polynomial algorithm which
computes X* by binary search. We will use (2) to termi-
nate early in our algorithm, by attempting to construct
a dual feasible r corresponding to the cost to time
ratio X(C) of a cycle C. Before describing the algorithm,
we will give some general reductions of the prob-
lem.

First of all, if the digraph D is not strongly con-
nected, we can find its strongly connected components
in O(n + m) time, find a minimum cost to time ratio
cycle in each component separately, and then choose
the one with the smallest ratio. A better strategy would
be to consider the current minimum cost to time ratio
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X, since a minimum cost to time ratio cycle would only
need to be found in the current component if it had a
cycle with cost to time ratio less than X. This can be
checked using the O(nm) time shortest paths algorithm
described in Goldfarb et al. [11], which allows for early
termination if a negative-length cycle is detected. If we
process p strong components in random order, then on
the average we would only need to compute O(log p)
minimum cost to time ratio cycles (see Dynkin and
Yushkevich [6, pp. 87-89]). Henceforth we may as-
sume that D is strongly connected.

We may also assume that Ce > 0 for all e E E. To
justify this second assumption, consider the graph
with arc set E - E'. For all u - s, add an arc (s, v)
with large cost. The O(nm) algorithm of Goldfarb et
al. can then be used to find the minimum cost d. of a
path from s to each vertex v in this digraph, unless a
negative-cost cycle is detected in which case X* = -.
If E - E' is acyclic and s is chosen to be a source,
then we can find d for v E V in O(m) time. If the
digraph does not contain a negative-cost cycle, then
these minimum costs will satisfy d < d,, + c(,,) for
all (u, v) E E - E'. Then we set = min(,,u)E{(c(,,0v)

+ d,, - dV)lt(,,)} so that C(,,,v) = c(,,v)(XA) + d,, - d >
O for all (u, v) E E. It is easy to see that a cycle with
cost to time ratio X with respect to the costs e has
cost to time ratio X + with respect to the costs Ce.
Finally, we may assume that E' #4 0, for otherwise
X* = +.

3. MINIMUM CYCLE MEANS AND 0-1
TRANSIT TIMES

When te = 1 for all e E E, the cost to time ratio of a
cycle C is simply 1/ICIl BeC Ce, the cycle mean. The
problem of computing the minimum cycle mean arises
in connection with the minimum cost flow problem (see
Ahuja et al. [1], Engel and Schneider [7] and Goldberg
and Tarjan [10]). Karp [17] gave an O(nm) algorithm
for finding the minimum cycle mean, based on the fol-
lowing characterization for finite X*:

t = minF max G,,(v) - G(v) (3)
vEV O-ktn-L n - k

which holds under the assumption that there is a path
from s to every other vertex. Here Gk(v) is the minimum
cost of a walk from s to v with transit time exactly k.
If no such walk exists, then we say that Gk(U) = c. The
quantities Gk(v) may be computed using the following
recursive scheme:

Gk(U) = min{Gk_l(u) + C(,,,v)} for all v E V (4)
uvCE

for k = ,. . . , n subject to the initial conditions Go(s)
= 0 and Go(v) = for v #: s. The main drawback of
Karp's algorithm is that the best-case and worst-case
running times are the same.

Next we explain how to terminate early in Karp's
algorithm after computing Go(v), . .. , G(v) for all
v E V for some k < n. At this point, minimum cost
walks have been determined from s to v with transit
time exactly j for all v E V and j = 0, 1. . . , k. Many
of these walks will contain cycles, and if C has the
minimum cost to time ratio of all cycles detected in
these walks, then we compute the value X = X(C) and

r (X) = min {Gj(v) - Xj} for all v E V. (5)
j =0,1 ... k

If X and r k(X) satisfy the dual constraints (2), then C
must be a minimum mean cycle, and the algorithm can
terminate early.

To detect cycles, we maintain a predecessor digraph
D< = (V<, E<), which grows as the algorithm prog-
resses. After computing Gk(v) for v E V, the vertex set
V< contains vertices v for all v E V andj = 0, 1, . . .,
k and the arc set E' contains arcs (u - , v) correspond-
ing to the arcs (u, v) which achieved the minimum in
(4) for v E V and j = 1, 2, ... , k. (To represent
the predecessor digraph, we keep track of the unique
predecessor u - of each such vertex vu.) After updating
D< , we follow predecessors back from each uk for u
E V until the walk contains a cycle. If we detect a
cycle C which begins at uv and ends at v for some j >
i, then we compute the cost to time ratio X(C) = (Gj(v)
- Gi(v))/(j - i). If C has the minimum cycle mean of
all cycles detected for E V, we store the vertex vi
from which we can later recover C. Since we can detect
a cycle and compute r k(X) in O(kn) time and check
dual feasibility in O(m) time, we can check for early
termination at k = 1, 2, 4, . . . , 2 g2 n] with at worst
a small constant factor increase in running time.

Karp and Orlin [18] show that (3) also holds for
0-1 transit times, and this is the basis of their O(n3)
algorithm. As is the case for Karp's algorithm, the best-
case and worst-case running times of Karp and Orlin's
algorithm are the same. They compute the quantities
Gk(v) using the following recursive scheme:

G'(v) = min {Gk l(u) + C(v)} for all v E V
(uv)EE'

Gk(v) = min{G(u) + d(u, v)} for all v E V
RE V

(6)

(7)

for k = 1,. . . , n subject to the initial conditions Go(v)
= d(s, v). Here G.(v) is the minimum cost of a walk
from s to v with transit time exactly k such that the
last arc of the walk is in E', and d(u, v) is the minimum
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cost of a path from u to v in D consisting solely of arcs
in E - E' (which is computed in advance).

Instead of using (7), Gk(v) for u E V can be computed
from Gk(v) for v E V by solving a shortest paths prob-
lem in a related digraph with non-negative arc lengths.
Because we have assumed that e -> 0 for all e E E,
Go(v) for v E V can be determined in O(m + n log n)
time using the shortest paths algorithm described in
Fredman and Tarjan [9], and in O(m) time if E - E'
is acyclic. Next we show how to compute Gk(v) for v
E V given Gj(v) for v E V andj = 0, , . . ., k - 1.
Let D* = (V*, E*), where V* is obtained from V by
adding a source node r. For each arc (u, v) E E - E',
there is a corresponding arc in E* with the same cost.
For each node v C V with Gk(v) < oc, there is also an
arc (r, v) with cost G(v); these quantities can be com-
puted in O(m) time using (6). It follows that Gk(v) is
the minimum cost of a path in D* from r to v (if no
such path exists, then Gk(v) = o). Since Ce > 0 for all
e C E*, we can also determine Gk(v) for v E V in O(m
+ n log n) time using Fibonacci heaps, although we
could use any shortest paths algorithm for the computa-
tion. If E - E' is acyclic, then so is E* and we can
determine Gk(v) for v E V in O(m) time (this was ob-
served independently by Hartmann [15] and Ishii et
al. [16]).

Early termination in Karp and Orlin's algorithm is
complicated by the arcs in E - E'. We still compute
rrk(X) for some = X(C), but recovering the cycle C
requires 0(n + m) additional time. The arc set E<
of the predecessor digraph must also be modified as
follows. After computing Gk(v) for v E V, we add an
arc to E< corresponding to each arc in the shortest
paths tree T for D*: for every arc (r, v) E T there is
an arc (uk-l , k) corresponding to the arc (u, v) E E'
which achieved the minimum in (6) for v, and for every
arc (u, v) E T with u # r there is an arc (wk, vk), where
(r, w) is the first arc on the path from r to v in T. (This
modification ensures that each path in the predecessor
digraph has O(k) arcs.) The determination of C pro-
cedes as before, except that we may no longer be able
to recover C by following predecessors back from v;
however, we can easily obtain an arc e E C with te =

1. Then in O(n + m) time we can find a minimum cost
to time ratio cycle as described in Section 2.

4. MINIMUM COST TO TIME RATIO CYCLES

When the transit times are arbitrary non-negative inte-
gers, there is no analogue of n in (3) and hence no
similar characterization. On the other hand, when the
transit times are 0-1 it is not necessary to make use
of (3); if we check for early termination when k - n,

we will detect a cycle with X(C) = X* and r k(X*) will
be a corresponding dual feasible solution. A similar
result holds when the transit times are arbitrary non-
negative integers, but we must modify the method used
to detect cycles. The following theorem gives an upper
bound on the number of shortest paths problems which
need to be solved. The proof is similar to the proof of
[17, Theorem 1].

Theorem. If D = (V, E) is a strongly connected di-
graph for which the minimum cost to time ratio X* is
finite, then for some v E V and k with T k < 2T,
every minimum cost walk Wk(v) from s to v with transit
time exactly k contains a minimum cost to time ratio
cycle. Further, every cycle contained in such a walk
Wk(v) is either a minimum cost to time ratio cycle or
a zero-cost cycle in E - E'.

Proof. First note that Wk(v) is a minimum cost walk
with transit time exactly k with respect to the costs Ce

if and only if it is a minimum cost walk with transit
time exactly k with respect to the costs ce(X*). Then
since C is a minimum cost to time ratio cycle with
respect to the costs ce if and only if it is a minimum
cost to time ratio cycle with respect to the costs ce(X*),
we may assume that X* = 0.

So let C* be a minimum cost to time ratio cycle and
let v be a vertex in C*. Since there can be no negative
cycles, there must be a minimum cost path P(v) from
s to v, which therefore has transit time at most T.
Since C* is a zero-cost cycle, adding any number of
repetitions of C* to P(v) results in a minimum cost walk
from s to v. Then the fact that C* n E' #4 0 implies
that there must be a minimum cost walk W(v) from s
to v which has transit time k for some T k < 2T.
Now consider any minimum cost walk Wk(v) from s to
v with transit time exactly k. Since k - T, Wk(v) must
contain a cycle C with C n E' #4 0. Since Wk(v) has
the same transit time as W(v), it too must be a minimum
cost walk from s to v. This implies that C is a zero-
cost cycle, and so C must be a minimum cost to time
ratio cycle. For the same reason every cycle contained
in Wk(v) must be a zero-cost cycle, which gives the
desired result. U

This theorem guarantees that we will detect a mini-
mum cost to time ratio cycle if we follow pointers back
from each uk for u E V until the walk contains a cycle,
but when the transit times are not 0-1 we cannot deter-
mine k in advance. (If the transit times are 0-1 we can
take k = n, since we could instead follow W(v) until
we obtained a minimum cost walk W of transit time
exactly n from s to some vertex u E V.) When the
transit times are arbitrary non-negative integers, we
need to modify (6) to
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Gk(v) = min {Gk_ tv)(u) + c(,,)} for all v E V. (8)
(uv) E' ('v)

These quantities can also be computed in O(m) time
given the last T,, values of Gj(Lu) for each G E V, and
the same shortest paths computation can be used to
compute Gk(v) for v E V. Instead of storing Gj(v) for
each v E V and j = 1, . . . , k to determine X* by (3),
we can recompute them as needed while exploring the
predecessor digraph.

As was the case for 0-1 transit times, the arc set
E< of the predecessor digraph contains an arc corre-
sponding to each arc in the shortest paths tree T for
D*: for every arc (r, v) E T there is an arc (jk-tI.v), v k)

for some (u, v) which achieved the minimum in (8),
and for every arc (, v) T with u #: r there is an arc
(Uk, vk). (To represent the predecessor digraph, we now
maintain for each vertex uj in V< a list of arcs (J,
vi+tllv)) in E<.) It is not hard to see that if Gk(v) < cx
there is a unique path from s to vk in D< whose image
in D is a walk Wk(v) which has transit time k and cost
Gk(v). It is also the case that the initial cycle contained
in Wk(v) must contain an arc e C E', since D< is acyclic.
Although the predecessor digraph is built up as the
algorithm progresses, we will show that many of the
arcs and vertices of D< can be pruned after checking
for early termination.

Now we address the question of finding the minimum
cost to time ratio of a cycle which is contained in Wj(v)
for some v E V andj = 0, 1, . . ., k after determining
Gk(v) for v E V. Since the initial parts of many of these
walks will be the same, there should be some way to
combine the search. Consider what happens when we
carry out a depth first search from so to all other vertices
in the predecessor digraph D<. The depth first search
will grow a path rooted at s° . Suppose uj is the terminal
vertex of P: the depth first search algorithm will try to
add an unscanned vertex vj+t('...) emanating from i to
P; if there is no such unscanned vertex, then the algo-
rithm will eliminate uj from P and try to extend P from
the predecessor of u in the same way.

Next we will show that this depth first search can
be truncated as soon as the image of P in D contains
a cycle. Suppose that C is the initial cycle encountered
in one of these walks, and that C begins at v and ends
at v for some j > i. Then v' and v are the only copies
of v on the path from so to vi in D'. The theorem allows
us to truncate the path P in the depth first search at
vi, because we know that for some v E V and k <
2T, the initial cycle encountered in Wk(v) must be a
minimum cost to time ratio cycle. Moreover, the cost
to time ratio X(C) = (Gj(v) - G(v))/(j - i), which
can be determined in 0(1) time provided that we store
the transit time i and cost Gi(v) of a copy u' of each
vertex v on the current path P.

We can therefore perform this truncated depth first
search in O(kn) time using O(n) storage space in addi-
tion to that required to represent the predecessor di-
graph. After we have computed the minimum cost to
time ratio X = X(C) of an initial cycle C which is con-
tained in W(vu) for some v C V and j = 0, 1 ., k,
we can determine rrk(X) by (5) in O(kn) time using
0(n) additional space by performing another truncated
depth first search in the predecessor digraph. It is un-
necessary to perform a full depth first search, since if
X > X* then the algorithm cannot terminate and if X =
X* there must be a shortestpath from s to v with lengths
Ce(X*). (More precisely, if t is the smallest transit time
of such a path then the walk Wt(v) found by the algo-
rithm must also be a path.)

Since we can detect a cycle and compute 7rk(X) in
O(kn) time and check dual feasibility in O(m) time, if
we check for early termination at k = 1, 2, 4, ... ,

2[1ogTJ then the running time will increase by at most
O(Tn + log2T m). In case we are not able to terminate
when k = 2 °g2T] , then the theorem guarantees we will
find the minimum cost to time ratio when k = 2T -
1. Since a path can have transit time at most T,
7r2T-l(X*) must then be the length of a shortest path
from s to v with lengths c,(AX*) and thus X* and ir 2

T
- I(h*)

must satisfy (2). This yields an O(T(m + n log n))
algorithm for finding the minimum cost to time ratio
X*. Once we have determined X*, we can obtain a
minimum cost to time ratio cycle in O(n + m) time as
described in Section 2.

The process of finding a dual feasible r correspond-
ing to X = X(C) can often be accelerated by mimicking
a shortest paths algorithm as we perform the truncated
depth first search. Initially we set kt(X) = 0 and
X (X) c= for v # s. During the depth first search, as
the arc (, vj+'t.'.}) is examined, we set

*r () = min{fr (Q), 4* (X) + c(,,,)()}. (9)

After the depth first search is completed, we will have
r k(x) -< rr (X), and some of the r (X) may correspond

to paths whose transit time exceeds k. Boros et al. [3]
describe an application in which it suffices to compute
LX*J and a corresponding dual feasible Tr. In this case,
we may be able to terminate even earlier by instead
computing rk([XL) or k(LxJ).

If X and rTk(X) or rk(X) do not satisfy (2), we can
still profit from the depth first searches. First of all, if
we store the initial cycle with the minimum cost to
time ratio then it is only necessary to maintain those
arcs of the predecessor digraph which lie on paths
encountered in the truncated depth first search, since
subsequent searches will not examine the other arcs.
Further, it is possible to set Gj(u) = oc for all vertices
t1 pruned from the predecessor digraph by deleting the
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572 HARTMANN AND ORLIN

other arcs. This may lead to Gk(v) = o as determined
by (4), and hence the removal of arcs (r, v) from E<,
which in turn may allow the shortest paths calculations
to be simplified. Finally, if we keep track of the arcs
achieving the minimum in (9) as in a shortest paths
algorithm, these arcs may form a cycle C which would
necessarily have X(C) < X(C).

5. PARAMETRIC SHORTEST PATHS

In this section, we show that if the algorithm for finding
a minimum cost to time ratio cycle terminates early
with k < 2T after computing r k(X), then by doing O(kn
log n) postprocessing we can also compute the length
of shortest paths from s to each vertex v V with
respect to the lengths ce(X) = Ce - Ate parametrically in
X. More precisely, we create data structures requiring
O(kn) storage space such that given any X - X* the
length of the shortest path from s to v with respect to
the lengths ce(X) can be recovered in O(log n) time,
and the shortest path itself can be determined in O(p
+ log n) time if it has p arcs. A shortest paths tree
with respect to ce(X) can be recovered in O(n log n)
time, as in Young et al. [27].

As a first step, we perform a final truncated depth
first search in the pruned predecessor digraph in order
to compute Gj(v) for those v E V and = 0, 1, ... 
k for which there is a path from so to vj. (If the predeces-
sor digraph is represented by predecessors and the
Gj(v) are stored, this depth first search is unnecessary.)
We will show that the length of a shortest path from s
to v with lengths ce(X) for any X < X* can be computed
as the minimum of Gj(v) - Xj over j for which there
is a path from s to vi in the predecessor digraph.

First we will argue that r (X) is the length of a
shortest path from s to v with lengths ce(X) for any X
< X*. Suppose that rk(X*) = Gj(v) - X*j. Then since
r k(X*) is the length of a shortest path from s to v with

lengths ce(X*), we must have Gj(v) - X*j < Gi(v) -
X*i for all i > k. Therefore,

Gj(v) - Xj < Gj(v) + X*(i - j) - Xi Gi(v) - Xi

for all i > k, which shows that 7r(X) = rrn-1(X) the
length of a shortest path from s to v with lengths ce(X).
Finally, we must show that if Gi(v) corresponds to a
walk Wi(v) which contains a cycle then i cannot achieve
the minimum in (5). Since < X*, an initial cycle C
contained in Wi(v) must have XeEC ce(X) > 0, so remov-
ing C from Wi(v) yields a walk W(v) with transit time
t = i - SeEC te < i and cost Gi(v) - XeCC Ce . Therefore

Gt(v) - Xt (Gi(v) - eEC Ce)

- X(i - eeC te) < Gi(v) - Xi,

which gives the desired conclusion.

Since we will be interested in determining the value
ir '(X) as well as an index which achieves the minimum
in (5), we will use a data structure from the algorithm
of Megiddo [23] for determining the minimum of linear
functions. For each vertex v E V, we incorporate the
linear functions Gj(v) - Xj for which there is a path
from s to v one-by-one into a list of break points and
indices associated with v. Before incorporating Gj(v)
- Xj, we will assume that we have a list of break-
points -oc = X0 < < < Xi = oc, together with
indices 0 jl < ... < i j - 1 such that jl achieves
the minimum in (5) for all X with X,_ -< X - X,. Megiddo
shows that Gj(v) - Aj can be incorporated in this list
in 0(1) time after performing a binary search over
Ji ... , i. He also shows that the number of break-
points can be at most O(nm), so the total time required
will be O(kn log n).

Given these data structures, we can determine the
value rr(AX) and an index jl achieving the minimum in
(5) in O(log n) time. In order to recover a shortest path
from s to v, we can just follow predecessors back from
vil to so in the predecessor digraph. (If the predecessor
digraph is represented by lists of arcs (u1 , vi+t( ..U) in E<

for each vertex u E V<, we must first represent the
predecessor digraph by predecessors in O(kn) time.)
While the worst-case time to recover a shortest path
tree T with respect to ce(X) will be O(n log n), on the
average we can do better. If D, is the number of descen-
dants of u in T, i.e., the number of vertices v for which
the path from s to v in T passes through u, then the
expected running time will be only O(n + log n ,,,
lD,,) if the vertices v #A s are processed in random
order.

6. APPLICATION TO CYCLIC STAFFING

In Bartholdi et al. [2], a certain class of cyclic staffing
problems were represented as integer programming
problems of the form

minimize x1 + . + xn

subject to Ax - b (10)

x - 0 and integer

where A is an m by n 0-1 column circular matrix, i.e.,
in each column of A the l's occur consecutively, where
the first and last entries are considered to be consecu-
tive. This class includes the work scheduling problems
described in the introductory textbook of Winston
[28, §3-5].

Bartholdi et al. show that a solution to (10) can be
obtained by rounding the solution to its continuous re-
laxation
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minimize x + ... + x,

subject to Ax 2 b (11)

xŽO

in a particular way, and that the solution to (11) can
be obtained by transforming it to a parametric shortest
path problem of the type considered in Karp and Orlin
[181. For the sake of completeness, we briefly describe
the transformation of (11) to a parametric shortest
path problem.

First of all we note that because of the column circu-
larity of A, rows i and i + 1 can differ for at most 2n
row indices i, so we may assume that m < 2n. Also,
if there is a pair j, k of distinct columns such that aj
- aik for all i then column k can be eliminated. Checking

this condition for each pair of columns would require
O(n3) time, but there is a more efficient way to eliminate
all such columns. We first scan each column in order
to obtain a compact representation of the form (i, j),
where (i, j) represents a column for which the first 
in the circular sequence of I's occurs in row i and the
first 0 in the circular sequence of O's occurs in row j.
Thus if i < j the column has consecutive 's occurring
in rows i, . . . ,j - 1 and if i >j the column has
consecutive 's in columns 1, .. . ,j - 1 and i, . . , m.

We will eliminate all dominated columns in three
stages. First we eliminate those (i, j) with i < j for
which there is an (i', j') with i' < j' such that i' c i
and j' - j. Assuming the columns of this form are
sorted primarily by the first index and secondarily by
the second index, this can be done in O(n) time using
dynamic programming. (The sorting itself takes O(n)
time using a bucket sorting technique.) In the same
way, we can eliminate those (i, j) with i > j for which
there is an (i', j') with i' > j' such that i' i and j' -
j. We note that no column (i', ') with i' < j' can domi-
nate a column (i, j) with i > j.

Finally, to see what columns (i', j') with i' > j'
dominate columns of the form (i, j) with i < j, let i*
be the smallest i and j* be the largest j for which there
is a column (i, j) with i > j. Then a column (i, j) with
i < j is eliminated if i - i or if j < j. The entire
procedure takes O(n) time once the columns are repre-
sented compactly, which requires O(n2) time since we
must examine each ai1. It is easy to see that the compact
representation can be used to reconstruct the matrix
A in such a way that its remaining columns are in
lexicographic order. The matrix A will then be row
circular, i.e., in each row of A the l's occur consecu-
tively where the first and last columns are considered
to be consecutive.

A change of variables then transforms (11) into the
dual of a parametric shortest path problem: Forj = 0,
1, . . , n - 1,let y = x + + xj; in particular y =
0. Also, let X = -(x + ... + x). The non-negativity

constraints on the xi's can be stated as yi-l - yi for i
= . . ., n - 1 and y,,_1-< y - X. If row i has

consecutive l's occurring in columns j + 1, .... , k
for some 0 - j < k < n, the corresponding inequality
can be written yjI Y - b. If row i has consecutive
l's in columns 1,...,j and k + 1,..., n for some
0 - j k < n, the corresponding inequality can be
written Yk c YJ - bi - . The relaxation (11) is thus
transformed to the maximization of X subject to linear
inequalities of the form Xt(,,vu) - y,, + y -< c(,v), where
t(,,v) E {0, 1}.

These are simply the dual constraints (2), so the
relaxation of the cyclic staffing problem is reduced to
the computation of X* for a digraph D with vertex set
{0, 1 . . . , n - 1}. For a solution x to (11) we can
take x = rk(X*) - rTi(X*) forj = 1, 2,..., n -
I and x,, = - - r,_(X*) with rX(X*) for v E V
determined by (5). Since the rounding used by Bar-
tholdi et al. to obtain a solution to (10) is a special case
of the rounding used by Boros et al. [3], it suffices to
compute [X*l and a corresponding dual feasible rr as
we have remarked in Section 4.

Since this digraph has only O(n) arcs, the O(nm log
n) parametric shortest paths algorithm of Karp and
Orlin or the O(nrn + n2 log n) parametric shortest paths
algorithm of Young et al. yield an O(n2 log n) algorithm
for this class of cyclic staffing problems. Here we note
that v < lx for every arc (, v) such that t(,,v) = 0, so
that the corresponding arc set E - E' is acyclic. Thus
since T = O(n), the faster O(Tm) algorithm for comput-
ing a minimum cost to time ratio cycle yields an O(n2)
algorithm for this class of cyclic staffing problems. Fur-
ther, if K is the maximum number of l's in any row,
then T = O(K) and thus the algorithm finds a minimum
cost to time ratio cycle in O(Kn) time. In terms of
cyclic staffing, it means that no shift is working for
more than K periods.

7. SUMMARY

In this paper, we have considered the problem of find-
ing a minimum cost to time ratio cycle in a digraph
when the transit times are small integers. We presented
an improvement and extension of the O(n3 ) algorithm
developed by Karp and Orlin for the case of 0-1 transit
times. The algorithm solves the problem as O(T) short-
est paths problems on a related digraph and therefore
has an O(T(m + n log n)) running time, which can be
improved to O(Tm) in case each cycle has a strictly
positive transit time. (Here T is an upper bound on the
transit time of any path or cycle, so that T = O(n)
when the transit times are 0-1.) The algorithm can be
applied to the cyclic staffing problem, and improves
the running time from O(n2 log n) to O(n2 ).
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We have also described a heuristic method for con-
structing a dual feasible solution to the linear program-
ming formulation of the minimum cost to time ratio
cycle problem, which uses quantities computed by the
algorithm. When the dual solution corresponds to the
cost to time ratio of a candidate cycle, the algorithm
can terminate early. We give several strategies for de-
tecting a candidate cycle, which result in at worst a
small constant factor increase in running time but allow
the algorithm to terminate far earlier than indicated
by the worst-case running time. This feature improves
upon Karp's algorithm for the minimum cycle mean
problem and Karp and Orfin's algorithm for the para-
metric shortest paths problems.
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