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ABSTRACT
State-of-the-art analytical placement algorithms for VLSI designs

rely on solving nonlinear programs to minimize wirelength and cell

congestion. As a consequence, the quality of solutions produced us-

ing these algorithms crucially depends on the initial cell coordinates.

In this work, we reduce the problem of finding wirelength-minimal

initial layouts subject to density and fixed-macro constraints to

a Quadratically Constrained Quadratic Program (QCQP). We ad-

ditionally propose an efficient sequential quadratic programming

algorithm to recover a block-globally optimal solution and a sub-

space method to reduce the complexity of problem. We extend our

formulation to facilitate direct minimization of the Half-Perimeter

Wirelength (HPWL) by showing that a corresponding solution can

be derived by solving a sequence of reweighted quadratic programs.

Critically, our method is parameter-free, i.e. involves no hyperpa-

rameters to tune. We demonstrate that incorporating initial layouts

produced by our algorithm with a global analytical placer results in

improvements of up to 4.76% in post-detailed-placement wirelength

on the ISPD’05 benchmark suite. Our code is available on github
1
.
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1 INTRODUCTION
Given a circuit and a region, the placement problem is to assign

each circuit module to a specific location in the region. Most state-

of-the-art layout algorithms for large-scale VLSI placement rely on

solving non-linear problems using iterative first-order optimization

algorithms [7, 16–19]. As a consequence, there are typically few

guarantees regarding the convergence of these methods to optimal,

or even good, coordinate assignments in a limited time frame and

initialization of the variables plays a critical role [18]. Despite the

importance of initialization, existing methods for placement ini-

tialization are primarily based on naive heuristics—including min-

imizing wirelength without second-order constraints [16, 18, 19],

uniformly assigning the cell coordinates to the origin, or assigning

coordinates to small random values [12, 17].

In this work, we address the following question:

Is it possible to improve upon random initializa-
tion for large-scale placement engines?

We investigate a novel fixed node-aware formulation and describe

an efficient algorithm to solve it. More concretely, we formulate ini-

tialization as a Quadratically Constrained Quadratic Optimization

Problem (QCQP) with sphere constraints. Our formulation is aware

of fixed nodes via a decomposition of the netlist-graph. Although

the QCQP is non-convex, we propose an algorithm that can recover

local and block-globally optimal (under certain assumptions) solu-

tions. We validate our technique by demonstrating scalability and

convergence to superior post-detailed placement solutions com-

pared to min-wirelength and random initializations using an open

source placement flow [12, 17]. Furthermore, we propose a statis-

tical test to quantify the preservation of local structures derived

from the initialization through global placement.

1.1 Contributions
Our contributions are summarized below.

(1) We introduce a novel formulation of global placement ini-

tialization as a sphere-constrained quadratic programming

problem, an extension of a classic Rayleigh Quotient prob-

lem [13] and devise a novel algorithm to solve it.

(2) We propose a way to exploit the structure of the QCQP to

improve the efficiency of optimization by iteratively solving

the problem in a sequence of carefully chosen subspaces.

(3) We adapt our approach via iterative reweighting to facilitate

direct minimization of Half-Perimeter Wirelength (HPWL).
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Figure 1: Placement flow. Our proposed method is a “place-
ment initialization” stage, highlighted in yellow.

(4) We perform a comparison between various initialization

schemes for analytic placement with fixed macros.

In Sec. 2, we introduce the global placement problem and a gen-

eral framework for generating initial layouts (denoted in yellow

in Fig. 1). In Sec. 3, we introduce our technique for solving the

proposed QCQP and an extension (iterative reweighting) to facili-

tate direct minimization of HPWL (denoted in Fig. 3). In Sec. 4, we

validate our approach on a standard set of benchmarks. In Sec. 5,

we conclude and highlight potential avenues for future research.

2 PRELIMINARIES

Number of components 𝑛, 𝑛
free

, 𝑛
fixed
∈ R+

Placement coordinates 𝑥,𝑦 ∈ R𝑛
Adjacency, Degree, & Laplacian matrices 𝐴, 𝐷, 𝐿 ∈ R𝑛×𝑛
Linear offset terms 𝑏, 𝑑 ∈ R𝑛, 𝐸0 = [𝑏 : 𝑑] ∈ R𝑛×2

Cell volumes 𝑣 ∈ R𝑛+,𝐺 = diag(𝑣) ∈ R𝑛×𝑛+
Cell area constraints 𝑐𝑖 , 𝑖 ∈ {1, 2, 3, 4, 5} ∈ R+
Lagrange multipliers Λ ∈ R2×2

Newton update direction 𝑍 ∈ R𝑛×2

Figure 2: Notation

Let 𝑥,𝑦 ∈ R𝑛 be vectors corresponding to the coordinates of 𝑛

components such that the 𝑖-th component has coordinates encoded

in the 𝑖-th row of [𝑥 : 𝑦]; [𝑥 : 𝑦]𝑖 . We aim to assign coordinates so

that the resulting layout has small cumulative wirelength.

2.1 Global analytical placement
Conventional global placement strategies minimize wirelength sub-

ject to density constraints. Density constraints are usually inte-

grated into the objective to yield an unconstrained relaxation [7, 17]:

min

𝑥,𝑦
(∑𝑒∈E𝑊𝑙 (𝑒;𝑥,𝑦) + 𝜆D(𝑥,𝑦))

(1)

where E denotes a set of given nets and𝑊𝑙 (·; ·) is a function that

takes a net instance 𝑒 as input and returns the cumulative wire-

length and D(·) is a density penalty. In the context of VLSI place-

ment, the wirelength of a net is commonly modelled with its Half-

Perimeter Wirelength (HPWL) or a smooth alternative and D is a

smooth density penalty [18].

A typical approach is to represent individual nets as rectangles

and to minimize the sum-perimeters over all nets. Repulsion is

often applied between overlapping nodes to reduce density. For

example, [17] adopt the smooth and differentiable weighted-average

wirelength (WL) model for the wirelength cost [15]. The horizontal

net-wirelength for net 𝑒 is given by

𝑊𝑙
(𝑒 )
𝑥 =

∑
𝑖∈𝑒 𝑥𝑖 exp ( 𝑥𝑖𝑐 )∑
𝑖∈𝑒 exp ( 𝑥𝑖𝑐 )

−
∑
𝑖∈𝑒 𝑥𝑖 exp (−𝑥𝑖𝑐 )∑
𝑖∈𝑒 exp (−𝑥𝑖𝑐 )

where 𝑐 is a parameter that controls the smoothness and approxi-

mation error with respect to the HPWL of net 𝑒 (i.e. |𝑥𝑖 − 𝑥 𝑗 | for
two-pin net 𝑒 = (𝑖, 𝑗)). The wirelength of 𝑒 is:

𝑊𝑙 (𝑒;𝑥,𝑦) =𝑊𝑙
(𝑒 )
𝑥 +𝑊𝑙

(𝑒 )
𝑦

To model the density term, the placement area is divided into 𝐵

bins, and the placer seeks to equalize the overlap at each bin via

an analogy to an electrostatic system, with cells being modeled as

charges, density penalty modeled as potential energy, and density

gradient modeled as the electric field.

Overlap constraints are satisfied over the placement process by

gradually increasing 𝜆, usually at the cost of increased wirelength.

Current state-of-the-art VLSI placement algorithms [7, 17, 18] solve

Problem 1 in this manner.

2.2 QCQP-based layouts
In this section, we describe a basic formulation for spectral layouts

for global pre-placements, or initializations. Additionally, we more

generally motivate our adoption of the QCQP framework for global

placement initialization.

2.2.1 Formulation. The VLSI placement problem is reduced to a

graph layout problem by first collapsing the netlist hypergraph to a

component graph via various models (e.g. clique, star, etc.) [23]. A

matrix-representation of the graph connectivity—the graph Lapla-
cian is then derived. The solution to the associated eigenvalue

problem approximates the solution to the sparsest cut problem

[2, 14], and clusters arising out of the vertex-projection into the

space spanned by the first nontrivial eigenvalues correspond highly

connected components of the graph.

More concretely, we solve a variant of the following problem

where 𝑥 and 𝑦 are cell coordinates, 𝑐𝑖 are constants, 𝑣 is a vector

of cell areas, and 𝐿 is the graph Laplacian; 𝐿 = 𝐷 −𝐴, where 𝐴 is a

(weighted) adjacency matrix, and 𝐷 is the associated degree matrix.

min

𝑥,𝑦
𝑥⊤𝐿𝑥 + 𝑦⊤𝐿𝑦 s.t. 𝑣⊤𝑥 = 0, 𝑣⊤𝑦 = 0,

𝑥⊤𝐺𝑥 = 𝑐1, 𝑦⊤𝐺𝑦 = 𝑐2, 𝑥⊤𝐺𝑦 = 𝑐3

(2)

Typically, 𝐺 = diag(𝑣). In general, one can recover a reduction

to the case 𝐺 = 𝐼 via the normalization [𝑥,𝑦] ← 𝐺1/2 [𝑥,𝑦],
𝐿 ← 𝐺−1/2𝐿𝐺−1/2

and [𝑣, 𝑏, 𝑑] ← 𝐺−1/2 [𝑣, 𝑏, 𝑑]. Intuitively, the
objective is to minimize the weighted squared wirelength of a 2D

placement. The linear constraints characterize an origin (i.e. remove

translational invariance) and the quadratic constraints spread the

layout evenly over the 𝑥 and 𝑦 axes (i.e. ensure that the embedding

has nonzero constant variance).

2.2.2 Fixed node constraints. Many layouts involve constraints on a

subset of the cells—typically large macros and primary input/output

pads. We show how such fixed node constraints naturally lead to

a decomposition of the 𝑥 , 𝑦 and 𝐿 terms in Eq. 2. We denote the

coordinates of the fixed nodes 𝑥1, 𝑦1. Likewise, let the movable

nodes be 𝑥2,𝑦2 Then, we can express 𝑥 ,𝑦, and 𝐿 and the parameters
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𝑣 and 𝐺 in terms of these indices: 𝐿 =

[
𝐿11 𝐿12

𝐿21 𝐿22

]
, with 𝑥1 ∈ R𝑛fixed

,

𝑥2 ∈ R𝑛free
, 𝐿22 ∈ R𝑛free×𝑛free

, and 𝐿12 ∈ R𝑛free×𝑛fixed
. 𝑥 = [𝑥1, 𝑥2]⊤

(likewise for 𝑦). By considering fixed-node terms (i.e. 𝑥1 and 𝑦1) as

constants, Problem 2 may be re-written (ignoring constants):

min

𝑥2,𝑦2

𝑥⊤
2
𝐿22𝑥2 + 𝑦⊤2 𝐿22𝑦2+ 2𝑏⊤𝑥2 + 2𝑑⊤𝑦2

s.t. 𝑣⊤
2
𝑥2 = 𝑐′

1
, 𝑣⊤

2
𝑦2 = 𝑐′

2
,

𝑥⊤
2
𝑥2 = 𝑐′

3
, 𝑦⊤

2
𝑦2 = 𝑐′

4
, 𝑥⊤

2
𝑦2 = 𝑐′

5

(3)

with 𝑏 = 𝐿12𝑥1, 𝑑 = 𝐿12𝑦1. In Section 3.1, we derive 𝑐
′
𝑖
, 𝑖 = 1, 2, 3, 4, 5.

2.2.3 Motivation and high-level flow. Our motivation for express-

ing initializations to Prob. 1 with Prob. 2—i.e. as a QCQP with

sphere constraints—is derived from two observations assuming

graph-models of netlists: (1.) if the𝑊𝑙 (·) corresponds to the squared
wirelength, its minimization is equivalent to minimizing a quadratic

form defined on a graph Laplacian. And if the𝑊𝑙 (·) corresponds to
the half-perimeter wirelength, its minimization may be expressed

as a sequence of quadratic problems of the same form as Prob. 2. For

example, we describe such a method in Sec. 3. (2.) a quadratic equal-

ity—a sphere —constraint implies constant variance and satisfaction

of density-constraints assuming a uniform grid.

We highlight the high-level flow of our framework in Fig. 3:

(1) Eigenvector initialization: The eigenvectors of 𝐿22, which

correspond to the minimum-squared wirelength solution are

computed (Sec. 3.1, Eq. 4).

(2) Eigenvector projection: These eigenvectors are projected
to satisfy the linear and quadratic constraints (Sec. 3.1, Prop. 2).

(3) Eigenvector rotation: An orthogonal transform is applied

to the projected eigenvectors to minimize the distance be-

tween free and fixed components (Sec. 3.1, Prop. 3).

(4) Sequential subspace method (SSM): From these coor-

dinates, an iterative projected-subspace-descent algorithm

is applied which results in convergence to a local / block-

globally optimal solution (Sec. 3.2, Sec. 3.3).

(5) Iterative net reweighting:During iterative descent, 𝐿 is ad-
justed (reweighted) in order to find a min-HPWL coordinate

assignment (Sec. 3.4).

In the following section, we describe a sequential subspace method

for solving Prob. 3. We then show that one can easily adapt this

method to facilitate direct minimization of HPWL.

3 CONSTRAINED SPECTRAL LAYOUTS
In this section, we describe a method to compute the spectrum

of the matrix 𝐿22. The eigenvectors corresponding to the smallest

nontrivial eigenvalues are then projected and transformed to be

used as a candidate solution to Prob. 3 and iteratively improved.

3.1 Eigenvector method and projection
We start by re-writing the objective defined in Eq. 3 (for brevity,

writing 𝐿22 as “𝐿” and 𝑣2 as 𝑣). Let 𝑋2 = [𝑥2, 𝑦2] and 𝐸0 = [𝑏, 𝑑] ∈
R𝑛free×2

and 𝑋1 = [𝑥1, 𝑦1] ∈ R𝑛fixed×2
.

Let [𝑐′
1
, 𝑐′

2
]⊤ = −𝑟 , where 𝑟 := (𝑣⊤

1
𝑋1)⊤. To eliminate the linear

constraint 𝑣⊤𝑋2 = −𝑟⊤, we introduce two adjustments: first, let

(𝑋 )𝑖 = (𝑋2)𝑖 + 1

𝑤 𝑟
⊤
denote a row-wise centering transformation

(1.)

Initialization

(Sec. 3.3):

Generalized

eigenvec-

tors of 𝑃𝐿𝑃

(2.)

Projection

(Sec. 3.3)

(3.)

Rotation

(Sec. 3.3)

SSM

(Sec. 3.3):

Calculate

subspace S

SQP

(Sec. 3.3):

Solve

Prob. 4 in

subspace

(5.)

Reweight

(Sec. 3.3):

Minimize

HPWL

SSM Initialization

(4.) SSM

Figure 3: QCQP placement initialization with reweighting.

with respect to the fixed nodes, where 𝑤 is a scale factor propor-

tional to 𝑣2. This yields the constraint 𝑣
⊤𝑋 = 0 and implies the

quadratic constraint

𝐶 =

[
𝑐′

3
𝑐′

5

𝑐′
5
𝑐′

4

]
=
[ 𝑐1 𝑐3

𝑐3 𝑐2

]
− 𝑋⊤

1
𝑋1 −

1

𝑤
𝑟𝑟⊤ .

Second, assuming that 𝑣 is normalized to be a unit vector, let 𝑃 =

𝐼 − 𝑣𝑣⊤ be the projection onto the subspace orthogonal to vector

𝑣 ∈ R𝑛free
, i.e., 𝑣⊤ (𝑃𝑋 ) = [0, 0]. Without loss of generality, replacing

𝐸0 with 𝑃 (𝐸0 − 𝐿 1

𝑛free

1𝑟⊤), we have 𝑣⊤𝐸0 = [0, 0].

min

𝑋
{𝐹 (𝑋 ) = tr(𝑋⊤ (𝑃𝐿𝑃𝑋 + 2𝐸0))} (4)

subject to 𝑋⊤𝑋 = 𝐶 , We first address this problem in three stages:

(1.) by first solving the canonical eigenvalue problemmin𝑋 tr(𝑋⊤𝑃𝐿𝑃𝑋 )
subject to the constraint 𝑋⊤𝑋 = 𝐼 , (2.) invoking a projection to

resolve the second order constraint 𝑋⊤𝑋 = 𝐶 , (3.) appropriately

transforming the solution so that 2𝑋⊤𝑃𝐸0 is reduced.

Stage 1. First, the eigenvectors of 𝑃𝐿𝑃 corresponding to the two

smallest nontrivial eigenvalues are computed. While 𝐿 may be ex-

tremely sparse, facilitating the application of sparse eigenvector

algorithms, 𝑃𝐿𝑃 may be prohibitively dense. To address this, we

adapt the Rayleigh Quotient Iteration method which exclusively re-

lies on matrix-vector multiplications, and the computation of 𝐿−1𝑢

which can be done efficiently using iterative methods (e.g. Conju-

gate Gradient). At a high level, the method proceeds by repeating

the following updates on vectors 𝑢:

𝑢𝑘−1
= 𝑃𝑟𝑘−1

/| |𝑃𝑟𝑘−1
| | (5)

Solve 𝑃𝑟𝑘 from 𝑃𝐿𝑃𝑟𝑘 = 𝑢𝑘−1
(6)

To solve for 𝑟𝑘 in the second part, we state the following result,

which eliminates the need to compute (𝑃𝐿𝑃)−1
:

Proposition 1 (Psudo-inverse of 𝑃𝐿−1𝑃 ). Let 𝑃 = 𝐼 − 𝑣𝑣⊤. Let
𝑟𝑘 = {𝑃𝐿−1𝑃}†𝑢𝑘−1

. Then, derive projection of 𝑟𝑘 , i.e.

𝑃𝑟𝑘 = {𝑃𝐿−1𝑃}†𝑢𝑘−1
= (𝐼 − 𝑣

⊤𝑣
𝑣⊤𝑣
)𝐿−1𝑢𝑘−1

, 𝑣 = 𝐿−1𝑣
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Once the smallest eigenvector𝑤 is obtained, we can proceed to

compute the eigenvector of 𝑃𝐿𝑃 corresponding to the subsequent

eigenvalue using the same approach with a minor adjustment: re-

placing 𝑃 = 𝐼 − 𝑣𝑣⊤ with 𝑃 = 𝐼 − 𝑣𝑣⊤ −𝑤𝑤⊤.

Stage 2. Given a set of candidate coordinates, we apply the pro-

jection []+ to resolve the quadratic constraints according to the

following proposition:

Proposition 2 (Projection). Let 𝑋1 be an intermediate solution
and 𝐶1 := 𝑋⊤

1
𝑋1 and 𝐶 ≻ 0.

The projection of 𝑋1, [𝑋1]+ := argmin

𝑋
{𝐹 (𝑋 ) = | |𝑋 − 𝑋1 | |2𝐹

= tr(𝐶) + tr(𝐶1) − 2 max⟨𝑋,𝑋1⟩}

s.t. 𝑋⊤𝑋 = 𝐶 . Take the Singular Value Decomposition (SVD) of
𝐶1/2𝐶1/2

1
,𝑈 Σ𝑉⊤ = 𝐶1/2𝐶1/2

1
.

Then the minimizer 𝑋 = [𝑋1]+ is given by

𝑋 = 𝑋1𝐶
−1/2
1

𝑈𝑉⊤𝐶1/2
(7)

Stage 3. We apply an orthogonal transformation (i.e. a rotation /

reflection) which preserves the eigenvector structure while mini-

mizing the euclidean distance between fixed pins and free cells.

Proposition 3 (Orthogonal transform of 𝑋 ). Assume 𝐶 =

𝐼 . Note the first term of 𝐹 satisfies the invariance tr(𝑋⊤𝑃𝐿𝑃𝑋 ) =
tr(𝑋̃⊤𝑃𝐿𝑃𝑋̃ ), where 𝑋̃ = 𝑋𝑄 for any orthogonal𝑄 ∈ R2×2.𝑋 is a lo-
cal minimizer if −𝑋⊤𝐸0 ≽ 0 and symmetric. Take the SVD of𝑋⊤𝐸0 =

𝑈𝐸𝐷𝐸𝑉
⊤
𝐸
. Let 𝑄 = −𝑈𝐸𝑉⊤𝐸 . Then, tr((𝑋𝑄)⊤𝐸0) = −tr(𝐷𝐸 ) ≤ 0.

3.2 Sequential Quadratic Programming method
In this section, we introduce SQP, a key component of SSM. The

framework of SQP is applied to iteratively compute search direc-

tions to improve the projected and transformed eigenvectors with

respect to the quadratic objective while maintaining satisfication of

all constraints (Problem 4). We define the Lagrangian of Problem 4

by introducing multipliers Λ ∈ R2×2
.

L(𝑋,Λ) = ⟨𝑋, 𝑃𝐿𝑃𝑋 + 2𝐸0⟩ + ⟨Λ, 𝑋⊤𝑋 −𝐶⟩ (8)

The derivative of the Lagrangian characterizes the first order con-

ditions (FOC) satisfied by an optimal 𝑋 :

𝑃𝐿𝑃𝑋 = −𝐸0 − 𝑋Λ, 𝑋⊤𝑋 = 𝐶 (9)

To find a solution, we derive Newton directions Δ and 𝑍 associated

with Λ and 𝑋 . Following the principal of SQP, 𝑋 ← [𝑋 + 𝛼𝑍 ]+ and
Λ← Λ + 𝛼Δ according to the linearization of the FOC:

(𝑃𝐿𝑃𝑍 + 𝑍Λ) + 𝑋Δ = 𝐸 := −𝐸0 − (𝑃𝐿𝑃𝑋 + 𝑋Λ)
𝑋⊤𝑍 = 0

Proposition 4 (Newton Direction of the Lagrangian Eq. 8).

Assume Λ symmetric and 𝑃𝑍 = 𝑍 , i.e., 𝑣⊤𝑍 = 𝑣⊤𝑋 = [0, 0]. The
solution (𝑍,Δ) is

(Δ) 𝑗 = (𝑋𝑇 (𝐿 +𝑊𝑗 𝐼 )−1𝑋 )−1𝑋𝑇 (𝐿 +𝑊𝑗 𝐼 )−1𝐸 𝑗 (10)

𝑍 𝑗 = 𝑃 (𝐿 +𝑊𝑗 𝐼 )−1𝑃{−𝑋 (Δ) 𝑗 + 𝐸 𝑗 } (11)

(a) (b)

(c) (d)

Figure 4: Eigenvector method and projection. (a): Eigenvec-
tors of full Laplacian 𝐿 (b): Eigenvectors of reduced Laplacian
𝐿, ignorant of fixed node (denoted in red) (c): Projected eigen-
vectors of 𝐿 (Prop. 1) (note the axis scale). (d): Orthogonal
transform applied to projected eigenvectors (Prop. 2).

where𝑊 is given by the eigenvector decomposition ofΛ:Λ = 𝑈𝑊𝑈 −1,
𝑊 = diag(𝑊1,𝑊2) for two eigenvalues𝑊1,𝑊2 of Λ.

Algorithm 1 SQP Update

Input: Partial Laplacian 𝐿, linear objective term 𝐸0, intermediate

solution 𝑋 , intermediate Lagrangian multipliers Λ
Output: 𝑗 − 𝑡ℎ columns of Newton updates—Δ 𝑗 , 𝑍 𝑗

1: function SQP(𝐿,Λ, 𝐸0, 𝑋, 𝑣)

2: 𝑊 ← eigvals(Λ)
3: 𝐿𝑃𝑋 ← 𝐿 (𝑋 − 𝑣 (𝑣⊤𝑋 ) )
4: 𝑃𝐿𝑃𝑋 ← 𝐿𝑃𝑋 − 𝑣 (𝑣⊤𝐿𝑃𝑋 )
5: 𝐸 ← −𝐸0 − (𝐿𝑃𝑋 +𝑋𝐿)
6: 𝐿𝑊𝑗

← 𝐿 +𝑊𝑗 𝐼

7: Δ𝑗 ← (𝑋⊤𝐿−1

𝑊𝑗
𝑋 )−1𝐿−1

𝑊𝑗
𝐸 ⊲ Eq. 10

8: 𝑇 ← −𝑋Δ𝑗 + 𝐸
9: 𝑅𝐻𝑆 ← 𝑇 − (𝑇 𝑣)𝑣⊤
10: 𝑍 𝑗 ← 𝐿−1

𝑊𝑗
𝑅𝐻𝑆 − 𝑣 (𝑣⊤𝐿−1

𝑊𝑗
𝑅𝐻𝑆 ) ⊲ Eq. 11

11: return 𝑍 𝑗 ,Δ𝑗

12: end function

Applying the projection operation []+ onto the manifold 𝑋⊤𝑋 = 𝐶 ,

we generate {𝑋 = 𝑋𝑘 , 𝑘 = 1, 2, 3, . . .} 𝑋𝑘+1 = [𝑋𝑘 + 𝛼𝑍 ]+ where 𝛼
is chosen to decrease the cost.

Alg. 1 presents the detailed steps involved in the computation of

the Newton directions, i.e. Eqs. 10, & 11 defined in Prop. 4. In Sec. 3.5,

we refer to Alg. 1 in the context of evaluating computational cost.
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3.3 Sequential subspace optimization
We introduce a Sequential Subspace Method (SSM) in Alg. 2 to

address the scalability of SQP. Inspired by the 1-dimensional algo-

rithm of [13], instead of solving Problem 4 directly, we instead solve

a sequence of quadratic programs in subspaces of much smaller

dimension relative to the size of the graph.

Despite the sparsity of 𝐿, repeatedly computing inverse-vector

products involving 𝐿 +𝑊𝑗 𝐼 in Eq. 10 and Eq. 11 may computation-

ally bottleneck the proposed method for large benchmarks. SSM

proceeds by iterating between the following three steps:

(1) Compute the Newton direction 𝑍 = 𝑆𝑄𝑃 (𝐿,Λ, 𝐸0, 𝑋 ) using
Eq. 11 and Alg.1, line 5. Let 𝑉 be the orthogonal matrix

consisting of columns in 𝑆 (Alg.2, lines 6 and 7), where

𝑆 = 𝑠𝑝𝑎𝑛(𝑃𝑋, 𝑍, 𝑣, 𝐿𝑃𝑋 + 𝐸0) .
(2) SSM generates an approximation of (𝑋,Λ) and an approxi-

mation of the smallest pair of eigenvalues 𝜎 /eigenvectors 𝑣

of 𝐿 in the subspace 𝑆 ,

[𝑋,Λ, 𝑣, 𝜎] = 𝑆𝑆𝑀 (𝐿, 𝐸0, 𝑆)
consider the approximation 𝑋 = 𝑉𝑋̃ for some 𝑋̃ . Compute

min

𝑋
𝐹𝑆 := min

𝑋̃

𝐹 (𝑋̃ ;𝐵,𝑉⊤𝐸0)

(3) The terms 𝐿 and 𝐸0 are reweighted according to Sec. 3.4 such

that the objective remains a tight upper-bound on the HPWL

(Alg.1, line 10).

It is interesting to note the connection with graph coarsening meth-

ods. The orthogonal matrix 𝑉 can be interpreted as a graph coars-

ening transform, and its inverse as a graph lifting transform—by

reducing the size of the graph, we achieve significant improvements

in scalability without sacrificing solution quality. Future work may

investigate this alternative interpretation of SSM.

Algorithm 2 Sequential Subspace Minimization

Input: Partial Laplacian matrix 𝐿, unit vector 𝑣 maximum

iterations 𝑛

Output: Placement coordinates 𝑋

1: function ssm(𝐴, 𝑣)

2: 𝐿 ← 𝐷 − 𝐴 ⊲ Compute the graph Laplacian

3: Initialize 𝑋 to [𝑈1 : 𝑈2 ], where 𝑈𝑖 is the eigenvector of 𝑃𝐿𝑃

corresponding to the 𝑖-th smallest nonzero eigenvalue (Sec 3.1).

4: while 𝑡 < 𝑛 do
5: 𝑍 ← 𝑆𝑄𝑃 (𝐿,Λ, 𝐸0, 𝑋, 𝑣) ⊲ Compute 𝑍 using Eq. 11 & Alg. 2

6: S ← 𝑠𝑝𝑎𝑛 (𝑋,𝑍, 𝑣,Λ𝑋 + 𝐸0 )
7: 𝑉 ← 𝑄𝑅 (𝑐𝑜𝑙 (𝑆 ) )
8: 𝐵 ← 𝑉⊤𝐿𝑉
9: 𝑋̂ ← min𝑋 𝐹 (𝑋̂ ;𝐵,𝑉⊤𝐸0 ) ⊲ Solve Problem 4 in the subspace

10: 𝐿, 𝐸0 ← 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡 (𝑋 )
11: 𝑡 ← 𝑡 + 1

12: end while
13: return𝑉⊤𝑋̂ ⊲ Return lifted coordinates

14: end function

3.4 Minimization of HPWL via re-weighting
In this section, we show how our method may be adapted to facili-

tate direct minimization of HPWL. A similarmethodwas adopted by

the GORDIAN-L cell placement tool [1]. Inspired by asymptotically

optimal algorithms for lasso-type regression problems [4, 5, 8, 24],

we solve an equivalent ℓ1 minimization problem by solving a se-

quence of re-weighted ℓ2 minimization problems. In particular, we

propose an analogous algorithm for the 2-dimensional case. Note

that we now consider the following problem:∑︁
𝑖, 𝑗∈E

𝑤𝑖 𝑗 ( |𝑥𝑖 − 𝑥 𝑗 | + |𝑦𝑖 − 𝑦 𝑗 |) (12)

Informally, the objective is upper bounded by the expression

min

𝑢𝑖,𝑗>0

max

𝑣𝑖,𝑗>0


∑︁
𝑖, 𝑗∈E

(𝑢𝑖, 𝑗 |𝑥𝑖 − 𝑥 𝑗 |2 +
1

𝑢𝑖, 𝑗
+ 𝑣𝑖, 𝑗 |𝑦𝑖 − 𝑦 𝑗 |2 +

1

𝑣𝑖, 𝑗
)


Crucially, the equality holds if and only if 𝑢𝑖, 𝑗 = |𝑥𝑖 − 𝑥 𝑗 |−1
and

𝑣𝑖, 𝑗 = |𝑦𝑖 − 𝑦 𝑗 |−1
and implies a strategy for solving Prob. 12 that

involves Prob. 4 as a sub-problem:

(1) For each 𝑢 > 0, 𝑣 > 0, solve Prob. 12 with respect to 𝑥 , 𝑦.

(2) For each 𝑥 , 𝑦, solve Prob. 12 with respect to 𝑢, 𝑣 .

𝑢𝑖, 𝑗 = |𝑥𝑖 − 𝑥 𝑗 |−1, 𝑣𝑖, 𝑗 = |𝑦𝑖 − 𝑦 𝑗 |−1

In practice, we alter the above algorithm in two ways: (1.) follow-

ing [1], a small adjustment to the denominator of each weight for

normalization and to address numerical instability in the situa-

tion where two nodes overlap—e.g., 𝑢𝑖, 𝑗 = 1/(W
√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + 𝛽),

whereW is the width of the placement area (2.) instead of solv-

ing Prob. 12 (step (1.)) to convergence, we perform incremental

1-step updates—i.e., we perform re-weighting each iteration of SSM

and compute the subsequent subspace with respect to the new re-

weighted matrix 𝐿 and associated 𝐸0. While the concept of iterative

re-weighting for optimization has most commonly been applied to

ℓ1 and ℓ∞ minimization problems, the framework is quite general

and a similar procedure motivates minimization of other kinds of

norms-based objectives. Future work includes investigating the effi-

cacy of this reweighting scheme for alternative norm-minimization

problems (e.g. robust 𝑝-normminimization) in the context of layout.

3.5 Complexity analysis of QCQP initialization
In this section, we discuss the computational cost of our QCQP-

based method, which is dominated by the SQP routine to compute

the Newton directions. We claim the complexity of the QCQP place-

ment initialization is 𝑂 (#iterations × 𝑇matrix), where #iterations

is the number of SSM iterations, and 𝑇matrix is the complexity of

each call to a sparse matrix (i.e. Laplacian-like) solver. Although

fast, nearly linear-time solvers exist for solving Laplacian-like sys-

tems [22], we adopt the Jacobi-preconditioned conjugate gradient

method due to its simplicity and efficacy in practice.

Generic quadratic programs are NP-hard [21], i.e. it takes super-

polynomial time to solve QPs optimally. In the convex case, there

are polynomial time interior point algorithms [9]. Also, there are

approximation algorithms that return local solutions of nonconvex

QPs in polynomial time [13]. Our method falls into the category of

algorithms that guarantee local, or block-globally optimal solutions.

In particular, although the objective of our algorithm satisfies

the conditions for convexity, the addition of quadratic equality

constraints—sphere constraints—introduces a violation of the condi-

tions necessary for convexity. In practice, we find that our method
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is typically stable to perturbations of the initialization as long as

(1.) the layout is feasible and (2.) there are a sufficient number of

fixed pins (i.e. the norm of 𝐸 is sufficiently large).

3.5.1 Computation of the descent direction𝑍 . In Sec 3.3, we express
the Newton direction 𝑍 as the solution to the system character-

ized by the linearization of the first order optimality conditions.

Namely, within each iteration of our procedure, we compute a set

of Lagrangian multipliers as well as their update directions and the

update directions for 𝑋 as defined in Eq. 10 and Eq. 11.

In Alg. 1, we present the detailed steps of our implementation.

The computations in lines 3-6 and 8-9 primarily involve vector-

vector and matrix-vector multiplications. Exploiting the sparsity

of 𝐿, both multiplications can be done in 𝑂 (𝑛). To compute the in-

verses in line 7, we first compute 𝐿−1

𝑊𝑗
𝐸 by solving the linear system

𝐿𝑊𝑗
𝑏 = 𝐸 for 𝑏. We solve 𝑋⊤𝐿−1

𝑊𝑗
𝑋𝛿 𝑗 = 𝑏 for 𝛿 𝑗 . Using conjugate

gradient, with an appropriate preconditioner 𝐾 , the computation

of 𝛿 𝑗 up to a residual 𝜖 can be done in 𝑂 (𝑛
√︁
𝜅 (𝐾𝐿) log(1/𝜖)) time.

The computation of 𝑍 𝑗 can be done in the same way.

In otherwords, the computation of the columns of the Lagrangian

multipliers (Δ) 𝑗 can be decomposed into (1.) the computation

of 𝐿 +𝑊𝑗 𝐼 twice in 𝑂 (𝑛) time (2.) its inverse three times (once

for each column of 𝑋 and once for 𝐸 𝑗 ) via conjugate gradient,

again in 𝑂 (𝑛
√︁
𝜅 (𝐾𝐿) log(1/𝜖)) time (3.) two left-multiplications

by 𝑋⊤ in 𝑂 (2𝑛) time. To compute the columns of the Newton di-

rection; 𝑍 𝑗 , first note that 𝑃 can be re-written as 𝐼 − 𝑣𝑣⊤. Then,
(𝑊𝑗 𝐼 )−1𝑃 = (𝑊𝑗 𝐼 )−1 − ((𝑊𝑗 𝐼 )−1𝑣)𝑣⊤.

In summary, the complexity of our method is dominated by the

computation of the SQP newton direction 𝑍 in line 5 of Alg. 2, due

to the necessity of computing three unique inverse-vector products

involving the Laplacian (lines 7 and 10 of Alg. 1).

4 EXPERIMENTS
In this section we describe a set of comprehensive experiments on

eight VLSI testcases from the ISPD’05 contest suite [20]. Summary

statistics of the testcases are presented in Table 1. Our numerical

experiments are aimed at establishing the efficacy of our method

with respect to post-detailed placement wirelength. We leverage the

DREAMPlace [17] placement engine and substitute the heuristic

initialization schemes with our proposed method.

Table 1: Design characteristics. 𝑛free =#Free cells and
𝑛fixed =#Fixed pins. Max Deg, Avg Deg correspond to charac-
teristics of the graph-models of the design netlists.

Design #Free cells #Fixed pins #Nets Max Deg Avg Deg

adaptec1 211𝑘 29𝑘 221𝑘 340 4.2

adaptec2 255𝑘 21𝑘 266𝑘 153 3.9

adaptec3 452𝑘 25𝑘 467𝑘 82 4.0

adaptec4 496𝑘 29𝑘 516𝑘 171 3.7

bigblue1 278𝑘 11𝑘 284𝑘 74 4.1

bigblue2 558𝑘 141𝑘 577𝑘 260 3.5

bigblue3 558𝑘 37𝑘 1123𝑘 91 3.4

bigblue4 2177𝑘 170𝑘 2230𝑘 129 3.7

4.1 Experimental Setup
4.1.1 Algorithm parameters. To produce graph-layouts of IC netlists

we adopt a hybrid net model [23]—a combination of the clique and

star models. Each net is converted to a star or clique-graph depend-

ing on the size of the net—i.e. nets with three or fewer pins are

modeled as cliques and nets with four or more pins are modeled as

stars, with an associated free pseudo-pin variable introduced. To de-

termine 𝑣 , we first consider the surface area of cells (i.e. 𝑣𝑖 = 𝑤𝑖 ×ℎ𝑖 ,
where𝑤𝑖 and ℎ𝑖 is the width and height of cell 𝑖), scaled such that

the distribution is centered about 1. 𝑣 is then normalized. The 𝑐𝑖
are determined according to the free layout space.

4.1.2 Implementation details. We implemented our algorithms in

Python using the JAX framework [3] on a GCP c2-standard-8 ma-

chine with 8 virtual CPUs, 32 GB of memory, and a single Nvidia

Tesla K80 GPU. In particular, we exploit JAX’s capability to vec-

torize batched computation and compilation to XLA via the jit
decorator. XLA facilitates hardware acceleration and the entire

framework (initialization, global placement, detailed placement /

legalization) may exploit GPU and multi-GPU-based parallelism

without returning to a Python interpreter.

4.2 Results
4.2.1 Numerical results. We applied the proposed method to eight

benchmarks from the ISPD’05 contest suite [20] and measured the

cumulative HPWL post-detailed placement. Numerical results are

provided in Table 2. We find that origin initializations consistently

under-perform the other three methods, and that random and min-

wirelength exhibit comparable results. However, initialization us-

ing the vanilla projected eigenvectors of the reduced Laplacian [6]

result in superior HPWL—improvement between 1.0% and 3.0%

compared to the random and min-wirelength heuristics. Larger

gains are achieved when the initialization corresponds to the so-

lution to Prob. 3 using SSM without reweighting—between 1.58%

and 3.96%. Additionally, improvements in global placement runtime

correlate with better initialization. We provide the global placement

(DREAMPlace) runtime in Table 2. The GP runtime ranges from

62.42𝑠 to 1293.10𝑠 for the Projected Eigenvectors + SSM method,

which is comparable to or less than the other methods.

4.2.2 Reweighted SSM iterations and runtime. In Table 3, we demon-

strate that the directly minimizing HPWL via reweighting yields

still further improvements—between 1.68% and 4.76% compared to

random and min wirelength initializations. We note that reweight-

ing methods are typically slow to converge [10]. As a consequence,

instead of running our algorithm to convergence, we set a hard max-

imum limit of 100 reweighting / SSM steps. We additionally observe

a mean per-iteration wall-time of 26.34 − 322.32 and a significant

(𝜌 = 0.99, 𝑝 = 1.1𝑒 − 7) linear correlation with the number of free

cells. We plot this trend in Fig. 5b. It is likely that further gains

could be achieved with a direct method for HPWL minimization.

While the per-iteration runtime of our method is nontrivial, we

highlight three key points: (1.) the experiments imply that the pro-

posed QCQP formulation and method can consistently improve

placement quality. This evidence incentivises future work to en-

hance the efficiency of these algorithms—particularly Laplacian

solvers to drastically speed up turnaround time, (2.) few iterations
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Table 2: Post-detailed place metrics. We report cumulative HPWL and runtime of global and detailed placement and legalization
using various initializations. We report the percent improvement over random init. in parenthesis. The best result is bolded.

Design

Random Min-wirelength Projected Eigenvectors Projected Eigenvectors + SSM

HPWL GP runtime (s) HPWL GP runtime (s) HPWL GP runtime (s) runtime (s) HPWL GP runtime (s) runtime / iter. (s)

adaptec1 73.24 84.39 73.23 74.31 70.36 (3.9%) 63.86 93.6 70.34 (3.96%) 62.42 26.34

adaptec2 82.51 189.46 82.24 172.91 81.68 (1.0%) 164.37 88.2 81.21 (1.58%) 162.49 22.56

adaptec3 194.12 314.54 193.87 309.88 189.13 (2.5%) 313.29 181.2 187.95 (3.18%) 314.01 57.78

adaptec4 174.43 371.72 174.16 354.16 171.73 (1.5%) 372.14 168.6 171.62 (1.61%) 361.37 47.94

bigblue1 89.43 112.64 89.43 107.56 87.32 (2.3%) 94.11 124.2 87.04 (2.67%) 94.23 45.71

bigblue2 136.69 387.94 136.69 361.75 132.49 (3.0%) 327.14 150.6 131.37 (3.89%) 321.86 53.56

bigblue3 303.99 1064.63 303.99 1047.66 298.47 (1.8%) 847.03 369.0 297.31 (2.20%) 849.23 110.63

bigblue4 743.75 1534.11 743.75 1500.70 726.71 (2.2%) 1372.49 1539.6 724.78 (2.55%) 1293.10 322.32

Table 3: HPWL and structure-preservation test statistic for
Prob. 3 (min-squared objective) and Prob. 3 (HPWLobjective).

Design

Squared-wirelength Direct HPWL

HPWL 𝑧 HPWL 𝑧

adaptec1 70.34 (3.96%) 0.131 ± 0.046 70.12 (4.26%) 0.139 ± 0.052

adaptec2 81.21 (1.58%) 0.069 ± 0.031 81.12 (1.68%) 0.073 ± 0.038

adaptec3 187.95 (3.18%) 0.072 ± 0.041 186.61 (3.87%) 0.076 ± 0.043

adaptec4 171.62 (1.61%) 0.126 ± 0.057 170.34 (2.34%) 0.131 ± 0.061

bigblue1 87.04 (2.67%) 0.063 ± 0.039 85.72 (4.15%) 0.067 ± 0.041

bigblue2 131.37 (3.89%) 0.079 ± 0.037 130.19 (4.76%) 0.081 ± 0.044

bigblue3 297.31 (2.2%) 0.074 ± 0.041 296.04 (2.61%) 0.074 ± 0.043

bigblue4 724.78 (2.55%) 0.081 ± 0.053 723.77 (2.69%) 0.081 ± 0.054

(a) (b)

Figure 5: Eigenvector method and projection. (a): Mean nor-
malized decay in HPWL of adaptec cases. (b): Per-iteration
turnaround (seconds) vs. dimension of 𝐿22: # free cells + #
nets in 10

3 unit.

are needed to significantly improve the post-detailed placement

wirelength (as demonstrated in Fig. 5a), (3.) typical placement flows

usually involve multiple runs of the global and detailed placement

engine to validate different choices of hyperparameters, while our

parameter-free initializations need only be computed once.

In Fig. 5a, we demonstrate that relatively few iterations are

needed to improve the quality of post-detailed placement HPWL.

For each testcase, we apply 100 iterations of SSM. Global and de-

tailed placement is performed using each intermediate SSM iterate

as the initialization. The HPWL of the post-detailed placement is

measured and normalized to lie in the range [0, 1]. We plot the

distribution of normalized post-detailed placement HPWL with

the shaded region corresponding to 1 standard deviation in nor-

malized HPWL. We observe that across all testcases, 60% of the

improvement in post-detailed placement wirelength is achieved

within the first 5 − 10 iterations while roughly 80% of the improve-

ment is achieved after the first ∼ 20 iterations. Additionally, we

emphasize that our method is parameter free and yields the same

solution across multiple runs. One may only need to generate a

single initialization to validate multiple choices of global / detailed

placement hyperparameters.

(a) (b)

(c) (d)

Figure 6: Adaptec3 layout. (a): Projected eigenvectors for seed
layout. Colors denote initial spatial partitions. (b—d) Inter-
mediate DREAMPlace results. Note the preservation of cell
groups (colors) through global placement.

4.2.3 Preservation of initial structure through global placement. In
Fig 6, we plot intermediate iterations of the global placer, with

colors corresponding to clusters of standard cells derived according

to physical proximity via Euclidean 𝑘-means with 𝑘 = 10. The
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consistency of the colors (cluster) pre- and post-global placement

serves demonstrate that the global placement algorithm preserves

the global and local structure induced by the seed layout. Inspired

by metrics proposed in Fogaça et al. [11] to evaluate the quality

of a graph partitioning / clustering, we propose to evaluate this

hypothesis by proposing a novel two-sample permutation test. We

formulate the null (𝐻0) and alternative (𝐻𝑎) hypotheses below:

𝐻0: no effect of the initialization on the final layout

𝐻𝑎 : there is an effect

Intuitively, under the null hypothesis, the cells component to any

initial spatial partitioning (e.g. an arbitrary cell’s neighbors) would

separate during the global placement process, and a new partition-

ing after global placement would yield very different groups of

cells. We consider a partitioning computed based on the initial lay-

out—e.g. we apply Euclidean 𝑘-medoids
2
with 𝑘 = 100. After global

placement, we re-partition the final layout using 𝑘-means. For each

centroid-cell 𝑐 of an initial partition 𝑃𝑐 , we find 𝑐’s partition 𝑃
′
𝑐 in

the final layout. The statistic with respect to 𝑐 is

𝑧𝑐 =
|𝑃𝑐 ∩ 𝑃 ′𝑐 |
|𝑃𝑐 | + |𝑃 ′𝑐 |

(13)

We consider the mean over all 𝑐 ; 𝑧 = 1

𝑘

∑
𝑖∈[𝑘 ] 𝑧𝑐𝑖 , as the test statis-

tic for a given initialization. Intuitively, the null-distribution is

centered about zero (samples in the initial partition 𝑃𝑐 character-

ized by 𝑐 may end up arbitrarily far from 𝑐 after global placement).

Likewise, the “ideal” test-static corresponds to 0.5 (𝑃𝑐 = 𝑃 ′𝑐 , parti-
tions don’t change after global placement). In Table 3, we report

the 𝑧-scores associated with each design (since we find 𝑝-values

are trivial). We simulate the null-distribution associated with each

testcase 1000 times to compute the p-value 𝑝struct, the percentage

of simulations which result in a test statistic equal to or larger

than proposed method’s test statistic. We find significance at the

0.01-level for all designs, with the null-distribution close to zero

(e.g. 𝑧
null

= 0.00579 with standard deviation < 10
−5

for adaptec3).

5 CONCLUSION AND FUTUREWORK
We have presented a novel QCQP formulation to initialize global

placement engines. Despite the nonconvexity of the constraints, we

describe an algorithm to efficiently solve the problem and extend

it to facilitate minimization of HPWL. In an extensive study on

eight VLSI designs, we have demonstrated that our approach to ini-

tialization consistently outperforms relevant methods with respect

to post-detailed placement layout quality. Furthermore, we have

proposed a statistical test for initialization quality. Future work

includes a more detailed analysis of the algorithm, exploration of

formulations for partitioning and local congestion, improving the

method for HPWL minimization, and improving runtime.
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