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Abstract 

In many applications, a function is def'med on the cuts of a network. In the max- 
flow min-cut theorem, the function on a cut is simply the sum of all capacities of  edges 
across the cut, and we want the minimum value of  a cut separating a given pair of  nodes. 
To find the minirnura cuts separating (~) pairs of  nodes, we only need n - 1 computations 
to construct the cut-tree. In general, we can define arbitrary values associated with all 
cuts in a network, and assume that there is a routine which gives the minimum cut 
separating a pair of  nodes. To find the minimum cuts separating (~) pairs of nodes, we 
also only need n - 1 routine calls to construct a binary tree which gives all (~) minimum 
partitions. The binary tree is analogous to the cut-tree of Gomory and Hu. 

1. Introduction 

Given an undirected network G = (V, E), where V is the set of  nodes {v 1, v 2 . . . . .  v n } 
and E is the set o f  arcs in the network: arc eij has capacity cij and connects_ nodes 
i and j. A partition of  the node set into a subset X and its complement X is called 
a cut and is denoted by (X,X). I f s  e X and t e X ,  then the cut (X,X) separates 
nodes s and t. 

We can assign a value to an arbitrary cut (X,X). In the max-flow min-cut theorem, 
the value of  a cut (X,X) is simply the sum 

E C/j , 

i e X , j e X  

denoted by C(X,X), and we wish to find the cut (X,X) separating s and t which has 
the minimum value, i.e. 

Fst = minC(X,~ ' )  wi ths  e X and t e  ~'. (1) 
X 

We can view this as minimization of  a function. 
In other applications [1 ,6 ,9 -11] ,  we may want to define this function F~t as, 

for example, 
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min C(X, X) with s e X and t e X,  (2) 
x IXl.  I '1 

where ] X I is the cardinality or the size of  the set X. The minimum partition based 
on (2) will divide the network more evenly than the minimum partition based on (1). 
In a VLSI circuit layout, we prefer to have a minimum partition with the number of  
modules on both sides approximately the same. In other applications, we may need 
entirely different criteria. Thus, we allow arbitrary values to be associated with any 
partition and consider the computation for finding the minimum value partition 
separating a given pair of  nodes as a routine call. 

In general, we_ denote the minimum function byFq(X,X) with the understanding 
that i ~ X and j e X, or we simply use F/j or F(X, X). 

Assume that we wish to determine the Fij(X,X) values for all pairs of  nodes 
i and j. Our main result is that to find the (~) F/j, we need only n - 1 computations 
of the function F. 

To see the difference between arbitrary cut functions and the original minimum 
cut capacity functions, we first introduce the definition of  crossing of cuts. 

Two cuts (X,.~) and (Y,Y) are said to cross each other if each of  the following 
four sets contains at least one node: 

X n Y ,  X n Y ,  

Y, n r ,  Ycn- f .  

To find the maximum flows between (5) pairs of  nodes in a network, we need 
n - 1 computations where each computation gives a minimum cut. Also, there exists 
a set of  n - 1 minimum cuts which forms a cut-tree [4]. In other words, there exists 
a set of  minimum cuts which do not cross each other. 

Here, for arbitrary functions ~j(X,~') ,  the cuts (X,~') which yield the 
values for Fq may cross each other (for example, the function defined in (2)). 
However, we still need only n - 1 computations by constructing a binary tree called 
the ancestor tree. 

In section 2, we prove the existence of the ancestor tree. In section 3, we give 
a numerical example. In section 4, we give the detailed algorithm and its proof. In 
section 5, we give some additional remarks, including a very simple proof for the 
Gusfield construction of  the G o m o r y - H u  cut-tree. 

2. Ancestor tree 

Let us assume that we have done (~) computations and_ have found values of 
F/j between all pairs of  nodes in the network. Assume F~t(X,X) is the smallest_value 
among _the (~) values. Then, for any pair of  nodes i and j with i ~ X and j e X, the 
cut (X, X) serves to separate i and j as well; hence, we have 

q/(x, = p:,(x, Y¢). 
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Let Fab(Y, Y) be the smallest value of  F where both a and b are in X. Then, 
for any two nodes i and j ,  where i e Y n X and j ~ Y ~ X, we must have 

F U = Fab(Y, Y). 

Similarly, let Fcd(Z, Lz) have the smallest_ value with both c and d in~'. Then, for any 
two nodes i and j, where t ~ Z n X and j ~ Z n X, we must have 

= 

Note that the nodes of  the network have been partitioned into four subsets, 
namely: 

Yc~X,  - Y n X ,  Z n X ,  Z c ~ X ;  

then we know F~i between any two nodes as long as i, j do not belong to the same 
subset. 

F st 

• 

Fig. 1. 

Zc'9: 

We can record the results of  the three computations as a binary tree with 
three intemal vertices, as shown in fig. 1, with F~t(X,X) as the root, F~b(Y,Y) and 
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F~a(Z,Z) as the two sons, and the four subsets Y n  X, Y n X, Z n X ,  Z n X  as the 
four leaves. 

The process of  partitioning subsets can be continued until each leaf of  the tree 
contains only one node. Then, the binary tree has n leaves and n - 1 intemal vertices; 
each vertex is a computation of  the defined function for a given pair of  starred nodes. 
For any two nodes i and j, the lowest common ancestor of  their respective leaves 
gives the partition as well as the value for F/j. 

This binary tree is then the ancestor tree. Of course, we have proved the 
existence of the ancestor tree by selecting n - 1 values from the results of  the (5) 
computations. 

In section 4, we will prove that we can construct the ancestor tree by performing 
only n -  1 computations. 

3. Numerical example 

Given an n-node network, there are 2 n- 1 _ 1 possible cuts. For each of  these 
cuts, we can arbitrarily assign a value. For ag iven  pair of  nodes i and j, there are 
2"-2 cuts separating i and j, and we use Fij (X,X) to denote the minimum value among 
the 2 n- 2 cuts. The algorithm for finding F/y for a given pair i and j could be very 
easy or tedious. We simply consider the algorithm as a routine call. Our main result 
is to show that n -  1 routine calls are sufficient for finding (5) Fly. 

Consider the network in fig. 2 with arc capacities as shown. To fix the idea, 
let us assume that we want to find for all pairs of  nodes i and j 

F/j = m i n  
c(x,  x)  

IXl-IXI 
w i t h i ~  X and j ~  X'. 

Assume that we first choose a and b, and find Fab(X,X) = 15/9. We show the 
result in fig. 3. Since the computation is performed for a and b, we call a and b the 
seeded nodes or simply seeds, and c, d, e, f are unseeded nodes. (Seeded nodes are 
denoted by stars in the figures.) 

We then select a leaf containing one or more unseeded nodes to do a computation 
between the seeded node and an unseeded node, say between b* and c. (c then becomes 
seeded.._) The result is shown in fig. 4. Note that since F~ < F~b, the intemal vertex 
Fbc(Y, Y) is put as the root and F~b as its left son. The names of  nodes in the leaves 
have been updated to reflect the three subsets 

X n Y ,  X n Y ,  Y. 

In general, let (P, Q) be the new intemal vertex just created, with p* ~ P 
and q* e Q, and Fab(A, B) be the highest ancestor of  (P, Q) which satisfies F~b(A, B) 
> Fpq(P, a).  Then we put (P, Q) in the position of  (A, B) and attach (A, B) together 
with its subtree as a son of  (P, Q). In the subtree rooted at (A, B), there is a leaf 
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F ab 
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Fig. 2. 

15/9 + 
Fig. 3. 

which contains the node p or q, say p. Then we attach the subtree on the P side of 
the vertex (P, Q). All unseeded nodes, in the leaves (of the subtree rooted at (A, B)) 
which belong to Q, are now attached as a leaf on the Q side of (P, Q). 
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8/8 

Fig. 4. 

8/8 

Fig. 5. 
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The successive computations are shown in figs. 5, 6, and 7. The process stops 
when every leaf contains only one seeded node. 

4. The algorithm and its proof 

Let T i denote the ancestor tree with i leaves. We successively build T i 
(i = 1,2 . . . . .  n). 

Initially, the tree 7]/consists of  one leaf with the names of  all nodes in the leaf. 
Arbitrarily set one node to be the seed. 

ANCESTOR TREE ALGORITHM 

Select a leaf of  T~ which contains more than one node and do a computation 
between the seeded node and an unseeded node in the leaf. This creates a new 
internal vertex (P, Q) with p* ~ P and q* ~ Q (the unseeded node is now seeded). 

(a) If the newly created vertex F has value larger than its father, then F 
remains in its position in T i and we attac~ two leaves to Feq to reflect its partitions eq. 
One leaf contains the seed p* and the other leaf contains the seed q*. 

(b) If Fpq has its value less than its father, then we find the lowest ancestor F~, 
and the highest ancestor F,a , which satisfy F~, < Ft~ < F,a ,. We put Feq in the previous 
position of  Fab and attach F~ (with its subtree) as a son of  Feq. In the subtree with 
root Fo~, there is a leaf which contains the name p or q, say p. Then we attach the 
subtree on the P side of  (P, Q). All unseeded nodes in the subtree which belong to 
the Q side of the partition are now attached as the leaf on the Q side of (P, Q). 

Repeat until there is only one seeded node per leaf in the ancestor tree. 

Before we prove the ancestor tree, we shah prove some theorems and lemmas 
about the arbitrary functions F in a network. 

THEOREM 1 

For any three nodes i, j, and k ~ V, we have 

Fac -> min(F/j, F/k ). (3) 

Proof 

Let F.a, have the cut (X,_X), where i ~ X, k ~ ~'. Then, j either belongs to X or 
to ~'. I f j  ~ X, then the cut (X,X) serves as a partition separatingj  and k and we have 
F/k > Fjk. I f j  ~ X, then the cut (X,X) serves as a partition separating i and j, and we 
have F.a, > F/j. 

In either case, we have F,. k > min(F/j, Fjk). [] 
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THEOREM 2 

Let a, b . . . . .  y, z be a sequence of nodes in a network. Then, 

Faz > min(F,, b, Fbc . . . . .  Fyz). (4) 

Proof 

By induction on theorem 1. [] 

LEMMA 1 

For any three values F/j, Fjk, and Fa~ between three nodes, two values must be 
equal and the third value is either greater or the same. 

Proof 

Putting the smallest value among the three values on the left-hand side of  (3) 
will contradict (3). [] 

Since we know that there are only two distinct values among three values, Fij, 
F/k, and F/k, we may be able to find the two distinct values by two computations. If  
we arbitrarily compute F/j and F/k first and F/k happens to be the largest value, then 
we need three computations. The following lemma shows how to avoid this situation. 

LEMMA 2 

If we compute Fii(X, X) first and find that j ,  k ~ X, then 

Fik = min(F/j, F/k ). 

Proof 

We know that 

F/k >- min(F/j, F/k), 

so if F/k ~ min(Fi/, F/k), then the only possibility is that 

F/k > min (F/i, F/k). 

By assumption j, k e A', so (X, A') serves to separate i and k and Fik < F/j. This is a 
contradiction. [] 

Lemma 2 is for three nodes. The generalization of  lemma 2 to four or more 
nodes is not straightforward, as seen in the following example. 
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Example 1 

Let a, b, c, d be four nodes and suppose that we first compute 

F~b(X,A'), and find that b, c belong toA'; 

then we compute 

Fbc(Y, Y), and find that c, d belong to Y, 

and then compute Fca. Then it seems that the generalization of  lemma 2 would 
suggest 

Fad = min(F~b , Fbc , F~a ). (5) 

Unfortunately, (5) is not true, as seen from the following example. 

Example 2 

Using definition (2), we find the cut function in fig. 8. 

Fab(X, X) < Fbc(Y, Y) and Fca = F(X, X), 

with X = {a, d}, Y = {a, b}, where F,,a(Y, Y) > min(Fab, Fb~, F,d). 

L._S 

9 

8 , 9 

Fig. 8. 

The reason for the counterexample to (5) is that (X,X) and (Y,Y) cross each 
other, and the three nodes a, c, d do not satisfy the conditions of lemma 2. 
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THEOREM 3 

Let a, b . . . . .  y, z be any sequence of nodes in a network with 

min(Fab, Fbc . . . . .  Fy~) = F ( X , X ) ,  a ~  X, z E  X;  

then, 

F,,z = F(X,  X) = min(Fab, Fbc . . . . .  Fyz). (6) 

P r o o f  

By assumption (X, ~') separates a and z, so we have 

F,, z < F(X,  X).  (7) 

From theorem 2 and the assumption, we have 

F:: >__ min(Fab, Fbc . . . . .  Fyz) = F ( X , X ) .  (8) 

The inequalities (7) and (8) imply 

Faz = F(X, 'X) .  [] 

Note that theorem 3 is, in a sense, a generalization of lemma 2. 

Proof 

Now we prove the algorithm of the ancestor tree by induction on the number 
of internal vertices in the tree. 

In the first stage of  construction, we have the internal vertex F,a , (A, B) with 
seed a m A and seed b ~ B. We have the following two properties: 

(i) For any pairs of  nodes i and j not in the same leaf, Fq is less than or equal 
to the value of  the lowest common ancestor of  i and j. (Note that / and j could 
be seeds or unseeded nodes, and there is always one seed per leaf.) 

(ii) Let i and j be two seeds and F~s be their lowest common ancestor. Then there 
exists a sequence of seeds i, a, b . . . . .  d, j with every adjacent pair of  seeds 
constituting an internal vertex in the subtree rooted at F~,, for which 

F/j > min(F/a, Fab . . . . .  Faj) = F~s. 

We shall prove that properties (i) and (ii) are maintained during the successive 
stages of  constructing the ancestor tree. Assume that properties (i) and (ii) are true 
in the kth stage of  construction of  the ancestor tree, with k + 1 leaves. Now, we pick 
a leaf containing a seed p and an unseeded node q and create Fpq (P, Q).  



210 C.K. Cheng, T.C. Hu, Ancestor tree for cut functions 

Let F~s be the lowest ancestor and F~b the highest ancestor of  the leaf satisfying 

F~s(R, S) < Fpq(P, Q) < F~b(A, B). 

Without loss of generality, we shall assume that the tree rooted at F,s(R, S) has 
its left subtree containing nodes in R and F~b(A, B) is the root of  the right subtree 
before Fpq is created. Also, Fat , becomes the left subtree of  Fpq, as shown in fig. 9. 

F rs 

<) 

' I : i a : ' ~  , 8(~,? 

Fig. 9. 

For any pair of nodes i and j with i ~ P c~ S and j ~ Q n S, we have F/j < Fpq 
since (P, Q) provides the cut of the subset S. For any pair of nodes i a n d j  with i ~ R 
a n d j  ~ S, F/j < Frs since the new partition (P, Q) does not replace (R, S) as the lowest 
common ancestor. So, the induction hypothesis (i) still holds. 

For the two seeds p and q, Fpq = Fpq(P, Q) by the routine call and every pair 
of seeds in an internal vertex is correct by the same reason. Since the algorithm 
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always picks a seed and an unseeded node in the same leaf, a spanning tree connecting 
seeds is created if every computation is represented by a link connecting two seeds. 
This means that for any path connecting i and j in the spanning tree, property (ii) 
holds. 

When the algorithm stops, there is only one seed per leaf. For any two seeds 
i and j, we have 

F/j < min(F/1, F12 . . . . .  Ftj), 

by hypothesis (i), and 

F/j > min(Fil, F12 . . . . .  Fkj ), 

by hypothesis (ii). 
Thus, we have F/j = min(F/1, F12 . . . . .  Fkj), where F/j is the lowest common 

ancestor of i and j. 

For every internal vertex, we need to keep the value, the associated partition 
and the names of  the two seeds. Thus, we need O(n 2) space. We have not shown the 
nodes in the associated partitions in any of  the figures. 

5. General remarks 

Note that the proofs of  theorems 1 and 2 and lemma 1 are exactly the same 
as that of  Gomory and Hu [4]. However, in the original construction [4] of  the cut- 
tree, the algorithm is to choose any two nodes in a supernode and do a maximum 
flow computation. Here, we restrict our selection to a seed and an unseeded node. 
The construction by Gusfield [5] also has this restriction. Having proved the ancestor 
tree, which does not need the property of non-crossing of  cuts, we can more easily 
see why we obtain stronger results in the cut-tree for MAX flows. In the construction 
by Gusfield [5], he first constructed a star tree of n nodes, with node 1 at the center 
of  the star tree, as shown in fig. 10. This is the initial configuration T 1 of  cut-tree 
T. This tree T 1 will be successively modified into T 2, T 3 . . . . .  T, = T, where each 
modification requires one maximum flow computation. We call two nodes connected 
by a link of  the tree T/neighbors. Thus, in T 1, every node j has 1 as the neighbor. 
In T 1, no value is associated with any link, and we say every node j has an unlabeled 
neighbor 1. Later, links will have associated values, and we shall call the connected 
nodes labeled neighbors. In fig. 10, we declare 1 as a seeded node. 

In the tree T/_ 1, do a maximum flow computation between n ode j  and its unlabeled 
neighbor i ( j  becomes a seeded node). The min cut value C(X,X) is now associated 
with the link lij (i ~ X, j ~ X). All neighbors of i that are in X become neighbors 
o f j .  (Note that all unlabeled neighbors of a seeded node have degree 1 in the tree.) 
The construction stops after all nodes become seeds. 
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Fig. 10. 

Note that the Gusfield construction requires n - 1 routine calls to a maximum 
flow minimum cut routine. It is extremely easy to implement (see [5]). The construction 
is correct even if the routine call provides minimum cuts which cross each other. To 
see why his construction works, we note the following facts. 

FACT 1 

At any stage of  computation, let a, b . . . . .  z be a sequence of  seeded nodes 
connected by labeled links in the tree Tj; then 

Faz = min(Fab, Fb~ . . . . .  Fyz). 

Proof 
Since each labeled link connecting i and j is a maximum flow computation 

between i and j, we have the same theorem 2. 
Since each labeled link represents a cut separating a and z, we have 

F,,~ < min(Fab, Fbc . . . . .  Fy~). (9) 

Equations (4) and (9) imply Faz = min(F~b, Foc . . . . .  Fy,) for any sequence of  seeded 
nodes. [] 

FACT 2 

Let i and j be unlabeled neighbors in the tree T and j is of  degree one, and 
k is a labeled neighbor of i. (We denote all nodes on the k side of  the tree by K, 
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i.e. if  the i - k  link is removed, all nodes in K are connected to k by a subtree.) Then 
there exists a minimum cut (X,X) separating i and j, where the set K is either totally 
contained in X or totally contained in X. 

Proof 

Since every labeled link represents a minimum cut, let (Y, Y) be the minimum 
cut corresponding to the i - k  link, where i, j ~ Y and k ~ Y. Since we know there 
exists a minimum cut (X, ~') separating__/and j which does not cross (Y, Y), then in 
that cut K is totally in X or totally in X. 

Comment 1 

If we condense all unlabeled neighbors of  a seed with the seed, then we have 
a supemode as in [4]. 

Comment 2 

The n - 1 minimum cuts induced by the cut-tree by Gusfield construction may 
not coincide with the n - 1 minimum cuts provided by the routine calls. However,  
the n - 1 cuts represented by the cut-tree are sufficient for finding maximum flows 
and minimum cuts between all pairs__of nodes. The reason is that the routine calls 
may provide two minimum cuts (X,X) and (Y, Y) which cross each other, and the 
cut-tree will provide two non-crossing minimum cuts (X, X) and (Z, Z) which serve 
the same function as the two crossing cuts (see (4,7, 8]). 

For minimum partitions separating k nodes (k > 3), we need (~ - ~) computations. 
See Hassin [6]. 
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