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Maximum Concurrent Flows and Minimum Cuts 1 

C. K. Cheng 2 and T. C. H u  / 

Abstract. In many applications, we need to find a minimum cost partition of a network separating 
a given pair of nodes. A classical example is the Max-Flow Min-Cut Theorem, where the cost of the 
partition is defined to be the sum of capacities of arcs connecting the two parts. Other similar concepts 
such as minimum weighted sparsest cut and flux cut have also been introduced. There is always a cost 
associated with a cut, and we always seek the min-cost cut separating a given pair of nodes. A natural 

generalization from the separation of a given pair is to find all minimum cost cuts separating all (~)  

pairs of nodes, with arbitrary costs associated with all 2 n- 1 _ 1 cuts. In the present paper, we show 

that n -  1 minimum cost cuts are always sufficient to separate all (~)  pairs of nodes. 

A further genera!ization is to consider k-way partitions rather than two-way partitions. An interesting 
relationship exists between k-way partitions, the multicommodity flow problem, and the minimum 
weighted sparsest cut. Namely, if the staturated arcs in a multicommodity flow problem form a k-way 
partition (k _< 4), then the k-way partition contains a two-way partition. This two-way partition is the 
minimum weight sparsest cut. 

Key Words. Network partition, Multicommodity flow, Cut tree. 

1. Introduction.  Since the discovery of the M a x - F l o w  Min-Cu t  Theorem by F o r d  
and Fu lke r son  [2] in 1956, the theorem has been general ized to two c o m m o d i t y  
flows by H u  [8] in 1963, and  to mu l t i commodi ty  flows by O n a g a  [173 and Iri 
[11] in 1971. The concept  of a m i n i m u m  cut has been general ized in different ways 
such as m i n i m u m  circular  cut [9], bisect ion [12], m i n i m u m  edge expans ion  or  
flux cut  [16-1, weighted sparsest  cut [5], [15], etc. Recently,  Leighton  and Rao  1-13] 
discovered an a p p r o x i m a t e  a lgor i thm which relates a m a x i m u m  concurrent  flow to 
the sparsest  cut. They also proved  tha t  the b o u n d  is tight. In  all of  these cases, 
a function is defined on the par t i t ion  of the vertices into a subset  and  its 
complement ,  where a given pa i r  of vertices are separa ted  by the par t i t ion.  

In a VLSI  circuit  l ayou t  [10] and other  appl ica t ions  [63, we may  need to 

consider  m i n i m u m  par t i t ions  separa t ing  certain pairs  of vertices. F o r  the ( ~ )  pairs  

of vertices, we shall  show tha t  there are only n - 1 essential  m in imum par t i t ions  
in all cases, whether  it is max-f low min-cut ,  m in imum weighted sparsest  cut, or  
flux cut. Hass in  [7] p r o p o s e d  an a lgor i thm to find the essential cut set with 
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O(n log n) oracle calls or cut routines, under the assumption that distinct cuts have 
distinct costs. We shall present an algorithm to find the set of essential cuts with 
n - 1 oracle calls. 

Although the problem of finding the minimum weighted sparsest cut is NP-hard 
[15], the concurrent flow problem, which maximizes the uniform flow demand 
between every pair of vertices, can be formulated as a linear programming problem. 
We can use column-generating techniques [3] to solve the maximum concurrent 
flow problem by approximation methods and other fast algorithms. 

In using linear programming techniques, if we can find a set of arcs with nonzero 
shadow prices which also forms a two-way partition, then we have found the 
sparsest cut. In general, these arcs will form a K-way partition. We show that if 
K < 4, then there exists a two-way partition of the partitioned K subsets, which 
is also the minimum weighted sparsest cut. Independently, Shahrokhi and Matula 
[20] have shown the case K < 4 with a combinatorial approach. We shall give a 
proof that utilizes the techniques of linear programming. 

2. Minimum Cut and Essential Cut Set. Given a network N = (V, E) where V is 
the set of vertices and E is the set of undirected arcs, I VI -- n and ]EI = m. There 
is a capacity cq associated with each arc connecting vertices i and j. 

Let f (X ,  X) be a symmetric function on a vertex set X and its complement X. 
We define the minimum value of a cut separating vertices i and j as 

(1) Fit = min f (X,  Y,) (i ~ X, j e X). 
X 

For example, let X X  = ~'s+x ~j+x c~t be the sum of all arc capacities of arcs 
connecting X and X. When f (X,  .g) = XX,  we have the usual definition of the 
capacity of a minimum cut separating vertices i and j, as used in the Max-Flow 
Min-Cut Theorem. The minimum quotient separator or flux cut uses f (X,  X) = 
XX/min(lX[, ]J?l)- If we define f (X ,  ~) = XX/IX[ x IJ?l, then 

XX 
F~t = min (i e X, j e J~) 

x [Xl x IXl 

is the minimum sparsest cut. We shall use the term ratio cut of i and j, denoted 
by Rij, to mean minx(XX/lX[ • IX[) with i t  X, j e X. Note that all of the above 
functions are symmetric, i.e., f (X,  X) = f (X,  X). The derivation in this section can 
be applied to all these symmetric cost functions. We shall use F~t also to denote 
the cut (X, 37) associated with Fit in (1) if no confusion should arise. 

2.1. Triangular Inequality 

THEOREM 1. For any three vertices i,j, and k ~ V, we have the following inequality: 

(2) Fik 2 min(Fi~, Fjk ). 
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PROOF. Let (X, X) be the cut separating i and k with a minimum cost Fik where 
i e X and k e X. The vertex j then belongs either to X or to X. 

(i) I f j  ~ X, then the partition (X, X) serves as a parition separating j and k. Since 
Fjk is the minimum cost of the cut separating j and k, then 

(3)  Fjk = m i n  f(X, X) < Fik. 
j~X, keX 

(ii) I f j E X ,  then we can also derive 

(4)  Fij = m i n  f(X, X) < Fik. 
i~X, j~X 

We conclude that (2) is true, because either (i) or (ii) must be true. [] 

Since (2) is true for any three arbitrary vertices, we can see that the three values 
Fij, Fjk, and Fik cannot all be distinct. If they are three distinct values, then we 
can put the smallest value on the left-hand side of (2) and obtain a contradiction. 
Thus, among the three values, Fij, F~k, and Fik, two values must be equal and 
both are not greater than the third value. Given a graph of n vertices, there are 

( ~ )  pairs of vertices. We can by induction from (2)show that there are  at most 

n - 1 distinct values of rain-cost partitions. 

2.2. The Cuts for  All  Pairs o f  Nodes. The proof used in Theorem 1 is identical 
to the proof used by Gomory and Hu [4]. However, the construction of the 
Gomory -Hu  cut tree makes use of the fact that there always exists a set of n - 1 
noncrossing minimum cuts. For  general cost functions associated with cuts, 
minimum cost cuts d o  cross each other (Figure 1). In this paper, we show that 
n - 1 minimum cost cuts are sufficient to separate all pairs of vertices for arbitrary 
cost functions defined by (1). 

THEOREM 2. ' Given network N = (V, E), with IV[ = n, we need at most n - 1 distinct 
cuts, such that for all i, j ~ V, one o f  the n ~ 1 cuts is the minimum cut separating i 
and j. 

PROOF. Assuming that we find a minimum cut for each pair of vertices, then 

are ( ~ )  cuts which separate all pairs of vertices. We sort the cuts according there 

to the cut value from small to large. We then select among the ( ~ )  minimum cuts, 

one by one, into a cut set S. The smallest value is selected first. 
Initially, cut set S contains only the first cut. Let (X,)()  be the partition made 

by the first cut. The second cut either: (a) coincides with the first cut, or (b) 
separates at least one of X and X into two subsets. If case (a) occurs, then the cut 
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Fig. 1. A six-vertex network example. The capacity of each arc is one unit. Each dashed line labeled 
with Cij and a number is a ratio cut separating vertices i andj with cut cost Fij. Note that cut C12 
crosses cuts C13, C24, and C45. 

is not  selected. If case (b) occurs, we have more disjoint subsets X1, X2 . . . . .  Xk, 
where k > 2 and U~= 1 Xi = V. We then select the cut into the cut set S. In other 
words, a cut is selected only if it further separates certain subsets into smaller 
subsets. The process continues and the number  of disjoint subsets increases, until 
the cuts in S partit ion V into subsets, with each subset containing only a single 
vertex. 

(i) Since each cut divides the subsets into smaller subsets and the smallest subset 
contains only a single vertex, it takes at most  n - 1 cuts. Thus, ISI -< n - 1. 

(ii) For  each pair of vertices i and j, let cut 7 be a lowest cost cut in S such that 
cut 7 separates the pair. Then, from the selection process for the set S, cut 

is also a minimum cut among  ( ~ )  cuts, such that the cut separates i and j. 

Therefore, cut y is a min imum cut of i and j. Otherwise, if there is another  cut 
that  separates i and j with a smaller cut value, that  cut should have been 
selected in the process. [ ]  

Let us call S, which is the set of distinct cuts separating all pairs of vertices, an 
essential cut set. We can build a tree of the essential cut set to represent the parti t ion 
of all pairs of vertices in V. 

2.3. Cut Tree Algorithm for Findin9 an Essential Cut Set. With respect to a given 
cost function f ,  let us assume we have a routine which can generate the minimum 
cut. Given a pair of vertices (p, q), the cut routine CUT(p,  q) returns (Fpq, P, Q) 
where (P, Q) is a min imum cut that separates p and q (p ~ P, q ~ Q) with a cost of 
Fpq. We construct  an algori thm to find the essential cut set in n - 1 C U T  oracle 
calls. 
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We shall state the structure of the cut tree, then describe the algorithm, and 
finally we shall prove the correctness of the algorithm. 

2.3.1. The Binary Cut Tree Structure. The essential cut set is represented by a 
binary tree with n - 1 internal nodes and n leaves, with the root at the top. Each 
internal node represents a cut, and each leaf contains a vertex in V. For  each pair 
of leaves, their lowest common ancestor is the minimum cut of the corresponding 
pair of vertices. 

The construction of the tree representation starts from a tree of a single leaf. 
Then we successively increase the number of internal nodes. We use a tree structure 
to store the information resulting from each iteration. The following is a detailed 
description of the tree structure. 

I. A Directed Binary Tree Representation. The binary tree contains cut nodes 
(internal nodes) and leaves. Given a minimum cut (Fpq, P, Q), we use a cut node 
to store the cut cost Fpq. The two branches of the cut node are labeled with the 
subsets P and Q. From the root to each leaf, there is a unique path consisting of 
the branches. Let (B1, B 2 . . . . .  Bk) be the path from the root to leaf L i. We then 

k use leaf Li to represent the vertex subset ~ =  1 B~, which is the intersection of the 
subsets B~ along the path. (However, if the tree contains a single leaf but no cut 
node, the leaf represents the vertex set V.) 

II. The Set of  Seeds. We define some vertices as seeds in the tree construction 
process. Given a tree, for each cut node Cpq, we set vertices p and q as the seeds. 
Thus, the set of seeds is a vertex set {p, q l Cpq is a cut node of the tree}, ff the tree 
contains only a single leaf but no cut node, we arbitrarily choose one vertex p as 
a seed. This seed p, together with another vertex q r p, will be used to create a 
cut node Cpq. 

III. The Properties of  the Tree Structure. We shall manipulate the tree so that 
the tree structure maintains three properties throughout the iterations of the 
algorithm. A tree satisfying the three properties is called admissible. The three 
properties are: 

(i) The cut value of a cut node is always larger than or equal to the value of its 
father. 

(ii) Each leaf L i contains exactly one seed i. 
(iii) For  any pair of leaves L~ and L~ with seeds i and j, let the cut node Cpq be 

their lowest common ancestor. Then the cut node Cpq, together with its two 
branches, defines a minimum cut separating vertices i and j. 

2.3.2. The Algorithm of  the Tree Construction. The algorithm successively builds 
trees To, T 1 . . . . .  T~_ 1 = T, where the tree T i contains i cut nodes. Each Tk§ 
contains one more cut node together with one more leaf than its predecessor T k. 

Algorithm 
Input: Given network N = (V, E), a vertex in Vis arbitrarily chosen as the seed of V. 

1. Set k = 0. Initialize tree T k with a single leaf which corresponds to vertex set V. 
2. Given tree Tk, find a leaf Lp containing a seed p and I Lpl > 2. If such a leaf 

does not exist, then output tree Tk and exit. 
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3. Pick vertex q V= p in Lp. Call CUT(p, q) and create cut node Cpq with P and Q 
as labels of its two branches, where p e P and q e Q. 

4. Trace the ancestors of leaf Lp. If the cut cost Fpq of a cut node Cpq is not smaller 
than the cost of the father of leaf Lp, perform operation (i}, or else perform 
operation (ii). 
(i) Put cut node Cpq at the position of leaf Lp. Append leaf Lp to the branch 

P of cut node Cpq. 
(ii) Let cut node C,o be the highest ancestor such that its cut cost F~  is greater 

than the cost F~q (Figure 2). Place cut node Cp~ at the position of cut node 
C,,  and append cut node C~ to the branch P of cut node Cp~. The subtree 
of cut node C,~ follows cut node C,o (Figure 3), 

5. Create a leaf Lq on the branch Q of cut node Cpq. Update the vertex set of all 
the leaves by  intersecting the labels in the branches. 

6. Set the updated tree to be Tk+ t. Let k = k + 1, Repeat step 2. 

EXAMPLE. Figures 4-8 demonstrate the cut tree algorithm on the six-vertex graph 
(Figure 1). We use ratio cut as the minimum cut. Let vertices 1 and 2 be the first 
pair to be separated. The cut cost F12 = 5/(3 x 3) = 0.5. Figure 4 shows the cut 
node C12 with two branches, each labeled with a partitioned subset. The two 
leaves contain vertex sets {1", 3, 5} and {2", 4, 6} where vertices 1 and 2 a re  
postfixed with *, indicating that  these two vertices are the seeds of the two leaves. 

B1 / /  ~ B2 

=BI B3 

=Cur 

\ 84 

B5 B6 =B2NB4 

55 
=B2Q,, B3Cf B5 =L ~ =B2(3 B3n B6 

Fig. 2. A binary tree of {CI, C2, C3} three cut nodes, {L1, L2, L3, L4} four leaves, and {BI~ B2, B3, 
B4, BS, B6} six branches. Each leaf contains a vertex set which is the intersection of the branches along 
the path from the root to the leaf. The graph illustrates step 4(ii) of the tree construction algorithm 
with leaf L3 = Lp and cut node C2 = Cur. 
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B1 / \ B2 

=L1 P / X Q 

B3 

=Cuv 

\ B4 =B2NQ 

B5 / ~ B6 =L4NP 

/]  =E2NP ~ =Ld=L~IOP 

Fig. 3. Cut node Cvq is inserted at the position of C~v. Cut node C,~ appends to branch P, and the 
subtree of Cur follows the cut node Cur. Note that each leaf L'~ in the subtree of C.v is updated to 
L' i = L i r~ P. 

03 

. . . . .  i 

Fig. 4. The cut tree after the first iteration of the tree construction algorithm on the six-vertex example. 
Cut node C12 with two branches separates the vertex set into {1", 3, 5} and {2*, 4, 6} two sets. The 
cut cost is 0.5. The vertices 1 and 2 are postfixed with �9 indicating that the two vertices are the seeds 
of these two leaves. 
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0i 

Fig. 5. Vertices 2 and 4 are chosen from leaf {2", 4, 6}. The cut node C24 contains a cut cost F24 = 0.Z[, 
which is smaller than the cut cost of C~2. Thus, Cz,~ is inserted above Clz. The leaves are updated 
according to the insertion. 

If we choose seed 2 and vertex 4 in the next iteration, then the second cut 
separates vertices 2 and 4 with a cut cost F24 = 4/(3 x 3 ) =  0.4. Because 
F24 < F I 2  , step 4(ii) inserts cut node C24 to the top and appends cut node Cla 
to its left branch. The vertex sets of the leaves are updated as shown in Figure 5. 
Figures 6, 7, and 8 show the tree construction of the next three iterations. Cut 

oA 

11,2.31 / /  ~ {4.5,6} 

0.5 

11,2} / N 13.4.5.61 

o3 

{1.3,5l / \ 12,4.6} 

Fig. 6. The cut tree after the third iterat! ~n. Cut node C13 is inserted into the tree. 
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0.4 

{6} / ~ [ 1,2,3,4.51 

0.4 

{1.2.31 . /  ~ {4,5,6} 

0.5 

(|.2} / { 3.4.5.6} 

03 

.3.- _ . .  

Fig. 7. The cut tree after the fourth iteration. Cut node C4a is inserted into the tree. 

nodes C13, C 4 6 ,  and C45 are inserted according to the heap condition. All the cut 
nodes in the final tree structure (Figure 8) constitute an essential cut set. 

2.3.3. The Proof of  the A19orithm. It is important that tree T k is admissible in 
each iteration k, so that the process can proceed properly. We show the tree is 
admissible after each iteration, by induction on the number of cut nodes in the 
tree. The tree is certainly admissible when there is only one cut node and two 
seeds in the two leaves. Given an admissible tree Tk, Lemmas 1-4 show that the 
tree Tk+ 1 satisfies the three properties. Thus, Theorem 3 concludes that the tree 
in each iteration is admissible. Using the properties that the tree is admissible,we 
show in Theorem 4 that the algorithm finds an essential cut set with n - 1 CUT 
oracle calls. 

LEMMA 1. Given an admissible tree Tk, tree Tk+ 1 satisfies property (i). 

PROOF. Given tree Tk, step 3 of the algorithm generates a new cut node. Step 4 
inserts the new cut node in keeping with property (i). Therefore, tree Tk+l also 
satisfies property (i). []  
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0.4 

{1,2,31 / 

0.4 

{4,5,61 

0.5 I C as I 0.5 

1~.21 / \ i3.,.5.6j 1~.2.3.,~ / \ 15.6j 

o.3 

{I,3.51 / \ {2,4,6] 

Fig. 8. The final tree structure.  There are n - 1 cut nodes and n leaves. Each leaf Li conta ins  a single 
vertex i. The cut tree conta ins  an essential  cut set. 

LEMMA 2. Given an admissible tree Tk,for each leaf L i with seed i, vertex i remains 
in the updated leaf L~, and the new seed q belongs to the new leaf L~. 

PROOF. We prove the lemma for the case of step 4(ii) in the algorithm. The 
proof for the case of step 40) is similar. 

For the process of case 4(ii), cut node Cpq with its two branches P and Q is 
inserted as shown in Figure 3. Note that each leaf L~ in the subtree of C,v is 
updated to L~ = L~ c~ P, because branch P is inserted into the path from the root 
to the leaf L~. With reference to Figure 3, we prove the lemma by the following 
three arguments: 

(i) The updated leaf L'~ = L i, for each leaf L i (i # q) not in the subtree with C,v 
as the ancestor. 
As shown in Figure 3, the path from the root to the leaf Li is not changed 
by step 4, therefore leaf L~ remains the same. 

(ii) Seed i continues to be an element of the updated leaf L'~, for each leaf L~ under 
the subtree of Cu~. 
As shown in Figure 3, leaf L'/= L i c~ P. Thus, if we can prove that i is an 
element of P, then seed i ~ L'~; the proof is by contradiction. If i ~ Q, then the 
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cut (P, Q) separates i and p. The minimum cut separating i and p should have 
a value Fip < Fpq. However, from property (iii), there is a cut node Cob in the 
subtree of Cu~, which defines a minimum cut separating seed i and seed p. 
From property (i) and step 4, the cut value Fip = Fob > F,~ > Fvq, which 
contradicts the previous inequality expression that F~v <_ Fpq. Therefore, we 
have i ~ P. 

(iii) The new seed q is an element of the new leaf Lq. 
In tree Tk, assume (Bt, B2, . . . ,  Bw) is the path from the root to cut node C,~. 
Then we have q e 0~ '  Bi, where Bi are the subsets along the path. Since q ~ Q 
and Lq = 0r'= ~ B~ n Q, we have seed q ~ Lq. When C,~ is the root, the proof  
is similar. []  

LEMMA 3. Given an admissible tree Tk, t ree  rk+ 1 satisfies property (ii). 

PROOF. From Lemma 2, we know every leaf in tree Tk+ 1 contains exactly 
one seed. Thus, the tree T k + 1 satisfies the property (ii). []  

LEMMA 4. Given an admissible tree Tk, tree Tk + ~ satisfies property (iii). 

PROOF. As shown in Figure 3, from Lemma 2 we know that for each pair 
of leaves Li and Lj in tree Tk their lowest common ancestor remains the same 
in tree Tk+ 1. Thus, for every pair of leaves L i and Lj with seeds i #  q and 
j # q, their lowest common ancestor is the minimum cut separating vertices 
i and j. To prove the lemma, it is sufficient to show that for every leaf L i with 
seed i # q, the pair of leaves L i and Lq has the minimum cut separating vertices 
i and q as their lowest common ancestor. Let C,b be the ancestor. There are 
two cases: 

(i) The minimum cut of vertices i and q has a cu t  value Fiq <_ F,b. 
Since cut node Cob defines a cut that partitions vertices i and q, then 
Fiq _< Fob. 

(ii) Fiq >_ F.b. 
As shown in Figure 3, cut node Cpq is the father of leaf Lq and an ancestor of 
leaf L~ in tree Tk+ a. For  the case that leaf L~ is in the subtree of Cur, we have 
Fob = Fvq and F~v > Fpq from property (i). Using Theorem 1, we have Fiq > 
min(Fip, Fpq) = Fpq = Fab. When leaf L i is located outside the subtree of Coy, 
we have Fob = Fip and Fpq > Fip from property (i). Using Theorem 1, we have 
Fiq > min(Fip, Fpq) = Fly = Fob. Therefore, we conclude that Fiq > Fob. 

From (i) and (ii), and since seeds i and q are partitioned by the two branches of 
C,,b, then the node Cob with its two branches defines a minimum cut separating 
vertices i and q. [] 

From Lemmas 1, 3, and 4, we conclude, by induction, that the tree structure T k 
is admissible in each iteration k. 

THEOREM 3. The tree construction algorithm generates an admissible tree T k for 
each iteration k. 
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Since the tree is admissible, we can continue the algorithm until every leaf 
contains one single vertex. The following theorem proves the correctness of the 
algorithm. 

THEOREM 4. The cut tree algorithm derives an essential cut set with n - 1 C U T  
oracle calls. 

PROOF. Since each tree T~ is admissible, then from property (ii), the operation 
can be continued until every leaf contains one single vertex. Therefore, it takes 
n - 1 iterations to create a tree of n - 1 cut nodes and n leaves. 

From property (iii), the tree contains a minimum cut for every pair of seeds. 
Therefore, the n -  1 cut nodes Constitute an essential cut set. Consequently, we 
conclude that the algorithm takes n - 1 CUT oracle calls to generate an essential 
cut set. []  

3. The Global Ratio Cut and the M a x i m u m  Concurrent Flow. Among the distinct 
cuts in the essential cut set, we can find a cut with the minimum cut cost. Let us 
denote this cut as the global minimum cut. In this section, we focus on the global 
ratio cut 

(5) R 1 = min Rij. 
i, jEV  

This global ratio cut, defined by (5), is closely related to the uniform multi- 
commodity flow problem, where f units of flow is transmitted between all pairs 
of vertices. Leighton and Rao [-13] have shown that 

where the bound is tight. 
The uniform multicommodity flow problem can be formulated as follows: Given 

a network N = (V, E), the demand of flow between each pair of vertices is equal 
to an identical value f. The object is to maximize f under the constraint that the 
sum of all arc flows is less than the arc capacity. Let x~ be the flow for commodity 
p on arc (i,j); let n be the total number of vertices and commodities; and let e 0 
be the capacity of arc (i, j), we then have 

(7) Obj: max f 

subject to the flow demand of commodity p from every vertex p to the other 
vertices i, 

(8) x ~ i  - xe . , ,  = - - 

~=, j=,  1)f if i = p, 1 _< i,p <_ n, 
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and the constraints of the arc capacities, 

(9) ~ x ~ +  ~ xfi<_cij, l<_i,j<_n. 
p = l  p = l  

If we assign dual variables 2~ for the vertex i (i = 1 . . . . .  n), with respect to 
commodity p (eq. (8)), and dis to arc (i, j) (eq. (9)), then we have the following dual 
problem [1]: 

dlj -> I,~' - ,iyl, 1 < i, j ,  p _< n, 

(12) 1. 
p = l  i r  

Let dij be an undirected distance function on the arc connecting vertex i and vertex 
j. From (11), dlj can be interpreted as distance in a metric space with the triangular 
inequality [i  1], [18]: 

(13) dij + djk > dik, 1 <_ i, j, k < n. 

In the following two lemmas, we derive that the variables 2~' in the constraints 
can be replaced by the variables d~j. 

LEMMA 5. There exists an optimal solution such that the equality of constraint (12) 
holds, i.e., ~,=1 E n c p ,  i = l (  )~p - -  ~pP) = 1. 

PROOF. We prove the lemma by contradiction. For an optimal solution, if the 
inequality in (12) holds, i.e., 

p = l  i r  

then we can scale down all the variables by the ratio 1/h. The new assignment 
~li~ = (1/h)d~j and ).~' = (1/h)2f still satisfies the constraints (11) and (12). Since c~j 
and dlj are positive, then 

= C di~j- 1 
cij~llj 2 ij h - h  2 cijdij < E cijdij" 

(i, j) (i, j) (i, j) (i, j) 

Thus, the updated value of the objective function becomes smaller; which con- 
tradicts the assumption that the original solution is optimal. [] 

subject to 

(tl) 

(10) Obj: min E cijdij 
(i, j) 
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Therefore, we can replace the constraint (12) with an equality expression: 

(14) ~ ~ (21'- 2p p) = 1. 
p=l  i : /:p, i=l 

LEMMA 6. There exists an optimal solution such that 2 f - 2Pp = dip for  all 1 <_ i, 
p<_n.  

PROOF. We prove the lemma by contradiction. For an optimal solution, let us 
assume that there exists a vertex p and a vertex k such that dkp > 2k p -- 2p p. From 
constraint (11), we can write 

~" d ip= ~ ~ (2 p - 2 ~ ) + e  where e > 0 .  
p=l  i r  p=l  igap, i = l  

We update the variables by assigning dlj = dii, ,~v p = 2p p and ,~1, = dip + 2~ for all 
1 < i, j, p < n, i # p. The following two arguments prove the lemma: 

(i) The updated values of the variables satisfy the constraint (11). 
Since the distances dij satisfy the triangular inequality (13), we have 

~lij = do >- dip - d J1, = (21, - ~Pp) - ()'; - 2Pv) =-- ~p - ~v 

for all 1 _< i, j _< n. 
(ii) For the new assignment, we have ~p=l  ~7,v,i=1(21, - '~P) = 1 + e. 

Since 

p=l  ig :p , i=l  p=l  i ~ p , i = l  p=l  i ~ p , i = l  

From (14), we have ~p=l  ~2,p,i=l( ~f - ~-~) = 1 + e. 

From (i) and (ii), the updated values constitute a feasible solution. From (ii) and 
the proof of Lemma 5, the value of the objective function can be scaled down by 
the ratio 1/(1 + e); which contradicts the assumption that the original solution is 
optimal. [] 

Therefore, constraint (14) can be rewritten as a function of dij: 

(15) ~ ~ dip = 1. 
p=l  i r  

The uniform concurrent flow problem can be stated as an objective function of 
(10) with the constraints (13) and (15), i.e., 

Ob]: min ~ cifllj  
(i,j) 
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subject to 

dij + djk > dik , 1 < i, j, k < n, 

p=l  i~p, i=1 

The distance is the shadow price [1] of the arc in the original problem. 
Lomonosov  [14] observed that  the arc with positive distance generates the 
part i t ion of the vertex set V. When the arcs with positive distance d~j form a 
two-way partit ion, we can show that  the part i t ion defines the global ratio cut. 
When the arcs with positive distance form a K-way parti t ion with K < 4, we also 
find that there exists a two-way part i t ion that again defines the global ratio cut. 

THEOREM 5. Let D = {(i,j)ld~j > 0} define a partition that separates the network 
into K disconnected subsets. I f  K <_ 4, then there exists a global ratio cut that is a 
subset of  D. 

PROOF. 

L The case when K =  2 

(1) First, we want to prove that for all d i j~D,  dij = e, where e is a constant:  
Let (X, J?) be the part i t ion made by D. Let i and j be vertices in X, and let k 
be a vertex in J(. F rom (13), we have dij + djk > dig and dij + dig > dig. Since 
dij = 0 by assumption, we have dik = djk- Similarly, if I is a vertex in )(, then 
we have dig = djl. Hence, dik = d~k = dig for all i a n d j  in X, and k and l in )(. 

(2) Second, we prove that  e = ~ I / I X ]  x IJfl): 
Since dij = e for all d i j ~ D  , from (15), we have e = 1/21XI x ])(I. 

(3) F rom  (1) and (2) above we have the object function 

X X  
Z c i jd l j -  
<i,j) 21Xl • IXl" 

Since this is a minimum solution, D is a global ratio cut. 

II. The case when K = 3 

(1) Let X 1, X2,  X 3 be the disjoint vertex sets part i t ioned by D. As in the proof  
of case 1.1, we have dkl = eli for all k e X i ,  l e X j  and i , j ~  {1, 2, 3}, where eij is 
a constant.  

(2) F rom (1) above, (10), (13), and (15) can be expressed as functions of e12, 
e13, and e23. The constraint  (13) is expressed with the following three equa- 
tions: 

(16) 

el2 q - e l 3  - b s  1 = e 2 3 ,  

e12- [ -e23  q- S 2 = e13 , 

e13-~-e23 q-s3 =el2 ,  
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where sl,  s2, and  s 3 are nonnegat ive  slack variables.  Thus, we have four 
cons t ra in t  equat ions  and  six variables.  F r o m  the theorem of l inear  pro-  
gramming,  we can have two variables equal  to zero in the op t imal  solution.  
If  e i j =  0 for i, j ~ {1, 2, 3}, then by definit ion D becomes a two-way  par t i t ion.  
Let  us set two slack var iables  si, sj equal  to zero. F r o m  (16), we then can derive 
eij = 0. Consequent ly ,  we reduce D to a two-way par t i t ion  as in case I. 

III .  The  case when  K = 4. The p roo f  is s imilar  to the p roo f  of case II. F o r  
the case of  K -- 4, we have thir teen cons t ra in t  equat ions  and eighteen variables.  
F ive  slack var iables  can be equal  to zero in the  op t ima l  solutions.  Likewise, 
we can derive that  a cost  eij should  be zero. Consequent ly ,  the p rob lem is 
reduced to a three-way par t i t ion  case II. [ ]  
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