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We develop a flat, analytic, and nonlinear placement algorithm, ePlace, which is more effective, generalized,
simpler, and faster than previous works. Based on the analogy between placement instance and electrostatic
system, we develop a novel placement density function eDensity, which models every object as positive
charge and the density cost as the potential energy of the electrostatic system. The electric potential and field
distribution are coupled with density using a well-defined Poisson’s equation, which is numerically solved
by spectral methods based on fast Fourier transform (FFT). Instead of using the conjugate gradient (CG)
nonlinear solver in previous placers, we propose to use Nesterov’s method which achieves faster convergence.
The efficiency bottleneck on line search is resolved by predicting the steplength using a closed-form equation
of Lipschitz constant. The placement performance is validated through experiments on the ISPD 2005 and
ISPD 2006 benchmark suites, where ePlace outperforms all state-of-the-art placers (Capo10.5, FastPlace3.0,
RQL, MAPLE, ComPLx, BonnPlace, POLAR, APlace3, NTUPlace3, mPL6) with much shorter wirelength
and shorter or comparable runtime. On average, of all the ISPD 2005 benchmarks, ePlace outperforms the
leading placer BonnPlace with 2.83% shorter wirelength and runs 3.05× faster; and on average, of all the
ISPD 2006 benchmarks, ePlace outperforms the leading placer MAPLE with 4.59% shorter wirelength and
runs 2.84× faster.
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1. INTRODUCTION

Placement plays an important role in the VLSI physical design automation [Kahng
et al. 2010; Lu 2010] for both random logic [Lu et al. 2013] and datapath-intensive
components [Zhuang et al. 2013]. Placement performance largely impacts the down-
stream stages of power grid design [Wang et al. 2013], clock tree synthesis [Lu et al.
2012a], power optimization [Lu et al. 2012b], global detail routing [Lu and Sham 2013],
postlayout simulation [He et al. 2012], and design variability [Zheng et al. 2014]. As the
technology node enters the deep nanometer scale [ITRS 2011] with billion-transistor
integration, the performance of the placement engine becomes dominant on the over-
all quality of the design. Lots of research on placement has been proposed in recent
years [Markov et al. 2012]. The quality of placement results is usually evaluated by the
total half-perimeter wirelength (HPWL), that correlates with timing [Lu et al. 2010].
and routability [Sham et al. 2009; Han et al. 2011]. HPWL is widely used in modern
research developments [Kim and Markov 2012; Kim et al. 2012, 2010; Viswanathan
et al. 2007a, 2007b; Chen et al. 2008; Kahng and Wang 2006; Chan et al. 2006] and
public placement contests [Nam et al. 2005; Nam 2006].

Traditional placement methods can be generally divided into four categories, namely:
(1) stochastic simulation; (2) min-cut partition; (3) quadratic minimization; and (4)
nonlinear optimization, respectively. Stochastic approaches are usually based on sim-
ulated annealing techniques, of which one representative work is Timberwolf [Sechen
and Sangiovanni-Vincentelli 1986]. Uphill climbing is probabilistically accepted to
rescue the placer from local optima. Despite high solution quality, stochastic place-
ment has high complexity and low convergence rate that induce poor scalability to
large circuits. Min-cut approaches recursively simplify the problem by partitioning
the instance (netlist and placement region) into smaller subinstances. Local optimum
algorithms [Caldwell et al. 2000] are usually employed when the problem instance
becomes sufficiently small. State-of-the-art works include Capo [Roy et al. 2006],
Dragon [Taghavi et al. 2005], and Fengshui [Agnihorti et al. 2005]. However, improper
partitioning at early stages could induce unrecoverable quality loss to the final so-
lution. Quadratic approaches approximate the net length using a quadratic function
which can be linearized by various net models [Spindler et al. 2008]. The differen-
tiability enables gradient-based minimization techniques [Press et al. 2007]. Density
equalization is performed by adding pseudopins and nets to the physically overlapped
cells with a linear term introduced to the cost function [Eisenmann and Johannes
1998]. By solving the linear system, cells are iteratively dragged away from overfilled
regions. State-of-the-art quadratic placers include FastPlace3.0 [Viswanathan et al.
2007b], RQL [Viswanathan et al. 2007a], SimPL [Kim et al. 2010], MAPLE [Kim et al.
2012], ComPLx [Kim and Markov 2012], BonnPlace [Struzyna 2013], and POLAR [Lin
et al. 2013]. Despite high placement efficiency, the solution quality and robustness
usually lag behind nonlinear placers. Nonlinear approaches refer to those algorithms
based on a framework of nonlinear optimization. Wirelength and density are modeled
using smooth mathematical functions, thus gradients can be analytically calculated.
Wirelength models mainly include the log-sum-exp model [Naylor et al. 2001] and
the weighted average model [Hsu et al. 2011]. Density models mainly include the
bell-shaped function [Naylor et al. 2001], Gaussian equation [Chen et al. 2008], and
Helmholtz equation [Chan et al. 2005]. The partial differential equation (PDE) can be
solved by Green’s function [Cong et al. 2008] or finite difference method [Chan et al.
2005]. By Lagrange relaxation or penalty method, the grid density constraints are inte-
grated into the objective function and solved by the nonlinear CG method. State-of-the-
art nonlinear placers include APlace3 [Kahng and Wang 2006], NTUPlace3 [Chen et al.
2008], and mPL6 [Chan et al. 2006]. Due to the high complexity of modeling functions,
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nonlinear approaches employ multilevel cell clustering to simplify the problem and
accelerate the algorithm. However, the quality overhead is not negligible.

In this work, we develop a flat analytic algorithm ePlace [Lu et al. 2014] for nonlinear
global placement. ePlace is more effective, generalized, simpler, and faster than previ-
ous approaches. In contrast to the multilevel framework in prior nonlinear placers, our
algorithm conducts placement on the flat netlist. Moreover, we develop a novel density
function eDensity [Lu et al. 2013] modeling the placement instance as an electrostatic
system for density equalization. Unlike hierarchical density grid structures used in
prior works, ePlace sticks to a flat density grid with constantly high resolution. Com-
pared to previous nonlinear placers [Kahng and Wang 2006; Chan et al. 2006; Chen
et al. 2008], ePlace avoids quality loss due to suboptimal cell clustering and low density
resolution, especially at early placement iterations. The density function is formulated
as the system potential energy, while the density gradient is defined as the electric
repulsive force. A modified Poisson’s equation is proposed to couple the charge density
with electric potential and field distribution, and a Neumann boundary condition is en-
forced to maintain the legality of the global placement solution. Based on the previous
definition, a fast numerical method is proposed to solve Poisson’s equation using spec-
tral methods [Skollermo 1975] and well satisfies the boundary condition and makes
the local density gradient aware of global density information. The time complexity is
only O(mlog m), where m is the total number of movable elements. Besides, we propose
to use Nesterov’s method [Lu et al. 2014] for nonlinear placement optimization. The
steplength is determined as the inverse of the Lipschitz constant, which is dynami-
cally predicted without computation overhead. The placement efficiency is improved
by more than 2× compared to the CG method (with line search). We further enhance
the performance of the nonlinear solver using a preconditioning technique to statically
approximate the Hessian matrix of the objective function. All the preceding innovations
are integrated into the flat nonlinear placement algorithm ePlace, which is validated
through experiments on the ISPD 2005 [Nam et al. 2005] and ISPD 2006 [Nam 2006]
benchmark suites with high placement quality and efficiency achieved.

The remainder of the article is organized as follows. In Section 2, we review the
previous nonlinear placement works and discuss the existing problems. In Section 3,
we discuss the analogy of placement instance to the electrostatic system as well as the
formulation of the density penalty and gradient. We propose a well-defined Poisson’s
equation in Section 4 with a fast numerical solution based on spectral methods. In
Section 5, we propose to use Nesterov’s method for solving the nonlinear placement
problem with dynamic prediction of the Lipschitz constant and discuss our precon-
ditioning technique. In Section 6, we discuss our global placement algorithm ePlace
which is empirically validated in Section 7. We conclude the work in Section 8 and
discuss future research directions.

2. ESSENTIAL CONCEPTS OF PLACEMENT AND PRIOR NONLINEAR ALGORITHMS

In this section, we introduce the essential concepts and problem formulation of analytic
global placement. We then discuss the basic methods and existing problems of prior
nonlinear optimization algorithms.

2.1. Essential Concepts of Placement

A placement instance is formulated as a hypergraph G = (V, E, R), where V denotes
the set of vertices (cells), E the set of hyperedges (nets), and R the placement region,
respectively. We use Vm and V f to denote the movable cells and fixed macros in the node
set V . Let n = |Vm| denote the number of movable placement objects. A legal solution
satisfies the following three requirements.
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—Every cell is accommodated using enough free sites in the placement region.
—Every cell is horizontally aligned with the boundaries of one placement row.
—There is no overlap between cells or macros.

Based on the legality constraint, a placer targets minimizing the total HPWL of all
the nets. Let v = (x, y) denote a placement solution, where x = {xi|i ∈ Vm} and y =
{yi|i ∈ Vm} are the horizontal and vertical coordinates of all the cells. The HPWL of
each net e is denoted as H PW Le(v) and defined in Eq. (1).

HPWLe(v) = max
i, j∈e

|xi − xj | + max
i, j∈e

|yi − yj |. (1)

The total HPWL is then computed as HPWL(v) = ∑
e∈E HPWLe(v) and we have the

placement problem defined in Eq. (2).

min
v

HPWL (v) such that v is a legal solution. (2)

2.2. Definition of Global Placement

Global placement is usually regarded as a problem of constrained optimization. The
placement region is uniformly decomposed into a set of m× m rectangular grids (bins)
denoted as B. Based on a placement solution v, let ρb (v) denote the density of each grid
b as expressed in Eq. (3).

ρb(v) =
∑
i∈V

lx(b, i)ly(b, i). (3)

Here lx(b, i) and ly(b, i) denote the horizontal and vertical overlaps between the grid
b and the cell i. Both lx(b, i) and ly(b, i) exhibit a rectangular shape not differentiable
at boundary points. As Eq. (4) shows, a global placement problem targets a solution v
with minimum total HPWL, subject to the constraint that the density ρb(v) of all the
grids is equal to or below a predetermined target placement density ρt.

min
v

HPWL (v) s.t. ρb(v) ≤ ρt, ∀b ∈ B. (4)

2.3. Wirelength Smoothing

As Eq. (1) shows, the wirelength function HPWL(v) is not differentiable and hard to
minimize. As a result, various smoothing techniques have been developed to improve
the differentiability, thus convergence rate. Here we only discuss the horizontal part of
the wirelength smoothing function while the vertical part can be obtained in a similar
way.

A Log-Sum-Exp (LSE) wirelength model is proposed in Naylor et al. [2001] and
widely used in recent nonlinear placers [Chan et al. 2006; Chen et al. 2008; Kahng
and Wang 2006]. For each net e = {(x1, y1), (x2, y2), . . . , (xn, yn)} with n pins, the LSE
function approximates the horizontal span HPWLe as shown.

We(v) = γ

(
ln

∑
i∈e

exp
(

xi

γ

)
+ ln

∑
i∈e

exp
(−xi

γ

))
. (5)

Here γ is the smoothing parameter that can be used to control the modeling accuracy.1
As discussed in Wang et al. [2009], the modeling error is upper bounded by εLSE(e) ≤
γ ln n.

1The HPWL smoothing parameter γ cannot be set arbitrarily small due to the computation precision con-
straint.
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A Weighted Average (WA) wirelength model is proposed in Hsu et al. [2011]. Eq. (6)
shows the horizontal function of net e

We(v) =
(∑

i∈e xi exp (xi/γ )∑
i∈e exp (xi/γ )

−
∑

i∈e xi exp (−xi/γ )∑
i∈e exp (−xi/γ )

)
, (6)

where similarly γ is used for accuracy control. Hsu et al. [2011] show that the modeling
error is upper bounded by εW A(e) ≤ γ�x

1+exp �x/n, which is roughly half that of εLSE(e). In
this work, we use the WA wirelength model for our nonlinear placement optimization.

2.4. Density Penalty

As Eq. (4) shows, a legal global placement solution requires all the |B| grid density
constraints to be satisfied simultaneously, where |B| could be of million-scale or even
larger in modern IC design. As a result, all the constraints are usually cast into a single
penalty function N(v) as shown in Eq. (7). By definition, all the |B| density constraints
will be satisfied if and only if we have N(v) = 0.

ρb(v) ≤ ρt, ∀b ∈ B ⇔ N(v) = 0 (7)

Quadratic placement approaches usually model the density penalty as a linear or
quadratic function that can be easily integrated into their objective function. The
penalty in UPlace [Yao et al. 2005] is explicitly devised as a weighted sum of all
the frequency components of the density function. Specifically, N(v) = ∑

u,v wu,va2
u,v,

where u and v are the discrete frequency indexes, wu,v are the weight factors, and au,v

are the frequency coefficients. Notice that each frequency component is a differentiable
wave function, of which the smooth curve can help direct gradient-based optimization
in an effective way. The aforesaid penalty is fitted into a quadratic form and integrated
into the objective function. Other quadratic placers [Eisenmann and Johannes 1998;
Spindler et al. 2008; Viswanathan et al. 2007b; Kim et al. 2012; Kim and Markov
2012; Lin et al. 2013] modify the netlist by introducing anchor points, which implicitly
produce the density penalty terms for the quadratic cost function.

Nonlinear placers have no constraints on the order of modeling functions, thus are
able to design the penalty in more flexible ways. APlace3 [Kahng and Wang 2006] and
NTUPlace3 [Chen et al. 2008] use a quadratic penalty function with respect to grid
density, as Eq. (8) shows.

N(v) =
∑
b∈B

(
ρ̃b(v) − ρt

)2
. (8)

As the original density function ρb(v) is not differentiable and hard to optimize, a
smoothed density function ρ̃ is used here by employing a “bell-shaped” local smoothing
technique [Naylor et al. 2001]. In contrast to the penalty method discussed before,
mPL6 [Chan et al. 2006] directly applies Lagrange multipliers to all the density con-
straints. The density function in Chan et al. [2006] is smoothed in a global scale by
using the Helmholtz equation [Chan et al. 2005, Eq. (7)].

In this work, we model the placement instance as an electrostatic system and devise
the density penalty N(v) to be the system potential energy. In the remaining part of
the article, we will use N(v) to denote both density penalty and system energy. This
modeling methodology is discussed in detail in Section 3 in terms of how the density
penalty and gradient are defined. A fast numerical solution to the density and potential
related Poisson’s equation (Eq. (20)) is proposed in Section 4.

2.5. Nonlinear Optimization Formulation

Based on the smooth wirelength function W(v) and density penalty function N(v),
nonlinear global placers [Chen et al. 2008; Kahng and Wang 2006] formulate the
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Fig. 1. The snapshots of electric density, horizontal field, and potential distribution extracted at iteration
50. The placement is driven by only density force and conducted on the ISPD05 ADAPTEC1 benchmark.

objective function f (v) using a penalty factor λ as follows:

min
v

f (v) = W(v) + λN(v). (9)

As both the wirelength function and the density penalty are smoothed and thus dif-
ferentiable, gradient-based optimization methods [Shewchuk 1994] are used in prior
nonlinear placers [Chen et al. 2008; Kahng and Wang 2006] to produce high-quality
numerical solutions. Alternatively, Lagrange multipliers are also used [Chan et al.
2006] to formulate the objective function in a different form as

min
v

f (v) = W(v) +
∑
b∈B

λb|ρ̃b(v) − ρt|. (10)

Here λb denotes the multiplier on the density constraint of the bin b. This approach
might consume longer runtime due to the computation demand on the multipliers.
Multilevel cell clustering is employed in all the previous nonlinear placers [Chan et al.
2006; Chen et al. 2008; Kahng and Wang 2006] to accelerate the placement algorithm.
Despite the efficiency improvement, the quality overhead due to suboptimal clustering
is not negligible.

3. EDENSITY: A NOVEL DENSITY FUNCTION BY ELECTROSTATIC SYSTEM MODELING

We propose a novel formulation of the density penalty and gradient function, called
eDensity, by modeling the entire placement instance as a two-dimension a independent
electrostatic system. The distribution of electric potential and field is determined by
all the elements in the system. Each node i (a cell or a macroblock) in the netlist is
transformed into a positively charged particle (also denoted as i). The electric quantity
qi of the particle is set to be the node area Ai. The motion of a movable cell i is driven
by the electric force Fi = qiξi formulated by the Lorentz force law, where ξi is the local
electric field. Similarly, the cell potential energy Ni is calculated as Ni = qiψi, where
ψi is the electric potential at cell i. The correlation between the original placement
instance and the transformed electric system is illustrated in Figure 2. By Coulomb’s
law, the electric field and potential at cell i are the superposition of the contribution from
all the remaining cells in the system. An example of charge density ρ(x, y), horizontal
electric field ξx(x, y), and potential ψ(x, y) distribution in the entire placement region
R is shown in Figure 1.

3.1. System Modeling Using Electrostatic Equilibrium

Based on the system modeling, we correlate the global placement constraint of an even
density distribution with the system state of the electrostatic equilibrium. The electric
force helps direct the charge (cell) movement towards the equilibrium state. By Gauss
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Fig. 2. The placement instance is modeled as an electrostatic system. Each movable cell or fixed macro is
transformed into a positive charge with the electric quantity set to be the node area. The density force is set
as the electric force that drives cells apart from each other. The target of density equalization is equivalent
to the system state of electrostatic equilibrium.

law, the electric field equals the negative gradient of the potential as shown:

ξ (x, y) = (
ξx, ξy

) = −∇ψ(x, y) =
(

−∂ψ(x, y)
∂x

,−∂ψ(x, y)
∂y

)
, (11)

while the charge density equals the divergence of the electric field:

ρ(x, y) = ∇ · ξ (x, y) = −∇ · ∇ψ(x, y) = −
(

∂2ψ(x, y)
∂x2 + ∂2ψ(x, y)

∂y2

)
. (12)

An electrostatic system with only positive charges will introduce only repulsion forces.
The corresponding equilibrium state would have all the cells distributed along the
chip boundaries where the global placement constraint is violated. As a result, we
remove the direct-current (DC) component (i.e., the zero-frequency component) from the
density distribution ρ(x, y) to produce negative charges, while the integral of the density
function over the placement region becomes zero. Specifically, since our density function
transforms all the objects into positive charges, a positive-charge density distribution
is thus produced. However, after removing the DC component from the spatial charge
density distribution, underfilled placement regions with electric quantity below the
original DC level become negatively charged. Meanwhile, the overfilled regions remain
positively charged but with reduced electric quantity (DC is deducted from the original
quantity). Cells at positively charged (i.e., highly overfilled) regions are attracted to
the negatively charged regions, where the positive and negative charges neutralize
each other. Meanwhile, cells at negatively charged regions will mostly keep still. In
the end, the system reaches the electrostatic equilibrium state zero charge density
over the entire placement region, while the total potential energy is reduced to zero.
As a result, we model the placement density penalty and gradient using the system
potential energy and electric field, respectively.

3.2. Density Penalty and Gradient Formulation

The total potential energy equals the sum of potential energy over all the charged
elements of a new set V ′, which includes not only movable and fixed nodes from V , but
also newly added fillers and dark nodes, as discussed next.

Filler insertion. Let Am denote the total area of all the movable nodes, while Aws
denotes the total area of whitespace. The target of even density distribution will overly
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Fig. 3. The distribution of standard cells and fillers at the end of global placement. Macros, standard cells,
and fillers are shown by black rectangles, red dots, and blue dots, respectively. The total wirelength becomes
shorter as fillers populate up whitespace, thus squeezing cells to be placed closer. The placement is conducted
on the ISPD05 ADAPTEC1 benchmark using Nesterov’s method.

spread the cells, thus increasing the wirelength, if we have the target density ρt > Am
Aws

.
Similar to Adya et al. [2003] and Chan et al. [2006] we add fillers into the system, all
of equal size (rectangles), movable, and disconnected (with zero pins). Let V f c denote
the set of filler cells. The total area of filler cells is denoted as Af c and defined as

Af c = ρt Aws − Am. (13)

We illustrate the effect of filler insertion in Figure 3. The additional density force due
to filler insertion will squeeze the cells to be placed closer to their connected neighbors
with the density constraint still satisfied. The size of each filler i is denoted as Ai, which
is determined based on the area distribution of the movable cells. Specifically, we set
the filler size to be the average size of the mid-80% of movable cells. The remaining top
and bottom 10% largest and smallest cells are considered as noise factors and filtered
out. All the fillers are removed from the final solution of global placement.

Dark node insertion. As a generalized approach, our method could handle any ir-
regularly shaped placement region without loss of quality or efficiency. Suppose the
entire placement instance comprises a set of rectangular regions for cell placement. We
impose a uniform grid R to cover all the placement regions. The total space within R
but not belonging to any placement region will be decomposed into a set of rectangles,
each modeled as a dark node, which is processed in the same way as that of a fixed
object in the problem instance. Let Vd denote the set of all dark nodes and Ad the total
area of all the dark nodes. Movable nodes will be stopped by the repelling force from
the dark nodes when they are approaching the boundaries of any placement regions.

Density scaling. After the insertion of filler cells, we have the target density ρt =
Am+Af c

Aws
. The area Ai of each fixed or dark node i must be scaled by the target density ρt, in

order to maintain a globally equalized density distribution, otherwise, the density force
becomes higher than that of cells and fillers and repels cells away, while the whitespace
around the fixed nodes is emptied with wirelength overhead induced as Figure 4 shows.
Notice that our density scaling method will not introduce any legalization issues. The
electric quantity of each fixed or movable large macro is scaled down to the target
placement density. Regions filled by small standard cells or covered by large macros
will have the same charge density; there is no additional density force to drag cells
away from macros. Without density scaling, it is impossible to achieve an even charge
density distribution over the entire domain.

Potential energy computation. Let V ′ = Vm∪V f ∪V f c∪Vd denote the set of all elements
in the system. For each node i ∈ V ′, let ρi, ξ i, and ψi denote the electric density, field, and
potential at the point where the node i locates. Given a placement solution v for both

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 2, Article 17, Pub. date: February 2015.



ePlace: Electrostatics-Based Placement 17:9

Fig. 4. Without macro area scaling, the bin density at the macroblocks becomes higher than the target
density ρt. As a result, the density force pushes the cells away from macros, inducing underfilled whitespace
around macros and wirelength overhead.

movable cells Vm and filler cells V f c, the total potential energy N is defined in Eq. (14).

N(v) = 1
2

∑
i∈V ′

Ni = 1
2

∑
i∈V ′

qiψi. (14)

As the system energy equals the sum of mutual energy of all the pairs of charges,
we have a factor of 1

2 for the energy of each single charge. We cast the numerous grid
density constraints into a single energy constraint of zero system energy (N(v) = 0).
Our density penalty is different from those of all previous formulations [Chan et al.
2006; Chen et al. 2008; Kahng and Wang 2006] where it consists of a complete electro-
static system model with all the according physics laws strictly applied. By using the
penalty factor λ, we could produce an unconstrained optimization problem as shown:

min
v

f = W(v) + λN(v), (15)

where W(v) is by Eq. (6) and f (v) is the objective cost function to minimize. As both
W(v) and N(v) are smooth, we can generate the gradient vector by differentiating
Eq. (15) as follows:

∇ f (v) = ∇W(v) + λ∇N(v) =
(

∂W
∂x1

,
∂W
∂y1

· · ·
)T

− λ
(
q1ξ1x , q1ξ1y, . . .

)T
. (16)

Modeling of density force orientation and magnitude remains a long-term controversial
topic [Markov et al. 2012] in the analytic placement domain. For quadratic placement,
it remains unclear where to introduce the anchor point for each cell in order to
produce a proper dragging force. An ad-hoc force scaling is proposed in Eisenmann
and Johannes [1998], while in RQL [Viswanathan et al. 2007a] the top 10% highest
density force is empirically cut off to improve the quality. SimPL [Kim et al. 2010],
MAPLE [Kim et al. 2012], and ComPLx [Kim and Markov 2012] determine the anchor
points by recursive netlist bipartitioning, while the density force relies on initial
condition and cutline determination. Without restriction on the function order, the
density force formulation in nonlinear placement is of higher freedom. However, the
bell-shaped smoothing technique [Naylor et al. 2001] employed in Chen et al. [2008]
and Kahng and Wang [2006] incorporates only local information into force modeling,
thus it is difficult for the placers to identify a global path of cell movement. Parameter
adjustment in the smoothing function could help include remote density information,
but is highly case dependent and would consume more engineering effort and cause
robustness issues. The algorithm in mPL6 [Chan et al. 2006] uses a more generalized
approach with density force derived from potential differentiation. However, it lacks
the electrostatics modeling methodology that helps cast all the density constraints
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into one single energy function, as Eq. (14) shows. All of the existing problems indicate
further improvement space for the density force formulation. Our analytic approach
handles the problem by following the Lorentz force law, specifically:

—the density force orientation on each cell aligns with that of the steepest descent of
the density penalty (system potential energy);

—the density force magnitude on each cell is determined by its contribution to the
reduction of the density penalty; as Eq. (11) shows, and

—the system density force vector is well balanced with the wirelength force vector
using a single penalty factor, as Eq. (15) shows.

As a result, our approach models the density force in a systematic way and is validated
by the experimental results in Section 7, with shorter wirelength and high efficiency.

4. POISSON’S EQUATION AND NUMERICAL SOLUTION

Based on our eDensity formulation in Section 3, we propose Poisson’s equation to couple
the charge density with electric potential and field. The Neumann boundary condition
is used to enforce the legality of the global placement solution. The Poisson’s equation
is numerically solved using spectral methods with high accuracy yet low complexity.
Moreover, we propose a technique to locally smooth the density over discrete grids.

4.1. Well-Defined Poisson’s Equation

By Gauss’ law, the electric potential distribution ψ(x, y) can be coupled with the density
function ρ(x, y) using Poisson’s equation, as Eq. (17) shows.

∇ · ∇ψ(x, y) = −ρ(x, y), (x, y) ∈ R, (17)

Here the density function equals the negative of the divergence of the gradient vector
of the potential function. Let n̂ denote the outer normal vector of the placement region
R, and ∂ R denote the boundary. When cells are moving towards the borderline of the
placement region, the movement should be slowed down or stopped in order to prevent
cells from moving outside. The electric (density) force thus diminishes towards zero
while approaching the boundary of the density function domain. As a result, we use
the Neumann boundary condition, which requires a zero boundary gradient as shown:

n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂ R. (18)

Besides, the integral of the density function ρ(x, y) and the potential function ψ(x, y)
over the entire placement region R is set to be zero, as shown:∫∫

R
ρ(x, y) =

∫∫
R

ψ(x, y) = 0. (19)

Therefore, all the constant factors introduced by the indefinite integration from density
to field and potential become zero, moreover; Eq. (19) ensures the unique solution to the
PDE in Eq. (17). The problem due to the ill-defined PDE in Eisenmann and Johannes
[1998] is thus overcome. Based on all the preceding definitions, we have our well-defined
Poisson’s equation constructed as follows:⎧⎨⎩

∇ · ∇ψ(x, y) = −ρ(x, y),
n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂ R,∫∫

R ρ(x, y) = ∫∫
R ψ(x, y) = 0.

(20)

There are several quadratic placement works [Eisenmann and Johannes 1998;
Spindler et al. 2008] in literature where the Poisson’s equation is used. However,
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the PDE solution is only used to determine the location of anchor points. Some non-
linear placers [Chan et al. 2006] use the Helmholtz equation to include two orders of
derivatives to the smoothed density function. To guarantee a unique PDE solution, a
linear term is added to the equation with a self-tuned multiplier. Unlike all the pre-
vious PDE-based placement approaches, our method is based on a complete system
model. The density penalty is formally formulated as the system potential energy. The
Poisson’s equation is used to compute the electric field which, together with the electric
quantity, determines the density gradient by strictly following the Lorentz force law.
The uniqueness of our PDE solution is promised by enforcing a zero integral of the
potential, which not only simplifies the integration but also avoids the introduction of
extra noise due to the linear term in Chan et al. [2006].

4.2. Fast Numerical Solution Using Spectral Methods

We propose a numerical solution using spectral methods [Skollermo 1975] to effectively
and efficiently solve the Poisson’s equation in Eq. (20). Spectral methods express the
solution to some PDE as the summation of basis functions (e.g., sinusoid and cosine
waveforms) and choose the coefficients in the sum to satisfy the PDE and boundary
conditions. A sinusoid function is an odd and periodic function. It diminishes to zero at
the boundary of each period, which could naturally satisfy the Neumann condition as
stated in Eq. (18). As a result, we use a sinusoid wave function as the basis function to
express the electric field. As the density and potential functions are the derivative and
integral of the field function, we use the cosine wave as the basis function to express
them. Based on such a decomposition in the frequency domain, we use spectral methods
to solve the Poisson’s equation.

For expression using discrete cosine transformation (DCT), we modify the original
density function ρ(x, y) to an even and periodic form ρDCT (x, y). Therefore, the new
function can be decomposed into a group of cosine waveforms oscillating at different
frequencies and constructed by DCT. Electric field and potential functions can be con-
structed by DCT and discrete sinusoidal transform (DST) in a similar way. The specific
modification to the density function is as follows. Suppose the placement region R is
uniformly decomposed into an m× m grid structure, thus the density function ρ(x, y) is
defined within the domain of [0, m−1]×[0, m−1]. We mirror the density wave to the neg-
ative half-plane such that the function domain is extended to [−m, m−1]× [−m, m−1],
while the density function becomes even. Then we periodically extend the domain of
the density function to [−∞,+∞] × [−∞,+∞]. Based on these two modifications, the
new density function ρDCT (x, y) can be expressed using DCT as follows.

Let u and v denote integer indexes ranging from 0 to m− 1. The frequency compo-
nents are defined as wu = 2π u

m and wv = 2π v
m, respectively. We use au,v to denote the

coefficient of each basis wave function of DCT. By definition, all the m× m coefficients
can be generated by the integral of the density function multiplied by the basis wave
functions over the 2D grid. The solution to each coefficient is shown in Eq. (21).

au,v = 1
m

m−1∑
x=0

m−1∑
y=0

ρ(x, y) cos(wux) cos(wv y). (21)

All the prior coefficients can be rapidly computed by invoking the FFT library only once.
Using these cosine coefficients, the new density function ρDCT (x, y) can be expressed
as a sum of cosine waves as shown:

ρDCT (x, y) =
m−1∑
u=0

m−1∑
v=0

au,v cos(wux) cos(wv y), (22)
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which can also be rapidly computed using one time of inverse FFT library invocation.
Based on Eqs. (17) and (19) and the cosine expression of the density function in

Eq. (22), we have the solution to the potential function ψDCT (x, y) as shown:

ψDCT (x, y) =
m−1∑
u=0

m−1∑
v=0

au,v

w2
u + w2

v

cos(wux) cos(wv y), (23)

which well satisfies Eq. (17). By Gauss law, the electric field vector is the negative gra-
dient of the potential function as in Eq. (11). Based on the solution to the potential func-
tion in Eq. (23), we can obtain the solution to the electric field ξ (x, y) = (ξXDSCT , ξYDCST )
in the form of DCT and DST as in Eq. (24).{

ξXDSCT = ∑
u
∑

v
au,vwu

w2
u+w2

v

sin(wux) cos(wv y),

ξYDCST = ∑
u
∑

v
au,vwv

w2
u+w2

v

cos(wux) sin(wv y).
(24)

Notice that the horizontal component ξXDSCT is constructed by sinusoid waves for the
horizontal field, which diminishes to zero while reaching the end of a period, thus
the horizontal boundary of the placement region. Similar construction is conducted on
the vertical field ξYDCST . Library support to the preceding numerical solutions can be
found in various FFT packages [Ooura 2001].

UPlace [Yao et al. 2005] also employs DCT to transform the density function into
the frequency domain. The authors form the density penalty using a weighted sum of
all the frequency components, where the biased weights between different frequencies
would help improve the density equalization. In our approach, the DCT and DST are
used in spectral methods to generate the solution to the partial differential equations,
where the density penalty and gradient are modeled as system potential energy and
electric force. As a result, our approach is different from UPlace in the formulation of
both density penalty and gradient.

4.3. Convergence

Our density function formulation is based on the analogy between an electrostatic
system and a placement instance. For the general case, the traditional bin packing
problem has been proved NP-hard [Coffman et al. 1997], thus it is intractable to prove
its convergence. However, for the homogeneous case, that is, where all the objects are
of equal size, we can show the convergence through analogy of the charge distribution.
Assume the final density distribution is not even, then from Eq. (21) we know that there
must be some density frequency coefficients au,v 
= 0. As a result, we have the respective
electric field coefficients au,vwu

w2
u+w2

v


= 0 and au,vwv

w2
u+w2

v


= 0, which means that ξx and ξy do not
equal zero. The electric force will then keep pushing the system potential energy to
drop by gradient descent, until finally a globally even density distribution is achieved.

4.4. Behavior and Complexity Analysis

An example of discrete density and field distributional in a two-dimensional a plane
is shown in Figure 5. The distribution of the electric field changes across different
iterations according to the variation of the density distribution, therefore the electric
field dynamically directs the cells to underfilled regions. From the figure, we can also
find that the electric field diminishes at the boundaries of the placement region. As
also shown in Figure 1(b), such behavior satisfies the Neumann condition and the
demand of global placement.

Suppose that we totally have n′ cells (n′ = |Vm|+ |V f c|) and an m× m grid imposed on
the placement region. The total complexity of our numerical solution has two sources
of contribution: (1) density computation and (2) potential and field computation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 2, Article 17, Pub. date: February 2015.



ePlace: Electrostatics-Based Placement 17:13

Fig. 5. Snapshots of the density distribution ρ(x, y) (grayscale) and the field distribution ξ (x, y) (red ar-
rows) produced by eDensity. The placement is driven by only density force and conducted on the ISPD05
ADAPTEC1 benchmark, using Nesterov’s method with preconditioning. Total potential energy and total
density overflow are denoted by N and τ , respectively.

Density computation. At each iteration, the density function is generated by the
following two steps:

—traversing all the elements in B to clear the cell density and cell area occupation to
zero; and

—traversing all the cells in Vm ∪ V f c to determine the area contribution of each cell to
the according bins that overlap the cell.

The first step consumes O(m2) time, while the second step consumes O(n′) time. Totally
it would consume O(n′ +m2) time to generate the density distribution at each iteration.

Potential and field computation. At each iteration, we need to invoke the FFT library
four times to solve Eqs. (21), (23), and (24), respectively. Each 2D FFT library call
consumes O(m2 log m2) = O(2m2 log m) = O(m2 log m) time, thus the total complexity is
O(m2 log m).

In general, our numerical solution has a computation complexity of O(n′ + m2 log m)
for each placement iteration. As the number of grids is usually at the same scale as the
number of cells (to ensure accuracy after discretization), we have O(n′) = O(m2) and
the total complexity is essentially O(m2 log m) or O(n′ log n′). Addition of fillers could
slightly increase the computation time, but would not change the overall complexity.
All the fillers are equally sized towards the average size of standard cells and will
all be upsized to that of a single bin if utilization is small, thus the total number of
fillers will not exceed O(m2). Moreover, as the number of fillers is at essentially the
same order of that of movable placement objects, we have n = O(n′), thus the overall
complexity is still O(n log n), where n is the number of movable placement objects.

There are many numerical solutions used in literature for the placement density
function. Green’s function is used in Eisenmann and Johannes [1998] to solve the
PDE using 2D convolution. However, the computation complexity is high, with O(n2)
total runtime consumed. Bell-shaped density smoothing is used in Chen et al. [2008]
and Kahng and Wang [2006] where, by default, the density gradient is aware of
only local information. Global density variation could be included in local gradient
computation by parameter adjustment in the smoothing function. However, as the
gradient computation on each cell would take O(m2) = O(n) time, the total time is
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Fig. 6. Illustration of dynamically adjusted density force across different placement iterations. All the cells
are initially squeezed into the lower-left subregion with an obstacle placed at the upper-right subregion.
The local density gradient could immediately respond to the remote density variation and identify a global
motion path for each overlapped cell to some remaining whitespace on the chip.

Fig. 7. A one-dimensional illustration of our local density smoothing technique. Here the cell width is
smaller than the bin width (wi < wb). We enlarge the cell to the dimension of one bin. As a result, movement
of i at any time will always change the overlaps between i, b′, and b′′, thus changing the density of b′ and b′′
simultaneously. There is no local smoothing applied when wi ≥ wb.

still O(n2). Our PDE solution with spectral methods provides better performance than
the aforesaid numerical solutions, as it is aware of global density information while
only taking O(n log n) time for each iteration. The density variation could be instantly
propagated to all the placement grids due to the frequency decomposition in Eq. (22).
As shown in Figure 6, the local density gradient could be immediately adjusted based
on the cell redistribution at remote areas.

4.5. Local Smoothness over Discrete Grids

Global smoothness by eDensity is achieved via Eq. (11) and Eq. (12). However, as
the physical dimension of each density bin is usually larger than that of cells, local
cell movement within a bin cannot be reflected in the density cost function, where
smoothness is degraded. As a result, we propose a local smoothing technique such that
the density function by Eq. (14) could well reflect any infinitely small movement of
cells within each bin. A one-dimensional example is shown in Figure 7. Here wi and wb
are the widths of cell i and bin b, and ci and cb are the coordinates of the centers of cell
i and bin b, respectively. lx(i, b) and l̃x(i, b) are the original and smoothed horizontal
overlaps between the cell and the bin, so we have

l̃x(i, b) =
{(

1.0 − ci−cb
wb

)
× wi : ci ∈ [cb − wb, cb + wb]

0 : ci ∈ (−∞, cb − wb) ∪ (cb + wb,+∞).
(25)

As the cell is being shifted rightwards, the contribution to the density of b′ is linearly
reduced, while the contribution to the density of b′′ is linearly increased, respectively.
The total contribution of i to the two neighboring bins (b′ and b′′) is constant and
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equals wi when the center of the cell ci locates between the centers of the two bins
cb′ and cb′′ . The smoothing effect is equivalent to the combination of cell dimension
stretching and cell density lowering, which keeps the objective cost function analytic.
Specifically, for each cell i, we conduct the local density smoothing as follows:

—if wi < wb, stretch the cell width from wi to wb and reduce the cell density from 1.0
to wi/wb;

—if wi ≥ wb, keep the original cell width and density.

As a result, this smoothing technique is consistent over different granularities and cell
dimensions. Notice that our local smoothing technique is being used at every iteration
when updating the density map. It costs constant time for each object since only finite
neighboring bins are affected by each object, thus the computation complexity is not
changed.

5. NONLINEAR OPTIMIZATION

Global placement is proved an NP-complete problem [Garey et al. 1976]. Develop-
ments of prior heuristics are mostly directed by mathematical derivation for quality
and efficiency. As Eq. (9) shows, the objective function consists of a convex wirelength
function [Hsu et al. 2011] and usually a nonconvex density function [Naylor et al. 2001],
where the property of nonconvexity challenges the performance of modern convex pro-
gramming methods. In this section, we first briefly introduce the Conjugate Gradient
(CG) method that is widely used in previous nonlinear placement works [Kahng and
Wang 2006; Chen et al. 2008], and discuss the efficiency bottleneck on the line search.
Then we propose Nesterov’s method to solve the nonlinear problem and illustrate our
technique of Lipschitz constant prediction that determines the steplength in constant
time. To the best of our knowledge, our work is the first in literature to incorporate
Nesterov’s method and Lipschitz constant prediction into global placement optimiza-
tion. A comparison of placement quality and efficiency by using these two optimization
methods in ePlace is shown in Section 7, where Nesterov’s method could outperform
the CG method with 2.28% shorter wirelength and 2.21× speedup, on average, for all
the ISPD05 benchmarks. In the end, we discuss our preconditioning technique.

5.1. Conjugate Gradient Method with Line Search

Details of the CG method in one iteration are illustrated in Algorithm 1. The Polak-
Ribiere method is used to update βk for correlation with previous search directions,
as line 2 shows. βk is reset to zero when the conjugacy is lost. The search direction
is computed at line 3. We use line search to determine the steplength, and the best
solution along the search path dk and within the search interval αmax

k is obtained. In
our approach, golden section search (GSS) is used to implement line search2 as line 4
shows. The new solution for the current iteration is computed at line 5 and used as the
initial solution for the next iteration, while CG would converge after a number of such
iterations. CG targets optimization of locally quadratic functions. The closer f is to
a quadratic form, the faster CG would converge. Otherwise, CG would easily lose the
conjugacy with β reset to zero (line 2). As discussed in Shewchuk [1994], the local error
rate of the CG method is bounded as ‖e(k)‖ ≤ 2(

√
κ−1√
κ+1 )k‖e(0)‖, where ‖e(k)‖ is the error at

the kth iteration and κ is the condition number of the Hessian matrix of the objective
function, respectively. On the other side, the global convergence rate by the CG method

2Within one iteration, the length of the search interval is recursively reduced by the golden ratio 0.618 in
each step until the interval length is below αmin

k .
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ALGORITHM 1: CG-Solver at kth iteration
Input: initial solution vk

objective function fk = f (vk) maximal and minimal search interval αmax
k and αmin

k
Output: local optimal solution vk+1
1: gradient vector ∇ fk = ∇ f (vk)

2: Polak-Ribiere parameter βk = max
{∇ f T

k (∇ fk−∇ fk−1)
‖∇ fk−1‖2 , 0

}
3: search direction dk = −∇ fk + βkdk−1
4: steplength αk = GSS

(
vk, fk, dk, α

max
k , αmin

k

)
5: new solution vk+1 = vk + αkdk
6: return vk+1

cannot exceed O(1/k) [Nemirovskii and Yudin 1983]. Despite the wide usage of CG in
previous nonlinear placers, there are still several existing problems.

—The major runtime bottleneck of nonlinear placement lies on the line search at line 4,
where the cost function is repeatedly evaluated at different points along the search
direction. Profile statistics in Section 7 show that, on the placement of ADAPTEC1,
line search takes about 63% of the total runtime of global placement and about 50%
of the total placement turnaround, respectively. As a result, line search becomes a
roadblock to the pursuit of higher placement efficiency.

—At each iteration, the CG method requires the steplength to be at the zero gradient
point along the search direction. However, GSS could only locate the local minimal
point, while the actual zero gradient point may fall beyond the range of the search
interval. As a result, such inaccurate steplength would prevent the CG method from
matching its expected performance.

—The objective function of placement is highly nonlinear where the local cost behavior
is usually far from a quadratic form. It becomes fairly easy to lose the conjugacy with
respect to previous search directions, while the current search direction is repeatedly
reset to that of the negative gradient (βk = 0 at line 2), degrading the performance
of the CG method to that of the gradient descent method.

As line search is time consuming and could dominate nonlinear placement effi-
ciency [Kahng and Wang 2006], there are attempts in literature to use steplength
prediction [Chen et al. 2008] instead. Specifically, as shown by Chen et al. [2008,
Eq. (12)], steplength is modeled as αk = swb

‖dk‖2
, where wb is the bin dimension and ‖dk‖2

the Euclidean norm of the search direction vector. s is a constant factor that is tuned be-
tween 0.2 and 0.3 to obtain a good trade-off between runtime and quality. In this work,
we propose a novel and systematic approach to dynamically estimate the steplength,
based on the local smoothness of the gradient function. Specifically, we use Nesterov’s
method as the nonlinear solver and Lipschitz constant prediction to determine the
steplength. The optimizer could be beneficial in terms of both convergence rate and
solution quality, simultaneously. The results in Section 7 show that our approach could
outperform Kahng and Wang [2006] and Chen et al. [2008] by roughly 14% and 10%
shorter wirelength and 10× and 1.5× speedup, on average, on all the ISPD05 and
ISPD06 benchmarks.

5.2. Nesterov’s Method with Lipschitz Constant Prediction

We propose to use Nesterov’s method for nonlinear global placement optimization.
Similar to the CG method, Nesterov’s method requires only a first-order gradient and
linear memory cost with respect to the problem size. Nesterov’s method targets solving
a convex programming problem in Hilbert space H. Unlike most convex programming
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methods, Nesterov’s method constructs a minimizing sequence of points {uk}∞0 that
is not relaxational. Algorithm 2 illustrates one iteration of the method on a typical
problem min{ f (u)|u ∈ H} with a nonempty set U ∗ of minima. Here u is the solution

ALGORITHM 2: Nesterov-Solver at kth iteration
Input: major solution uk, reference solution vk, optimization parameter ak and objective

function fk = f (yk).
Output: new solutions uk+1 and vk+1
1: gradient vector ∇ fk = ∇ f (vk)
2: steplength αk = arg max

α

{ fk − f (vk − α∇ fk) ≥ 0.5α‖∇ fk‖2}
3: new solution uk+1 = vk − αk∇ fk

4: parameter update ak+1 =
(

1 +
√

4a2
k + 1

)
/2

5: new reference solution vk+1 = uk+1 + (ak − 1) (uk+1 − uk) /ak+1
6: return uk+1

to the convex programming problem, v is a reference solution that determines the
steplength, a is an optimization parameter, and α is the steplength, respectively. At the
beginning (k = 0), the method starts from an initial solution v0 ∈ H and sets a0 = 1,
u0 = v0 and α0 = ‖∇ f (v0)−∇ f (z)‖

‖v0−z‖ , respectively. z is an arbitrary point in H and z 
= v0. All
the preceding vectors and scalars will be iteratively updated. At line 2, the steplength αk
is maximized in order to accelerate the convergence. The new solution uk+1 is updated
at line 3 based on the initial reference solution vk. The new optimization parameter
ak+1 is updated at line 4, while the new reference solution vk+1 is updated at line 5
based on the solution u and parameter a.

The convergence rate of Nesterov’s method in Algorithm 2 is proved O(1/k2) in
Nesterov [1983], where k is the number of iterations. Notice that Nesterov’s method
[Nesterov 1983] is the firs in literature to achieve O(1/k2) convergence rate, which is
proved the upper bound of convergence rate for the first-order optimization methods
[Nemirovskii and Yudin 1983]. The expected convergence rate requires that the
steplength αk satisfies Eq. (26) at every single iteration.

f (vk) − f (vk − αk∇ f (vk)) ≥ 0.5αk‖∇ f (vk)‖2. (26)

An upper-bounded error rate of Nesterov’s method is shown in Eq. (27).

THEOREM 5.1. Suppose f (u) is a convex function in C1,1(H) and U ∗ 
= ∅, where
C1,1(H) means that the gradient function ∇ f (u) is of Lipschitz continuity. We have
u∗ ∈ U ∗ and L is the Lipschitz constant of the gradient function ∇ f (u). The following
assertions are true based on the solution uk output by Algorithm 2.

f (uk) − f (u∗) ≤ 4L‖v0 − u∗‖2

(k + 2)2 . (27)

Here we define the Lipschitz constant L of the gradient function ∇ f as follows.

Definition 5.2. Given f ∈ C1,1(H), L is the Lipschitz constant of ∇ f , if ∀u, v ∈ H
we have

‖∇ f (u) − ∇ f (v)‖ ≤ L‖u − v‖, (28)

and ∇ f (u) is thus of Lipschitz continuity. At each iteration, the inequality in Eq. (26)
must be satisfied to achieve O(1/k2) convergence rate. Similar to line search in the CG
method, Nesterov [1983] uses bisection search to determine the maximum steplength.
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At each iteration, the objective function would be evaluated for O(log L) times, which
increases the complexity to O(n log n log L). Instead, we use steplength prediction to
accelerate our placement algorithm. As discussed in Nesterov [1983], if the Lipschitz
constant of the gradient function is known, we can set the steplength as the inverse
of Lipschitz constant to satisfy Eq. (26) without convergence overhead. However, the
estimating the exact Lipschitz constant for the objective function of global placement
is difficult due to the following issues

—The objective function is nonconvex due to the energy (density) function, thus the
requirement for Theorem 5.1 is not satisfied.

—The wirelength function is iteratively changed due to the dynamically adjusted
smoothing coefficient (γ in Eq. (6)).

—The penalty factor (λ in Eq. (15)) on the energy (density) function is iteratively
changed for runtime force balancing.

As a result, we propose a method to dynamically approximate the Lipschitz constant
L̃k iteratively. Based on Eq. (28), we select x to be the current reference solution (yk)
and y to the reference solution at the last iteration (yk−1). The Lipschitz constant for
∇ f (yk) is approximated as follows.

L̃k = ‖∇ f (yk) − ∇ f (yk−1)‖
‖yk − yk−1‖ . (29)

Our approximation method is effective and efficient because:

—there is no additional computation cost introduced, as both ∇ f (yk) and ∇ f (yk−1) are
known; and

—the two solutions yk and yk−1 are supposed to be close to each other; therefore
‖yk − yk−1‖ is relatively small compared to ‖x − y‖ by randomly selecting x and y
(this prevents underestimation of L̃k, thus overestimation of the steplength αk).

The results in Section 7 show that our placement algorithm using Nesterov’s method
with Lipschitz constant prediction could simultaneously improve the runtime and
wirelength by 2.21× and 2.28%, compared to those by the CG method together with
line search.

5.3. Preconditioning

Preconditioning reduces the condition number of a problem, which is transformed
to be more suitable for a numerical solution. Traditional preconditioning techniques
compute and inverse the Hessian matrix (Hf ) of the objective function ( f ). Precon-
ditioning has very wide applications in quadratic placers [Viswanathan et al 2007a,
2007b; Kim et al. 2010; Kim and Markov 2012; Lin et al. 2013] but zero attempts in
nonlinear placers [Chan et al. 2006; Chen et al. 2008; Kahng and Wang 2006], because
the density function is not convex. A preconditioned gradient vector ∇ fpre = H−1

f ∇ f
can smooth the numerical optimization to converge in fewer iterations. Nevertheless,
the objective function of global placement is highly nonlinear and iteratively changed.
Moreover, the problem instance is usually of millions of objects, where the complexity
of O(n2) makes iterative computation of the Hessian matrix fairly expensive and
indeed impractical. As a result, we select a Jacobi preconditioner with only diagonal
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terms of the Hessian matrix being used, as Eq. (30) shows.

Hfx,x =

⎛⎜⎜⎜⎜⎜⎝
∂2 f
∂x2

1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
· · · ∂2 f

∂x2∂xn

...
...

. . .
...

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

· · · ∂2 f
∂x2

n

⎞⎟⎟⎟⎟⎟⎠ ≈

⎛⎜⎜⎜⎜⎜⎝
∂2 f
∂x2

1
0 · · · 0

0 ∂2 f
∂x2

2
· · · 0

...
...

. . .
...

0 0 · · · ∂2 f
∂x2

n

⎞⎟⎟⎟⎟⎟⎠ = H̃fx,x . (30)

We have a similar definition on H̃fy,y and can construct H̃f based on them. By Eq. (15)

we have ∂2 f (v)
∂x2

i
= ∂2W (v)

∂x2
i

+ λ∂2 N(v)
∂x2

i
, and we concisely approximate ∂2W (v)

∂x2
i

and ∂2 N(v)
∂x2

i
to

ensure functionality of the preconditioner. Differentiating the wirelength function in
Eq. (6) by two orders is computationally expensive and we use the vertex degree of
object i instead:

∂2W(v)
∂x2

i

=
∑
e∈Ei

∂2We(v)
∂x2

i

⇒ |Ei|, (31)

where Ei denotes the net subset incident to the object i. The nonconvexity of the density
function in Eq. (14) disables the traditional preconditioner from achieving the expected
performance. Eq. (32) shows its two-order differentiation

∂2N(v)
∂x2

i

= qi
∂2ψi(v)

∂x2
i

= qi
−∂ξix (v)

∂xi
⇒ qi. (32)

Here we use the linear term qi as the density preconditioner.

H̃fx,x =

⎛⎜⎜⎜⎝
|E1| + λq1 0 · · · 0

0 |E2| + λq2 · · · 0
...

...
. . .

...
0 0 · · · |En| + λqn

⎞⎟⎟⎟⎠ . (33)

This we have the preconditioned gradient ∇ fpre = H̃−1
f ∇ f . Section 7 shows that our

preconditioner could improve the wirelength by 2.42% with essentially the same run-
time on average of all the ISPD05 benchmarks.

6. GLOBAL PLACEMENT ALGORITHM

The entire flow of ePlace is shown in Figure 8, where our algorithm accounts for the
middle stage of global placement. The global placement is based on the input solution
vip from the initial placement stage, where the quadratic wirelength is minimized us-
ing a bound-2-bound (B2B) net model [Spindler et al. 2008]. A linear CG solver is used
with Jacobi preconditioning for acceleration [Kim et al. 2010]. After global placement
completes, all the fillers are removed from the solution vgp, which is then legalized and
discretely optimized using FastDP [Pan et al. 2005]. As discussed in Section 5, both
the CG method and Nesterov’s method are used to solve the unconstrained optimiza-
tion problem in Eq. (15). A self-adaptive parameter adjustment method (introduced in
Section 6.1) is incorporated to improve the quality and convergence rate. Finally, we
discuss the global placement algorithm in Section 6.2.

6.1. Self-Adaptive Parameter Adjustment

Grid dimension. Our approach uses fixed grid dimension throughout global placement.
There is naturally a trade-off between granularity and efficiency. A coarser grid induces
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Fig. 8. The entire flow of ePlace, including initial quadratic wirelength minimization, our novel global
placement algorithm, and detailed placement with legal solution generated.

higher efficiency but lower accuracy, and vice versa. From experiments we observe that
a coarser grid causes additional problems, for instance, more cells undertake the same
density force. These cells clot together and motion in the same trace, inducing density
oscillation between adjacent regions and impeding cell spreading. In our approach, we
determine the grid dimension based on the number of cells in the netlist and inserted
fillers. As the FFT package from Ooura [2001] requires the grid dimension m to be a
power of 2, we set m = �log2

√
n′� and upper bound mby 1024 due to efficiency concerns.

Steplength. As discussed in Section 5, in Nesterov’s method the steplength is deter-
mined by the inverse of the approximated Lipschitz constant, as shown in Eq. (29).
In the CG method, the steplength is determined by line search that locates the local
minimal cost along the conjugate direction within a search interval. The length of the
search interval αmax

k is dynamically adjusted as follows. The initial value is determined
as linearly proportional to the bin dimension, specifically αmax

0 = κwb, where wb is the
grid width. In practice, we set κ = 0.044 to achieve best placement quality, and αmax

k is
iteratively updated based on the optimal steplength αk−1, as Eq. (34) shows.

αmax
k = max

(
αmax

0 , 2αk−1
)
, αmin

k = 0.01αmax
k . (34)

Here αk is the steplength for the kth iteration generated by GSS, as line 4 of Algorithm 1
shows. Notice that, in practice, αk may not be the exact local optimal, as line search
will stop when the interval reduces to αmin

k . Moreover, if f (x) is a multimodal function
within the search interval, GSS may perform like a “random perturbation” and even
increase the cost under pathological conditions. Despite its suboptimality, such occa-
sional random perturbation will actually be useful. Solutions could escape from local
optimum with uphill climbing actions due to GSS and, as a result, GSS remains an
effective and efficient line search option.

Penalty factor. In our approach, we set the initial value of the penalty factor λ0 by
Eq. (35) in order to balance the forces of wirelength and density. This method is also
used in Chen et al. [2008] and Kahng and Wang [2006]. Here Wxi = ∂W

∂xi
and Wyi = ∂W

∂yi
,

while ξxi and ξyi denote the horizontal and vertical electric field at node i, respectively.

λ0 =
∑

i∈V ′
m
(|Wxi | + |Wyi |)∑

i∈V ′
m

qi(|ξxi | + |ξyi |)
(35)
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Fig. 9. Illustration of the iterative variation of penalty factor using the CG method with line search and
Nesterov’s method with Lipschitz constant approximation. The penalty factor increases almost monotonically
under nonlinear optimization by both methods. The placement is conducted on the ISPD05 ADAPTEC1
benchmark, where Nesterov’s method consumes fewer iterations than the CG method.

Traditional approaches usually multiply the penalty factor λ by a constant number (2.0
in Chen et al. [2008] and Kahng and Wang [2006]), when the optimization converges
locally. However, as wirelength and density are changed at every iteration, the penalty
factor should be updated immediately in order to adapt to the real-time variation.
In our approach, we iteratively update the penalty factor by setting λk = μkλk−1.
The multiplier μk is based on the iterative HPWL variation �HPWLk = HPWL(vk) −
HPWL(vk−1) as shown:

μk = μ
− �HPWLk

�HPWLref
+1.0

0 , (36)

where μ0 is a predetermined fixed number and �HPWLref is the expected wirelength
increase per iteration. In practice, we set μ0 = 1.1 and �HPWLref = 3.5 × 105 for best
quality. The multiplier μk is upper and lower bounded by 1.1 and 0.75 in order to damp
out the transient noise during the optimization flow. The experimental results show
that the penalty factor iteratively increases under the nonlinear optimization of both
the CG method and Nesterov’s method, as illustrated in Figure 9.

Density overflow. Global placement usually terminates when the overlap is small
enough. The remaining work is handled by the downstream legalizer and detail placer.
Similar to NTUPlace3 [Chen et al. 2008] and mPL6 [Cong et al. 2008], we use the
density overflow τ defined in Eq. (41) as the stopping criterion.

τ =
∑

b∈B max(ρ ′
b − ρt, 0)Ab∑

i∈Vm
Ai

(37)

Here Ab is the area of the grid b, while Ai is that of movable cell i. Also ρ ′
b denotes

the density of grid b due to only movable cells. The global placer terminates when the
overflow τ is less than τmin. The experimental results show that the total potential
energy N is well correlated with the density overflow τ , as illustrated in Figure 10(a).
The potential energy decreases exponentially while the density overflow decreases
linearly.

Wirelength coefficient. In our approach, we use the WA model [Hsu et al. 2011] in
Eq. (6) to smooth the wirelength function. WA outperforms the traditional LSE model
by roughly 2× in accuracy. The experiments show that quality and convergence are sen-
sitive to the smoothing parameter γ . Our approach relaxes the smoothing parameter
at early iterations, such that more cells are encouraged to be globally moved out of the
high-density regions. At later stages when local movement dominates, the parameter is
reduced to make the smoothed wirelength W approach HPWL. Meanwhile, the density
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Fig. 10. Illustration of: (a) Total overflow ratio τ and potential energy N; (b) HPWL and smoothed wirelength
W . The overflow decreases with linear rate while the energy decreases with exponential rate. The smoothed
wirelength approximates HPWL better when the density overflow approaches the lower limit (τmin). The
global placement uses the CG method and is conducted on the ISPD05 ADAPTEC1 benchmark.

of a smaller grid is more sensitive towards cell movement, and vice versa. Therefore,
we set the smoothing parameter γ to be the function of both the density overflow τ and
the grid size wb. By reducing the smoothing parameter, we only enable the motion of
HPWL-insensitive cells that are locally shifted to resolve the remaining overlap. Here,
by “HPWL-insensitive cells” we are referring to those cells whose movement will not
change the HPWL of their incident nets, that is, cells locate relatively far away from
the boundaries of the net bounding box. At later iterations, we only expect minor per-
turbation to the placement layout such that the solution will converge smoothly. As a
result, since we target to enhance the accuracy of wirelength modeling, the respective
wirelength force becomes stronger to allow only small-scale cell movement, thus minor
layout perturbation. The iterative correlation of the smoothed wirelength to the HPWL
is shown in Figure 10(b), where the smoothed wirelength converges to HPWL in the
end. Our empirical studies show that modeling γ as a linear function of bin dimension
wb yet an exponential function of density overflow τ achieves the best quality. As the
density overflow usually starts from around 100% and ends with 10% (our stopping
criterion), we set γ (τ = 1.0) = 80wb and γ (τ = 0.1) = 0.8wb by empirical tuning. The
function of the smoothing parameter γ in terms of density overflow τ is then modeled as

γ (τ ) = 8.0wb × 10kτ+b. (38)

Based on the value of γ (1.0) and γ (0.1) as mentioned earlier, it is easy to derive that
k = 20

9 and b = − 11
9 , respectively.

6.2. Global Placement

The detail flow of our global placement method ePlace is shown in Algorithm 3. The
objective function fk is formulated at line 5, while wirelength gradient ∇Wk and density
distribution ρk(x, y) are computed at line 6. The FFT library [Ooura 2001] is invoked
at line 7 to generate the distribution of field ξk(x, y) and potential ψk(x, y). The density
(energy) gradient ∇Nk is computed at line 8, while the total gradient ∇ fk is computed at
line 9. The nonlinear solver (NL-Solver) is invoked at line 10 with the current solution
vk, and the solution vk+1 for the next iteration is output by the nonlinear solver and
used to update the parameters at line 11. The stopping criterion is evaluated at line 12
to determine whether the solution converges. Finally, the global placement solution vgp
is output to the legalizer and detail placer at line 17.

We illustrate the process of global placement in Figure 11 using snapshots of cell and
filler distribution at eight intermediate iterations. Nesterov’s method is used for the
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Fig. 11. Snapshots of cell and filler distribution during global placement progression. Standard cells, macros,
and fillers are shown by red points, black rectangles, and blue points, respectively. The placement is conducted
on the ISPD05 ADAPTEC1 benchmark by ePlace using Nesterov’s method with preconditioning.

ALGORITHM 3: ePlace
Input: initial placement solution v0 = vip

uniform chip decomposition into m× m grid
minimum overflow τmin
maximum iterations kmax = 3000

Output: global placement solution vgp
1: m× m decomposition over R
2: initialize λ0 by Eq. (35)
3: initialize αmax

0 = 0.044wb
4: for k = 1 → kmax do
5: fk = f (vk) = W (vk) + λkN(vk)
6: compute wirelength gradient ∇Wk and density ρk
7: (ψk, ξk) = FFTsolver(ρk)
8: compute energy (density) gradient ∇Nk = qξk
9: ∇ fk = ∇Wk + λk∇Nk
10: vk+1 = NL-Solver(vk, fk,∇ fk, α

max
k , 0.01αmax

k )
11: update αmax

k+1 , λk+1, τk+1, γk+1 by Eq. (34), (36), (41), (38)
12: if τk+1 ≤ τmin then
13: vgp = vk+1
14: break
15: end if
16: end for
17: return vgp

nonlinear optimization with dynamic prediction of the Lipschitz constant to determine
the steplength. The initial placement solution vip is shown in Figure 11(a), where
standard cells are placed at the central region and filler cells are randomly distributed
over the entire placement region R. At later iterations, standard cells spread away
from overfilled regions, and the density force pushes the disconnected fillers towards the
boundary of the placement region. In the end, all the standard cells converge to a stable
location with acceptable system energy (density penalty) and wirelength overhead.
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7. EXPERIMENTS AND RESULTS

We implement our algorithm using the C programming language and execute the
program in single-thread mode on a Linux machine with an Intel i7 920 2.67 GHz
CPU and 12GB memory. In our experiments, we use the benchmark suites from Nam
et al. [2005] and Nam [2006] as published in the ISPD 2005 and ISPD 2006 placement
contests, respectively. As denoted in Nam et al. [2005] and Nam [2006], the benchmark
circuits preserve the physical structure of real ASIC designs. We also use the evaluation
policies and scripts in Nam et al. [2005] and Nam [2006] as they have become common
criteria and are widely admitted in modern placement works, to rank the performance
of different placers in our experiments. Moreover, we set the minimum density overflow
τmin = 10% as the stopping criterion of global placement for all the benchmarks. We
apply the same setting of parameters to all the testcases. In other words, there is no
parameter tuning towards specific benchmarks.

Global placement plays the dominant role in the overall placement solution quality.
However, the global placement result is illegal and it is relatively hard to tell how
much wirelength penalty will be introduced when legalizing it. There are placers in
literature, such as SimPL [Kim et al. 2010] and ComPLx [Kim and Markov 2012], that
consist of only global placement algorithm development and invoke a detail placement
engine from other works to legalize and discretely optimize their solutions. As a result,
we follow the custom in literature to conduct a performance comparison between le-
galized solutions. Specifically, we use the detail placer in Chen et al. [2008] to perform
legalization and detail placement in our global placement solution.

We compare the performance of our work with ten cutting-edge placers of dif-
ferent categories: Capo10.5 [Roy et al. 2006] (min-cut), FastPlace3.0 [Viswanathan
et al. 2007b], RQL [Viswanathan et al. 2007a], MAPLE [Kim et al. 2012], ComPLx
(v13.07.30) [Kim and Markov 2012], BonnPlace [Struzyna 2013], POLAR [Lin et al.
2013] (quadratic) APlace3 [Kahng and Wang 2006], NTUPlace3 [Chen et al. 2008] and
mPL6 [Chan et al. 2006] (nonlinear). We have applied and obtained the sourcecode or
binary from seven of the aforesaid ten placers, each compiled and executed in our local
machine. The executables of RQL, MAPLE, and BonnPlace are not available due to
their industrial use and other issues and, as a result, their solution quality and run-
time results are cited from the according publications [Viswanathan et al. 2007a; Kim
et al. 2012; Struzyna 2013]. The performance of Capo10.5 and APlace3 on the ISPD
2006 benchmark suite is obtained from the respective contest result [Nam 2006].

7.1. Results on ISPD 2005 Benchmark Suite

The circuit statistics of the ISPD 2005 benchmark suite are shown in Table I. Notice
that the design scale is up to two million cells, which well represents modern IC design
complexity. As there is no specific density constraint, the density upper bound in Table I
is set as 100% for every benchmark. Notice that one out of the total of eight circuits
(BIGBLUE3) has movable macros, where the physical dimension and logic effort differ
quite a lot from those of standard cells. Such objects further challenge the existing
placers to provide stable performance under different circuit characteristics.

All the experimental results are shown in Table II and Table III with HPWL in
×106 and CPU in minutes. The experiments are executed in single-thread mode (ex-
cept for POLAR, which consumes up to four CPUs simultaneously) with the solution
quality evaluated using the official scripts from Nam et al. [2005]. For our placement
framework ePlace, we include three different configurations to study its performance
in detail:

—CG: ePlace using consists of a conjugate gradient method for nonlinear optimization
and line search for steplength determination;
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Table I. Circuit Statistics of the ISPD 2005 Placement Benchmark Suite [Nam et al. 2005]

# Standard # Movable # Fixed Density
Circuits # Objects Cells Macros Macros # Nets Density (%) Util. (%) Bound (%)
ADAPTEC1 211447 210904 0 543 221142 75.71 57.34 100
ADAPTEC2 255023 254457 0 566 266009 78.59 44.32 100
ADAPTEC3 451650 450927 0 723 466758 74.58 33.68 100
ADAPTEC4 496045 494716 0 1329 515951 62.71 27.18 100
BIGBLUE1 278164 277604 0 560 284479 54.19 44.67 100
BIGBLUE2 557866 534782 0 23084 577235 61.88 37.90 100
BIGBLUE3 1096812 1093034 2485 1293 1123170 85.52 56.23 100
BIGBLUE4 2177353 2169183 0 8170 2229886 65.14 44.06 100

—Nes: ePlace using is Nesterov’s method for nonlinear optimization and Lipschitz
constant prediction for steplength determination; and

—Nes-Pre is composed of ePlace using Nesterov’s method for nonlinear optimization,
Lipschitz constant prediction for steplength determination, and preconditioning for
search space reshaping.

It is relatively difficult for ePlace-CG and ePlace-Nes to handle large macros (e.g., BIG-
BLUE3) as the density force is linearly proportional to the object area by Eq. (16), while
movable macros significantly differ from standard cells with much higher magnitude
of gradient. As a result, an unpreconditioned gradient makes macros with large area
and high incidence degree bounce between opposite placement boundaries, causing the
solution to oscillate and become hard to converge within a limited number of itera-
tions3. To prevent divergence of nonlinear placement optimization, in ePlace-CG and
ePlace-Nes, we disable the movement of objects with area larger than 500× the aver-
age object area. By preconditioning, we relieve the imbalance between object gradients
and make the search space more spherical, thus all the objects are allowed to move
in ePlace-Nes-Pre. Among the preceding three options, ePlace-CG has the worst solu-
tion quality and placement efficiency, where ePlace-Nes could outperform it by roughly
2.28% shorter wirelength and 2.21× speedup on average. Using preconditioning could
further reduce the wirelength by 2.42%, while the runtime is not increased. By default,
we use Nesterov’s method together with gradient preconditioning in ePlace.

Compared to the performance of all ten placers from our local experiments or ac-
cording publications as shown in Table II, ePlace-Nes-Pre generates the best place-
ment solutions with the shortest total wirelength in all eight benchmarks. On average,
ePlace-Nes-Pre improves the total wirelength by 21.14%, 10.00%, 5.40%, 3.21%, 4.50%,
2.83%, 3.08%, 14.33%, 12.05%, and 8.33% over Capo10.5, FastPlace3.0, RQL, MAPLE,
ComPLx, BonnPlace, POLAR, APlace3, NTUPlace3, and mPL6, respectively.

ePlace is faster than all the previous nonlinear placers. Specifically, ePlace-Nes-Pre
outperforms APlace3, NTUPlace3, and mPL6 with 9.13×, 1.40×, and 3.78× speedup,
even if using multilevel clustering for problem simplification while we are conducting
placement on the original flat netlist. At the coarsest level, a hierarchical placer will
usually place about only 1000 clusters, which is 0.1% of that of the original netlist.
However, despite zero netlist coarsening, our placer runs faster than the previous
multilevel works, hence validates the efficiency of our placement algorithm. ePlace-Nes-
Pre is slower than some of the previous quadratic placement approaches because all the
computation-intensive steps in nonlinear optimization are not included in quadratic
placers. For instance, in nonlinear placement, since the objective cost and gradient
function are both of very high order, they consume the greatest portion of runtime

3In ePlace, we set 3000 as the upper limit of iterations.
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Table IV. Circuit Statistics of the ISPD 2006 Placement Benchmark Suite [Nam 2006]

# Standard # Movable # Fixed Density
Circuits # Objects Cells Macros Macros # Nets Density (%) Util. (%) Bound (%)
ADAPTEC5 843128 842482 0 646 867798 78.62 49.85 50
NEWBLUE1 330474 330037 64 337 338901 70.69 70.69 80
NEWBLUE2 441516 436516 3723 1277 465219 86.15 61.66 90
NEWBLUE3 494011 482833 0 11178 552199 84.71 26.33 80
NEWBLUE4 646139 642717 0 3422 637051 65.82 46.47 50
NEWBLUE5 1233058 1228177 0 4881 1284251 74.43 49.26 50
NEWBLUE6 1255039 1248150 0 6889 1288443 59.26 38.70 80
NEWBLUE7 2507954 2481372 0 26582 2636820 76.36 49.06 80

at each iteration. However, in quadratic placement, these two functions are of only
second and first orders, where a numerical solution can be computed much faster.
Specifically, ePlace-Nes-Pre runs 0.53×, 0.91×, and 0.52× slower than FastPlace3.0,
RQL, and ComPLx, while the respective wirelength improvement is 10.00%, 5.40%, and
4.50%. MAPLE, BonnPlace, and POLAR have the best published results on the ISPD
2005 benchmark suite in literature, however, Table III shows, the average runtime of
MAPLE, BonnPlace, and POLAR is 2.84×, 3.05×, and 0.52× that of our placer ePlace-
Nes-Pre, respectively, while our wirelength improvement over these three placers is
3.21%, 2.83%, and 3.08%, respectively.

As Tables II and III show, on average, of all the ISPD 2005 benchmarks, precondi-
tioning produces 2.42% shorter wirelength and consumes essentially the same runtime
compared to the original placement. There are some special testcases, such as BIG-
BLUE3 of ISPD05, our placer fail to converge without preconditioning, that is, the
runtime would approach infinity. As discussed before, we disable the movement of
objects with size above certain threshold to force the convergence.

7.2. Results on ISPD 2006 Benchmark Suite

The circuit statistics of the ISPD 2006 benchmark suite [Nam 2006] are shown in
Table IV. Notice that BonnPlace [Struzyna 2013] is specifically designed for the ISPD
2005 benchmark suite while its binary or results for the ISPD 2006 benchmarks are
not available. As a result, we do not include it in the experiments. Similar to ISPD
2005, the design scale is up to 2.5 million objects thus represents the complexity of
modern ASIC design. In contrast to ISPD 2005, there is a benchmark-specific density
constraint. Violations of such constraint in placement solutions (i.e., exceeding the
density upper bound) would induce a penalty on the total wirelength. Here, two out of
the total of eight circuits (NEWBLUE1 and NEWBLUE2) have movable macros that
challenge the placement performance stability across different object dimensions.

All the experimental results are shown in Table V and Table VI with scaled HPWL
(sHPWL) in ×106 and CPU in minutes. Here we just include ePlace-Nes-Pre (denoted
as ePlace). Following the contest protocol, we define the scaled wirelength as

sHPWL = HPWL × (1 + 0.01 × τs) . (39)

Here τs is the density penalty on the wirelength, and denotes the scaled density overflow
per bin as defined next.

τs =
(

τtot Ab′ρt

400
∑

i∈Vm
Ai

)2

(40)

Here Ab′ is the area of each uniform bin b′, as defined by the contest organizer [Nam
2006] with both width and height equal to 10x the placement row height of each
benchmark. Ai is the area of each movable object i, and τtot is the total density overflow
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Table VI. Runtime (minutes) on the ISPD 2006 Benchmark Suite [Nam 2006]

Categories Min-Cut Quadratic Nonlinear
Benchmarks CP10.5∗ FP3.0 CPx POLAR AP3∗ NP3 mPL6 ePlace
ADAPTEC5 161.97 21.00 16.70 14.48 337.78 64.53 97.30 34.18
NEWBLUE1 42.70 5.18 4.15 5.95 71.72 12.57 24.48 9.62
NEWBLUE2 94.03 8.80 9.70 8.53 92.22 22.80 61.28 10.10
NEWBLUE3 101.27 10.10 8.58 9.02 208.38 21.00 102.23 14.38
NEWBLUE4 115.43 13.22 11.05 10.17 249.70 38.92 67.75 22.92
NEWBLUE5 347.57 28.70 25.85 23.78 546.65 76.82 127.38 54.83
NEWBLUE6 308.08 20.85 20.52 22.27 485.40 67.60 120.83 52.33
NEWBLUE7 916.03 40.97 50.65 48.23 914.20 149.30 307.03 86.27

Average 6.68× 0.59× 0.55× 0.69× 10.21× 1.63× 3.71× 1.00×
CP = Capo, FP = FastPlace, CPx = ComPLx, AP = APlace, NP = NTUPlace. Cited results are
marked with ∗. Average results are normalized to ePlace.

Table VII. Scaled Density Overflow on the ISPD 2006 Benchmark Suite [Nam 2006]

Categories Min-Cut Quadratic Nonlinear
Benchmarks CP10.5∗ FP3 RQL∗ MPE∗ CPx POLAR AP3∗ NP3 mPL6 ePlace
ADAPTEC5 0.62 8.17 9.25 4.76 1.93 12.48 15.87 28.51 1.03 0.71
NEWBLUE1 0.13 1.04 0.34 1.05 1.02 2.13 0.06 0.70 9.02 0.28
NEWBLUE2 0.29 1.00 1.45 1.01 1.05 1.83 0.42 1.82 1.44 0.68
NEWBLUE3 0.01 0.55 0.07 0.77 0.93 1.36 0.00 0.05 0.66 0.07
NEWBLUE4 1.15 4.22 15.2 5.86 1.45 11.38 1.74 13.66 1.70 1.20
NEWBLUE5 0.33 7.21 13.6 4.05 1.76 12.91 12.45 20.37 1.47 0.63
NEWBLUE6 0.05 1.02 4.33 1.08 1.14 5.80 0.03 0.28 1.41 0.40
NEWBLUE7 0.02 1.30 2.57 1.70 1.40 4.63 0.06 2.01 1.19 0.25

Average 0.45× 5.90× 9.08× 5.46× 4.19× 13.77× 5.58× 12.29× 7.14× 1.00×
CP = Capo, FP = FastPlace, MPE = MAPLE, CPx = ComPLx, AP = APlace, NP = NTUPlace. Cited
results are marked with ∗. All results are evaluated by the official scripts [Nam 2006]. Average results are
normalized to ePlace.

amount, defined as

τtot =
∑
b′∈B′

max(ρ ′
b′ − ρt, 0)Ab′ , (41)

using the contest-specified bin structure B′ as mentioned before.
Compared to the quality of all the ten placers as shown in Table V, ePlace gener-

ates the best placement solution (with the shortest scaled wirelength) in seven out
of the eight total benchmarks. On average, our placer improves total wirelength by
43.73%, 16.25%, 7.99%, 4.59%, 4.86%, 7.16%, 18.38%, 7.74%, and 10.11% over Capo,
FastPlace3.0, RQL, MAPLE, ComPLx, POLAR, APlace3, NTUPlace3, and mPL6, re-
spectively.

The runtimes of all the placers on the ISPD 2006 benchmark suite are shown in
Table VI. Notice that the runtimes of RQL and MAPLE are not available, as the authors
did not release them in the respective publications [Viswanathan et al. 2007a; Kim et al.
2012]. Compared to all three prior nonlinear placers, ePlace improves the efficiency
by up to 10.21×. As discussed before, nonlinear placers lag behind quadratic ones in
efficiency due to the computation of high-order gradient functions. However, such a gap
is largely reduced by ePlace, that is, on average, of all eight ISPD 2006 circuits, state-
of-the-art quadratic placers consume roughly 60% more runtime compared to ePlace.

In addition, we also include the results of the scaled density overflow and original
wirelength for comparison between all the placers, as shown in Table VII and Table V
(in parentheses), respectively. Our placer could outperform eight out of the total of nine
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placers with smaller scaled density overflow. For Capo10.5 with better density overflow,
ePlace produces 44.04% and shorter original wirelength, where their respective scaled
wirelength still lag behind ours by 43.73%. In terms of original HPWL, our placer
outperforms eight out the nine placers in comparison. POLAR and NTUplace3 lag
behind ePlace with 0.60% and 1.21% shorter original HPWL, however, their scaled
density overflow is 13.77× and 12.29× greater than that of ePlace. As a result, the
scaled wirelength of ePlace is 7.16% and 7.74% shorter than that of POLAR and
NTUplace3, respectively.

7.3. Placement Runtime Breakdown

We use the timing profile of our placement algorithm ePlace on ADAPTEC1 to an-
alyze the runtime bottleneck and improvement. The placement region is uniformly
decomposed into a 512 × 512 grid. Using the CG method with line search (ePlace-CG),
we find that 5.62% of the total runtime is consumed by initial placement (quadratic
wirelength minimization), 14.68% by legalization and detail placement, while the re-
maining 79.70% is due to our global placement. A breakdown of the global placement
execution shows that the runtime bottlenecks lie in the computation of wirelength
gradient (6.89%), density gradient (20.88%), and function evaluation in line search
(63.22%), while the remaining operations take 9.01% runtime. To improve the efficiency,
step prediction can be used to replace the line search, and we use Nesterov’s method
to solve the runtime bottleneck. The steplength is predicted based on our method of
dynamic Lipschitz constant approximation, where the runtime overhead is negligible.
After replacing the CG method with Nesterov’s method, the total runtime of ePlace-
Nes is improved by 2.21×. Specifically, the runtime consumed by global placement is
reduced to 54.72%, while the initial placement and detail placement consume 11.44%
and 33.84%, respectively. The remaining bottlenecks mainly lie in the computation of
wirelength gradient (19.72%) and density gradient (59.6%), while other miscellaneous
operations cost a total of 20.68% time. To further accelerate the placement engine, we
can extend the gradient computation to a parallel platform. The symmetric structure of
the FFT algorithm for density gradient computation as well as the wirelength gradient
computation [Cong and Zou 2009] would well fit the architecture of graphics processing
unit (GPUs) [Moreland and Angel 2003] and distributed systems.

8. CONCLUSION

In this article, we propose a flat nonlinear global placement algorithm ePlace. Based
on the development of a novel placement density formulation eDensity, the placement
instance is converted into an electrostatic system to model density cost as the system
potential energy. The electric potential and field distribution are correlated with the
spatial density distribution via a well-defined Poisson’s equation, and we use spectral
methods based on fast Fourier transform to produce a fast and accurate numerical so-
lution. We propose to use Nesterov’s method as the nonlinear placement solver, which
outperforms the CG solver with better quality and efficiency. A novel heuristic is de-
veloped to dynamically approximate the Lipschitz constant for steplength prediction.
Our nonlinear preconditioning technique further enhances the solution quality with
negligible runtime overhead. Experimental results on the ISPD 2005 and ISPD 2006
benchmarks validate the high performance of ePlace. More details on the ePlace frame-
work and solutions can be found at the ePlace homepage [2014].

ePlace is a generalized and effective nonlinear placement algorithm. It resolves
the traditional bottlenecks in nonlinear placement (low efficiency due to line search,
suboptimality of netlist clustering, quality degradation via the coarse density grid at
early stages, etc.), and shows that nonlinear placement has the capability to outperform
cutting-edge quadratic placement algorithms [Lin et al. 2013; Kim and Markov 2012;
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Kim et al. 2012; Struzyna 2013; Viswanathan et al. 2007a] with better solution quality
and comparable or even shorter runtime. Compared to the state-of-the-art research
innovations in placement literature such as Eisenmann and Johannes [1998], Naylor
et al. [2001], etc., ePlace takes a new outlook on this traditional problem. Specifically, we
study and leverage the analogy between placement and electrostatics while eDensity is
actually conducting a simulation on the behavior of the equivalent electrostatic system.
As a result, we could have global smoothness, fast convergence, and high quality, all
achieved in a promising way.

In the future, we will explore opportunities in the parallel computing platform while
gradient computation can be well accelerated via distributed system [He et al. 2014]
or graphics processing units [Moreland and Angel 2003]. Furthermore, based on the
current ePlace prototype of analytic nonlinear placement, we will enhance its capability
to handle mixed-size large-scale circuits and extend the framework towards other
design objectives, such as routability, timing, etc.
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