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 MANAGEMENT SCIENCE

 Vol. 17, No. 3, November, 1970
 Printed in U.S.A.

 AN r-DIMENSIONAL QUADRATIC PLACEMENT
 ALGORITHM*

 KENNETH M. HALLt

 State of California, Department of General Services

 In this paper the solution to the problem of placing n connected points (or nodes)

 in r-dimensional Euclidean space is given. The criterion for optimality is minimizing a
 weighted sum of squared distances between the points subject to quadratic con-
 straints of the form X'X = 1, for each of the r unknown coordinate vectors. It is
 proved that the problem reduces to the minimization of a sum or r positive semi-
 definite quadratic forms which, under the quadratic constraints, reduces to the
 problem of finding r eigenvectors of a special "disconnection" matrix. It is shown, by
 example, how this can serve as a basis for cluster identification.

 1. Introduction

 Many sequencing and placement problems can be characterized as follows: Given
 n points (or nodes) and an n X n symmetric connection matrix, C = (Ce;), where

 cii = 0, and ci1 > 0, i * j, i = 1, 2, ... , n, is the "connection" between point i and
 point j, find locations for the n points which minimizes the weighted sum of squared
 distances between the points (i.e., weighted by ci;).

 If xi denotes the X-coordinate of point i and z denotes the weighted sum of squared
 distances between the points, then the 1-dimensional problem is to find the row vector

 XI (xI, X2, * * , xn) which minimizes

 (1.1) ~~~Z = .1 En= En' (Xi _ Xj)2Cij

 where the prime denotes vector transposition. To avoid the trivial solution xi = 0,
 for all i, the following quadratic constraint is imposed:

 (1.2) X'X = 1.

 The solution to (1.1) and (1.2) is given in the next section. It is assumed that the non-
 interesting solution xi = xj, for all i and j, is to be avoided. Extensions to higher di-
 mensions are given in ??3 and 4.

 2. Optimum Solution in 1-Dimension (placement on a line)

 Let c,. and c.j be the ith row sum and the jth column sum, respectively, of the (sym-

 metric) matrix C. Define a diagonal matrix D = (di,) as follows:

 dtj =, it j,

 =Ci. i=j.

 Now, define the following matrix:

 (2.1) B=D-C.

 * Received July 1968; revised May 1969, December 1969.
 t The author wishes to acknowledge C. H. Mays for his valuable contributions in the original

 formulation of this model and the characterization of its solution. He has also pointed out some
 applications of this model the author was not aware of. The author also wishes to acknowledge one
 of the referees for pointing out Reference 5 and its relationship to the present work.
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 220 KENNETH M. HALL

 In words, the ith diagonal entry b of B is the ith row (or column) sum of the connec-
 tion matrix C and the off diagonal element bij is the negative of the corresponding entry
 in C. The matrix B plays a very fundamental role in this problem as we shall soon see.
 For brevity, B will be called the disconnection matrix.

 Let X' = (xI, x2, * - *, x.) be a row vector of X-coordinates, where the prime de-
 notes vector transposition. Then (1.1) can be rewritten as z = X'BX, i.e.

 (2.2) z = , Ej (xi -xj)c

 (2.3) - : i Zj (x2 - 2xxj + X 2)cij
 (2.4) = 2 (Es X2Ci. -2 Et Ej xxjcij + Ej x,2c.j)

 (2.5) = x2c.C- ij x

 (2.6) = X'BX.

 Equation (2.5) follows because C is symmetrical (i.e., ci. = c.j). Equation (2.6) is
 immediate since (2.5) has yielded a quadratic form. Now we prove the following:

 THEOREM. Let G denote the underlying graph of the connection matrix C (i.e., an arc in

 G exists between node i and node j if and only if cij > 0). Then the following is true about
 the disconnection matrix, B:

 (i) B is positive semi-definite (B > 0), and
 (ii) whenever G is connected, B is of rank n - 1.

 PROOF. To prove (i), we simply note from equations (2.6) and (2.2) that X'BX can
 be written as a sum of nonnegative terms. Thus B _ 0. That the bound of zero can be
 reached can be seen from (2.2) by letting xi = xj for all i and j.

 Before proving (ii), we first note from (2.1) that the row sums of B are zero, so B has
 an eigenvector which is proportional to the unit vector, U' = (1, 1, * * *, 1). The as-
 sociated eigenvalue is zero. If B is to have rank n - 1 the remaining n - 1 eigenvalues
 of B must necessarily be positive (a direct result from (i) above). We will prove that
 the required eigenvalues are, in fact, positive.

 Let 0 = X1 < X2 <? X3 ? * * * < Xn be the eigenvalues of matrix B, with corresponding
 eigenvectors E1, E2, X * * , E. . E1 is proportional to the unit vector, U, because the row
 sums of B are zero. The remaining eigenvectors, E2, E3, X * * , E.,n being orthogonal to
 U (or E1) must each have the sum of its components equal to zero. Therefore, some
 components will be negative and some will be positive and hence, not all components
 will be equal. Therefore, if we can prove: For connected G with xi * xi for all i and j,
 that X'BX is positive, our proof would be complete. We will prove this by contradic-
 tion, i.e., assume X'BX = 0 and show that it contradicts the hypothesis that xi * Xj
 for all i and j.

 Rewrite (2.5) and (2.2) as

 X'BX = Zi= _ Ei<1 - c1 (Xi- Xn in-

 Whenever X'BX = 0, both of the above terms on the right-hand side must be zero.
 Refer to these as RHSL and RHSR, respectively. Since G is connected, one or more of
 the coefficients CinX i * n, must be positive. In all these cases xi must equal xn if RHSR
 is to be zero. Now form two sets of subscripts: Si = {i:cin = 0}, S2 = {i:xi = xn}.
 Note that S2 contains all the subscripts with cjn > 0. If we can show that Si is a subset
 of S2, our proof will be complete because then xi would equal xi for all i and j (providing
 us with the desired contradiction). Also, the proof is immediate if Si is empty. There-
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 AN r-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM 221

 fore, assume Si contains m > 0 elements. Choose an element from S1, say i1; then
 Cili2 > 0 for some i2 * ii or else G would not be connected. This implies that xi2 = Xil
 or else RHSL would not be zero. Two cases must now be considered for i2; either (1)
 ci,, > 0, or (2) ci2- = 0. If (1) holds then xi2 = x-, (or else RHSR would not be zero)
 which would imply that i2 is in the set S2 . Since xi, = xi2 then i1 would also be in S2 .
 If (2) holds then cili, + ci2i3 > 0 for some i3 i t2 ii or else G would not be con-
 nected. In any case, this implies xi3 = Xi.= xi, or else RHSL would not be zero. As in
 (1) above, if Ci3n >0, then i3 and, consequently, i1 and i2 are in S2 . On the other hand,
 as in (2) above, if Ci3n = 0 we continue building up (from Si) a subset of r - 1 < m
 elements, {i4}j=_, with cil2 > 0, Cili3 + Ci2i3 > 0, *. , j-1 cij,r > 0; xi, = x=

 = Xi1 ; Cin = 0, j = 1, r - 1, and ci,. > 0. The element ir will eventually be
 reached if G is connected. When it is reached then ir and, consequently, the subset
 {ij}- will be in S2. If r = m + 1, the proof would be finished since Si would be a sub-
 set of S2 . If r _ m, repeat the above process by building up a new subset of connected
 elements from Si (having equal coordinates if RHSL is to be zero) which eventually
 become "connected" to element n in S2 . When this happens, the entire subset will be in
 S2 . Only a finite number (at most, m) of such subsets need to be constructed to account

 for all the elements of Si. Then Si will be a subset of S2 since xi will equal xi for all i
 and j. This provides the desired contradiction and completes our proof.

 Now the problem has been reduced to the following form. Minimize

 (2.7) z = X'BX, B _ 0

 subject to the quadratic constraint

 (2.8) X'X = 1.

 To minimize (2.7) subject to the constraint (2.8) introduce the Lagrange multiplier X
 and form the Lagrangian L = X BX - X (X'X - 1). Taking the first partial derivative
 of L with respect to the vector X and setting the result equal to zero yields 2BX -
 2XX = 0. If I is the identity matrix, the above can be rewritten as

 (2.9) (B - XI)X = 0

 which yields a nontrivial solution, X, if and only if X is an eigenvalue of the matrix B
 and X is the corresponding eigenvector. If (2.9) is premultiplied by X' and the con-
 straint (2.8) is imposed we obtain

 (2.10) X = X'BX.

 Thus, the formal solution to (1.1) and (1.2) is simply that X is the eigenvector of B
 which minimizes z and X (= z) is the corresponding eigenvalue. The minimum eigen-
 value, zero, yields the noninteresting solution X' = (1, 1, I , 1 )/Vn. Therefore the
 second smallest eigenvalue and the associated eigenvector yields the optimum solution.
 It is important to note that if the original problem is changed to a maximizing problem,
 then the maximum eigenvalue of B and the associated eigenvector will be the desired
 solution.

 3. Extension to 2-Dimensions

 Let Y' = (yl, Y2, *. , y. ) be a row vector of Y-coordinate of the n points. Then the
 problem is to determine X and Y which minimizes

 (3.1) z = X'BX + Y'BY, B > 0
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 222 KENNETH M. HALL

 subject to the following constraints

 (3.2) X'X = 1,

 (3.3) Y'Y = 1.

 To solve (3.1)-(3.3), introduce the Lagrange multipliers a and (3 and form the La-

 grangian L = X'BX + Y'BY - a(X'X - 1) - # (Y'Y - 1). Taking the first partial
 derivative of L with respect to the vector X and also with respect to the vector Y and
 setting the results equal to zero yields the two systems of equations

 (3.4) 2BX - 2aX = 0,

 (3.5) 2BY - 23Y = 0.

 These yield nontrivial solutions X and Y if and only if X and Y are eigenvectors of B,
 associated with the eigenvalues a and ,B, respectively.

 If 0 = Xl < 'X2 ? X3 <- ... *?* X. denote the n eigenvalues of matrix B, then (3.1)-
 (3.3 ) are solved by taking a = -1 = X. If it is desired that X not be proportional to Y,

 then take a = Xi, 3 = X2. If, further, it is desired that not all xi are equal, and not all
 y1 are equal, then take a = X2, X3 = X3. The vectors X and Y will be the eigenvectors
 associated with the eigenvalues a and ,B in any case. Sometimes, it is desirable to have
 X and Y orthogonal. This will be true whenever a t 13. If (3.4) and (3.5) are premulti-
 plied by X' and Y', respectively, and the constraints (3.2) and (3.3) are imposed, then

 we see that z = a + P3. Thus, the sum of the relevant eigenvalues used will yield the final
 value of z.

 4. Extension to r-dimensions

 For the r-dimensional problem z is simply the sum of r quadratic forms, one for each
 dimension. If each of the coordinate vectors is constrained to have inner product equal

 to 1, then setting each coordinate vector equal to the eigenvector associated with the
 eigenvalue X1 would solve the problem. If in each dimension it is required that not all
 components of the solution vector be equal, then taking the eigenvector associated with

 X2 would solve the problem. If the coordinate vectors must not be proportional to each
 other, take the eigenvector associated with the eigenvalues X2, X3, * , Xr+l. Thus,
 after finding the X-vector (from a knowledge of X2) and the Y-vector (from a knowl-
 edge of X3) additional coordinate vectors are found from a knowledge of successively
 larger eigenvalues. The final value of z will be the sum of the eigenvalues used.

 5. Applications

 Let cfi be the flow between work center i and work center j in a job shop. Choosing
 X and Y to be the eigenvectors associated with X2 and Xs, respectively, results in opti-
 mum global placement of the work centers in the plane.

 Let ci1 denote the "distance" (or "dissimilarity") between animal i and animal j
 based on a set of measurements. Choosing X to be associated with the maximum eigen-
 value, Xn X results in an optimum sequencing of the animals on a line (numerical
 taxonomy).

 Let cij represent the number of wires interconnecting a pair of electronic components
 i and j. Choosing X and Y to be the eigenvectors associated with X2 and X3 , respectively,
 results in optimum placement of the electronic components in the plane in the sense of
 minimum squared wirelength.

 Let c;j be the flow between economic facility i and economic facility j. Choosing X
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 AN r-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM 223

 and Y to be the eigenvectors associated with X2, and X3, respectively, results in opti-
 mum global placement of the economic facilities in the plane.

 6. Examples

 Example 1. A 4-node graph, its connection matrix C and disconnection matrix B are
 illustrated in Figure 6.1. Arcs denote direct connections between nodes, with correspond-
 ing values given in matrix C.

 The 4 eigenvalues of B and their associated eigenvectors El, E2, E3 and E4 are shown
 in Figure 6.2. A plot of the 4 nodes is also shown in Figure 6.2, where E2 and E3 has been
 used as the X and Y-coordinate vectors, respectively. It should be noted that E2 has
 "unraveled" the graph, whereas E4 (the maximization problem) would have made it
 worse. E4 would have yielded the sequence 4, 3, 1, 2 rather than 1, 4, 2, 3.

 Example 2. Consider the 4-node graph, its connection matrix C and disconnection
 matrix B illustrated in Figure 6.3. The eigenvalues of B with their associated eigen
 vectors are shown in Figure 6.4. A plot of the 4 nodes, using E12 and E3 is also shown

 12 34 1234

 i O 0 o i I to o -1w

 C ( C- 2 0 1 10 B S 2 0 22-1-1 01 001 310-1-10
 4 1 I 00 4 -I-1 02

 FIGUIRE 6.1. A 4-Stage Shift Register

 E3

 Node E? E ?3 ?4 4

 1 0.5 -0.653 -0.5 0.270

 2 0.5 0.270 0.5 0.653

 3 0.5 0.653 -0.5 -0.270 ' ''-'
 4 0.5 -0.270 0.5 -0.653

 -(P.0 0.586 2.0 3.414)

 FIGURE 6.2. Plot of Figure 6.1 Using Eigenvectors E2 and Es

 1 2 34 1 2 34
 101IO 1 F2-.10-11

 C= 2 1 0 1 0 2 2-1 2-l1 0
 C 3 O l O I 8-3 0- 2-1
 4 0 1 0 O 4 -1 0-1 2

 FIGURE 6.3. 4-Stage Shift Register with End Around Feedback

 ?3

 Node EI E2 E3 E4 (

 1 0.5 -0.5 0.5 -0.5

 2 0.5 0.5 0.5 0.5

 3 0.5 0.5 -0.5 -0.5 'E2

 4 0.5 -0.5 -0.5 0.5

 k=(o.o 2.0 2.0 4.0)

 FIGURE 6.4. Plot of Figure 6.3 Using E2 and Ea
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 / ~~~~~~~~~1 2 3 4 5 6 7 8
 I p0 101 10 0 0

 5 > 2 O 1 O 10 1 0 0 00

 C_ 4 10100001?
 I 1 0000 1 01 6 41 0 1001010 1

 AF~~~~ ~~~ /( 0) 6 OIOO I O I
 7 [0 0100 10 1J

 8 0O 1 O I I O 0

 FIGURE 6.5. Vertices of a Cube

 FIGURE 6.6. 4-Dimensional Hypercube

 It should be noted that the 2 eigenvalues X2 = = 2 used in Figure 6.4 are equal.
 Thus, the "Square" shown in Figure 4 can be rotated any amount about the origin
 without changing the value of z = X'BX + Y'BY where X = E2 and Y = E3. For
 example, a 450 rotation clockwise rotation would yield the 2 new eigenvectors.

 E'2 = (0, 1,, O-1)/V2, E'3 = (1, O, -1, 0)/-\/

 which also have eigenvalues X2 = 3= 2.
 Example 3. Consider the 8-node graph and its connection matrix shown in Figure

 6.5. The disconnection matrix B is not shown since it can easily be constructed from C
 by inspection. The first 4 eigenvectors of B are given by

 E = (1, 1, 1, 1,,1, 1, 1)/v"-

 E2 (-1, 1,1, -1,-1, 1, 1, -1)/

 E'3 = (1, 1,-1,-1, 1, 1, -1,-1)/

 E = (1, 1, 1, 1, -1,-1, -1, -1)/

 which have eigenvalues X1 = 0, X2 = X3 = X4 = 2. If E2, E3 and E4 are used to reposition
 the 8 nodes of Figure 6.5 in the X, Y and Z-directions, respectively, we find that the 8
 nodes form the vertices of a cube. In this case there are 3 tied eigenvalues. Because of
 this spherical symmetry the cube can be rotated about the origin without changing the
 value of the loss function z = X'BX + Y'BY + Z'BZ, where X = E2, Y = E3 and
 Z = E4 . If only E2 and E3 are used, a 2-dimensional projection of the cube will result.

 It is a simple matter to construct graphs with 4 and higher order ties e.g., the 4-
 dimensional hypercube of Figure 6.6. These situations do not arise much in practice.

 Example 4 (Steinberg). Steinberg (1961) has described a 34 node problem in which
 the objective was to map 34 electronic components into a 4 X 9 rectangular grid (the
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 AN r-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM 225

 backboard). Various authors have tried their skill at this mapping problem with vary-
 ing degrees of success. Although the general mapping problem is not solved in this paper,
 this author feels that one should first solve the global placement problem and use this

 solution as a starting point for mapping. Eigenvectors E2, E3, E4 and E5 are given
 below:

 TABLE 6.1

 Eigenvectors for Steinberg Problem

 NODE E2 E3 E4 E5
 1 '-0.0432012 -0,0694208 0,0052049 -0,0164071
 2 -0.0651679 -0.1543718 -0,0077823 0.0296335
 3 -0.0571173 -0.1095359 090060353 -0,0267673
 4 -0,0463958 -0,O802566 o01.03127 -0.0174345
 5 -0.0432456 -0.0754842 090296073 -0*0188960
 6 -0.0371948 n-0.0580382 0o0206740 -090207142
 7 -0.0571307 -0.0633301 -00116307 -0,0549437
 8 -0.0558912 -0.1151081 -0,0073685 0,0200939
 9 -0.0553631 -0.1048123 0,0055148 -0,0274094

 l0 -0.0524252 -0,0916281 -00048700 -0.0069470
 L1 -0.0093916 -0.0343772 0,0114102 -0,0177897
 12 0.0011335 -0.0388740 0,0087087 -0,0193481
 13 -0.0241184 -00553201 0,0200537 -0,0186262
 14 -0.0265103 0,0261925 -0,0049970 -0,0086094
 15 -0.0733625 -0.0900708 -0.0422770 -0,2019506
 16 -0,1241581 -0.2826598 -0,1615442 .0,7278175
 17 -0.1273314 -0.4699478 -0,1974118 0,6141847
 18 -0.0796975 -0.2166614 -0,0690472 0,1618230
 19 -0.0628896 0.1268366 0.0193869 0,0066971
 20 -0.0344391 0.0012820 00197461 0,0020348
 21 0.099851/ 0.0275425 0.4928094 0,Q244346
 22 0.1002615 0.0190828 0,7292042 0,0356757
 23 0.0685555 0*0084281 0,0612788 0,0002766
 24 0.639746Z 0.0519768 -0*2774723 0,0089584
 25 0.4273481 0.0241581 -0,0866789 0,0017937
 26 10*4485591 0.0298216 -0,0816017 0,0031537
 27 0.0962194 -0.0171636 0,0647895 0,0004566
 28 -0.0838568 0.1101?82 -0.0325383 -0,0036700
 29 -0.1066123 0,2023506 -0,0590732 0,0091841
 30 -0.1125110 0,2456635 -090769316 0,0328500
 31 -0.1507772 0,3917571 -0Q1376127 0,0681224
 32 -0,0958222 0.2118927 -0,0466467 090381619
 33 -0.1295471 0.3330358 -0.1028930 0,0697682
 34 -0.1274837 0,3169311 -0,0963279 0,0594337

 LAMBOA=( 14.9619904 21,5561523 26,0068207 29.4585571)

 On examination of the above coordinates, it becomes an easy matter to identify the
 "top" of the circuit, the "bottom" of the circuit, the "left" and "right", etc. The
 proximity of elements (e.g., one element lies near another) is perhaps more important
 than the actual value of their coordinates. In Figure 6.7 Steinberg's data is graphed
 using E2 and E3 for the X and Y-coordinates, respectively. It seems as though, because
 of the way in which E2 and E3 has separated subsets of nodes in this problem (e.g., the
 nodes 19, 28-34 have been separated from the rest of the circuit), mapping of nodes
 into discrete locations might be facilitated if algorithms are constructed which incor-
 porate these spacial relationships.

 The author could not resist the temptation to try his hand at mapping the 34 com-

 ponents into the required 4 X 9 grid. In doing so, the graph of Figure 6.7 was followed
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 AN r-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM 227

 In the next table we compare this solution to solutions that other authors have
 found.

 AUTHOR ~ SQUARED EULDA EUCLIDEAN EUCLIDEAN

 Gilmore (n5 algorithm) 11,929.000 4680.36

 Groves & Whinston 11,909.000 44 90.70

 Steinberg 11,875.000 4 8 94.54

 Hillier & Connors 10,929.993 4 8 21.78

 Gilmore (n4 olgorithm) 10,656.000 4547.54

 Holl 9,699.000 44 19.13

 FIGURE 6.9. Comparison of Solutions

 Example 5 (Sokal). R. Sokal (1966) describes a problem in which the dissimilarity
 between 27 individuals from seven species of nematode worms (OTU's, or Operational
 Taxonomic Units) were measured and the object was to sequence the individuals on a
 line into homogeneous groups. A nematode pentagram (a tree-like structure) is then
 constructed, based on the final sequencing, to illustrate how the individuals are related.
 Complete data in the dissimilarity matrix was not given. Instead, six different intervals
 were used, representing the values 0, .09-.48, .49-.88, .89-1.28, 1.29-1.68 and 1.69-2.08.

 Since dissimilarity is being measured, this is a maximization problem. In order to test
 this placement algorithm on Sokal's data, the 6 intervals were quantized with the values
 0, .3, .7, 1.1, 1.5, and 1.9. The eigenvectors E27, E26, E25 and E24 are given below.

 TABLE 6.2

 Eigenvectors for Sokal Problem

 OTU E27 E26 ,25 E24
 1 -0.0196284 -0*1299278 -0*2100324 0*2194112.
 2 -0*0174247 0.0079917 -0.1291837 -0.0143678
 3 -0.0526643 0.0083841 -0.1268731 0*0013172
 4 -0.- 0270066 0*0780911 -0.1957602 0.18558-76
 5 0.0615105 -OO.781528 -0 . 1544196 -0.3392692
 6 -0.0609313 0.231'3899 O.2634283 -O0.0609143
 7 -0*1752974 0.10888.1.2 -0*3299048 0*4549611

 8 0.0683077 0.3481232 0.2492595 0*0473912
 9 -0.0163202 0.26412273 0.2327649 0.00386984
 tO -0.0153026 -0s026078.1 -0*0978453 -0.2366427
 11 -0.0384865 0.01!521-13 -0.1135472 -0*0019631
 12 -0*0251980 0.1255451 -0.231386t 0*1865790
 1.3 0*9100246 -0.*595143 -0.1439505 -0*278960?
 14 0.0738811 -0.3426431 -0.0258946 0.0992212
 15 -0.0153034 0.2720411 0.2676228 0.0000965
 16 -0.0695177 0.0152115 -0.1135479 -0.001.9636
 17 -0.0376632 -0*0838335 -0.1691312 -0*5065462
 18 a.0067246 0.1262516 -0.2265009 0*1684259
 19 -0.1714458 0 1936861 0.1841411 -0*0356510
 20 -0*0473349 -0.3091024 01082395 0*1780271
 21 0.0769080 0*0807679 -0.1657397 0*1395029
 22 -0.1861492 0.2762499 0*2731388 0.0037467
 23 -0.1275033 -0.3696333 0.o1841339 0*1973473
 24 -0.0152448 -0*2019032 0.2215934 0.0420966
 25 -0.0149359 0*0154212 -0.1t30940 -0*0021011
 26 0*0659477 -0*0307920 -0*0886206 -O.2716177
 27 -0.1299278 0.*2405394 0.2216874 -0.0482839

 LAM8DA=( 45.7771912 44.3530121 42*9558411 40.8111115)
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 FIGURE 6.10. Graph of Sokal's Clusters

 When the above data is plotted in 2 dimensions, 6 distinct clusters appear. Sokal
 originally defined 7 clusters, which are shown in Figure 6.10. This data indicates that
 ci and c2 should be combined into one cluster; however, this data is not really accurate
 since the original data was quantized.

 7. Summary

 An algorithm has been described for solving quadratic placement problems in r-
 dimensions. Sums of quadratic forms are either maximized or minimized, depending on
 the nature of the problem, to yield an optimum solution in any number of dimensions.
 The r solution (or coordinate) vectors are simple to obtain because they are eigen-
 vectors of a positive semi-definite disconnection matrix B, which is easily constructed
 from a basic connection matrix C. The n nodes of the graph (i.e., the items which must
 be positioned) can then be placed at the derived locations.

 The solution vectors seem to do a good job separating nodes into local clusters.

 Therefore, this algorithm may serve as a basis for cluster identification (or separation)
 problems. Also, it may serve as a basis for mapping problems, where the analog posi-
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 AN r-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM 229

 tions of the nodes must be mapped into discrete locations (perhaps with minimum
 squared motion).

 Solution times are quite fast. On the IBM 360/44, all 34 eigenvectors and eigenvalues
 were generated for the Steinberg problem in 27 seconds and all 27 eigenvectors and
 eigenvalues for the Sokal problem were generated in 17 seconds. The Jacobi method

 (Ralston and Wilf, 1964) was used for generating the eigenvalues and eigenvectors.
 The time required for N nodes is approximately 10 (2v + u)N3 where v is the addition

 time and u is the multiplication time of the computer.
 The 1-dimensional quadratic form X'BX leads quite naturally into a quadratic pro-

 gramming problem if it is desired to drop the quadratic constraint X'X = 1 and re-
 place it with a set of linear inequality constraints, AX <_ b. This is, in fact, the method
 one may use for mapping nodes to discrete locations. Thus, after solving the eigenvector
 problem, some nodes can be assigned positions (e.g., around the border of a rectangular
 grid) and then linear constraints (e.g., XI -X2 < 5, X3 > 6) can be imposed to find
 the remaining positions.

 This problem can be reduced to solving a set of linear equations if all the constraints

 are given in the form of linear equalities. Kodres (1959) originally pointed this out for

 the 2-dimensional case. He made use of some specified xi and yi values to insure a non-
 trivial solution of the linear equations for the remaining coordinates. When some co-
 ordinates can be specified in advance, his method is very useful. It has been the author's
 experience, however, that quite often not enough is known about the problem to force
 such constraints. It is for this very reason that the methods of this paper were developed.

 The norm for this problem was chosen because of its mathematical tractability. Ex-
 tensions to&other norms have not been considered here. Unfortunately, no formal link
 has been found between the Quadratic model of this paper and the Quadratic assign-
 ment problem. In particular, to obtain Figure 6.8, the bottom of the grid was first filled
 out with nodes having negative y-coordinates. The upper part of the grid was filled
 out next. Because of the way this mapping was done, the largest distortions seem to ap-
 pear at the top of the grid. This points out that the shape of the grid has a great deal
 to do with the mapping.
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