
Algorithmica (1992) 8:233-249 Algorithmica
�9 1992 Springer-Verlag New York Inc.

Maximum Concurrent Flows and Minimum Cuts 1

C. K. Cheng 2 and T. C. H u /

Abstract. In many applications, we need to find a minimum cost partition of a network separating
a given pair of nodes. A classical example is the Max-Flow Min-Cut Theorem, where the cost of the
partition is defined to be the sum of capacities of arcs connecting the two parts. Other similar concepts
such as minimum weighted sparsest cut and flux cut have also been introduced. There is always a cost
associated with a cut, and we always seek the min-cost cut separating a given pair of nodes. A natural

generalization from the separation of a given pair is to find all minimum cost cuts separating all (~)

pairs of nodes, with arbitrary costs associated with all 2 n- 1 _ 1 cuts. In the present paper, we show

that n - 1 minimum cost cuts are always sufficient to separate all (~) pairs of nodes.

A further genera!ization is to consider k-way partitions rather than two-way partitions. An interesting
relationship exists between k-way partitions, the multicommodity flow problem, and the minimum
weighted sparsest cut. Namely, if the staturated arcs in a multicommodity flow problem form a k-way
partition (k _< 4), then the k-way partition contains a two-way partition. This two-way partition is the
minimum weight sparsest cut.

Key Words. Network partition, Multicommodity flow, Cut tree.

1. Introduction. Since the discovery of the M a x - F l o w Min-Cu t Theorem by F o r d
and Fu lke r son [2] in 1956, the theorem has been general ized to two c o m m o d i t y
flows by H u [8] in 1963, and to mu l t i commodi ty flows by O n a g a [173 and Iri
[11] in 1971. The concept of a m i n i m u m cut has been general ized in different ways
such as m i n i m u m circular cut [9], bisect ion [12], m i n i m u m edge expans ion or
flux cut [16-1, weighted sparsest cut [5], [15], etc. Recently, Leighton and Rao 1-13]
discovered an a p p r o x i m a t e a lgor i thm which relates a m a x i m u m concurrent flow to
the sparsest cut. They also proved tha t the b o u n d is tight. In all of these cases,
a function is defined on the par t i t ion of the vertices into a subset and its
complement , where a given pa i r of vertices are separa ted by the par t i t ion.

In a VLSI circuit l ayou t [10] and other appl ica t ions [63, we may need to

consider m i n i m u m par t i t ions separa t ing certain pairs of vertices. F o r the (~) pairs

of vertices, we shall show tha t there are only n - 1 essential m in imum par t i t ions
in all cases, whether it is max-f low min-cut , m in imum weighted sparsest cut, or
flux cut. Hass in [7] p r o p o s e d an a lgor i thm to find the essential cut set with

1 This work is supported in part by the NSF under Grant MIP-8700767 and micro program under
Grants 506205 and 506215, Intergraph, and Data General.
2 Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA
92093, USA.

Received August 8, 1989; revised February 10, 1990, Communicated by C. L. Liu.

234 c.K. Cheng and T. C. Hu

O(n log n) oracle calls or cut routines, under the assumption that distinct cuts have
distinct costs. We shall present an algorithm to find the set of essential cuts with
n - 1 oracle calls.

Although the problem of finding the minimum weighted sparsest cut is NP-hard
[15], the concurrent flow problem, which maximizes the uniform flow demand
between every pair of vertices, can be formulated as a linear programming problem.
We can use column-generating techniques [3] to solve the maximum concurrent
flow problem by approximation methods and other fast algorithms.

In using linear programming techniques, if we can find a set of arcs with nonzero
shadow prices which also forms a two-way partition, then we have found the
sparsest cut. In general, these arcs will form a K-way partition. We show that if
K < 4, then there exists a two-way partition of the partitioned K subsets, which
is also the minimum weighted sparsest cut. Independently, Shahrokhi and Matula
[20] have shown the case K < 4 with a combinatorial approach. We shall give a
proof that utilizes the techniques of linear programming.

2. Minimum Cut and Essential Cut Set. Given a network N = (V, E) where V is
the set of vertices and E is the set of undirected arcs, I VI -- n and]EI = m. There
is a capacity cq associated with each arc connecting vertices i and j.

Let f (X , X) be a symmetric function on a vertex set X and its complement X.
We define the minimum value of a cut separating vertices i and j as

(1) Fit = min f (X, Y,) (i ~ X, j e X).
X

For example, let X X = ~'s+x ~j+x c~t be the sum of all arc capacities of arcs
connecting X and X. When f (X, .g) = XX, we have the usual definition of the
capacity of a minimum cut separating vertices i and j, as used in the Max-Flow
Min-Cut Theorem. The minimum quotient separator or flux cut uses f (X, X) =
XX/min(lX[,]J?l)- If we define f (X , ~) = XX/IX[x IJ?l, then

XX
F~t = min (i e X, j e J~)

x [Xl x IXl

is the minimum sparsest cut. We shall use the term ratio cut of i and j, denoted
by Rij, to mean minx(XX/lX[• IX[) with i t X, j e X. Note that all of the above
functions are symmetric, i.e., f (X, X) = f (X, X). The derivation in this section can
be applied to all these symmetric cost functions. We shall use F~t also to denote
the cut (X, 37) associated with Fit in (1) if no confusion should arise.

2.1. Triangular Inequality

THEOREM 1. For any three vertices i,j, and k ~ V, we have the following inequality:

(2) Fik 2 min(Fi~, Fjk).

Maximum Concurrent Flows and Minimum Cuts 235

PROOF. Let (X, X) be the cut separating i and k with a minimum cost Fik where
i e X and k e X. The vertex j then belongs either to X or to X.

(i) I f j ~ X, then the partition (X, X) serves as a parition separating j and k. Since
Fjk is the minimum cost of the cut separating j and k, then

(3) Fjk = m i n f(X, X) < Fik.
j~X, keX

(ii) I f j E X , then we can also derive

(4) Fij = m i n f(X, X) < Fik.
i~X, j~X

We conclude that (2) is true, because either (i) or (ii) must be true. []

Since (2) is true for any three arbitrary vertices, we can see that the three values
Fij, Fjk, and Fik cannot all be distinct. If they are three distinct values, then we
can put the smallest value on the left-hand side of (2) and obtain a contradiction.
Thus, among the three values, Fij, F~k, and Fik, two values must be equal and
both are not greater than the third value. Given a graph of n vertices, there are

(~) pairs of vertices. We can by induction from (2)show that there are at most

n - 1 distinct values of rain-cost partitions.

2.2. The Cuts for All Pairs o f Nodes. The proof used in Theorem 1 is identical
to the proof used by Gomory and Hu [4]. However, the construction of the
Gomory -Hu cut tree makes use of the fact that there always exists a set of n - 1
noncrossing minimum cuts. For general cost functions associated with cuts,
minimum cost cuts d o cross each other (Figure 1). In this paper, we show that
n - 1 minimum cost cuts are sufficient to separate all pairs of vertices for arbitrary
cost functions defined by (1).

THEOREM 2. ' Given network N = (V, E), with IV[= n, we need at most n - 1 distinct
cuts, such that for all i, j ~ V, one o f the n ~ 1 cuts is the minimum cut separating i
and j.

PROOF. Assuming that we find a minimum cut for each pair of vertices, then

are (~) cuts which separate all pairs of vertices. We sort the cuts according there

to the cut value from small to large. We then select among the (~) minimum cuts,

one by one, into a cut set S. The smallest value is selected first.
Initially, cut set S contains only the first cut. Let (X,)() be the partition made

by the first cut. The second cut either: (a) coincides with the first cut, or (b)
separates at least one of X and X into two subsets. If case (a) occurs, then the cut

236 C.K. Cheng and T. C. Hu

C 13 ' "

r .,'

//' .C 46

C t2 0.5

/ ~-, C ~5
C 2~ 0.4 0.5

Fig. 1. A six-vertex network example. The capacity of each arc is one unit. Each dashed line labeled
with Cij and a number is a ratio cut separating vertices i andj with cut cost Fij. Note that cut C12
crosses cuts C13, C24, and C45.

is not selected. If case (b) occurs, we have more disjoint subsets X1, X2 Xk,
where k > 2 and U~= 1 Xi = V. We then select the cut into the cut set S. In other
words, a cut is selected only if it further separates certain subsets into smaller
subsets. The process continues and the number of disjoint subsets increases, until
the cuts in S partit ion V into subsets, with each subset containing only a single
vertex.

(i) Since each cut divides the subsets into smaller subsets and the smallest subset
contains only a single vertex, it takes at most n - 1 cuts. Thus, ISI -< n - 1.

(ii) For each pair of vertices i and j, let cut 7 be a lowest cost cut in S such that
cut 7 separates the pair. Then, from the selection process for the set S, cut

is also a minimum cut among (~) cuts, such that the cut separates i and j.

Therefore, cut y is a min imum cut of i and j. Otherwise, if there is another cut
that separates i and j with a smaller cut value, that cut should have been
selected in the process. []

Let us call S, which is the set of distinct cuts separating all pairs of vertices, an
essential cut set. We can build a tree of the essential cut set to represent the parti t ion
of all pairs of vertices in V.

2.3. Cut Tree Algorithm for Findin9 an Essential Cut Set. With respect to a given
cost function f , let us assume we have a routine which can generate the minimum
cut. Given a pair of vertices (p, q), the cut routine CUT(p, q) returns (Fpq, P, Q)
where (P, Q) is a min imum cut that separates p and q (p ~ P, q ~ Q) with a cost of
Fpq. We construct an algori thm to find the essential cut set in n - 1 C U T oracle
calls.

Maximum Concurrent Flows and Minimum Cuts 237

We shall state the structure of the cut tree, then describe the algorithm, and
finally we shall prove the correctness of the algorithm.

2.3.1. The Binary Cut Tree Structure. The essential cut set is represented by a
binary tree with n - 1 internal nodes and n leaves, with the root at the top. Each
internal node represents a cut, and each leaf contains a vertex in V. For each pair
of leaves, their lowest common ancestor is the minimum cut of the corresponding
pair of vertices.

The construction of the tree representation starts from a tree of a single leaf.
Then we successively increase the number of internal nodes. We use a tree structure
to store the information resulting from each iteration. The following is a detailed
description of the tree structure.

I. A Directed Binary Tree Representation. The binary tree contains cut nodes
(internal nodes) and leaves. Given a minimum cut (Fpq, P, Q), we use a cut node
to store the cut cost Fpq. The two branches of the cut node are labeled with the
subsets P and Q. From the root to each leaf, there is a unique path consisting of
the branches. Let (B1, B 2 Bk) be the path from the root to leaf L i. We then

k use leaf Li to represent the vertex subset ~ = 1 B~, which is the intersection of the
subsets B~ along the path. (However, if the tree contains a single leaf but no cut
node, the leaf represents the vertex set V.)

II. The Set of Seeds. We define some vertices as seeds in the tree construction
process. Given a tree, for each cut node Cpq, we set vertices p and q as the seeds.
Thus, the set of seeds is a vertex set {p, q l Cpq is a cut node of the tree}, ff the tree
contains only a single leaf but no cut node, we arbitrarily choose one vertex p as
a seed. This seed p, together with another vertex q r p, will be used to create a
cut node Cpq.

III. The Properties of the Tree Structure. We shall manipulate the tree so that
the tree structure maintains three properties throughout the iterations of the
algorithm. A tree satisfying the three properties is called admissible. The three
properties are:

(i) The cut value of a cut node is always larger than or equal to the value of its
father.

(ii) Each leaf L i contains exactly one seed i.
(iii) For any pair of leaves L~ and L~ with seeds i and j, let the cut node Cpq be

their lowest common ancestor. Then the cut node Cpq, together with its two
branches, defines a minimum cut separating vertices i and j.

2.3.2. The Algorithm of the Tree Construction. The algorithm successively builds
trees To, T 1 T~_ 1 = T, where the tree T i contains i cut nodes. Each Tk§
contains one more cut node together with one more leaf than its predecessor T k.

Algorithm
Input: Given network N = (V, E), a vertex in Vis arbitrarily chosen as the seed of V.

1. Set k = 0. Initialize tree T k with a single leaf which corresponds to vertex set V.
2. Given tree Tk, find a leaf Lp containing a seed p and I Lpl > 2. If such a leaf

does not exist, then output tree Tk and exit.

238 C.K. Cheng and T. C. Hu

3. Pick vertex q V= p in Lp. Call CUT(p, q) and create cut node Cpq with P and Q
as labels of its two branches, where p e P and q e Q.

4. Trace the ancestors of leaf Lp. If the cut cost Fpq of a cut node Cpq is not smaller
than the cost of the father of leaf Lp, perform operation (i}, or else perform
operation (ii).
(i) Put cut node Cpq at the position of leaf Lp. Append leaf Lp to the branch

P of cut node Cpq.
(ii) Let cut node C,o be the highest ancestor such that its cut cost F~ is greater

than the cost F~q (Figure 2). Place cut node Cp~ at the position of cut node
C,, and append cut node C~ to the branch P of cut node Cp~. The subtree
of cut node C,~ follows cut node C,o (Figure 3),

5. Create a leaf Lq on the branch Q of cut node Cpq. Update the vertex set of all
the leaves by intersecting the labels in the branches.

6. Set the updated tree to be Tk+ t. Let k = k + 1, Repeat step 2.

EXAMPLE. Figures 4-8 demonstrate the cut tree algorithm on the six-vertex graph
(Figure 1). We use ratio cut as the minimum cut. Let vertices 1 and 2 be the first
pair to be separated. The cut cost F12 = 5/(3 x 3) = 0.5. Figure 4 shows the cut
node C12 with two branches, each labeled with a partitioned subset. The two
leaves contain vertex sets {1", 3, 5} and {2", 4, 6} where vertices 1 and 2 a re
postfixed with *, indicating that these two vertices are the seeds of the two leaves.

B1 / / ~ B2

=BI B3

=Cur

\ 84

B5 B6 =B2NB4

55
=B2Q,, B3Cf B5 =L ~ =B2(3 B3n B6

Fig. 2. A binary tree of {CI, C2, C3} three cut nodes, {L1, L2, L3, L4} four leaves, and {BI~ B2, B3,
B4, BS, B6} six branches. Each leaf contains a vertex set which is the intersection of the branches along
the path from the root to the leaf. The graph illustrates step 4(ii) of the tree construction algorithm
with leaf L3 = Lp and cut node C2 = Cur.

Maximum Concurrent Flows and Minimum Cuts 239

B1 / \ B2

=L1 P / X Q

B3

=Cuv

\ B4 =B2NQ

B5 / ~ B6 =L4NP

/] =E2NP ~ =Ld=L~IOP

Fig. 3. Cut node Cvq is inserted at the position of C~v. Cut node C,~ appends to branch P, and the
subtree of Cur follows the cut node Cur. Note that each leaf L'~ in the subtree of C.v is updated to
L' i = L i r~ P.

03

. i

Fig. 4. The cut tree after the first iteration of the tree construction algorithm on the six-vertex example.
Cut node C12 with two branches separates the vertex set into {1", 3, 5} and {2*, 4, 6} two sets. The
cut cost is 0.5. The vertices 1 and 2 are postfixed with �9 indicating that the two vertices are the seeds
of these two leaves.

240 C .K . Cheng and T. C. Hu

0i

Fig. 5. Vertices 2 and 4 are chosen from leaf {2", 4, 6}. The cut node C24 contains a cut cost F24 = 0.Z[,
which is smaller than the cut cost of C~2. Thus, Cz,~ is inserted above Clz. The leaves are updated
according to the insertion.

If we choose seed 2 and vertex 4 in the next iteration, then the second cut
separates vertices 2 and 4 with a cut cost F24 = 4/(3 x 3) = 0.4. Because
F24 < F I 2 , step 4(ii) inserts cut node C24 to the top and appends cut node Cla
to its left branch. The vertex sets of the leaves are updated as shown in Figure 5.
Figures 6, 7, and 8 show the tree construction of the next three iterations. Cut

oA

11,2.31 / / ~ {4.5,6}

0.5

11,2} / N 13.4.5.61

o3

{1.3,5l / \ 12,4.6}

Fig. 6. The cut tree after the third iterat! ~n. Cut node C13 is inserted into the tree.

Maximum Concurrent Flows and Minimum Cuts 241

0.4

{6} / ~ [1,2,3,4.51

0.4

{1.2.31 . / ~ {4,5,6}

0.5

(|.2} / { 3.4.5.6}

03

.3.- _ . .

Fig. 7. The cut tree after the fourth iteration. Cut node C4a is inserted into the tree.

nodes C13, C 4 6 , and C45 are inserted according to the heap condition. All the cut
nodes in the final tree structure (Figure 8) constitute an essential cut set.

2.3.3. The Proof of the A19orithm. It is important that tree T k is admissible in
each iteration k, so that the process can proceed properly. We show the tree is
admissible after each iteration, by induction on the number of cut nodes in the
tree. The tree is certainly admissible when there is only one cut node and two
seeds in the two leaves. Given an admissible tree Tk, Lemmas 1-4 show that the
tree Tk+ 1 satisfies the three properties. Thus, Theorem 3 concludes that the tree
in each iteration is admissible. Using the properties that the tree is admissible,we
show in Theorem 4 that the algorithm finds an essential cut set with n - 1 CUT
oracle calls.

LEMMA 1. Given an admissible tree Tk, tree Tk+ 1 satisfies property (i).

PROOF. Given tree Tk, step 3 of the algorithm generates a new cut node. Step 4
inserts the new cut node in keeping with property (i). Therefore, tree Tk+l also
satisfies property (i). []

242 C . K . Cheng and T. C. Hu

0.4

{1,2,31 /

0.4

{4,5,61

0.5 I C as I 0.5

1~.21 / \ i3.,.5.6j 1~.2.3.,~ / \ 15.6j

o.3

{I,3.51 / \ {2,4,6]

Fig. 8. The final tree structure. There are n - 1 cut nodes and n leaves. Each leaf Li conta ins a single
vertex i. The cut tree conta ins an essential cut set.

LEMMA 2. Given an admissible tree Tk,for each leaf L i with seed i, vertex i remains
in the updated leaf L~, and the new seed q belongs to the new leaf L~.

PROOF. We prove the lemma for the case of step 4(ii) in the algorithm. The
proof for the case of step 40) is similar.

For the process of case 4(ii), cut node Cpq with its two branches P and Q is
inserted as shown in Figure 3. Note that each leaf L~ in the subtree of C,v is
updated to L~ = L~ c~ P, because branch P is inserted into the path from the root
to the leaf L~. With reference to Figure 3, we prove the lemma by the following
three arguments:

(i) The updated leaf L'~ = L i, for each leaf L i (i # q) not in the subtree with C,v
as the ancestor.
As shown in Figure 3, the path from the root to the leaf Li is not changed
by step 4, therefore leaf L~ remains the same.

(ii) Seed i continues to be an element of the updated leaf L'~, for each leaf L~ under
the subtree of Cu~.
As shown in Figure 3, leaf L'/= L i c~ P. Thus, if we can prove that i is an
element of P, then seed i ~ L'~; the proof is by contradiction. If i ~ Q, then the

Maximum Concurrent Flows and Minimum Cuts 243

cut (P, Q) separates i and p. The minimum cut separating i and p should have
a value Fip < Fpq. However, from property (iii), there is a cut node Cob in the
subtree of Cu~, which defines a minimum cut separating seed i and seed p.
From property (i) and step 4, the cut value Fip = Fob > F,~ > Fvq, which
contradicts the previous inequality expression that F~v <_ Fpq. Therefore, we
have i ~ P.

(iii) The new seed q is an element of the new leaf Lq.
In tree Tk, assume (Bt, B2, . . . , Bw) is the path from the root to cut node C,~.
Then we have q e 0~ ' Bi, where Bi are the subsets along the path. Since q ~ Q
and Lq = 0r'= ~ B~ n Q, we have seed q ~ Lq. When C,~ is the root, the proof
is similar. []

LEMMA 3. Given an admissible tree Tk, t ree rk+ 1 satisfies property (ii).

PROOF. From Lemma 2, we know every leaf in tree Tk+ 1 contains exactly
one seed. Thus, the tree T k + 1 satisfies the property (ii). []

LEMMA 4. Given an admissible tree Tk, tree Tk + ~ satisfies property (iii).

PROOF. As shown in Figure 3, from Lemma 2 we know that for each pair
of leaves Li and Lj in tree Tk their lowest common ancestor remains the same
in tree Tk+ 1. Thus, for every pair of leaves L i and Lj with seeds i # q and
j # q, their lowest common ancestor is the minimum cut separating vertices
i and j. To prove the lemma, it is sufficient to show that for every leaf L i with
seed i # q, the pair of leaves L i and Lq has the minimum cut separating vertices
i and q as their lowest common ancestor. Let C,b be the ancestor. There are
two cases:

(i) The minimum cut of vertices i and q has a cu t value Fiq <_ F,b.
Since cut node Cob defines a cut that partitions vertices i and q, then
Fiq _< Fob.

(ii) Fiq >_ F.b.
As shown in Figure 3, cut node Cpq is the father of leaf Lq and an ancestor of
leaf L~ in tree Tk+ a. For the case that leaf L~ is in the subtree of Cur, we have
Fob = Fvq and F~v > Fpq from property (i). Using Theorem 1, we have Fiq >
min(Fip, Fpq) = Fpq = Fab. When leaf L i is located outside the subtree of Coy,
we have Fob = Fip and Fpq > Fip from property (i). Using Theorem 1, we have
Fiq > min(Fip, Fpq) = Fly = Fob. Therefore, we conclude that Fiq > Fob.

From (i) and (ii), and since seeds i and q are partitioned by the two branches of
C,,b, then the node Cob with its two branches defines a minimum cut separating
vertices i and q. []

From Lemmas 1, 3, and 4, we conclude, by induction, that the tree structure T k
is admissible in each iteration k.

THEOREM 3. The tree construction algorithm generates an admissible tree T k for
each iteration k.

244 C.K. Cheng and T. C. Hu

Since the tree is admissible, we can continue the algorithm until every leaf
contains one single vertex. The following theorem proves the correctness of the
algorithm.

THEOREM 4. The cut tree algorithm derives an essential cut set with n - 1 C U T
oracle calls.

PROOF. Since each tree T~ is admissible, then from property (ii), the operation
can be continued until every leaf contains one single vertex. Therefore, it takes
n - 1 iterations to create a tree of n - 1 cut nodes and n leaves.

From property (iii), the tree contains a minimum cut for every pair of seeds.
Therefore, the n - 1 cut nodes Constitute an essential cut set. Consequently, we
conclude that the algorithm takes n - 1 CUT oracle calls to generate an essential
cut set. []

3. The Global Ratio Cut and the M a x i m u m Concurrent Flow. Among the distinct
cuts in the essential cut set, we can find a cut with the minimum cut cost. Let us
denote this cut as the global minimum cut. In this section, we focus on the global
ratio cut

(5) R 1 = min Rij.
i, jEV

This global ratio cut, defined by (5), is closely related to the uniform multi-
commodity flow problem, where f units of flow is transmitted between all pairs
of vertices. Leighton and Rao [-13] have shown that

where the bound is tight.
The uniform multicommodity flow problem can be formulated as follows: Given

a network N = (V, E), the demand of flow between each pair of vertices is equal
to an identical value f. The object is to maximize f under the constraint that the
sum of all arc flows is less than the arc capacity. Let x~ be the flow for commodity
p on arc (i,j); let n be the total number of vertices and commodities; and let e 0
be the capacity of arc (i, j), we then have

(7) Obj: max f

subject to the flow demand of commodity p from every vertex p to the other
vertices i,

(8) x ~ i - xe . , , = - -

~=, j=, 1)f if i = p, 1 _< i,p <_ n,

Maximum Concurrent Flows and Minimum Cuts 245

and the constraints of the arc capacities,

(9) ~ x ~ + ~ xfi<_cij, l<_i,j<_n.
p = l p = l

If we assign dual variables 2~ for the vertex i (i = 1 n), with respect to
commodity p (eq. (8)), and dis to arc (i, j) (eq. (9)), then we have the following dual
problem [1]:

dlj -> I,~' - ,iyl, 1 < i, j , p _< n,

(12) 1.
p = l i r

Let dij be an undirected distance function on the arc connecting vertex i and vertex
j. From (11), dlj can be interpreted as distance in a metric space with the triangular
inequality [i 1], [18]:

(13) dij + djk > dik, 1 <_ i, j, k < n.

In the following two lemmas, we derive that the variables 2~' in the constraints
can be replaced by the variables d~j.

LEMMA 5. There exists an optimal solution such that the equality of constraint (12)
holds, i.e., ~,=1 E n c p , i = l ()~p - - ~pP) = 1.

PROOF. We prove the lemma by contradiction. For an optimal solution, if the
inequality in (12) holds, i.e.,

p = l i r

then we can scale down all the variables by the ratio 1/h. The new assignment
~li~ = (1/h)d~j and).~' = (1/h)2f still satisfies the constraints (11) and (12). Since c~j
and dlj are positive, then

= C di~j- 1
cij~llj 2 ij h - h 2 cijdij < E cijdij"

(i, j) (i, j) (i, j) (i, j)

Thus, the updated value of the objective function becomes smaller; which con-
tradicts the assumption that the original solution is optimal. []

subject to

(tl)

(10) Obj: min E cijdij
(i, j)

246 C.K. Cheng and T. C. Hu

Therefore, we can replace the constraint (12) with an equality expression:

(14) ~ ~ (21'- 2p p) = 1.
p=l i : /:p, i=l

LEMMA 6. There exists an optimal solution such that 2 f - 2Pp = dip for all 1 <_ i,
p<_n.

PROOF. We prove the lemma by contradiction. For an optimal solution, let us
assume that there exists a vertex p and a vertex k such that dkp > 2k p -- 2p p. From
constraint (11), we can write

~" d ip= ~ ~ (2 p - 2 ~) + e where e > 0 .
p=l i r p=l igap, i = l

We update the variables by assigning dlj = dii, ,~v p = 2p p and ,~1, = dip + 2~ for all
1 < i, j, p < n, i # p. The following two arguments prove the lemma:

(i) The updated values of the variables satisfy the constraint (11).
Since the distances dij satisfy the triangular inequality (13), we have

~lij = do >- dip - d J1, = (21, - ~Pp) - ()'; - 2Pv) =-- ~p - ~v

for all 1 _< i, j _< n.
(ii) For the new assignment, we have ~p=l ~7,v,i=1(21, - '~P) = 1 + e.

Since

p=l ig :p , i=l p=l i ~ p , i = l p=l i ~ p , i = l

From (14), we have ~p=l ~2,p,i=l(~f - ~-~) = 1 + e.

From (i) and (ii), the updated values constitute a feasible solution. From (ii) and
the proof of Lemma 5, the value of the objective function can be scaled down by
the ratio 1/(1 + e); which contradicts the assumption that the original solution is
optimal. []

Therefore, constraint (14) can be rewritten as a function of dij:

(15) ~ ~ dip = 1.
p=l i r

The uniform concurrent flow problem can be stated as an objective function of
(10) with the constraints (13) and (15), i.e.,

Ob]: min ~ cifllj
(i,j)

Maximum Concurrent Flows and Minimum Cuts 247

subject to

dij + djk > dik , 1 < i, j, k < n,

p=l i~p, i=1

The distance is the shadow price [1] of the arc in the original problem.
Lomonosov [14] observed that the arc with positive distance generates the
part i t ion of the vertex set V. When the arcs with positive distance d~j form a
two-way partit ion, we can show that the part i t ion defines the global ratio cut.
When the arcs with positive distance form a K-way parti t ion with K < 4, we also
find that there exists a two-way part i t ion that again defines the global ratio cut.

THEOREM 5. Let D = {(i,j)ld~j > 0} define a partition that separates the network
into K disconnected subsets. I f K <_ 4, then there exists a global ratio cut that is a
subset of D.

PROOF.

L The case when K = 2

(1) First, we want to prove that for all d i j~D, dij = e, where e is a constant:
Let (X, J?) be the part i t ion made by D. Let i and j be vertices in X, and let k
be a vertex in J(. F rom (13), we have dij + djk > dig and dij + dig > dig. Since
dij = 0 by assumption, we have dik = djk- Similarly, if I is a vertex in)(, then
we have dig = djl. Hence, dik = d~k = dig for all i a n d j in X, and k and l in)(.

(2) Second, we prove that e = ~ I / I X] x IJfl):
Since dij = e for all d i j ~ D , from (15), we have e = 1/21XI x])(I.

(3) F rom (1) and (2) above we have the object function

X X
Z c i jd l j -
<i,j) 21Xl • IXl"

Since this is a minimum solution, D is a global ratio cut.

II. The case when K = 3

(1) Let X 1, X2, X 3 be the disjoint vertex sets part i t ioned by D. As in the proof
of case 1.1, we have dkl = eli for all k e X i , l e X j and i , j ~ {1, 2, 3}, where eij is
a constant.

(2) F rom (1) above, (10), (13), and (15) can be expressed as functions of e12,
e13, and e23. The constraint (13) is expressed with the following three equa-
tions:

(16)

el2 q - e l 3 - b s 1 = e 2 3 ,

e12- [-e23 q- S 2 = e13 ,

e13-~-e23 q-s3 =el2 ,

248 C.K. Cheng and T. C. Hu

where sl, s2, and s 3 are nonnegat ive slack variables. Thus, we have four
cons t ra in t equat ions and six variables. F r o m the theorem of l inear pro-
gramming, we can have two variables equal to zero in the op t imal solution.
If e i j = 0 for i, j ~ {1, 2, 3}, then by definit ion D becomes a two-way par t i t ion.
Let us set two slack var iables si, sj equal to zero. F r o m (16), we then can derive
eij = 0. Consequent ly , we reduce D to a two-way par t i t ion as in case I.

III . The case when K = 4. The p roo f is s imilar to the p roo f of case II. F o r
the case of K -- 4, we have thir teen cons t ra in t equat ions and eighteen variables.
F ive slack var iables can be equal to zero in the op t ima l solutions. Likewise,
we can derive that a cost eij should be zero. Consequent ly , the p rob lem is
reduced to a three-way par t i t ion case II. []

Acknowledgments. The encouragement of Professor Chr is to P a p a d i m i t r i o u is
highly apprecia ted. We would also like to thank the referees for their suggestions.

References

[1] V. Chvatal, Linear Prooramming, Freeman, San Francisco, 1983, p. 67.
[2] L.R. Ford and D. R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (3) (1956),

399-404.
[3] D.R. Fulkerson, Suggested computation for maximal multi-commodity network flow, Manage-

ment Sci. 5 (1) (1958), 97-101.
[4] R.E. Gomory and T. C. Hu, Multi-terminal network flows, J. S IAM 9 (4) (1961), 551-570.
[5] F. Granot and R. Hassin, Multi-terminal maximum flows in node-capacitated networks, Discrete

AppI. Math. 12 (1986), 157-t63.
[6] D. Gusfield, Faster detection of compromised data In 2-D tables, Technical Report, CSE-89-30,

Computer Science Division, University of California, Davis, November 1989.
[7] R. Hassin, Solution bases of multi-terminal cut problems, Math. Oper. Res. 13 (4) (1988),

535-542.
[8] T.C. Hu, Multi-commodity network flows, J. ORSA 11 (3) (1963), 344-360.
[9] T.C. Hu and F. Ruskey, Circular cut in a network, Math. Oper. Res. 5 (3) (1980), 422M34.

[10] T.C. Hu and E. S. Kuh, VLSI Circuit Layout Theory and Design, 1EEE Press, IEEE Circuits
and Systems Society, 1985, pp. 105-114.

[11] M. Iri, On an extension of the maximum flow minimum cut theorem to multicommodity flows,
J. Oper. Res. Soc. Japan, 5 (4) (1967), 697-703.

[12] B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System
Tech. J. (1970), 291-307.

[13] T. Leighton and S. Rao, An approximate Max-Flow Min-Cut Theorem for uniform multi-
commodity flow problems with applications to approximation algorithm, IEEE Annual Sym-
posium on Foundations of Computer Science, 1988, pp. 422M31.

[14] M.V. Lomonosov, Combinatorial approaches to multiflow problems, Discrete Appl. Math. 11
(1) (1985), 1-94.

[15] D.W. Matula and F. Shahrokhi, The maximum concurrent flow problem and sparsest cuts,
Technical Report, Southern Methodist University March 1986.

[l 6] D.W. Matual, Determining edge connectivity in O(nm), IEEE Annual Symposium on Foundations
of Computer Science October 1987, pp. 249-251.

[17] K. Onaga, A multi-commodity theorem, Trans. Int. Electron. Commun. Engrs. Japan 53-A (7)
(1970), 350-356.

Maximum Concurrent Flows and Minimum Cuts 249

[18] K. Onaga and O. Kakusho, On feasibility conditions of multicommodity flows in networks,
IEEE Trans. Circuit Theory 18 (4) (1971), 425-429.

[19] S. Rao, Finding near optimal separators in planar graphs, IEEE Symposium on Foundations of
Computer Science, 1987, pp. 225-237.

[20] F. Shahrokhi and D. W. Matula, The maximum concurrent flow problem, Technical Report,
New Mexico Tech., March 1986.

