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ABSTRACT
Macro placement is a critical very large-scale integration (VLSI)
physical design problem that significantly impacts the design power-
performance-area (PPA) metrics. This paper proposes AutoDMP,
a methodology that leverages DREAMPlace, a GPU-accelerated
placer, to place macros and standard cells concurrently in con-
junction with automated parameter tuning using a multi-objective
hyperparameter optimization technique. As a result, we can gener-
ate high-quality predictable solutions, improving the macro place-
ment quality of academic benchmarks compared to baseline results
generated from academic and commercial tools. AutoDMP is also
computationally efficient, optimizing a design with 2.7 million cells
and 320 macros in 3 hours on a single NVIDIA DGX Station A100.
This work demonstrates the promise and potential of combining
GPU-accelerated algorithms and ML techniques for VLSI design
automation.

CCS CONCEPTS
• Hardware → Placement; • Computing methodologies →
Graphics processors; Artificial intelligence.
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1 INTRODUCTION
Modern digital chips integrate large numbers of macros, such as
SRAMs and clock generators. These objects are typically much
larger than the more numerous standard cells, which are the funda-
mental building blocks of digital designs. Thus, macros deserve spe-
cial treatment due to their large effect on the floorplan of the chip,
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impacting many competing design objectives such as wirelength,
power, and area. Traditionally, high-quality macro placements are
obtained as part of floorplanning, decoupling the placement prob-
lem into first placing macros alone through manual or algorithmic
effort, followed by placing the standard cells independently.

Recently, mixed-size placement, which places macros and stan-
dard cells simultaneously, has shown promising results compared
to the two-step approach. The unified global view of the placeable
objects can unlock new optimal locations for the macros for the
multi-objective placement optimization problem. However, macro
legalization is challenging for mixed-size placement, especially
when many macros are tightly packed. Furthermore, expanding the
design space can also increase the sub-optimality gap, thus requir-
ing new effective and efficient design space exploration techniques.

In this work, we propose an open-source methodology called
Automated DREAMPlace-based Macro Placement (AutoDMP) to
find better macro placement solutions by efficiently searching a
vast design space using ML-based multi-objective optimization and
analytical mixed-size placers accelerated by graphics processing
units (GPUs). The key contributions are summarized as follows:

• We propose using multi-objective Bayesian optimization to
search the design space of macro placements efficiently. This
design space is explored by tuning the parameters of a GPU-
accelerated mixed-size placer and targeting three high-level
power-performance-area (PPA) proxy objectives post-place,
namely wirelength, cell density, and congestion.

• We propose a two-level PPA evaluation scheme to manage
the complexity of the search space. Only the macro place-
ments obtained during the search that are Pareto-optimal
for the proxies are evaluated inside a commercial electronic
design automation (EDA) tool with more advanced figures
of merit obtained after timing optimization and routing.

• We propose enhancements to the mixed-size placement en-
gine, the open-source analytical DREAMPlace [31] placer, to
reduce legalization issues and significantly expand its design
space, thereby increasing the potential achievable PPA.

• In a few hours on an NVIDIA DGX Station, we can generate
various viable macro placements corresponding to different
Pareto points, the quality of which is comparable to those de-
signed by commercial tools. We demonstrate the best routed
wirelength and timing results of any open-source tool on
the open-source TILOS benchmarks [49].

The source code is released on GitHub1.
1https://github.com/NVlabs/AutoDMP
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2 RELATEDWORK
Solving the macro placement problem has a rich and continuing
history. We consider prior efforts in two broad categories: floor-
planning, which fixes macro locations and then places standard
cells separately, and mixed-size placement, which places both si-
multaneously.

Floorplanning addresses the problem of efficiently packing hard
macros and soft clusters of standard cells to minimize wirelength
and area. The floorplanning approach can be further divided into the
time-honored simulated annealing and partitioning methods and
the recently proposed reinforcement learning (RL)-based method.

Simulated annealing is widely applied in the traditional floor-
plan literature. The macro placement is represented by efficient data
structures, such as sequence pairs [40], corner block lists [20], or
tree-like structures [19, 35], notably B*-trees [7]. A newmethod [27]
uses traditional sequence pairs but tries to mimic the behavior of
human experts with a handcrafted objective function, exploiting log-
ical hierarchy and dataflow for standard cell clustering. Simulated
annealing is very flexible but suffers from poor scalability. Fast [9]
and multilevel [10] approaches have been proposed to improve its
scalability. The partitioning method performs top-down partition-
ing to construct the floorplan. Legalization is a crucial issue of the
partitioning method. Initially, low-temperature annealing [44] and
row-based legalization [45] were proposed to legalize the macros
after partitioning. Later, look-ahead legalization [18] guaranteed
legalizable partitions, and [51] deferred the decision-making when
reconstructing partitions bottom up. The RL approach from Google,
known as CircuitTraining [39], views the macro placement problem
as a gamewhere actions involve placingmacros at discrete locations
on a gridded canvas. The standard cells are clustered and placed
with quadratic force-directed placement after macro placement. The
proxy cost of the placement uses three coarse metrics, namely half-
perimeter wirelength (HPWL), density, and congestion. Without
considering the timing or global and detailed placements of stan-
dard cells, CircuitTraining achieves impressive macro placements,
yielding solutions with competitive PPA to commercial solutions.
However, the training and fine-tuning process is often long and con-
sumes many hardware resources, i.e., multiple days and thousands
of CPUs.

State-of-the-art mixed-size placers usually combine floorplan-
ning techniques to pack and legalize macros and analytical place-
ment techniques to handle millions of small standard cells. Simulta-
neous flows place macros and standard cells together, incorporating
macro handling methods such as shredding [1, 5], shifting [11], and
re-legalization [6]. During the global analytical placement, wire-
length optimization and non-overlapping constraints are consid-
ered simultaneously as a nonlinear optimization problem [22, 26].
However, legalization is a fundamental challenge for the simulta-
neous method, as many overlaps remain after the placement stage.
This issue is exacerbated in modern heterogeneous system-on-chip
(SoC) designs in which a large proportion of the die is occupied
by macros. Sometimes, a feasible placement can only be found by
severely degrading the wirelength. On the other hand, sequential
flows tentatively place macros and standard cells together, where
standard cells might be clustered into soft blocks [52] to improve
speed, discard the standard cell placement and optimize the macro

placement only [8, 12]. Then a standard-cell placement with fixed
macros is performed using established methods. This approach,
widely used in the industry, is often more robust, especially when
considering the effect of the power-ground (P/G) grid blockages,
since it can guarantee feasible macro placements. Commercial EDA
tools can execute both simultaneous and sequential flows.

3 PRELIMINARIES
DREAMPlace accelerated ePlace/RePlace [13, 37] algorithms with
GPUs to produce state-of-the-art global placement quality, while
ABCDPlace [32] implemented traditional sequential detailed place-
ment techniques concurrently with GPUs. DREAMPlace formulates
the global placement problem as a wirelength minimization prob-
lem under density constraints and solves it numerically through
classical mathematical optimization (e.g., gradient descent) of the
nonlinear unconstrained formulation:

min
x,y

∑︁
𝑒∈𝐸

𝑤𝑒 WL(𝑒; x, y) + _𝐷 (x, y), (1)

where 𝐸 is the set of nets, and (x, y) are the cell locations. The
WL(𝑒; ·) term is a smooth version of the HPWL of net 𝑒 , and the
smooth density function 𝐷 (·) is computed as the potential energy
of an electrostatic system where cells are modeled as charges. It is
computed by solving Poisson’s equation via spectral methods with
a two-dimensional fast Fourier transform (FFT). The net weights
𝑤𝑒 can be used to model timing constraints [30], for example. In
addition, the Lagrange multiplier _ is progressively increased to
ensure no overlaps among cells. Finally, DREAMPlace computes
both wirelength and density gradients numerically using GPU-
accelerated algorithms enabled by the PyTorch framework.

DREAMPlace can be used as a mixed-size placer, as it sees the
global placement of macros and standard cells as the same problem
from an optimization viewpoint. However, while it excels at solving
the optimization problem, the current algorithm cannot guarantee
that placements will be legalizable for designs with many macros.
In addition, the placer’s parameters and random seeding heavily
influence the optimization’s convergence and final objective value,
resulting in very brittle and unpredictable results.

Sequential model-based optimization techniques [23] have been
applied to EDA tools and flow parameter tuning [34, 50]. These
techniques learn a surrogate model to predict performance and iter-
ate between fitting a model and gathering additional data based on
this model. Furthermore, they are known to be sample efficient. One
such method is the tree-structured Parzen estimator (TPE) [4]. The
TPE builds distributions of the “good” (𝐺) and “poor” samples (𝑃 ),
where samples are classified based on their position in the objective
space relative to the current Pareto front. The algorithm collects
multiple random samples before building the internal distributions.
These distributions follow the non-parametric multivariate density
estimation model called the Parzen window [43]. The good distri-
bution 𝐺 helps draw many candidates, and the TPE picks the one
with the greatest expected improvement ∝ 𝐺 (𝑥)/𝑃 (𝑥). The benefit
of TPE is that it can handle both discrete and continuous-valued pa-
rameters. The multi-objective TPE [42] extends the single-objective
TPE to handle a multi-objective space with multi-dimensional par-
titioning.
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4 AUTODMP FRAMEWORK
Our framework relies on high-level PPA proxies to guide the explo-
ration of the macro placement space. These proxies are extracted
after the legalization and detailed placement performed by ABCD-
Place on DREAMPlace’s simultaneous mixed-size global placement.
We propose enhancements to the DREAMPlace engine and novel
parameters to solve the macro legalization issues and expand the
design space. We propose a two-level methodology with multi-
objective Bayesian optimization to orchestrate the exploration of
the vast placement space and achieve increased solution quality.

4.1 PPA Proxies
The placement significantly affects the results of the downstream
physical design flow and often restricts numerous later stages, such
as timing optimization and routing [25, 38]. Being central to the
flow, many desirable characteristics during placement are antitheti-
cal. These include routability, timing, power consumption, or pro-
duction cost. However, how to decide when each objective should
matter during placement is still an open question [25]. Optimizing
many goals at once during placement might be unproductive, so
we instead focus on high-level cardinal placement objectives: wire-
length, density, and congestion. CircuitTraining demonstrated the
effectiveness of these metrics as PPA proxies. Moreover, our exper-
iments show that timing and power optimization availability stems
to a degree from these metrics. Furthermore, these objectives are
relatively smooth, predictable, and can be very quickly estimated—
an aspect of utmost importance to enable efficient exploration. In
contrast, timing or total power is much more challenging to model,
given many lengthy black-box downstream steps such as timing
optimization, clock tree synthesis (CTS), and routing.

4.1.1 Wirelength. We use the rectilinear Steiner minimum tree
(RSMT) as the first metric to judge the quality of a detailed place-
ment. The RSMT achieves minimum wirelength to connect pins
using 2D rectilinear edges only and is abundantly used by EDA
tools during global and detailed routing. The RSMT is a loose lower
bound of a net’s routed wirelength due to routing effects to satisfy
complex design rules and meet performance goals. However, with-
out access to an actual router, the long-running algorithms of which
can be chaotic, the RSMT combined with density and congestion
can serve as a sufficiently accurate estimator of the wirelength.
We compute the RSMTs of individual nets with FLUTE [16], a fast
heuristic that can generate near-optimal wirelength Steiner trees
using lookup tables.

4.1.2 Cell Density. Congestion-driven placers often decrease cell
density where pin density is high, trading congestion for density. In
DREAMPlace, the ePlace-based density formulation is used to opti-
mize the system’s potential energy assimilating cells with positive
charges in an electrostatic analogy. The stable point of the potential
energy corresponds to a uniform cell density. The optimization
of the DREAMPlace objective in Equation 1 stops when the total
electric overflow is under a certain threshold 𝑇 = 0.07,

Overflow =

∑
𝑏∈𝐵 max(𝐷𝑏 (x, y) −𝐴𝑏 · 𝑑target, 0)𝐴𝑏∑

𝑐∈𝑉𝑚𝑜𝑣
𝐴𝑐

≤ 𝑇, (2)

where the floorplan region is decomposed into rectangular bins 𝐵,
𝐴𝑏 and 𝐴𝑐 are the area of bin 𝑏 and cell 𝑐; 𝐷𝑏 is the cell density
of bin 𝑏, i.e., the sum of overlap areas between bin 𝑏 and all cells;
𝑑target is the target cell density, and 𝑉𝑚𝑜𝑣 is the subset of movable
cells. While standard cells have a density/porosity close to 1 when
calculating 𝐷𝑏 , the macros get assigned a porosity of 𝑑target. Thus,
the final placement can reach a uniform density equal to 𝑑target over
the whole chip canvas. However, because the effective utilization
is below 𝑑target, fillers must be added to achieve the target den-
sity by filling the gaps between standard cells without excessively
distributing the cells over all bins.

4.1.3 Congestion. Congestion is a traditional proxy for routability
during placement, which is key to achieving predictable timing clo-
sure. Congested designs after the placement are more likely to have
timing problems during the subsequent steps, especially during
sign-off closure. We use a routing demand estimation technique
called the rectangular uniform wire density (RUDY) [48] to model
congestion, extended to consider the limited routing resources over
macros. This is especially important when macros can be placed
anywhere in the floorplan area, as nets may cross the macros and
need to be routed over the macros. Because the RUDY map does
not account for the fact that routing can be alleviated in neighbor-
hood gcells, we smooth it by applying a Gaussian Blur kernel and
estimate the congestion score as an average of the congestion of
the top-10% most congested bins.

4.2 DREAMPlace Extensions
We propose extensions to DREAMPlace to improve the placement
estimation and quality.

4.2.1 RUDY with Macro Blockages. The RUDY estimation provides
a two-dimensional utilization map that can be readily and quickly
computed after placement. However, the RUDY implementation
inside DREAMPlace does not consider the obstructions of macros,
which can force nets to be detoured outside the macro boundaries.
Using the number of routing layers and minimum metal pitches,
we compute the horizontal and vertical routing supplies 𝑠 (𝑔)𝐻/𝑉
of a gcell 𝑔. We define per macro𝑚 ∈ 𝑀 a unit routing demand
𝛼 (𝑚)𝐻/𝑉 = o(𝑚)𝐻/𝑉 /a(𝑚), where 𝑎(𝑚) is the area of macro 𝑚,
and o(𝑚) is the routing supply used by macro 𝑚’s obstructions.
Finally, the RUDY congestion map is obtained as

RUDY(𝑔)𝐻/𝑉 =

∑
𝑒∈𝐸

OA(𝑒,𝑔)
BBOX(𝑒 )𝑉 /𝐻

s(𝑔)𝐻/𝑉 −∑
𝑚∈𝑀 𝛼 (𝑚)𝐻/𝑉 OA(𝑚,𝑔) , (3)

where OA is the overlap area of 𝑔 with macro𝑚 or the bounding
box BBOX(𝑒) of net 𝑒 .

4.2.2 RISA NetWeights. Because the wirelength proxy is the RSMT,
not HPWL, we use a weighted wirelength during global and de-
tailed placements to increase correlation with Steiner routing. The
net weights are obtained from RISA [15], where the RSMT is ap-
proximated based on the cardinality of the point set, and weights
𝑤𝑒 are obtained through statistical simulations on random points
and exact RSMT construction.
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4.2.3 Gradient Descent Optimizer. The objective of Equation 1 is
optimized in DREAMPlace through gradient descent (GD). To im-
prove the convergence’s success rate, we modify the initial learning
rate computation, of the original form

lr𝑖𝑛𝑖𝑡 =
∥𝑧0 − 𝑧1∥2

∥∇𝑓 (𝑧1) − ∇𝑓 (𝑧0)∥2
, 𝑧1 = 𝑧0 − lr0 ·∇𝑓 (𝑧0), (4)

where 𝑧 = (x, y), 𝑓 is the target minimization objective of Equa-
tion 1, lr0 the user’s initial learning rate parameter, and the gradient
is preconditioned with the Jacobi diagonal method. We observed
that this initialization method often resulted in null or anomalously
large gradients at the early stages of the optimization, usually
due to the target density setting. Therefore, if the rate in Equa-
tion 4 is abnormal, we perform a backtracking line search with
Armijo–Goldstein stopping condition [3] to reset the initial learn-
ing rate to lr𝑖𝑛𝑖𝑡 = min𝑡 𝑓 (𝑧0 − 𝑡∇𝑓 (𝑧0)).

4.2.4 Heuristics Simplification. We remove multiple heuristics dur-
ing global optimization, which activate quadratic penalty and inject
entropy when reaching a high overflow plateau and stop place-
ment based on a divergence check. These heuristics make place-
ment unstable. Thus, we keep the simple first-order density penalty
throughout the optimization. In addition, the stopping conditions
are simplified to check the variation of the objective, HPWL, and
density overflow values.

4.2.5 Macro Orientation Refinement. Standard cells and macros
have their orientations fixed during placement inside DREAMPlace.
Only at the end of detailed placement are cells flipped based on the
orientation of their placement row.While this is inconsequential for
standard cells, the orientations of macros can significantly impact
wirelength due to the large displacement of their pins when their
orientation is changed. We adopt a greedy refinement of macro
orientations to account for this potential improvement [46]. Macros
are flipped in the four directions, one after another. Each macro
is considered once per iteration and flipped if it leads to positive
HPWL improvement. The process stops when the incremental im-
provement is below 0.02%. While usually regarded as suboptimal,
this method produces incremental improvements without runtime
downsides.

4.3 Parameter Space
We consider the sixteen parameters for DREAMPlace listed in Ta-
ble 1. From the original set of parameters of DREAMPlace, we
propose new parameters to fix the legalization issues and expand
the macro placement design space. Note that we use the target
cell density 𝑑target in DREAMPlace as both a tunable parameter—
searched in a range below the area utilization 𝑎util—and a target
proxy metric. This section will show that the selected parameters
are essential for the observed behavior of the DREAMPlace mixed-
size placement.

4.3.1 Default DREAMPlace Parameters. We observed that the pa-
rameters of the weights schedules of the GD solver are vital for the
convergence and quality of the placement optimization. Therefore,
we propose to tune the initial learning rate (LR) and decay of the

Table 1: Parameter space of DREAMPlace mixed-size place-
ment. A star ∗ denotes a novel parameter, and 𝑐v is the co-
efficient of variation summarizing the marginal effect of a
parameter on the RSMT and congestion.

Parameter Search Range ĉv (%) Divg.
RSMT Cong. Rate

∗horiz. initial position [0.2, 0.8] (%) 2.2 0.9 0.0
∗vert. initial position [0.2, 0.8] (%) 2.0 1.1 0.0
∗horiz. macro halo technology dep. 1.8 1.3 0.0
∗vert. macro halo technology dep. 1.7 1.2 0.0

target density 𝑑target [𝑎util − 0.2, 𝑎util] (%) - - -
density weight [1e−6, 1.0] 3.1 1.7 0.0

smooth HPWL model {LSE, WA} 0.7 1.1 0.0
smooth HPWL initial 𝛾0 [0.10, 0.50] 5.1 1.9 0.0

GD initial LR lr0 [1e−4, 1e−2] 1.4 1.0 0.0
GD LR decay [0.99, 1.0] 6.7 2.3 53.2
GD optimizer [Adam, Nesterov] 1.2 0.8 54.2

# horiz. global bins {256, 512, 1024, 2048} 1.3 0.9 0.0
# vert. global bins {256, 512, 1024, 2048} 3.1 1.3 21.1

_ update lower coeff. 𝐿 [0.90, 0.99] 4.2 1.9 0.0
_ update upper coeff. 𝑈 [1.01, 1.15] 27.0 7.5 1.8
_ update ΔHPWL𝑅𝐸𝐹 [1.5e5, 5.5e5] 2.3 1.2 0.0

initial locations

initial locations

Figure 1: The large effect of the initial locations of macros
and cells on the final placement landscape obtained with
DREAMPlace.

exponential LR schedule. We also adjust the gradient descent opti-
mizer, choosing between two momentum optimizers, Adam [28]
and Nesterov [41].

We consider two variants of smooth HPWL, namely the log-
sum-exp (LSE) [11] and weighted-average (WA) [21] wirelength
models. Both approximations use a smoothing factor 𝛾 dynamically
updated every iteration during global placement following [13],
starting from 𝛾0, a tunable parameter. Moreover, the Lagrange mul-
tiplier of Equation 1 for global placement follows the ePlace [37]
update rule that introduces three parameters, the HPWL refer-
ence ΔHPWL𝑅𝐸𝐹 and the bounds [𝐿,𝑈 ] of the multiplier. We also
consider as parameters the global bin grids applied on the chip’s
floorplan to calculate the cell density map 𝐷𝑏 .

4.3.2 Initial Locations. At the start of the placement, cells and
macros concentrate into a single location, minimizing wirelength.
Then, as the Lagrange multiplier of the density term gradually
increases, cells spread to reach a minimum energy potential config-
uration at the end of the global placement. DREAMPlace originally
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(a) macros with halos (b) removing halos (c) legalized macros

Figure 2: Easing legalization with macro halos. Removing
macro halos leaves enough space for macros to be legalized
without significantly disrupting the standard cells and other
macros.

sets all initial positions of cells and macros at the center of the
floorplan. However, as shown in Figure 1, adjusting the initial po-
sition can dramatically affect the shape of the final arrangement.
Because macros are the first to spread—their gradient is usually
most significant at the beginning—and stabilize, they also dictate
the shape of the standard cell placement. Therefore, to expand the
diversity of the placement solutions, we introduce two parameters
to set the initial cells’ location as a percentage of the width and
height of the floorplan. Noise following the Gaussian distribution
is also added to the initial positions to avoid null initial gradients.

4.3.3 Macro Halos. The DREAMPlace macro placements exhibit
legalization issues. Movable macros tend to overlap or be closely
placed at the end of the global placement, causing problems during
legalization because macros are legalized first, ignoring the stan-
dard cells [33]. This causes significant disturbances to the macro
and standard cell placements, with considerable and unrecoverable
wirelength degradation.

We propose to add halos on the macro boundaries. As shown
in Figure 2, these leave sufficient room in case the macros plus
halos overlap at the end of global placement, as these are removed
before macro legalization. This eases macro legalization and allows
standard cells to be legalized in the haloed space.

4.3.4 Parameters’ Effect. We carry out a sensitivity analysis to
justify selecting the parameters of Table 1. We select a design and
a good parameter set, and evaluate the marginal effect of each pa-
rameter on the PPA proxies by randomly sampling values inside
the parameter’s definition range, keeping other parameters con-
stant. We report in the third column of Table 1 the coefficient of
variation [47] to measure the dispersion of the parameters’ effects
on the RSMT and congestion defined as 𝑐v (𝑥) = 𝜎 (𝑥)/` (𝑥), where
𝜎 is the standard deviation of proxy values 𝑥 , and ` the sample
mean. We fix the density during sensitivity analysis since it is both
a parameter and a proxy metric. We see that most parameters affect
the proxies. The fourth column reports the average number of times
the global placement optimization diverged. These unsuccessful
runs are not considered when computing 𝑐v. Notably, the parame-
ters related to the mathematical optimization, i.e., gradient descent,
Lagrangian multiplier, and smooth HPWL factor, are essential to
obtain superior and stable results. This calls for novel and more
natural formulations. We leave this task as future work.

4.4 Design Space Exploration
While expanding the design space of placements through enriching
the parameter space of DREAMPlace comes with potential PPA
improvements, it also requires proper parameter-tuning and PPA
evaluation procedures. Indeed, we observed that appropriate place-
ment parameters depend on many design elements. For example,
designs with many macros appear better optimized by Nesterov’s
method, while Adam exhibits more stable but sub-optimal optimiza-
tion results in these cases. Unfortunately, creating a comprehensive
guide for choosing the placement parameters seems unattainable.
Moreover, the estimated PPA post-place might not correlate pre-
cisely with the post-route PPA from the EDA tool. Therefore, an
efficient search framework is essential to obtain high-quality solu-
tions consistently and quickly.

4.4.1 MOTPE. We use the MOTPE to search Pareto-optimal points
on the axes of RSMT, density, and congestion. This method can
straightforwardly and efficiently generate a Pareto front with points
realizing multiple wirelength, density, and congestion trade-offs.
It is more amenable than the scalarized single-objective method
used, for example, in CircuitTraining as a reward,

∑𝑘
𝑖=1𝑤𝑖 𝑓𝑖 , where

weights𝑤𝑖 > 0 must be assigned to each objective 𝑓𝑖 and swept to
navigate on the Pareto front. The single-objective method might
be time-consuming and sub-optimal, given that the correlation
between weights and obtainable PPA is difficult to characterize.

4.4.2 Two-level Approach. To manage the latency and complexity
of the accurate PPA feedback from the EDA tool, we use a two-
level approach, as illustrated in Figure 3; (1) the multi-objective
Bayesian optimization with MOTPE explores the vast placement
space through tuning the DREAMPlace parameters, evaluating
solutions on the proposed high-level metrics. (2) At the end of
the sampling procedure, the most promising candidates from the
Pareto front are evaluated with more advanced figures of merit (e.g.,
wirelength, timing, and power) inside the EDA tool after timing
optimization and routing. The EDA flow can be stopped early in
case of very unsatisfactory intermediate PPA quality.

The search proceduremight producemany Pareto-optimal points.
From there, we want to select diverse candidates corresponding to
different placements to realize different PPA trade-offs. However,
the MOTPE refines the internal distributions over time as it gathers
more samples, reducing the spreading of the kernels of the good
samples (Gaussian for continuous parameters and Aitchison-Aitken
for categorical parameters). Therefore, many Pareto points might
be obtained near the end of the search. However, these likely corre-
spond to similar placement solutions. Moreover, it is impractical
to evaluate many points in the EDA tool due to shared resource
constraints, e.g., servers and tool licenses.

Thus, we propose to reduce the number of candidates by per-
forming k-means clustering [36] of the 3D Pareto points. The pos-
tulate is that points close in the objective proxy space correspond
to similar-looking placements. We select one representative per
cluster, the point with the smallest RSMT, yielding 𝑘 = 5 diverse
candidates. Figure 4 shows the selection process for one of the
evaluated benchmarks, where red points correspond to the macro
placements candidates. These points are mapped to accurate PPA
metrics with the commercial EDA tool.
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objective space:
RSMT, density, congestion
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wirelength, timing, power
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search space:
DREAMPlace parameters

commercial 
EDA tool 
evaluation

Figure 3: Conceptual view of the two-level exploration of the mixed-size placement landscape.

commercial EDA 
tool evaluation

Figure 4: Selection of the macro placements candidates with
k-means clustering of the 3D Pareto points on the BlackPar-
rot benchmark. These points are mapped to the PPA space
of the commercial EDA tool.

placement 
candidates

commercial EDA tool
(CPU server)

routed wirelength
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power

parameters

GPU-accelerated 
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density,
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Figure 5: The AutoDMP computation flow. The multi-
objective Bayesian optimization runs on an NVIDIA DGX
Station A100. Sixteen parallel processes are spawned to run
the GPU-accelerated DREAMPlace during the search. The
placement candidates are then fed to the EDA tool, which
runs on a CPU server.

4.5 Infrastructure
The AutoDMP computation flow is shown in Figure 5. The Bayesian
optimization with MOTPE is conducted on an NVIDIA DGX Station
with four A100 GPUs, each with 80GB (HBM2e) memory. We run
16 jobs in parallel on the four GPUs, gathering 1,000 placement
samples per design. Running multiple instances of the placing en-
gine on one GPU offers throughput improvement (∼40%), given
that DREAMPlace and ABCDPlace largely underutilize the GPU
memory.

We use the placement candidates in the physical design flow
following the simultaneous and sequential mixed-size placement
methodologies. We only keep the macro placement from AutoDMP
in sequential mode and run on a CPU server the full place-opt with

the EDA tool, which places all standard cells and runs pre-CTS op-
timization. We keep the macro and standard cell placements in the
simultaneous flow and run place-opt incremental, which performs
pre-CTS optimization only. In both cases, the macro placements are
first legalized by the EDA tool to respect complex design rules not
handled by ABCDPlace. We then fix the macros and perform P/G
planning and routing, which can introduce soft and hard blockages
around themacros and inside channels and notches. The subsequent
steps include CTS, routing, and post-route optimization.

5 EXPERIMENTS
The AutoDMP framework is developed on top of DREAMPlace
and ABCDPlace, using Python/PyTorch and C++/CUDA for the
placement engine modifications and Python for the MOTPE op-
timization [24]. Tcl/Bash is used for the place-and-route flow inside
the EDA tool, which closely follows the TILOS MacroPlacement
flow [49] for open-source reproducibility. The implementations are
done with the commercial tool Cadence Innovus 21.15, which runs
on 16 Intel Xeon Gold CPUs with 80GB of memory allocated. The
RTL designs are synthesized with Cadence Genus 21.14 without
physically-aware context.

We use the open-source benchmarks from the TILOS reposi-
tory [49] to demonstrate the effectiveness of our approach. These
modern mixed-size placement benchmarks include Ariane, a single-
core RISC-V CPU, the MemPool Group and BlackParrot designs,
many-core RISC-V CPUs with large amounts of on-chip SRAMs,
and an NVDLA partition. Notably, BlackParrot and MemPool Group
are challenging for placers, given their scale and diversity in macro
shapes. In addition, we use the open-source process design kit Nan-
Gate 45nm [29] to match the current state of the TILOS report [14].

5.1 Benchmark Results
We report the results after post-route optimization to check for
timing, design rule check (DRC) violations, power, and routed wire-
length. While we report only the best PPA among the five Pareto
candidates, the remaining candidates exhibit satisfactory PPA qual-
ity. Figure 4 shows that the macro placements of BlackParrot are
all of consistent quality.

Table 2 summarizes the PPA results using the AutoDMP place-
ments and the placements obtained using the reference TILOS flow,
which uses Innovus in a sequential mixed-size fashion. The results
show the potential of our methodology across mixed-size place-
ment methodologies, benchmarks, target frequencies, and densities.
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Table 2: Post-route PPA results on the TILOS benchmarks [49]. WL is the routed wirelength; WS is the worst slack; TNS is
the total negative slack; flow time is the total runtime of the steps inside Cadence Innovus; search time is the runtime of the
MOTPE carried out on an NVIDIA DGX Station A100. For AutoDMP, the top row corresponds to preserving only the macro
placement, and the bottom row to keeping both macro and standard cell placement.

Benchmark
Metrics Innovus Placements AutoDMP Placements

# # freq. dens. cell area power WL WS TNS # flow cell area power WL WS TNS # search flow
macros cells (MHz) (%) (mm2) (mW) (m) (ns) (ns) DRC time (mm2) (mW) (m) (ns) (ns) DRC time time

NanGate45

Ariane 133 88K 250 51 0.213 293.9 3.63 0.082 0.000 0 35m 0.213 294.3 3.57 0.034 0.000 0 1h20 35m
0.213 294.4 3.56 0.036 0.000 0 40m

Ariane 133 88K 250 68 0.213 294.7 3.80 0.012 0.000 0 30m 0.213 294.5 3.70 0.116 0.000 0 1h20 30m
0.213 294.6 3.59 0.045 0.000 0 35m

Ariane 133 97K 769 51 0.248 828.0 3.97 -0.159 -147 0 1h20 0.242 820.1 3.85 -0.127 -105 0 1h20 1h20
0.239 814.5 3.87 -0.103 -81 0 1h40

Ariane 133 97K 769 68 0.244 824.9 4.10 -0.188 -102 0 1h10 0.243 822.5 3.92 -0.120 -97 0 1h20 1h
0.241 816.8 3.94 -0.075 -34 0 1h30

NVDLA 128 145K 1,111 51 0.396 2,311 8.89 -0.004 -0.043 0 1h10 0.395 2,307 8.56 -0.006 -0.046 0 1h50 1h10
0.396 2,308 8.56 -0.004 -0.011 0 1h20

BlackParrot 220 652K 357 68 1.827 2,136 22.26 -0.118 -70 1,156 3h20 1.822 2,136 22.28 -0.001 -0.002 558 2h20 3h30
1.822 2,133 22.08 0.000 0.000 847 3h30

MemPool 320 2.7M 333 68 5.665 4,071 110.6 -0.361 -3,596 6,543 36h 5.760 4,091 111.0 -0.330 -2,913 2,651 3h30 33h
5.769 4,087 112.0 -0.463 -4,708 8,819 28h

ASAP7 (parameters’ transfer result)

NVDLA 128 150K 1,111 51 0.240 535.9 1.97 0.000 0.000 136 1h30 0.237 533.7 2.02 0.000 0.000 268 0 1h10
0.238 534.9 2.00 0.000 0.000 223 1h10

Innovus AutoDMP

Figure 6: Pre-CTS placement layouts of the Ariane design
using NanGate 45nmprocess (freq. = 769MHz, density = 68%).

Please note that we report this data only to demonstrate the viability
of our approach, not to compare it with the commercial EDA tool,
since this benchmark is limited and the industrial design flows are
more complicated. Please also refer to the TILOS GitHub [49] for
comparison with other open-source tools, which achieve inferior
quality compared to the EDA tool.

Figure 6 shows the placement layouts of the Ariane benchmark
obtained with Cadence Innovus and AutoDMP. Interestingly, the
macro placements are not dissimilar and follow traditional human-
like rules with macros on the periphery and away from the IO pins,
leaving continuous space for the standard cells. This is reassuring
in that our placer makes sensible decisions.

Figure 7 shows the logical to physical maps and cell density
maps of the macro and standard cell placements of the MemPool
Group benchmark obtained with Cadence Innovus and AutoDMP.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
Innovus AutoDMP

Innovus AutoDMP

Figure 7: Pre-CTS placements of the logical groups and cell
densities of the MemPool Group designs using NanGate
45nm process (freq. = 333 MHz, density = 68%). Congestion
(H/V): Innovus (2.66%/1.54%), AutoDMP (3.48%/1.86%).

The macro placements are quite different, along with the physical
arrangement of the logical groups. However, the AutoDMP placer
physically places logical groups of cells together, like the commer-
cial tool. The cell density maps and congestion reported by the tool
show a slightly more routing-difficult design for the downstream
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steps, which is anticipated, given that our placement algorithm is
not congestion-driven.

5.2 Discussions
Here we propose explanations for the results and analyze the trans-
ferability of the optimal parameter sets.

5.2.1 Simultaneous/Sequential Mixed-Size Placement. We notice
PPA differences between the simultaneous and sequential mixed-
size flows for AutoDMP. The listed pros and cons of the twomethods
from the perspective of legalization and placement blockages can
explain the disparities. However, another critical factor is at play:
DREAMPlace’s macro placements are evaluated with proxies based
on the simultaneous standard cell placement from DREAMPlace.
However, the standard cells are placed with the EDA tool for the
sequential flow. The miscorrelation between the two algorithms’
assumptions may be responsible for the observed sub-optimality.

This premise reinforces the need for flexible and broad proxies
and a simple wirelength-driven placement, avoiding congestion or
timing over-optimization [2], where correlation with the EDA tool
algorithms is of higher impact since it depends on the behaviors of
the EDA tool global router and timing optimizer.

5.2.2 PPA Improvements. We achieved PPA results of good quality
with wirelength, timing, and power benefits. However, we can
further improve PPA by making the search more PPA-aware, e.g.,
with timing and routability considerations, or by increasing the
search space with new parameters. We leave as future work the
development of more accurate proxy extraction, such as ML-based
predictors or using GPU-accelerated global routers to estimate
wirelength and congestion without runtime downsides.

It is essential to recognize that the internal engines of the EDA
tool consistently achieve high-quality macro placements through
the use of historic, long-living parameter sets that are continuously
and heuristically refined. However, because we can now afford to
explore the design space with GPUs, we can help findmore last-mile
improvements from the tool and achieve different PPA trade-offs.

Despite not using timing information to drive or evaluate place-
ments during the search, our placements achieve good timing qual-
ity, which we propose is driven by one or more of the following:

• Apart from MemPool, the benchmarks are not congestion-
critical, easing timing closure.

• The lower-density solutions obtained from themulti-objective
search allow the commercial tool to find advantageous, timing-
driven placement locations. The timing optimizer also has
more room to resize and insert buffers without reaching the
maximum density threshold.

5.2.3 Scalibility Benefits. The runtime penalty on the overall flow
runtime of the AutoDMP search is reduced for larger designs and
tighter timing constraints. This trend favors AutoDMP even further
when tackling industrial-size designs, whose study is left as future
work. The scalability of the methodology diminishes the need for
learning transferable parameter sets since we can directly optimize
the macro placement with AutoDMP of every new design within
a few hours. The scalability of the search can also unlock new
front-end and back-end methodologies, such as early prototyping
of design floorplans. Since AutoDMP can produce high-quality

Innovus AutoDMP

Figure 8: Pre-CTS placement layouts of the NVDLA design
using ASAP 7nm process (freq. = 1.11 GHz, density = 51%).
The AutoDMP macro placement was obtained by reusing
one of the best parameter sets found during MOTPE on Nan-
Gate45, illustrating the transferability of parameters across
technology nodes.

floorplans for the EDA tool, it can be used as quick high-level
feedback.

5.2.4 Parameters’ Transferability. Transferring good parameter
sets across design changes can improve productivity, as the physical
design flow must be rerun when the RTL, floorplan, or technology
changes. We investigate transferring optimal parameters found for
NVDLA onNanGate 45nm to themore advanced open-source ASAP
7nm process [17]. Only the macro halo sizes are modified by scaling
them down to match the new technology. The PPA results at the
bottom of Table 2 show that parameters may be transferable across
technology nodes. We found that this also holds with different
target frequencies. Even if the direct transferability of parameter
sets is not needed for successful use of AutoDMP, reusing the best
parameters might help reduce or prune the search space and obtain
Pareto-optimal points quicker.

6 CONCLUSION
We propose a new open-source methodology called AutoDMP to
improve the quality of mixed-size VLSI placement. The macro and
standard cell placement space is automatically and efficiently ex-
plored by tuning the augmented parameters of the GPU-accelerated
DREAMPlace placement engine with multi-objective Bayesian op-
timization. As a result, we generate placement solutions in a few
hours, achieving PPA comparable to commercial tools and superior
to open-source academic tools. Our advances can help the turn-
around time of early-stage architectural exploration and assess
more accurately and efficiently floorplan modification decisions.
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