
Annals of Operations Research 33(1991)199-213 199

A N C E S T O R TREE FOR ARBITRARY M U L T I - T E R M I N A L CUT FUNCTIONS

C.K. CHENG and T.C. HU
Department of Computer Science and Engineering, University of California, San Diego,
La Jolla, CA 92093, USA

Abstract

In many applications, a function is def'med on the cuts of a network. In the max-
flow min-cut theorem, the function on a cut is simply the sum of all capacities of edges
across the cut, and we want the minimum value of a cut separating a given pair of nodes.
To find the minirnura cuts separating (~) pairs of nodes, we only need n - 1 computations
to construct the cut-tree. In general, we can define arbitrary values associated with all
cuts in a network, and assume that there is a routine which gives the minimum cut
separating a pair of nodes. To find the minimum cuts separating (~) pairs of nodes, we
also only need n - 1 routine calls to construct a binary tree which gives all (~) minimum
partitions. The binary tree is analogous to the cut-tree of Gomory and Hu.

1. Introduction

Given an undirected network G = (V, E), where V is the set of nodes {v 1, v 2 v n }
and E is the set o f arcs in the network: arc eij has capacity cij and connects_ nodes
i and j. A partition of the node set into a subset X and its complement X is called
a cut and is denoted by (X,X). I f s e X and t e X , then the cut (X,X) separates
nodes s and t.

We can assign a value to an arbitrary cut (X,X). In the max-flow min-cut theorem,
the value of a cut (X,X) is simply the sum

E C/j ,

i e X , j e X

denoted by C(X,X), and we wish to find the cut (X,X) separating s and t which has
the minimum value, i.e.

Fst = minC(X,~ ') wi ths e X and t e ~'. (1)
X

We can view this as minimization of a function.
In other applications [1 ,6 ,9 -11] , we may want to define this function F~t as,

for example,

© J.C. Baltzer AG, Scientific Publishing Company

200 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

min C(X, X) with s e X and t e X, (2)
x IXl. I '1

where] X I is the cardinality or the size of the set X. The minimum partition based
on (2) will divide the network more evenly than the minimum partition based on (1).
In a VLSI circuit layout, we prefer to have a minimum partition with the number of
modules on both sides approximately the same. In other applications, we may need
entirely different criteria. Thus, we allow arbitrary values to be associated with any
partition and consider the computation for finding the minimum value partition
separating a given pair of nodes as a routine call.

In general, we_ denote the minimum function byFq(X,X) with the understanding
that i ~ X and j e X, or we simply use F/j or F(X, X).

Assume that we wish to determine the Fij(X,X) values for all pairs of nodes
i and j. Our main result is that to find the (~) F/j, we need only n - 1 computations
of the function F.

To see the difference between arbitrary cut functions and the original minimum
cut capacity functions, we first introduce the definition of crossing of cuts.

Two cuts (X,.~) and (Y,Y) are said to cross each other if each of the following
four sets contains at least one node:

X n Y , X n Y ,

Y, n r , Ycn- f .

To find the maximum flows between (5) pairs of nodes in a network, we need
n - 1 computations where each computation gives a minimum cut. Also, there exists
a set of n - 1 minimum cuts which forms a cut-tree [4]. In other words, there exists
a set of minimum cuts which do not cross each other.

Here, for arbitrary functions ~j(X,~') , the cuts (X,~') which yield the
values for Fq may cross each other (for example, the function defined in (2)).
However, we still need only n - 1 computations by constructing a binary tree called
the ancestor tree.

In section 2, we prove the existence of the ancestor tree. In section 3, we give
a numerical example. In section 4, we give the detailed algorithm and its proof. In
section 5, we give some additional remarks, including a very simple proof for the
Gusfield construction of the G o m o r y - H u cut-tree.

2. Ancestor tree

Let us assume that we have done (~) computations and_ have found values of
F/j between all pairs of nodes in the network. Assume F~t(X,X) is the smallest_value
among _the (~) values. Then, for any pair of nodes i and j with i ~ X and j e X, the
cut (X, X) serves to separate i and j as well; hence, we have

q/(x, = p:,(x, Y¢).

C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 201

Let Fab(Y, Y) be the smallest value of F where both a and b are in X. Then,
for any two nodes i and j , where i e Y n X and j ~ Y ~ X, we must have

F U = Fab(Y, Y).

Similarly, let Fcd(Z, Lz) have the smallest_ value with both c and d in~'. Then, for any
two nodes i and j, where t ~ Z n X and j ~ Z n X, we must have

=

Note that the nodes of the network have been partitioned into four subsets,
namely:

Yc~X, - Y n X , Z n X , Z c ~ X ;

then we know F~i between any two nodes as long as i, j do not belong to the same
subset.

F st

•

Fig. 1.

Zc'9:

We can record the results of the three computations as a binary tree with
three intemal vertices, as shown in fig. 1, with F~t(X,X) as the root, F~b(Y,Y) and

202 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

F~a(Z,Z) as the two sons, and the four subsets Y n X, Y n X, Z n X , Z n X as the
four leaves.

The process of partitioning subsets can be continued until each leaf of the tree
contains only one node. Then, the binary tree has n leaves and n - 1 intemal vertices;
each vertex is a computation of the defined function for a given pair of starred nodes.
For any two nodes i and j, the lowest common ancestor of their respective leaves
gives the partition as well as the value for F/j.

This binary tree is then the ancestor tree. Of course, we have proved the
existence of the ancestor tree by selecting n - 1 values from the results of the (5)
computations.

In section 4, we will prove that we can construct the ancestor tree by performing
only n - 1 computations.

3. Numerical example

Given an n-node network, there are 2 n- 1 _ 1 possible cuts. For each of these
cuts, we can arbitrarily assign a value. For ag iven pair of nodes i and j, there are
2"-2 cuts separating i and j, and we use Fij (X,X) to denote the minimum value among
the 2 n- 2 cuts. The algorithm for finding F/y for a given pair i and j could be very
easy or tedious. We simply consider the algorithm as a routine call. Our main result
is to show that n - 1 routine calls are sufficient for finding (5) Fly.

Consider the network in fig. 2 with arc capacities as shown. To fix the idea,
let us assume that we want to find for all pairs of nodes i and j

F/j = m i n
c(x, x)

IXl-IXI
w i t h i ~ X and j ~ X'.

Assume that we first choose a and b, and find Fab(X,X) = 15/9. We show the
result in fig. 3. Since the computation is performed for a and b, we call a and b the
seeded nodes or simply seeds, and c, d, e, f are unseeded nodes. (Seeded nodes are
denoted by stars in the figures.)

We then select a leaf containing one or more unseeded nodes to do a computation
between the seeded node and an unseeded node, say between b* and c. (c then becomes
seeded.._) The result is shown in fig. 4. Note that since F~ < F~b, the intemal vertex
Fbc(Y, Y) is put as the root and F~b as its left son. The names of nodes in the leaves
have been updated to reflect the three subsets

X n Y , X n Y , Y.

In general, let (P, Q) be the new intemal vertex just created, with p* ~ P
and q* e Q, and Fab(A, B) be the highest ancestor of (P, Q) which satisfies F~b(A, B)
> Fpq(P, a). Then we put (P, Q) in the position of (A, B) and attach (A, B) together
with its subtree as a son of (P, Q). In the subtree rooted at (A, B), there is a leaf

C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 203

F ab

(

~ 2 (

/ b 1

F bc

4

J 6 ~ 3

i

Fig. 2.

15/9 +
Fig. 3.

which contains the node p or q, say p. Then we attach the subtree on the P side of
the vertex (P, Q). All unseeded nodes, in the leaves (of the subtree rooted at (A, B))
which belong to Q, are now attached as a leaf on the Q side of (P, Q).

204 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

8/8

Fig. 4.

8/8

Fig. 5.

2 0 5

t"q

C¢3

U

C,O

0

tt3

t--:

t~

¢'¢3

O 0

tt3

,b
b:

206 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

The successive computations are shown in figs. 5, 6, and 7. The process stops
when every leaf contains only one seeded node.

4. The algorithm and its proof

Let T i denote the ancestor tree with i leaves. We successively build T i
(i = 1,2 n).

Initially, the tree 7]/consists of one leaf with the names of all nodes in the leaf.
Arbitrarily set one node to be the seed.

ANCESTOR TREE ALGORITHM

Select a leaf of T~ which contains more than one node and do a computation
between the seeded node and an unseeded node in the leaf. This creates a new
internal vertex (P, Q) with p* ~ P and q* ~ Q (the unseeded node is now seeded).

(a) If the newly created vertex F has value larger than its father, then F
remains in its position in T i and we attac~ two leaves to Feq to reflect its partitions eq.
One leaf contains the seed p* and the other leaf contains the seed q*.

(b) If Fpq has its value less than its father, then we find the lowest ancestor F~,
and the highest ancestor F,a , which satisfy F~, < Ft~ < F,a ,. We put Feq in the previous
position of Fab and attach F~ (with its subtree) as a son of Feq. In the subtree with
root Fo~, there is a leaf which contains the name p or q, say p. Then we attach the
subtree on the P side of (P, Q). All unseeded nodes in the subtree which belong to
the Q side of the partition are now attached as the leaf on the Q side of (P, Q).

Repeat until there is only one seeded node per leaf in the ancestor tree.

Before we prove the ancestor tree, we shah prove some theorems and lemmas
about the arbitrary functions F in a network.

THEOREM 1

For any three nodes i, j, and k ~ V, we have

Fac -> min(F/j, F/k). (3)

Proof

Let F.a, have the cut (X,_X), where i ~ X, k ~ ~'. Then, j either belongs to X or
to ~'. I f j ~ X, then the cut (X,X) serves as a partition separatingj and k and we have
F/k > Fjk. I f j ~ X, then the cut (X,X) serves as a partition separating i and j, and we
have F.a, > F/j.

In either case, we have F,. k > min(F/j, Fjk). []

C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 207

THEOREM 2

Let a, b y, z be a sequence of nodes in a network. Then,

Faz > min(F,, b, Fbc Fyz). (4)

Proof

By induction on theorem 1. []

LEMMA 1

For any three values F/j, Fjk, and Fa~ between three nodes, two values must be
equal and the third value is either greater or the same.

Proof

Putting the smallest value among the three values on the left-hand side of (3)
will contradict (3). []

Since we know that there are only two distinct values among three values, Fij,
F/k, and F/k, we may be able to find the two distinct values by two computations. If
we arbitrarily compute F/j and F/k first and F/k happens to be the largest value, then
we need three computations. The following lemma shows how to avoid this situation.

LEMMA 2

If we compute Fii(X, X) first and find that j , k ~ X, then

Fik = min(F/j, F/k).

Proof

We know that

F/k >- min(F/j, F/k),

so if F/k ~ min(Fi/, F/k), then the only possibility is that

F/k > min (F/i, F/k).

By assumption j, k e A', so (X, A') serves to separate i and k and Fik < F/j. This is a
contradiction. []

Lemma 2 is for three nodes. The generalization of lemma 2 to four or more
nodes is not straightforward, as seen in the following example.

208 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

Example 1

Let a, b, c, d be four nodes and suppose that we first compute

F~b(X,A'), and find that b, c belong toA';

then we compute

Fbc(Y, Y), and find that c, d belong to Y,

and then compute Fca. Then it seems that the generalization of lemma 2 would
suggest

Fad = min(F~b , Fbc , F~a). (5)

Unfortunately, (5) is not true, as seen from the following example.

Example 2

Using definition (2), we find the cut function in fig. 8.

Fab(X, X) < Fbc(Y, Y) and Fca = F(X, X),

with X = {a, d}, Y = {a, b}, where F,,a(Y, Y) > min(Fab, Fb~, F,d).

L._S

9

8 , 9

Fig. 8.

The reason for the counterexample to (5) is that (X,X) and (Y,Y) cross each
other, and the three nodes a, c, d do not satisfy the conditions of lemma 2.

C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 209

THEOREM 3

Let a, b y, z be any sequence of nodes in a network with

min(Fab, Fbc Fy~) = F (X , X) , a ~ X, z E X;

then,

F,,z = F(X, X) = min(Fab, Fbc Fyz). (6)

P r o o f

By assumption (X, ~') separates a and z, so we have

F,, z < F(X, X). (7)

From theorem 2 and the assumption, we have

F:: >__ min(Fab, Fbc Fyz) = F (X , X) . (8)

The inequalities (7) and (8) imply

Faz = F(X, 'X) . []

Note that theorem 3 is, in a sense, a generalization of lemma 2.

Proof

Now we prove the algorithm of the ancestor tree by induction on the number
of internal vertices in the tree.

In the first stage of construction, we have the internal vertex F,a , (A, B) with
seed a m A and seed b ~ B. We have the following two properties:

(i) For any pairs of nodes i and j not in the same leaf, Fq is less than or equal
to the value of the lowest common ancestor of i and j. (Note that / and j could
be seeds or unseeded nodes, and there is always one seed per leaf.)

(ii) Let i and j be two seeds and F~s be their lowest common ancestor. Then there
exists a sequence of seeds i, a, b d, j with every adjacent pair of seeds
constituting an internal vertex in the subtree rooted at F~,, for which

F/j > min(F/a, Fab Faj) = F~s.

We shall prove that properties (i) and (ii) are maintained during the successive
stages of constructing the ancestor tree. Assume that properties (i) and (ii) are true
in the kth stage of construction of the ancestor tree, with k + 1 leaves. Now, we pick
a leaf containing a seed p and an unseeded node q and create Fpq (P, Q).

210 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

Let F~s be the lowest ancestor and F~b the highest ancestor of the leaf satisfying

F~s(R, S) < Fpq(P, Q) < F~b(A, B).

Without loss of generality, we shall assume that the tree rooted at F,s(R, S) has
its left subtree containing nodes in R and F~b(A, B) is the root of the right subtree
before Fpq is created. Also, Fat , becomes the left subtree of Fpq, as shown in fig. 9.

F rs

<)

' I : i a : ' ~ , 8(~,?

Fig. 9.

For any pair of nodes i and j with i ~ P c~ S and j ~ Q n S, we have F/j < Fpq
since (P, Q) provides the cut of the subset S. For any pair of nodes i a n d j with i ~ R
a n d j ~ S, F/j < Frs since the new partition (P, Q) does not replace (R, S) as the lowest
common ancestor. So, the induction hypothesis (i) still holds.

For the two seeds p and q, Fpq = Fpq(P, Q) by the routine call and every pair
of seeds in an internal vertex is correct by the same reason. Since the algorithm

C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 211

always picks a seed and an unseeded node in the same leaf, a spanning tree connecting
seeds is created if every computation is represented by a link connecting two seeds.
This means that for any path connecting i and j in the spanning tree, property (ii)
holds.

When the algorithm stops, there is only one seed per leaf. For any two seeds
i and j, we have

F/j < min(F/1, F12 Ftj),

by hypothesis (i), and

F/j > min(Fil, F12 Fkj),

by hypothesis (ii).
Thus, we have F/j = min(F/1, F12 Fkj), where F/j is the lowest common

ancestor of i and j.

For every internal vertex, we need to keep the value, the associated partition
and the names of the two seeds. Thus, we need O(n 2) space. We have not shown the
nodes in the associated partitions in any of the figures.

5. General remarks

Note that the proofs of theorems 1 and 2 and lemma 1 are exactly the same
as that of Gomory and Hu [4]. However, in the original construction [4] of the cut-
tree, the algorithm is to choose any two nodes in a supernode and do a maximum
flow computation. Here, we restrict our selection to a seed and an unseeded node.
The construction by Gusfield [5] also has this restriction. Having proved the ancestor
tree, which does not need the property of non-crossing of cuts, we can more easily
see why we obtain stronger results in the cut-tree for MAX flows. In the construction
by Gusfield [5], he first constructed a star tree of n nodes, with node 1 at the center
of the star tree, as shown in fig. 10. This is the initial configuration T 1 of cut-tree
T. This tree T 1 will be successively modified into T 2, T 3 T, = T, where each
modification requires one maximum flow computation. We call two nodes connected
by a link of the tree T/neighbors. Thus, in T 1, every node j has 1 as the neighbor.
In T 1, no value is associated with any link, and we say every node j has an unlabeled
neighbor 1. Later, links will have associated values, and we shall call the connected
nodes labeled neighbors. In fig. 10, we declare 1 as a seeded node.

In the tree T/_ 1, do a maximum flow computation between n ode j and its unlabeled
neighbor i (j becomes a seeded node). The min cut value C(X,X) is now associated
with the link lij (i ~ X, j ~ X). All neighbors of i that are in X become neighbors
o f j . (Note that all unlabeled neighbors of a seeded node have degree 1 in the tree.)
The construction stops after all nodes become seeds.

212 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions

Fig. 10.

Note that the Gusfield construction requires n - 1 routine calls to a maximum
flow minimum cut routine. It is extremely easy to implement (see [5]). The construction
is correct even if the routine call provides minimum cuts which cross each other. To
see why his construction works, we note the following facts.

FACT 1

At any stage of computation, let a, b z be a sequence of seeded nodes
connected by labeled links in the tree Tj; then

Faz = min(Fab, Fb~ Fyz).

Proof
Since each labeled link connecting i and j is a maximum flow computation

between i and j, we have the same theorem 2.
Since each labeled link represents a cut separating a and z, we have

F,,~ < min(Fab, Fbc Fy~). (9)

Equations (4) and (9) imply Faz = min(F~b, Foc Fy,) for any sequence of seeded
nodes. []

FACT 2

Let i and j be unlabeled neighbors in the tree T and j is of degree one, and
k is a labeled neighbor of i. (We denote all nodes on the k side of the tree by K,

C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 213

i.e. if the i - k link is removed, all nodes in K are connected to k by a subtree.) Then
there exists a minimum cut (X,X) separating i and j, where the set K is either totally
contained in X or totally contained in X.

Proof

Since every labeled link represents a minimum cut, let (Y, Y) be the minimum
cut corresponding to the i - k link, where i, j ~ Y and k ~ Y. Since we know there
exists a minimum cut (X, ~') separating__/and j which does not cross (Y, Y), then in
that cut K is totally in X or totally in X.

Comment 1

If we condense all unlabeled neighbors of a seed with the seed, then we have
a supemode as in [4].

Comment 2

The n - 1 minimum cuts induced by the cut-tree by Gusfield construction may
not coincide with the n - 1 minimum cuts provided by the routine calls. However,
the n - 1 cuts represented by the cut-tree are sufficient for finding maximum flows
and minimum cuts between all pairs__of nodes. The reason is that the routine calls
may provide two minimum cuts (X,X) and (Y, Y) which cross each other, and the
cut-tree will provide two non-crossing minimum cuts (X, X) and (Z, Z) which serve
the same function as the two crossing cuts (see (4,7, 8]).

For minimum partitions separating k nodes (k > 3), we need (~ - ~) computations.
See Hassin [6].

References

[1] C.K. Cheng and T.C. Hu, Maximum concurrent flow and minimum ratio cut, Technical Report
CS88-141, UCSD, La Jolla, CA (1988).

[2] L.R. Ford and D.R. Fulkerson, Maximal flow through a network, Can. J. Math. 8 (3)(1956)
399 -404.

[3] L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ,
1962).

[4] R.E. Gomory and T.C. Hu, Multi-terminal network flows, J. SIAM 9 (4) (1961)551-570.
[5] D. Gusfield, Very simple methods for all pairs network flow analysis, SIAM J. Comput., to appear.
[6] R. Hassin, Solution bases of multi-terminal cut problems, Math, Oper. Res. 13 (4) (1988)535-542.
[7] T.C. Hu, Integer Programming and Network Flows (Addison-Wesley, 1969).
[8] T.C. Hu, Combinatorial Algorithms (Addison-Wesley, 1982).
[9] T. Leighton and S. Rao, An approximate max flow min cut theorem for uniform multi-commodity

flow problem with applications to approximation algorithm, IEEE Annual Syrup. on Foundations
of Computer Science (1988), pp. 422-431.

[10] D.W. Matula, Determining edge connectivity in O (nm), Proc. 28th Syrup. on Foundations of Computer
Science (1987), pp. 249-251.

[11] F. Shahrokhi and D.W. Matula, The maximum concurrent flow problem, Technical Report, New

Mexico (1986).

