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A Replication Cut for Two-way Partitioning 
Lung-Tien Liu, Ming-Ter Kuo, Chung-Kuan Cheng, Senior Member, IEEE, and T. C. Hu 

Abstractaraph partitioning is crucial in multiple-chip design, 
floorplanning and mapping large logic networks into multiple 
FPGA’s. Replication logic can be used to improve the partition- 
ing. Given a network G with only two-pin nets and a pair of nodes 
s and t to be separated, we introduce a replication graph and 
an O(mn log (n2 /m) )  algorithm for optimum partitioning with 
replication and without size constraints, where m and n denote 
the number of nets and the number of nodes in G, respectively. 
In VLSI designs, each partition has size constraints and the 
given network contains multiple-pin nets. A heuristic extension is 
adopted to construct replication graphs with multiple-pin nets. 
Then we use a directed Fiduccia-Mattheyses algorithm in the 
constructed replication graph to solve the replication cut problem 
with size constraints. 

I. INTRODUCTION 
N VLSI circuit layout, a common problem is to partition I the cells (gates, circuits, devices, etc.) into parts, each part 

occupying a separate chip such that the number of interchip 
connections is minimized. In a graph model, a circuit can be 
represented by a network G. The nodes in G represent the cells 
and the nets in G represents the connection between cells. Each 
node is associated with the size of its respective cell and each 
net is associated with the cost (number of connections) of its 
respective net. The classical two-way partitioning problem is to 
partition the nodes of G into two subsets no larger than a given 
size, so as to minimize the total cost of the nets cut. With the 
size constraint on each subset of nodes, this problem is known 
to be NP-complete [7]. In the case of partitioning into two 
subsets without size constraints, we can derive an optimum 
solution using the max-flow min-cut approach [ 11. However, 
the method addresses only the case where no replication of 
cells is allowed. 

In practice, a given cell can be replicated and placed in two 
chips so as to reduce the number of interchip connections. 
For example, in Fig. l(a), the Min-Cut partitioning separating 
cells S and T has a cut cost of 13, while replicating R results 
in a cut cost of 4 as shown in Fig. l(b). In order to maintain 
the functional correctness of the duplicated circuit, each cell 
in the replicated circuit should collect the same input nets as 
that in the original circuit. For example, the R on right part of 
the cut in Fig. l(b) should have input nets from S and from 
T.  However, the nets from R to S are not replicated because 
S gets inputs from R on left part of the cut. This property 
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(a) (b) 

Fig. 1. 
replication. (b) Replicating R results a cut cost of 4. 

Effect of replication. (a) The min-cut has a cut cost of 13 without 

of replication is utilized to reduce the number of interchip 
connections in partitioning. 

In [4], Charney and Plato first propose the replication prob- 
lem. Later [12] and [14] propose heuristic approaches. Kring 
and Newton [12] extend the Fiduccia and Mattheyses (FM) 
algorithm to allow nodes to be duplicated explicitly during 
partitioning. In a recent paper by Hwang and El Gama1 [9], the 
replication problem is formulated as a problem to determine 
optimum replication sets for an existing partitioning. They 
find a partitioning (VI ,  Vz) with no replication first. Given the 
obtained partitioning, the max-flow min-cut algorithm is used 
to identify a set of nodes such that replicating the set will 
minimize the crossing net count. In this restricted problem 
that VI and Vz have to remain on their respective sides, the 
replication is optimal in the case with no size constraints. In 
the case with size constraints, if the resulted replication by the 
max-flow min-cut algorithm satisfies the constraint, it is kept as 
a solution. Otherwise, a directed FM heuristic which considers 
net directionality is applied to obtain a feasible solution. Their 
approach achieves a 21.3% reduction in crossing net count on 
average for the multiway partitioning, when compared with a 
recursive FM method. 

In this paper, we target the general replication problem 
which is not restricted to any prior partitioning. Given a 
network G with only two-pin nets and a pair of nodes s and 
t to be separated, we present an optimum algorithm to solve 
the replication partitioning problem without size constraints. 
We first formulate the partitioning as a linear programming 
problem. The formulation leads to the construction of a novel 
replication graph. Optimality is achieved by applying the 
maximum flow algorithm on the replication graph. The running 
time of this algorithm is O(mnlog(n’/m)) [8] where m and 
n is the number of nets and nodes, respectively. 

For VLSI applications, however, each partition has a maxi- 
mum size constraint. In addition, we should consider the case 
of networks containing multiple-pin nets. A heuristic extension 
is adopted to construct a replication graph for the case of 
networks with multiple-pin nets. Then we use a directed 
Fiduccia-Mattheyses method on the replication graph to derive 
a two-way replication partitioning of the original network. 
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The remainder of the paper is organized as follows. In Sec- 
tion 11, we formulate the partitioning problem with replication 
allowed. In Section 111, we concentrate on the case of networks 
containing only two-pin nets and no size constraints. We use 
linear programming to formulate the partitioning problem. 
Based on its dual program, we develop a replication graph 
which gives an optimum solution with replication allowed. 
In Section IV, we introduce an approach for constructing the 
replication graph of a network with multiple-pin nets and apply 
a directed Fiduccia-Mattheyses method on the constructed 
replication graph to solve the replication cut problem arising in 
real VLSI designs. A discussion on the experimental results is 
presented in Section V. In Section VI, we state the conclusions. 

(a) (b) 

Fig. 2. Replication cut problem. (a) The three sets of nodes S, R, and T .  
(b) The duplicated network with R being replicated. 

11. PROBLEM FORMULATION 

Given a circuit, we represent its netlist as a directed network 
G = (V, E )  where set V consists of nodes i (i = 1,. . . , n) 
with size si and set E consists of directed nets ek  ( I C  = 
1, . . . , m) with cost ck denoting the number of connections 
in the net. A multiple-pin net ek is characterized by ( a k ,  b k )  

where a k  C V are the source nodes of the net and bk  C V 
are the sink nodes of the net. We assume that lak  U bkl  2 2, 
l ak l  2 1 and (bkl 2 1. Usually, each net has one source 
node and multiple sink nodes. However, some nets may 
have multiple sources which share the same interconnect line. 
Furthermore, one node can be both source node and sink node 
of the same net. Therefore, U k  and b k  may have nonempty 
intersection. 

For two disjoint node sets X and Y ,  we shall use ( X  + Y )  
to denote the directed cut set from X to Y .  Therefore, (X + 
Y )  contains all the nets e k  = ( a k ,  b k )  such that X intersects 
source node set a k  and Y intersects sink node set b k ,  i.e., 

We use function c(X + Y )  to denote the total cost of the 
nets in ( X  + Y ) ,  i.e., c(X + Y )  = CekE(X-Y) Ck. We use 
function size(X) to denote the total size of the nodes in X ,  
i.e., size(X) = CiEx si. 

Partitioning with Replication: Given a network G = 
(V, E )  and three sets of nodes S ,  R and T such that S n T = 0 
and R = V - S - T as shown in Fig. 2(a), we derive a 
partitioning with R being the set of replicated nodes as shown 
in Fig. 2(b). Each copy of R needs to collect a complete set 
of input signals in order to compute the function properly. 
Thus, the nets from S to R and from T to R are duplicated. 
However, the output signals of R can be obtained from either 
copy of R. For example, nets from R on the right side of the 
cut to S in Fig. 2(b) are not duplicated because S gets inputs 
from the R on the left side of cut. For the same reason, we do 
not replicate the nets from R on the left side of the cut to T. 
Given two disjoint sets S and T,  let a replication cut ( S ,  T) 
denote the cut set of a partitioning with R = V - S - T 
being duplicated. From Fig. 2(b), we can see that replication 
cut ( S ,  T )  is the union of four directed cuts, that is, 

(X + Y )  = { e h  I ek = ( a k ,  b k ) ,  a k  n X # 0, bk n Y # 0). 

(S,T) = ( S  -+ T) U (T + S )  U ( S  + R)  U (T + R). 

Let 21 and 22 denote the size limits on the two partitioned 
subsets. We state the Replication Cut Problem as: 

IS- S) (T- T) 

Fig. 3. ' b o  directed cuts (S + S) and (T -+ p). 

Given a directed network G and size limits z1 and z2, find 
a replication cut ( S ,  T)  with an objective 

minc(S,T) = c((S -+ T ) U ( T  + S)U(S + R ) U ( T  + R))  

subject to the size constraints 

size(S U R) 5 z1, size(T U R) 5 2 2 ,  

and the feasible condition 

S n T  = 0, R = V - S -  T. 

Interpretation of the Cut Set: Suppose we rewrite the cut 
set in the format 

( S ,  T) = ( S  + R) U ( S  + T) U (T + S )  U (T -+ R) 
= ( S  -+ S) U (T + T )  

where S and T denote the complementary sets of S and T,  
respectively. The cut set becomes the union of ( S  + S) and 
(T + T ) .  We can interpret the cut set of the replication cut 
( S ,  T) as two directed cuts on the original network G as shown 
in Fig. 3. Thus the mathematical problem is to find set S and 
set T with the objective 

minc((S + S) U (T T ) )  
subject to the constraints that S n T = 0, size(S U R) 5 z1 
and size(T U R)  5 22, where R = V - S - T. 

In the case with no size constraints, suppose we are given 
one node s to be in S and one node t to be in T ,  it appears 
that min c( S -+ S) could be obtained by finding the maximum 
flow minimum cut from s to t and minc(T + T )  could be 
obtained by the maximum flow minimum cut from t to s. It 
seems that we can simply solve two maximum flow problems 
to generate an optimum solution of the replication cut problem 
without size constraints, using s and t as sources respectively. 

Unfortunately, the minimum directed cut (obtained by max- 
imum flow) from s and the minimum directed cut (obtained by 
maximum flow) from t can cross each other, i.e. S n T # 0. 
For example, the network in Fig. 4 has a minimum directed 
cut ( S  + S) = ({s, a } ,  { b ,  c, t ) )  with cut cost one. And, the 
minimum directed cut (T + T) = ( { t ,  a ,  b } ,  {c, s}) has cut 
cost three. Suppose we set S = {s, a }  and T = {t ,  a ,  b} .  Then, 
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P . = O ,  4 . = 1 ,  j C R  
J J  

Fig. 4. A network G with five nodes and nine nets. 

(S-SJ (T-T) 

Fig. 6. The p potential and 4 potential of each node. 

e,= 1 
4,= 1 

P t = O  
4t=o 

Fig. 5. 
associated with cost c, , ,  potential difference w,, and u J 1 .  

Each node z is associated with potential p ,  and qx ; each net (i, 3 )  is 

the two sets S and T are not disjoint, which means that the 
replication cut ( S ,  T )  is not a feasible solution. 

111. REPLICATION CUT SEPARATING A PAIR 
OF NODES WITH TWO-PIN NET MODEL 

In this section, we focus on the case of networks containing 
only two-pin nets and relax the size constraints. For two-pin 
nets, we denote the cost of net ( i , j )  from node i to node j 
by cij. The size constraints are replaced by the separation of 
a pair nodes s and t. In other words, the replication cut (S, T )  
is subject to 

s E S , t E T  and S n T = 0 .  

In the following, we first use linear programming to for- 
mulate the replication cut problem. Then a dual formulation 
can be derived by linear programming transformation [ 131. We 
show that the dual formulation corresponds to a network flow 
problem on a replication graph. In subsection B, we describe 
the construction of the replication graph and the algorithm to 
find the optimum solution. The complexity of the algorithm is 
analyzed in subsection C. 

A. Primal Dual Formulation 

In this subsection, we first introduce the notations in terms 
of a network flow problem. We then describe a linear pro- 
gramming formulation of the replication cut problem. Using 
Lagrangian multiplier, we transform the problem into a dual 
formulation, which will derive the proposed replication graph. 

We adopt the linear programming formulation of network 
flow problem [ 11, [ 131, where each node is assigned a potential 
and a cut is represented by the difference of node potentials 
as shown in Fig. 5. With respect to the directed cut ( S  + S), 
we use wij to denote the potential difference between the cut 
from node i to node j .  The potential of each node i is denoted 
by pi. For nodes i in S ,  pi = 1, and for nodes a in S, p i  = 0. 
Thus all nets ( i ,  j )  in the cut set ( S  -+ S) have wij  = 1. The 
remaining nets have wij = 0. 

With respect to the directed cut (7' -+ T ) ,  we use uji with a 
reversed subscript ji to denote the potential difference between 

the cut from node 2 to node j (Fig. 5). The potential of each 
node i is denoted by qi. For nodes i in T ,  qi = 1, and for 
nodes i in T,  qi = 0. The potential difference uji has a reverse 
direction with net ( i ,  j )  because we set the potential on T side 
high and the potential on T side low. Thus, all nets ( i , j )  in 
the cut set (T -+ T )  have uji = 1. The remaining nets have 

Primal Linear Programming Formulation: The problem is 
uji = 0. 

to minimize the total cost of crossing nets 

0bj:min cijwij + cjiuij (1) 
( i , . i ) € E  W E E  

subject to 

To minimize objective function (l), the equality of con- 
straint (2) holds, i.e., wij = pi  - p j ,  if pi  > p j ,  otherwise, 
wij = 0. Similarly, constraint (3) requires u;j = qi - q j  if 
q; >_ q j ,  otherwise, uij = 0. Expression (4) demands potential 
qi be not less than potential pi  for any node i in V. Since 
high potential pi  corresponds to set S ,  and high potential qi 
corresponds to set T ,  inequality (4) enforces S be a subset of 
T.  Consequently, the requirement that S n T = 8 is satisfied. 

Constraints (5)-(8) set the potentials of nodes s and t. 
Constraint (9) requires potential difference wij  and uij be 
nonnegative. Fig. 6 shows one ideal potential configuration 
of the solution. 

assigning 
dual variables (Lagrangian multiplier) xi j  to inequality (2) 
with respect to each net, to inequality ( 3 ) ,  X i  to inequality 
(4) with respect to node i ,  and as,  b,, at, bt to inequalities 
(5)-(8), respectively, we have the dual formulation as follows 

(10) 

Dual Linear Programming Formulation: By 

Obj: max a, + bs 

subject to 
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-x/gi + xi8 + b, = 0 
i 

-x:j + xit + bt = 0 

(17) 

i 
X i , ~ i j , ~ i i  2 0 V i  E V,(Z,j) E E (19) 

(20) a, ,  at ,  b,  , bt : unrestricted. 

Inequalities (11) and (12) are derived with respect to each 
wij and uij respectively. Similarly, (13)-( 18) are derived with 
respect to each pi, q i ,  p , ,  p t ,  q, and qt. Eqs. (13-18) hold 
because pi , qi , p , ,  p t  , q, and qt are not restricted on sign in the 
primal formulation. Variables X i  , xij ,  and xii  are required to be 
nonnegative in (19) because their corresponding expressions 
(2)-(4) are inequality constraints. 

We can view the dual formulation as a network flow problem 
in G = (V, E )  by interpreting eij as the flow capacity, and 
xij as the flow of net (i, j ) .  Constraint (1 1) requires that the 
flow xij be not larger than the flow capacity cij on each net 
( i , j ) .  In (12), the set of nets are in a reversed direction and 
flow xC!zj is not larger than the capacity cji of net (j,i) in 
E. Corresponding to G = (V, E ) ,  we use G’ = (V’, E’) to 
denote the reversed graph. 

Constraint (13) has the total flow xij injected from node i 
into G be equal to -X i .  On the other hand, constraint (14) has 
the total flow x : ~  injected from node i’ into G’ be equal to Xi .  
Suppose we combine (13) and (14), we have 

i i 

This means that the amount of flow X i  which emanates from 
node i in G enters its corresponding node i’ in G’. 

Constraints (15HlS) indicate that a, and b, are the flow 
injections to node s in G and SI in its reversed network G’; 
at and bt are the flow ejections from node t in G and t‘ in its 
reversed network GI, respectively. Combining network G and 
G’ together, we have the maximum total flow, a, + b,, be the 
optimum solution of the minimum replication cut problem. 

B. The Optimum Partition 

Given a network G = (V, E )  and a pair of nodes s and t to 
be separated, we formally state the construction of replication 
graph and take an example to describe it. We then apply the 
maximum flow algorithm on the constructed replication graph 
to derive an optimum replication cut. The optimality of the 
derived replication cut is proved by using a network flow 
approach. 

Fig. 7. The replication graph G’ 

\ 3 

\ 

Fig. 8. The constructed replication graph of the network shown in Fig. 4. 

Construction of Replication Graph: Given a network G = 
(V,E)  and nodes s and t ,  we construct another network 
G’ = (V’, E’) where JV’J = IVJ with each node i’ in V’ 
corresponding to a node i in V, and (E’I = IEJ with each 
directed net ( j ’ ,  i’) in E’ in the reverse direction of net ( i , j )  
in E. We create super nodes s* and t* and nets (s* ,  s), (s*, SI ) ,  

( t ,  t* ) ,  and (t’, t*) with infinite capacity as shown in Fig. 7. 
From every node i in V except s and t ,  we add a directed 
net of infinite capacity to the corresponding node i‘ in V‘. We 
refer to the combined network as G*. 

Polynomial-Time Algorithm: The optimum replication cut 
problem with respect to node pair s and t and without size 
constraints can be solved by a maximum-flow minimum-cut 
solution of the network G* with s* as the source and t* as the 
sink of the flow 111. Suppose the maximum-flow minimum-cut 
solution partitions V by cut (X, X) with s E X and t E x and 
partitions V’ by cut (X’, X’) with s’ E X’ and t’ E X I .  Then 
a replication cut ( S ,  T )  of the original network with S = X ,  
T = {i I i’ E X’} and R = V - S - T is an optimum 
solution. Note that T is derived from the cut in node set V’. 
To simplify the notation, we shall use (X,X’) to denote the 
derived replication cut of G. 

Example: Given a network in Fig. 4, its replication graph 
G* is constructed as shown in Fig. 8. The maximum-flow 
minimum-cut of G* derives ( X , X )  = ( { s , a } , { b , c , t } )  
and ( X ’ , X ’ )  = ( { s ’ , a ’ ,b ’ , c ’ } ,  { t ’ } )  with a flow amount, 
5 (Fig. 8). Thus the sets S = { s , a }  and T = { t }  define an 
optimum replication cut (S, T )  with R = { b,  e}  and a cut 
cost equal to 5 (Fig. 9). 

The following theorem states the optimality of the solution. 
We use a network flow approach to prove the theorem. 

Theorem I :  The replication cut (S ,T )  = (X,X’) derived 
from the replication graph G* generates the minimum cut cost. 
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Step 1: Construct replication graph G‘; 

Step 2: Call directed Fiduccia-Mattheyses algorithm to obtain replication cut ( X ,  Xf); 

step 3: Return (x, X’); 
Fig. 10. 
(DFRGP). 

Algorithm for Directed Fh4 on Replication Graph Partitioning 

Fig. 9. The duplicated network of the network shown in Fig. 4. 

Proofi First we claim that S f l  T is an empty set. This 
claim can be proved by contradiction. Suppose the claim is 
not true. Let i be a node in S n T. In G*, we have i E X 
and i’ E X ’ .  Then the maximum flow minimum cut of G* 
will cut the net (z,i’) connecting node i in V and i’ in V’. 
Because net ( i ,  2’) is assigned an infinite capacity in G*, we 
can thus augment the flow, which contradicts to the property 
of maximum flow minimum cut. 

The above claim indicates that the derived replication cut 
(S, T) is a feasible solution. Suppose replication cut ( A ,  B) is 
an optimum solution, we then have 

c ( X ,  X’) 2 c (A ,  B) .  

On the other hand, replication cut ( A , B )  corresponds to a 
partition of the replication graph G* with a cut value c (A ,  B) 
equal to the cut capacity on G*. Because the maximum flow 
cannot be larger than the capacity of any cuts, we have 

c ( X ,  X ’ )  5 c (A ,  B) .  

From the above two inequalities, we conclude that 

c ( X ,  X ’ )  = c (A ,  B) .  0 

C. Algorithm Complexity 

Given a network G, because the replication graph G* 
consists of the original network and its reversed network G’, 
the construction of G* takes O(m + n) time, where m and n 
denote the numbers of nets and nodes of G, respectively, 

The partition of the replication graph G* can be performed 
by any maximum-flow minimum-cut algorithm. The fastest 
maximum flow algorithm [8] needs O(mn 1og(n2/m)) which 
dominates the complexity of the algorithm. Therefore, the time 
complexity of the algorithm is O(mn log(n2/m)). 

Iv. REPLICATION C U T  WITH SIZE 
CONSTRAINTS AND MULTI-PIN NET MODEL 

For VLSI applications, we release the constraint to separate 
nodes s and t, instead we set an upper limit on the total size 
of nodes in each partition. We allow that nets of network G 
contain multiple pins. Thus, the definition of the replication 
graph G* needs to be extended for VLSI applications. 

Fig. 10 shows the outline of the algorithm. We first construct 
the replication graph G*. Then we extend the Fiduccia- 
Mattheyses (FM) algorithm to search for a directed cut with 
size constraints on G*. The cut of G* finds a heuristic solution 
of the replication cut. 

A. Extertsion of Replication Graph G* 
For VLSI applications, the replication graph G* of G is 

almost identical to the graph in Section 111. The difference is 
that there is no assigned s and t in G. Therefore, there is no 
need to create s* and t* and their connecting nets in G*. For 
multiple-pin nets e k  = ( a h ,  b k )  E E, we swap the pair in E’ 
of the reversed network G‘, i.e. e k t  = ( a k ’ ,  b k ’ )  with a k ‘  = b k  

and b k f  = a k .  

In practice, the infinite capacity of nets (& i t )  connecting 
node i in V and i’ in V’ is replaced with cost equal to total 
net cost of E, i.e., C e k E E c k .  Thus, the cost of nets ( i , i ’ )  
dominates the cost of the rest of nets. 

Given a partitioning (V; , V;) of G* with V; n V; = 0 and 
V; U V,* = V U V’, let partitioning (V;, V;) of G* separate 
V and V’ into ( X , X )  and ( X ’ , X ’ ) ,  respectively. We define 
the cut cost to accommodate multiple-pin net model and the 
size constraint using replication graph G*. 

Objective Function: When we count the nets in the repli- 
cation cut, unlike a two-pin net, a multiple-pin net e k  in 
( X  -+ X) may have its corresponding net e k t  in ( X ’  + X’). 
In order to count the cut cost of net e k  only once, we find 
the nets e k  in E corresponding to the nets e k t  in the cut set 
( X ’  -+ X I )  in E’ and define the set 

u(v; + v;) = { e k  I e k  E ( X  + X)} 
U { e k  I e k ’  E (x’ + X I ) }  
U { ( i , i ’ )  I i E v;,i’ E v;} (22) 

Therefore, the objective function is to minimize the cut cost 

c (u(V;  + v;)). (23) 

Size Constraints: Because replication cut (S, T) has S = 
X and T = XI, we can derive that SUR = X ‘  and TUR = X. 
Thus, the size constraints can be expressed as 

and 

size(X) 5 z2. (25) 

B. Directed FM Method Using Replication Graph (DFRG) 

We extend FM to a directed FM to partition G*. Our directed 
FM is very similar to [9]. However, [9] applies a directed FM 
method to the original graph to minimize a directed cut cost 
under size constraints. Our approach applies the directed FM 
to the proposed replication graph to minimize the replication 
cut cost. 

We set a flag-array of boolean value (i.e., 0 or 1) with a 
dimension equal to the number of the nets in G* to keep track 
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#iopads #pins 
64 5770 
72 1961 

TABLE I 
CHARACTERISTICS OF TFST CASFS 

Circuit 

- 
circuit 
(32670 
C3540 
C5315 
C6288 
C7552 
Teat02 
Teat03 
Test04 
Teat05 
Test06 
Test07 

- - 

- 

RC I FM I DFRG I Improvement 

Cut CPU Cut CPU Cut CPU Overhead RC FM 
A m  

1607 
1506 
2595 
1752 
2379 

Circuit 

RC I FM I DFRG Improvement 

Cut CPU Cut CPU Cut CPU Overhead RC FM 
Area 

1042 
2069 
1326 
1789 
1683 
1674 
2813 
1710 
2561 - 

303 
64 

317 
69 
65 
36 
63 
69 
99 

2655 
6133 
3124 
8049 
7529 
7418 

12400 
7696 

11775 - 

of the cut cost c(U(V; -+ Vc)). Each element of the flag- 
m a y  is used to indicate if the corresponding net is in the 
cut set of (V; + V;) or not. Note that both net e k  in E 
and its corresponding net ekj  in E' can be in the cut set of 

Given a net, we can check if it is in the cut set of 
(Vi  -+ V;) or not by using the flag-may in 0(1) time. In 
this sense, the time complexity of our modified FM algorithm 
on each iteration is still O ( p )  where p is the number of pins 
in the network. 

Feasible Solution: It is important that the replication cut 
(S, T) derived by directed FM algorithm satisfies the feasible 
condition, i.e., S n T = 0. Suppose we start with a feasible 
partition, the following theorem states that the final result is 
also feasible. 

Theorem 2: Given a feasible initial partition, the directed 
FM method always generates a feasible replication cut. 

Proofi Suppose the solution is not feasible, i.e., S n T # 
0, the cut will include net (i, i'), i E S n T, which will make 
the cut cost larger than the previous cut. Thus, the FM method 
will return the most recent feasible solution. 

(v; -+ V;.). 

v. EXPERIMENTAL RESULTS 

We use C2670, C3540, C5315, C6288, and C7552 from 
ISCAS85 and Test02, TestO3, TestO4, TestO5, Test06, and 
Test07 from the Microelectronics Center of North Carolina 
(MCNC) as our test cases. For ISCAS85 test cases, the netlists 
are obtained after logic minimization. The characteristics of 
these test cases are listed in Table I. In [9], Hwang and El 
Gamal perform multiway partitioning. Thus, we do not com- 
pare our results with [9]. In [ l l ] ,  the netlists of ISCAS85 are 
minimized via the standard script MISII [2]. Our experiments 
on ISCAS85 follow the same methodology as [ l l ] .  However, 
because MISII has been revised, the minimized netlist is 
different. Therefore, we cannot make direct comparison with 
[12] either. 

We compare our algorithm, Directed FM on Replication 
Graph Partitioning (DFRG), with the Ratio Cut (RC) [5] and 
Fiduccia-Mattheyses (FM) [6] algorithms. All algorithms are 
run on a single-processor SUN SPARClO workstation under 
the C/UNIX environment. The results of FM and DFRG are 
chosen from the best of twenty runs each. Given an area 
overhead limit of r%, each partition will have size constraint 
equal to (50 + r/2)% of the circuit size. For example, an 
area overhead limit 10% restricts the maximum size of each 

partition to 55% of the network size and node replication to 
10% of the total size in the given network. We do experiments 
on two different area overhead limits 30% and 10% for 
ISCAS85 test cases. For MCNC test cases, we set three 
different area overhead limits 50, 20, and 11%. 

Table I1 shows the results of our experiments for ISCAS85 
test cases with an area overhead limit 30%. The data in 
subcolumns Cut and CPU represent the crossing net count 
and execution time, respectively. The unit for the CPU time 
is in seconds. The subcolumn, Area Overhead, shows the per- 
centage of the total size replicated by DFRG. The last column 
shows the improvement on the crossing net count achieved 
by DFRG compared with RC and FM. When compared with 
RC, DFRG can achieve 33% to 94% with an average of 72% 
improvement on the number of crossing nets. Compared with 
FM, DFRG obtains 67% to 96% with an average of 83% 
reduction in crossing net count. In terms of area overhead, 
DFRG needs 6.67% to 27.49% with an average of 16.61%. 
For most test cases, DFRG can achieve over 80% reduction in 
the number of crossing nets by allowing replication, compared 
with the FM approach. 

Table In shows the results of our experiments for ISCAS85 
test cases with an area overhead limit 10%. When compared 
with RC, DFRG can achieve 19% to 71% with an average 
of 47% improvement on the number of crossing nets. When 
compared with FM, DFRG obtains 38% to 84% with an 
average of 59% reduction in crossing net count. DFRG needs 
2.01% to 9.96% with an average of 6.66% area overhead. 
These experimental results demonstrate that we can replicate 
a small percentage of the network size to reduce crossing net 
counts dramatically. Let us take C7552 as an example. FM 
obtains a crossing net count 10, while DFRG generates a cut 
of 3 with 2.10% area overhead. In this case, our algorithm 
achieves a 70% reduction in the crossing net count. 

Table IV shows the results of our experiments on MCNC 
test cases with an area overhead limit 50%. When compared 
with RC, our algorithm DFRG achieves 8% to 39% with 
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RC I FM I DFRG I Improvement 
Area 

Circuit Cut CPU Cut CPU Cut CPU Overhead RC FM 

TABLE IV 
COMPARISON OF RESULTS FOR THREE ALGORITHMS ON 
MCNC TEST CASES WITH AN AREA OVERHEAD 50% 

RC I FM I DFRG I Improvement 
I I Area I 

VI. CONCLUDING REMARKS 

Circuit I Cut CPU I Cut CPU I Cut CPU Overhead I RC FM I 

TABLE VI 
COMPARISON OF RESULTS FOR THREE ALGORITHMS ON 

MCNC TEST CASES WITH AN AREA OVERHEAo LIMI? 11% 

RC I FM I DFRG I Improvement 
I I Area 1 

Circuit 1 Cut CPU 1 Cut CPU I Cut CPU Overhead I RC FM ] 

example, DFRG takes 355 s for Test 07 in Table V while FM 
needs only 119 s. However, we improve FM’s result by 46%. 

TABLE V 
COMPARISON OF RESULTS FOR THREE ALGORITHMS ON 

MCNC TEST CASES WITH AN AREA OVERHEAD LIMIT 20% 

- 
Table V shows the results of our experiments with area 
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Of the crossing net count, DFRG 
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