
Logic Synthesis in a Nutshell

Jie-Hong Roland Jiang
National Taiwan University, Taipei, Taiwan

Srinivas Devadas
Massachusetts Institute of Technology, Cambridge, Massachusetts

July 13, 2010

About This Chapter

What is logic synthesis? As the name itself suggests, logic synthesis is the pro-
cess of automatic production of logic components, in particular digital circuits.
It is a subject about how to abstract and represent logic circuits, how to manip-
ulate and transform them, and how to analyze and optimize them. Why does
logic synthesis matter? Not only does it play a crucial role in the electronic de-
sign automation flow, its techniques also find broader and broader applications
in formal verification, software synthesis, and other fields. How is logic synthesis
done? Read on!

This chapter covers classic elements of logic synthesis for combinational cir-
cuits. After introducing basic data structures for Boolean function represen-
tation and reasoning, we will study technology-independent logic minimization,
technology-dependent circuit optimization, timing analysis, and timing optimiza-
tion. Some advanced subjects and important trends are presented as well for
further exploration.

1 Introduction

Since Jack Kilby’s invention of the first integrated circuit (IC) in 1958, there
have been unprecedented technological advances. Intel co-founder Gordon E.
Moore in 1965 predicted an important miniaturization trend for the semicon-
ductor industry, known as Moore’s Law, which says that the number of available
transistors being economically packed into a single IC grows exponentially, dou-
bling approximately every two years. This trend has continued for more than
four decades, and perhaps will continue for another decade or even longer. At
this time of 2008, the number of transistors in a single IC can be as many as
several billion. This continual increase in design complexity under stringent time-
to-market constraints is the primary driving force for changes in design tools and
methodologies. To manage the ever-increasing complexity, people seek to max-
imally automate the design process and deploy techniques such as abstraction
and hierarchy. Divide-and-conquer approaches are typical in the electronic de-
sign automation (EDA) flow and lead to different abstraction levels, such as

2

the behavior level, register-transfer level (RTL), gate level, transistor level,
and layout level from abstract to concrete.

Logic synthesis is the process that takes place in the transition from the
register-transfer level to the transistor level. It is a highly automated procedure
bridging the gap between high-level synthesis and physical design automation.
Given a digital design at the register-transfer level, logic synthesis transforms it
into a gate-level or transistor-level implementation. The highly engineered pro-
cess explores different ways of implementing a logic function optimal with respect
to some desired design constraints. The physical positions and interconnections
of the gate layouts are then further determined at the time of physical design.

The main mathematical foundation of logic synthesis is the intersection of
logic and algebra. The “algebra of logic” created by George Boole in 1847,
a.k.a. Boolean algebra, is at the core of logic synthesis. (In our discussion we
focus on two-element Boolean algebra [Brown 2003].) One of the most influen-
tial works connecting Boolean algebra and circuit design is Claude E. Shannon’s
M.S. thesis, A Symbolic Analysis of Relay and Switching Circuits, completed at
the Massachusetts Institute of Technology in 1937. He showed that the design
and analysis of switching circuits can be formalized using Boolean algebra, and
that switching circuits can be used to solve Boolean algebra problems. Modern
electronic systems based on digital (in contrast to analog) and two-valued (in
contrast to multi-valued) principles can be more or less attributed to Shannon.
The minimization theory of Boolean formulas in the two-level sum-of-products
(SOP) form was established by Willard V. Quine in the 1950s. The minimization
of SOP formulas found its wide application in IC design in the 1970s when pro-
grammable logic arrays (PLAs) were a popular design style for control logic
implementation. It was the earliest stage of logic design minimization. When
multi-level logic implementation became viable in the 1980s, the minimization
theory and practice were broadened to the multi-level case.

Switching circuits in their original telephony application were strictly combi-
national, containing no memory elements. Purely combinational circuits however
are not of great utility. For pervasive use in computation a combinational circuit
needs to be augmented by memory elements that retain some of the state of
a circuit. Such a circuit is sequential and implements a finite state machine
(FSM). FSMs are closely related to finite automata, introduced in the theory
of computation. Finite automata and finite state machines as well as their state
minimization were extensively studied in the 1950s. Even though FSMs have lim-
ited computation power, any realistic electronic system as a whole can be seen
as a large FSM because, after all, no system can have infinite memory resources.
FSM state encoding for the two-level and multi-level logic implementations was
studied extensively in the 1980s.

In addition to two-level and multi-level logic minimization, important algo-
rithmic developments in logic synthesis in the 1980s include retiming of syn-
chronous sequential circuits, algorithmic technology mapping, reduced ordered
binary decision diagrams, and symbolic sequential equivalence checking using
characteristic functions, just to name a few. Major logic synthesis tools of this pe-

3

riod include, for example, Espresso [Rudell 1987] and later MIS [Brayton 1987],
developed at the University of California at Berkeley. They soon turned out to
be the core engines of commercial logic synthesis tools.

In the 1990s, the subject of logic synthesis was much diversified in response
to various IC design issues: power consumption, interconnect delay, testability,
new implementation styles such as field programmable logic array (FPGA),
etc. Important algorithmic breakthroughs over this period include, for instance,
sequential circuit synthesis with retiming and resynthesis, don’t care computa-
tion, image computation, timing analysis, Boolean reasoning techniques, and
so on. Major academic software developed in this period include, e.g., SIS
[Sentovich 1992], the descendant of MIS.

In the 2000s, the directions of logic synthesis are driven by design challenges
such as scalability, verifiability, design closure issues between logic synthesis and
physical design, manufacture process variations, etc. Important developments in-
clude, for instance, effective satisfiability solving procedures, scalable logic syn-
thesis and verification algorithms, statistical static timing analysis, statistical
optimization techniques, and so on. Major academic software developed in this
period include, e.g., MVSIS [Gao 2002] and the ABC package [ABC 2005], with
first release in 2005.

The advances of logic synthesis have in turn led to blossoming of EDA com-
panies and the growth of the EDA industry. One of the first applications of logic
optimization in a commercial use was to remap a netlist to a different standard
cell library (in the first product, remapper, of EDA company Synopsys, founded
in 1986). It allowed an IC designer migrate a design from one library to another.
Logic optimization could be used to optimize a gate-level netlist and map it
into a target library. While logic optimization was finding its first commercial
use for remapping, designers at major corporations, such as IBM, had already
been demonstrating the viability of a top-down design methodology based on
logic synthesis. At these corporations, internal simulation languages were cou-
pled with synthesis systems that translated the simulation model into a gate-level
netlist. Designers at IBM had demonstrated the utility of this synthesis-based
design methodology on thousands of real industrial ICs. Entering a simulation
model expressed using a hardware description language (HDL) makes logic
synthesis and optimization move from a minor tool in a gate-level schematic
based design methodology to the cornerstone of a highly productive IC design
methodology. Commercial logic synthesis tools evolve and continue to incorpo-
rate developments addressing new design challenges.

The scope of logic synthesis can be identified as follows. An IC may consist of
digital and analog components; logic synthesis is concerned with the digital part.
For a digital system with sequential behavior, its state transition can be imple-
mented in a synchronous or an asynchronous way depending on the existence
of synchronizing clock signals. (Note that even a combinational circuit can be
considered as a single-state sequential system.) Most logic synthesis algorithms
focus on the synchronous implementation, and a few on the asynchronous one.

4

A digital system can often be divided into two portions: datapath and con-
trol logic. The former is concerned with data computation and storage, and often
consists of arithmetic logic units, buses, registers/register files, etc.; the latter is
concerned with the control of these data processing units. Unlike control logic,
datapath circuits are often composed of regular structures. They are typically
laid out manually by IC designers with full custom design to ensure that de-
sign constraints are satisfied, especially for high performance applications. Hence
datapath design involves less logic synthesis efforts. In contrast, control logic is
typically designed using logic synthesis. As the strengths of logic synthesis are
its capabilities in logic minimization, it simplifies control logic. Consequently
logic synthesis is particularly good for control-dominating applications, such as
protocol processing, but not for arithmetic-intensive applications, such as signal
processing.

Aside from the design issues related to circuit components, market-oriented
decisions influence the design style chosen in implementing a product. The
amount of design automation and logic synthesis efforts depends heavily on such
decisions. Design styles based on full custom design, standard cells, and FPGAs
represent typical trade-offs. In full custom design, logic synthesis is of limited
use, mainly only in synthesizing performance non-critical controllers. For stan-
dard cell and FPGA based designs, a great portion of a design may be processed
through logic synthesis. It is not surprising that logic synthesis is widely applied
in application specific ICs (ASICs) and FPGA-based designs.

This chapter is organized as follows. Section 2 introduces commonly used data
structures for Boolean representation and reasoning. Section 3 details technology-
independent optimization of Boolean expressions, including two-level and multi-
level logic minimization. Section 4 presents technology-dependent optimization,
in particular an algorithmic approach to technology mapping. Timing analysis
and timing optimization are covered in Section 5 and Section 6, respectively. To
invite and encourage future investigation, Section 7 concludes this chapter with
some trends in logic synthesis.

5

2 Data Structures for Boolean Representation and
Reasoning

The basic mathematical objects to be dealt with in this chapter are Boolean
functions. How to compactly represent Boolean functions (the subject of logic
minimization) and how to efficiently solve Boolean constraints (the subject of
Boolean reasoning) are closely related questions that play central roles in logic
synthesis. There are several data structures for Boolean function representa-
tion and manipulation. For Boolean representation, we introduce some of the
most commonly used ones, in particular, sum-of-products (SOP), product-
of-sums (POS), binary decision diagrams (BDDs), and-inverter graphs
(AIGs), and Boolean networks, among many others. For Boolean reasoning,
we discuss how BDD, SAT, and AIG packages can serve as the core engines for
Boolean function manipulation and for automatic reasoning of Boolean function
properties. The efficiency of a data structure is mainly determined by its succinct-
ness in representing Boolean functions and its capability of supporting Boolean
manipulation. Each data structure has its own strengths and weaknesses; there
is not a single data structure that is universally good for all applications. There-
fore, conversion among different data types is a necessity in logic synthesis, where
various circuit transformation and verification techniques are applied.

2.1 Quantifier-Free and Quantified Boolean Formulas

We introduce (quantifier-free) Boolean formulas for Boolean function represen-
tation and quantified Boolean formulas (QBFs) for Boolean reasoning.

A Boolean variable is a variable that takes on binary values B = {false, true},
or {0, 1}, under a truth assignment; a literal is a Boolean variable or its com-
plement. In the n-dimensional Boolean space or Boolean n-space Bn, an
atomic element (or vertex) a ∈ Bn is called a minterm, which corresponds to a
truth assignment on a vector of n Boolean variables.

An n-ary completely specified Boolean function f : Bn → B maps
every possible truth assignment on the n input variables to either true or false.
Let symbol “−”, “X”, or “2” denote the don’t care value. We augment B to
B+ = B ∪ {−} and define an incompletely specified Boolean function
f : Bn → B+, which maps every possible truth assignment on the n input
variables to true, false, or don’t care. For some a ∈ Bn, f(a) = − means the
function value of f under the truth assignment a does not matter. That is, a
is a don’t care condition for f . Unless otherwise stated, we shall assume that a
Boolean function is completely specified.

The mapping induced by a set of Boolean functions can be described by a
functional vector or a multiple-output function f , which combines m > 1
Boolean functions into a mapping f : Bn → Bm if f is completely specified, or
a mapping f : Bn → B+

m if f is incompletely specified.
For a completely specified function f , we define its onset fon = {a ∈

Bn | f(a) = 1} and offset foff = {a ∈ Bn | f(a) = 0}. For an incompletely

6

x1

x2

x3

000 100

001 101

011 111

010 110

onset minterm

offset minterm

dcset minterm

0 1

11

Fig. 1. Boolean 3-space and a 3-ary Boolean function.

specified function f , in addition to the onset and offset, we have the dcset
fdc = {a ∈ Bn | f(a) = −}. Although the onset, offset, and dcset are named sets
rather than functions, we will see later that sets and functions can be unified
through the use of the so-called characteristic functions.

Example 1. The Boolean 3-space spanned by the variable vector (x1, x2, x3) can
be viewed as a combinatorial cube as shown in Figure 1, where the labeled
vertices represent the minterms and two minterms are connected by an edge if
their Hamming distance is one (that is, their binary codes differ in one position).
The onset fon = {000, 011, 100, 101, 110}, offset foff = {001, 111}, and dcset
fdc = {010} of some function f are embedded in the combinatorial cube.

A completely specified Boolean function f is a tautology, written as f ≡ 1
or f ⇔ 1, if its onset equals the universal set, i.e., the entire Boolean space. In
other words, the output of f equals 1 under every truth assignment on the input
variables.

Any Boolean function can be expressed in a Boolean formula. Table 1
shows the building elements (excluding the last two symbols, ∃ and ∀) of a
Boolean formula. Symbols ¬,∧,∨,⇒,⇔ are Boolean connectives. A Boolean
formula ϕ can be built recursively through the following formation rules:

ϕ ::= 0 | 1 | A | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2, (1)

where the symbol “::=” is read as “can be” and symbol “|” as “or”. That is,
a Boolean formula ϕ can be a constant 0, a constant 1, an atomic Boolean
variable from a variable set A, ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, or ϕ1 ⇔ ϕ2,
built from Boolean formulas ϕ1 and ϕ2. To save on parentheses and enhance
readability, we assume the precedence of the Boolean connectives ⇔,⇒,∨,∧,¬
is in an ascending order. Also we often omit expressing the conjunction symbol
∧ in a formula.

Example 2. The Boolean formula

((x1 ∨ (¬x2)) ∨ ((¬x1) ∧ x3)) ∧ (x1 ∧ (¬x2))

7

Table 1. Symbolic Notation and Meaning.

Symbol Symbol Name English Meaning

(left parenthesis for punctuation
) right parenthesis for punctuation
¬, ′ complement symbol logical “not”
∧, · conjunction symbol logical “and”
∨, + disjunction symbol logical “(inclusive) or”
⇒ implication symbol logical “if . . . , then . . . ”
⇔,≡ bi-implication symbol logical “. . . if and only if . . . ”

∃ existential quantifier “there exists . . . ”
∀ universal quantifier “for all . . . ”

can be shortened to
((x1 ∨ ¬x2) ∨ ¬x1x3)(x1¬x2).

Using the associativity of disjunction and conjunction, we can further shorten
the formula to

(x1 ∨ ¬x2 ∨ ¬x1x3)x1¬x2,

but we can no longer trace a unique sequence of rules used to derive this formula.

A set of Boolean operators is called functionally complete if they are suf-
ficient to generate any Boolean function. Note that not all of the above Boolean
connectives are necessary to form a set of functionally complete operators. For
example, the sets {¬,∧} and {¬,⇒} are functionally complete, whereas {∧,⇒}
is not.

We may consider a Boolean function as the semantics of some Boolean for-
mulas. There are different (syntactical) Boolean formulas representing the same
(semantical) Boolean functions. It is this flexibility that makes logic synthesis
an art.

Boolean operations over Boolean functions can be defined in terms of set
operations, such as union ∪, intersection ∩, and complement over sets. Boolean
function h = f ∧ g has onset hon = fon ∩ gon and offset hoff = foff ∪ goff ;
Boolean function h = f ∨g has onset hon = fon∪gon and offset hoff = foff ∩goff ;
Boolean function h = ¬f (also denoted as f or f ′) has onset hon = foff and
offset hoff = fon. The dcset of function h can be derived using the fact that the
union of the onset, offset, and dcset is equal to the universal set.

Quantified Boolean formulas (QBFs) generalize (quantifier-free) Boolean
formulas with the additional universal and existential quantifiers: ∀ and ∃, re-
spectively. In writing a QBF, we assume that the precedences of the quantifiers

8

are lower than those of the Boolean connectives. In a QBF, variables being quan-
tified are called bound variables, whereas those not quantified are called free
variables.

Example 3. Consider the QBF ∀x1, ∃x2.f(x1, x2, x3), where f is a Boolean for-
mula. It is read as “For every (truth assignment of) x1, there exists some (truth
assignment of) x2, f(x1, x2, x3).” In this case, x1 and x2 are bound variables,
and x3 is a free variable.

Any QBF can be rewritten as a quantifier-free Boolean formula through
quantifier elimination by formula expansion (among other methods), e.g.,

∀x.f(x, y) = f(0, y) ∧ f(1, y)

and
∃x.f(x, y) = f(0, y) ∨ f(1, y),

where f is a Boolean formula. Consequently, for any QBF ϕ, there exists an
equivalent quantifier-free Boolean formula that refers only to the free variables
of ϕ. For a QBF of size n with k bound variables, its quantifier-free Boolean
formula derived by formula expansion can be of size O(2k · n). QBFs are thus
of the same expressive power as quantifier-free Boolean formulas, but can be
exponentially more succinct.

Example 4. The QBF ∀x1, ∃x2.f(x1, x2, x3) can be rewritten as

∀x1.(f(x1, 0, x3) ∨ f(x1, 1, x3))
= (∃x2.f(0, x2, x3)) ∧ (∃x2.f(1, x2, x3))
= (f(0, 0, x3) ∨ f(0, 1, x3)) ∧ (f(1, 0, x3) ∨ f(1, 1, x3)).

Note that ∀x1,∃x2.f(x1, x2, x3) differs from and is, in fact, weaker than
∃x2, ∀x1.f(x1, x2, x3). That is, (∃x2, ∀x1.f(x1, x2, x3)) ⇒ (∀x1, ∃x2.f(x1, x2, x3)).
In contrast, ∀x1, ∀x2.f(x1, x2, x3) is equivalent to ∀x2, ∀x1.f(x1, x2, x3), and sim-
ilarly ∃x1, ∃x2.f(x1, x2, x3) is equivalent to ∃x2,∃x1.f(x1, x2, x3).

Moreover, it can be verified that the universal quantification ∀ commutes
with the conjunction ∧, whereas the existential quantification ∃ commutes with
the disjunction ∨. That is, for any QBFs ϕ1 and ϕ2, we have

∀x.(ϕ1 ∧ ϕ2) = ∀x.ϕ1 ∧ ∀x.ϕ2,

whereas
∃x.(ϕ1 ∨ ϕ2) = ∃x.ϕ1 ∨ ∃x.ϕ2.

Nonetheless in general ∀ does not commute with ∨, whereas ∃ does not commute
with ∧. That is, in general

∀x.(ϕ1 ∨ ϕ2) 6= ∀x.ϕ1 ∨ ∀x.ϕ2

and
∃x.(ϕ1 ∧ ϕ2) 6= ∃x.ϕ1 ∧ ∃x.ϕ2.

9

On the other hand, for any QBF ϕ, we have

¬∀x.ϕ = ∃x.¬ϕ (2)

and

¬∃x.ϕ = ∀x.¬ϕ. (3)

Because ∀ and ∃ can be converted to each other through negation, either quan-
tifier solely is sufficient to represent QBFs.

An important fact about QBFs is that they are equivalent under renam-
ing of bound variables. For example, ∀x.f(x, y) = ∀z.f(z, y) and ∃x.f(x, y) =
∃z.f(z, y). Renaming bound variables is often necessary if we want to rewrite a
QBF in a different way. Being able to identify the scope of a quantifier is crucial
for such renaming.

Example 5. In the QBF

Q1x,Q2y.(f1(x, y, z) ∨ ¬f2(y, z) ∧Q3x.f3(x, y, z))

with Qi ∈ {∀, ∃}, quantifier Q1 is applied only to the variable x of f1, quantifier
Q2 is applied to the y variables of all the functions, and quantifier Q3 is applied
only to the variable x of f3. The QBF can be renamed as

Q1a,Q2b.(f1(a, b, z) ∨ ¬f2(b, z) ∧Q3x.f3(x, b, z)).

In studying QBFs, it is convenient to introduce a uniform representation, the
so-called prenex normal form, where the quantifiers of a QBF are moved to
the left leaving a quantifier-free Boolean formula on the right. That is,

Q1x1, Q2x2, . . . , Qnxn.f(x1, x2, . . . , xn),

where Qi ∈ {∀, ∃} and f is a quantifier-free Boolean formula. Such movement is
always possible by Equations (2) and (3) as well as the following equalities: For
QBFs ϕ1 and ϕ2,

(ϕ1 ♦ Qx.ϕ2) = Qx.(ϕ1 ♦ ϕ2) if x is not a free variable in ϕ1, (4)

where Q ∈ {∀,∃} and ♦ ∈ {∧,∨},

(ϕ1 ⇒ ∀x.ϕ2) = ∀x.(ϕ1 ⇒ ϕ2) if x is not a free variable in ϕ1, (5)
(ϕ1 ⇒ ∃x.ϕ2) = ∃x.(ϕ1 ⇒ ϕ2) if x is not a free variable in ϕ1, (6)

((∀x.ϕ1) ⇒ ϕ2) = ∃x.(ϕ1 ⇒ ϕ2) if x is not a free variable in ϕ2, and (7)
((∃x.ϕ1) ⇒ ϕ2) = ∀x.(ϕ1 ⇒ ϕ2) if x is not a free variable in ϕ2. (8)

With the renaming of bound variables, we know that the above conditions, x not
a free variable in ϕi, can always be satisfied. Thereby any QBF can be converted
into an equivalent formula in prenex normal form.

10

Prenex normal form is particularly suitable for the study of computa-
tional complexity. The number of alternations between existential and uni-
versal quantifiers in a QBF in prenex normal form directly reflects the difficulty
in solving the formula. (In solving a QBF ϕ, we shall assume that all variables
of ϕ are quantified, i.e., no free variables in ϕ.) For instance, there are three
alternations of quantifiers in the QBF ∀x1, ∀x2, ∃x3, ∀x4, ∃x5.f(x1, . . . , x5). The
more alternations of quantifiers are in a QBF in prenex normal form, the higher
the computational complexity is in solving it. The levels of difficulties induce the
polynomial hierarchy, a hierarchy of complexity classes, in complexity theory
(see, e.g., [Papadimitriou 1993] for comprehensive introduction). The problem of
solving QBFs is known as quantified satisfiability (QSAT); in particular, the
problem is known as QSATi for QBFs in prenex normal form with i alternations
of quantifiers. The entire polynomial hierarchy is contained by the PSPACE
complexity class; the problem QSAT (without an a priori alternation bound i)
is among the hardest in PSAPCE, i.e., PSPACE-complete. A particularly in-
teresting special case is QSAT0 with all variables quantified existentially. It is
known as the Boolean satisfiability (SAT) problem, which is NP-complete
[Garey 1979]. Solving QBFs is much harder than solving the satisfiability of
Boolean formulas.

In the above discussion of QBF solving, we assumed all variables are not
free. For a QBF ϕ with free variables, we say that it is satisfiable (respectively
valid) if it is true under some (respectively every) truth assignment on the set of
free variables. Hence asking about the satisfiability of a Boolean formula f(x) is
the same as asking about the validity/satisfiability of the QBF ∃x.f(x); asking
about the validity of a Boolean formula f(x) is the same as asking about the va-
lidity/satisfiability of the QBF ∀x.f(x). Note that the validity and satisfiability
of a formula are the same if there are no free variables.

Although QBFs are not directly useful for circuit representation, many com-
putational problems in logic synthesis and verification (such as image computa-
tion, don’t care computation, Boolean resubstitution, combinational equivalence
checking, etc.) can be posed as QBF solving. Once a computational task is writ-
ten in a QBF, its detailed algorithmic solution is almost apparent and can be
derived using Boolean reasoning engines.

2.2 Boolean Function Manipulation

In addition to Boolean and, or, not operations, cofactor is an elementary
Boolean operation. For a function f(x1, . . . , xi, . . . , xn), the positive cofactor
and negative cofactor of f with respect to xi are f(x1, . . . , 1, . . . , xn), denoted
as fxi or f |xi=1, and f(x1, . . . , 0, . . . , xn), denoted as f¬xi or f |xi=0, respectively.
We can also cofactor a Boolean function with respect to a cube, namely the
conjunction of a set of literals, by iteratively cofactoring the function with each
literal in the cube.

Example 6. Cofactoring the Boolean function f = x1x2¬x3 ∨ x4¬x5x6 with re-
spect to the cube c = x1x2¬x5 yields function fc = ¬x3 ∨ x4x6.

11

Universal and existential quantifications can be expressed in terms of cofac-
tor, with

∀xi.f = fxi ∧ f¬xi (9)

and

∃xi.f = fxi
∨ f¬xi

. (10)

Moreover, the Boolean difference ∂f
∂xi

of f with respect to variable xi is defined
as

∂f

∂xi
= ¬(fxi

≡ f¬xi
) = fxi

⊕ f¬xi
, (11)

where ⊕ denotes an exclusive-or (xor) operator. Using the Boolean difference
operation, we can tell whether a Boolean function functionally depends on a
variable. If ∂f

∂xi
equals constant 0, then the valuation of f does not depend on

xi, that is, xi is a redundant variable for f . We call that xi is a functional
support variable of f if xi is not a redundant variable.

By Shannon expansion, every Boolean function f can be decomposed with
respect to some variable xi as

f = xifxi ∨ ¬xif¬xi . (12)

Note that the variable xi needs not be a functional support variable of f .

2.3 Boolean Function Representation

Below we discuss different ways of representing Boolean functions.

Truth Table The mapping of a Boolean function can be exhaustively enumer-
ated with a truth table, where every truth assignment has a corresponding
function value listed.

Example 7. Figure 2 shows the truth table of the majority function f(x1, x2, x3),
which valuates to true if and only if at least two of the variables {x1, x2, x3}
valuate to true.

Truth tables are canonical representations of Boolean functions. That is, two
Boolean functions are equivalent if and only if they have the same truth table.
Canonicity is an important property that may be useful in many applications of
logic synthesis and verification.

For practical implementation, a truth table is effective in representing func-
tions with a few input variables (often no more than 5 or 6 variables for modern
computers having a word size 32 or 64 bits). By storing a truth table as a com-
puter word, basic Boolean operations over two small functions can be done in
constant time by parallel bitwise operation over their truth tables. Truth tables
however are impractical to represent functions with many input variables.

12

x1 x2 x3

0 0 0

f

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

1

1

1

Fig. 2. Truth table of the 3-ary majority function.

SOP Sum-of-products (SOP), or disjunctive normal form (DNF) as it is
called in computer science, is a special form of Boolean formulas consisting of
disjunctions (sums) of conjunctions of literals (product terms or cubes). It is a
flat structure corresponding to a two-level circuit representation (the first level of
and-gates and the second level of an or-gate). In two-level logic minimization,
the set of product terms (i.e., cubes) of an SOP representation of a Boolean
function is called a cover of the Boolean function. A Boolean function may
have many different covers, and a cover uniquely determines a Boolean function.

Example 8. The expression f = ab¬c + a¬bc + ¬abc + ¬a¬b¬c is in SOP form.
The set {ab¬c, a¬bc,¬abc,¬a¬b¬c} of cubes forms a cover of function f .

In our discussion, we often do not distinguish a cover and its represented func-
tion.

Every Boolean formula can be rewritten in an SOP representation. Unlike
the truth table representation, the SOP representation is not canonical. In fact,
how to express a Boolean function in the most concise SOP-form is intractable
(in fact, NP-complete), and is termed two-level logic minimization.

Given SOP as the underlying Boolean representation, we study its usefulness
for Boolean manipulation. Consider the conjunction of two cubes. It is com-
putable in time linear in the number of literals because, having defined cubes as
sets of literals, we compute the conjunction of cubes c and d, denoted q = c∩ d,
by actually taking the union of the literal sets in c and d. However if q = c ∩ d
computed in this fashion contains both a literal l and its complement ¬l, then
the intersection is empty. Similarly the conjunction of two covers can be obtained
by taking the conjunction of each pair of the cubes in the covers. Therefore, the
and operation of two SOP formulas is of quadratic time complexity. On the
other hand, the or operation is of constant time complexity since the disjunc-
tion of two SOP formulas is readily in SOP form. The complement operation is
of exponential time complexity in the worst case.

13

Example 9. Complementing the function

f = x1 · y1 + x2 · y2 + · · ·+ xn · yn

will result in 2n product terms in the SOP representation.

In addition to the above basic Boolean operations, SAT and TAUTOLOGY
checkings play a central role in Boolean reasoning. Checking whether an SOP
formula is satisfiable is of constant time complexity since any (irredundant) SOP
formula other than constant 0 must be satisfiable. In contrast, checking whether
an SOP formula is tautological is intractable, in fact, coNP-complete. When
compared with other data structures to be introduced, SOP is not commonly
used as the underlying representation in Boolean reasoning engines, but mainly
used in two-level and multi-level logic minimization.

For the purposes of minimizing two-level logic functions, efficient procedures
for performing Boolean operations on SOP representations or covers are desir-
able. A package for performing various Boolean operations such as conjunction,
disjunction, and complementation is available as part of the Espresso program
[Rudell 1987].

POS Product-of-sums (POS), or conjunctive normal form (CNF) as it
is called in computer science, is a special form of Boolean formulas consisting of
conjunctions (products) of disjunctions of literals (clauses). It is a flat structure
corresponding to a two-level circuit representation (the first level of or-gates
and the second level of an and-gate).

Example 10. The formula (a+ b+¬c) · (a+¬b+ c) · (¬a+ b+ c) · (¬a+¬b+¬c)
is in POS form.

Every Boolean formula has an equivalent formula in POS form. Even though
POS seems just the dual of SOP, it is not as commonly used in circuit design as
SOP partly due to the characteristics of CMOS circuits, where NMOS is prefer-
able to PMOS. Nevertheless it is widely used in Boolean reasoning. Satisfiability
(SAT) solving over CNF formulas is one of the most important problems in
computer science. In fact, every NP-complete problem can be reformulated in
polynomial time as a SAT problem.

Given POS as the underlying data structure, we study its usefulness for
Boolean function manipulation. For the and operation, it is of constant time
complexity since the conjunction of two POS formulas is readily in POS. For
the or operation, it is of quadratic time complexity since in the worst case the
disjunction of two POS formulas must be converted to a POS formula by the
distributive law.

Example 11. Given POS formulas ϕ1 = (a) · (b) and ϕ2 = (c) · (d), their disjunc-
tion ϕ1 + ϕ2 equals (a + c) · (a + d) · (b + c) · (b + d).

On the other hand, the complement operation is of exponential time complexity
since in the worst case a POS formula may need to be complemented with
De Morgan’s Law followed by the distributive law.

14

Example 12. Complementing the 2n-input Achilles heel function

f = (x1 + y1) · (x2 + y2) · · · (xn + yn)

will result in 2n clauses in the POS representation.

As for the SAT and TAUTOLOGY checkings of POS formulas, the former
is NP-complete, and the latter is of constant time complexity because any (irre-
dundant) POS formula other than constant 1 cannot be a tautology. The POS
representation is commonly used as the underlying representation in Boolean
reasoning engines, called SAT solvers.

BDD Binary decision diagrams (BDDs) were first proposed by Lee [Lee 1959]
and further developed by Akers [Akers 1978]. In their original form, BDDs are
not canonical in representing Boolean functions. To canonicalize the representa-
tion, Bryant [Bryant 1986] [Bryant 1992] introduced restrictions on BDD vari-
able ordering and proposed several reduction rules, leading to the well-known re-
duced ordered BDDs (ROBDDs). Among various types of decision diagrams,
ROBDDs are the most widely used, and will be our focus.

Consider using an n-level binary tree to represent an arbitrary n-input Boolean
function f(x1, . . . , xn). The binary tree, called a BDD, contains two types of
nodes. A terminal node, or leaf, v has as an attribute a value value(v) ∈ {0, 1}.
A non-terminal node v has as attributes an argument level-index index(v) ∈
{1, · · · , n} and two children: the 0-child, denoted else(v) ∈ V , and the 1-child,
denoted then(v) ∈ V . If index(v) = i, then xi is called the decision variable for
node v. Every node v in a BDD corresponds to a Boolean function f [v] defined
recursively as follows.

1. For a terminal node v,
(a) If value(v) = 1, then f [v] = 1.
(b) If value(v) = 0, then f [v] = 0.

2. For a non-terminal node v with index(v) = i,

f [v](x1, . . . , xn) = ¬xi · f [else(v)](x1, . . . , xn) + xi · f [then(v)](x1, . . . , xn).

Recall that, in Shannon expansion, a Boolean function f can be written as
f = xifxi + ¬xif¬xi . Suppose a BDD node representing some function f is
controlled by variable xi. Then its 0-child and 1-child represent functions f¬xi

and fxi , respectively. Accordingly a BDD in effect represents a recursive Shannon
expansion. For a complete binary tree, it is easily seen that we can always find
some value assignment to the leaves of a BDD to implement any n-input function
f(x1, . . . , xn) because every truth assignment of variables x1, . . . , xn activates
exactly one path from the root node to a unique leaf with the right function
value. Note that a BDD represents the offset and the onset of a function as
disjoint covers, where each cube in the cover corresponds to a path from the
root node to some terminal node.

15

x1 x2 x3

0 0 0

f

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

1

1

10 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Fig. 3. Binary tree representation of the majority function.

Example 13. The binary tree representation of the majority function is shown in
Figure 3, where a circle (square) represents a non-terminal (terminal) node and
a dotted (solid) edge indicates the pointed 0-child (1-child) of its parent node.

Definition 1. A BDD is ordered (i.e., an OBDD) if the nodes on every path
from the root node to a terminal node of the BDD follow the same variable
ordering.

Definition 2. Two OBDDs D1 and D2 are isomorphic if there exists a one-
to-one function σ from the nodes of D1 onto the nodes of D2 such that for any
node v if σ(v) = w, then either both v and w are terminal nodes with value(v) =
value(w), or both v and w are non-terminal nodes with index(v) = index(w),
σ(else(v)) = else(w) and σ(then(v)) = then(w).

Since an OBDD only contains one root and the children of any non-terminal
node are distinguished, the isomorphic mapping σ between OBDDs D1 and D2

is constrained and easily checked for. The root in D1 must map to the root in
D2, the root’s 0-child in D1 must map to the root’s 0-child in D2, and so on all
the way to the terminal nodes. Testing two OBDDs for isomorphism is thus a
simple linear-time check.

Definition 3 ([Bryant 1986]). An OBDD D is reduced if it contains no
node v with else(v) = then(v) nor does it contain distinct nodes v and w such
that the subgraphs rooted in v and w are isomorphic.

An reduced OBDD (ROBDD) can be constructed from an OBDD with the
following three reduction rules:

1. Two terminal nodes with the same value attribute are merged.
2. Two non-terminal nodes u and v with the same decision variable, the same

0-child, i.e., else(u) = else(v), and the same 1-child, then(u) = then(v) are
merged.

16

3. A non-terminal node v with else(v) = then(v) is removed, and its incident
edges are redirected to its child node.

Iterating the reduction steps bottom-up on an OBDD until no further modifi-
cation can be made, we obtain its unique corresponding ROBDD. These rules
ensure that no two nodes of the ROBDD are structurally (also functionally) iso-
morphic, and that the derived ROBDD has fewest nodes under a given variable
ordering. It can be shown that no two nodes of an ROBDD represent the same
Boolean function, and thus two ROBDD of the same Boolean function must be
isomorphic. That is, ROBDDs are a canonical representation of Boolean func-
tions. Every function has a unique ROBDD for a given variable ordering.

Theorem 1 (ROBDD Canonicity [Bryant 1986]). For any Boolean func-
tion f , there is a unique (up to isomorphism) ROBDD denoting f , and any other
OBDD denoting f contains more nodes.

Proof. A sketch of the proof is given using induction on the number of inputs.

Base case : If f has zero inputs, it can be either the unique 0 or 1 ROBDD.
Induction hypothesis : Any function g with a number of inputs < k has a

unique ROBDD.

Choose a function f with k inputs. Let D and D′ be two ROBDDs for f under
the same ordering. Let xi be the input with the lowest index in the ROBDDs
D and D′. Define the functions f0 and f1 as fxi and f¬xi , respectively. Both
f0 and f1 have less than k inputs, and by the induction hypothesis these are
represented by unique ROBDDs D0 and D1.

We can have nodes in common between D0 and D1 or have no nodes in
common between D0 and D1. If there are no nodes in common between D0 and
D1 in D, and no nodes in common between D0 and D1 in D′, then clearly D
and D′ are isomorphic.

Consider the case where there is a node u that is shared by D0 and D1 in D.
There is a node u′ in the D0 of D′ that corresponds to u. If u′ is also in D1 of
D′, then we have a correspondence between u in D and u′ in D′. However, there
could be another node u′′ in the D1 of D′ that also corresponds to u. While the
existence of this node implies that D and D′ are not isomorphic, the existence of
u′ and u′′ in D′ is a contradiction to the statement of the theorem, since the two
nodes root isomorphic subgraphs corresponding to u. (This would imply that D′

is not reduced.) Therefore, u′′ cannot exist, and D and D′ are isomorphic.

Example 14. Figure 4, from (a) to (c), shows the derivation of the ROBDD from
the binary tree of the majority function.

Example 15. Consider the OBDD of Figure 5(a). By the first reduction rule,
we can merge all the terminal nodes with value 0 and all the terminal nodes
with value 1. The functions rooted in the two nodes with control variable x3

are identical, namely x3. By the second reduction rule, we can delete one of

17

0 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3

(a) (b) (c)

Fig. 4. From binary tree to ROBDD.

the identical nodes and make the nodes that were pointing to the deleted node
(those nodes whose 0- or 1-child correspond to the deleted node) point instead
to the other node. This does not change the Boolean function corresponding to
the OBDD. The simplified OBDD is shown in Figure 5(b). In Figure 5(b) there
is a node with control variable x2 whose 0-child and 1-child both point to the
same node. This node is redundant because the function f rooted in the node
corresponds to function

f = x2 · x3 + ¬x2 · x3 = x3.

Thus, by the third reduction rule, all the nodes that point to f can be made to
point to its 0- or 1-child without changing the Boolean function corresponding
to the OBDD as illustrated in Figure 5(c).

Example 16. Figure 6 shows a reduction example using a labeling technique for
the ROBDD taken from [Bryant 1986]. We first assign the 0 and 1 terminal nodes
a and b labels, respectively, in Figure 6(a). Next, the right node with control
variable x3 is assigned label c. Upon encountering the other node with node
with control variable x3, we find that the second reduction rule is satisfied and
assign this node the label c as well. Proceeding upward we assign the label c to
the right node with control variable x2 since the third reduction rule is satisfied
for this node. (The 0-child and the 1-child of this node have the same label.)
The left node with control variable x2 is assigned label d, and the root node is
assigned the label e. Note that the nodes are labeled in such a way that each
label indicates a unique (sub-)ROBDD. Sorting and deleting redundant nodes
results in the ROBDD of Figure 6(b).

Example 17. To see that ROBDDs represent the offset and the onset of a func-
tion as disjoint covers, consider the examples of Figure 7. The ROBDD in (a)

18

0 1 0 1

x1

x2 x2

x3 x3

0 1

x1

x2 x2

x3

0 1

x1

x2

x3

(a) (b) (c)

Fig. 5. OBDD and simplified OBDDs.

0 1

x1

x2 x2

x3 x3

0 1

x1

x2

x3

(a) (b)

0 1
a ab b

c c

cd

e

Fig. 6. Reduction example.

represents the function f = x1 ∧ x2. There are exactly two paths leading to
the 0 terminal node. If x1 is a 0, then the function represented by the ROBDD
evaluates to a 0 since the 0-child of the node with index x1 is the 0 terminal
node. If x1 is a 1 and x2 is a 0, the function evaluates to a 0. Thus, the offset is
represented as {¬x1, x1¬x2}. The two cubes in the cover are disjoint. If x1 and
x2 are both 1, the function evaluates to a 1. The onset is the singleton {x1x2}.
Note that a cube of these covers corresponds to a single path from the root node
to some terminal node. Similar analysis can be applied for the ROBDDs in (b)
and (c).

In representing a Boolean function, different variable orderings may result in
ROBDDs with very different sizes (in terms of the number of nodes).

19

(a) (b)

10

x1

x2

0 1

x1

(c)

x2 x2

x3 x3

xn xn

0 1

x1

x2

Fig. 7. ROBDD examples: (a) ROBDD of function f = x1∧x2; (b) ROBDD of function
f = x1 ∨ x2; (b) ROBDD of the n-ary odd parity function.

Example 18. If the variables in the function f = ab+cd are ordered as index(a) <
index(b) < index(c) < index(d) (a on top and d at bottom), the resulting
ROBDD has only 4 non-terminal nodes. However, if the order index(a) <
index(c) < index(b) < index(d) is chosen, there are 6 non-terminal nodes.

Due to the sensitivity of ROBDD sizes to the chosen variable ordering, finding
a suitable ordering becomes an important problem to obtain a reasonably sized
ROBDD representing a given logic function. Finding the best variable ordering
that minimizes the ROBDD size is coNP-complete [Bryant 1986]. However, there
are good heuristics. For example, practical experience suggests that symmetric
and/or correlated variables should be ordered close to each other. Other heuris-
tics attempt to generate an ordering such that the structure of the ROBDD
under this ordering mimics the given circuit structure.

It is not surprising that there exists a family of Boolean functions whose
BDD sizes are exponential in their formula sizes under all BDD variable order-
ings. For instance, it has been shown that ROBDDs of certain functions, such as
integer multipliers, have exponential sizes irrespective of the ordering of variables
[Bryant 1991]. Fortunately for many practical Boolean functions, there are vari-
able orderings resulting in compact BDDs. This phenomenon can be explained
intuitively by the fact that a BDD with n nodes may contain up to 2n paths,
which correspond to all possible truth assignments. ROBDD representations can
be considerably more compact than SOP and POS representations.

20

0 1

x1

x2

x3

(a) (b)

0 1

x1

x2

Fig. 8. Cofactor example.

Example 19. The odd parity function of Figure 7(c) is an example of function
which requires 2n − 1 nodes in an ROBDD representation but 2n−1 product
terms in a minimum SOP representation.

We examine how well ROBDDs support Boolean reasoning. Complementing
the function of an ROBDD can be done in constant time by simply interchanging
the 0 and 1 terminal nodes.

In cofactoring an ROBDD with respect to a literal xi (respectively ¬xi),
the variable xi is effectively set to 1 (respectively 0) in the ROBDD. This is
accomplished by determining all the nodes whose 0- or 1-child corresponds to
any node v with index(v) = i, and replacing their 0- or 1-child by then(v)
(respectively else(v)).

Example 20. Figure 8 illustrates a cofactor example, where the given ROBDD of
(a) has been cofactored with respect to x3 yielding the ROBDD of (b). Similarly,
an ROBDD can be cofactored with respect to ¬xi by using else(v) to replace all
nodes v with index(v) = i.

Binary Boolean operations, such as and, or, xor, and so on, over two ROB-
DDs (under the same variable ordering) can be realized using the recursive Bd-
dApply operation. In the generic BddApply operation, ROBDDs D1 and D2

are combined as D1 〈op〉 D2 where 〈op〉 is a Boolean function of two arguments.
The result of the BddApply operation is another ROBDD. The operation can
be customized by replacing 〈op〉 with a specific operator, e.g., and, or, xor,
etc.

The algorithm proceeds from the roots of the two argument graphs down-
ward, creating nodes in the resultant graph. It is based on the following recursion

f 〈op〉 g = xi · (fxi 〈op〉 gxi) + ¬xi · (f¬xi 〈op〉 g¬xi).

21

From an ROBDD perspective we have

f [v] 〈op〉 g[w] = xi·(f [then(v)] 〈op〉 g[then(w)])+¬xi·(f [else(v)] 〈op〉 g[else(w)]),
(13)

where f [v] and g[w] are the Boolean functions rooted in the nodes v and w.
There are several cases to consider.

1. If v and w are terminal nodes, we simply generate a terminal node u with
value(u) = value(v) 〈op〉 value(w).

2. Else, if index(v) = index(w) = i, we follow Equation (13). Create node
u with index(u) = i, and apply the algorithm recursively on else(v) and
else(w) to generate else(u) and on then(v) and then(w) to generate then(u).

3. If index(v) = i but index(w) > i, we create a node u having index i, and
apply the algorithm recursively on else(v) and w to generate else(u) and on
then(v) and w to generate then(u).

4. If index(v) > i and index(w) = i we create a node u having index i and
apply the algorithm recursively on v and else(w) to generate else(u) and on
v and then(w) to generate then(u).

Implementing the above algorithm directly results in an algorithm of expo-
nential complexity in the number of input variables, since every call in which
one of the arguments is a non-terminal node generates two recursive calls. Two
refinements can be applied to reduce this complexity. Firstly, if the algorithm is
applied to two nodes where one is a terminal node, then we can return the result
based on some Boolean identities. For example, we have f ∨ 1 = 1 and f ∨ 0 = f
for 〈op〉 = or, f ∧ 0 = 0 and f ∧ 1 = f for 〈op〉 = and, and f ⊕ 0 = f and
f ⊕ 1 = ¬f for 〈op〉 = xor. Secondly, more importantly the algorithm need not
evaluate a given pair of nodes more than once. We can maintain a hash table
containing entries of the form (v, w, u) indicating that the result of applying the
algorithm to subgraphs with roots v and w was u. Before applying the algorithm
to a pair of nodes we first check whether the table contains an entry for these
two nodes. If so, we can immediately return the result. Otherwise we make the
two recursive calls, and upon returning, add a new entry to the table. This re-
finement drops the time complexity to O(|D1| · |D2|), where |D1| and |D2| are
the number of nodes in the two given graphs.

Example 21. We illustrate the BddApply algorithm with an example taken
from [Bryant 1986]. The two ROBDDs to be operated on by an or operator
are shown in Figure 9(a) and (b). Each node in the two ROBDDs has been
assigned a unique label. This label could correspond to the labels generated
during ROBDD reduction. The labels are required to maintain the table entries
described immediately above.

The OBDD resulting from the or of the two ROBDDs is shown in Figure 9(c).
First, we choose the pair of root nodes labeled a1 and b1. We create a node with
control variable x1 and recursively apply the algorithm to the node pairs a3, b1
and a2, b1. Since a3 corresponds to the 1 terminal node, we can immediately
return the 1 terminal node as the result of the or. We must still compute the

22

0

x1

x3

x2

x3

(a) (b)

1

a1

a2

a3 a4
10

b3 b4

b1

b2

1

x1

x3

x2

x3

(c) (d)

1

a1,b1

10

x1

x2

x3

0

1
a3,b1 a2,b1

a2,b2a2,b3

a4,b4a4,b3 a3,b3

Fig. 9. ROBDD examples for the BddApply operation: (a) ROBDD of function f1 =
¬x1 ∨ ¬x3; (b) ROBDD of function f2 = x2 ∧ x3; (c) intermediate OBDD after the
BddApply operation for f1 ∨ f2; (d) final ROBDD of f1 ∨ f2.

or of the a2, b1 node pair. This involves the computation of the or of a2, b3
and a2, b2, and so on. Note that a3, b3 will appear as a node pair twice during
the course of the algorithm.

Reducing the OBDD of Figure 9(c) results in the ROBDD of Figure 9(d).

On the other hand, SAT and TAUTOLOGY checkings using BDDs are of
constant time complexity due to the canonicity of BDDs. More specifically, SAT
(respectively TAUTOLOGY) checking corresponds to checking if the BDD is
not equal to the 0-terminal (respectively 1-terminal) node. Another application
of BDDs is checking if two functions f1 and f2 are equivalent. The problem is of
constant time complexity given that f1 and f2 are already represented in BDDs
under the same variable ordering. Two BDDs (under the same variable ordering)
represent the same function if and only if they have the same root node.

As all the above Boolean manipulations are efficiently solvable (i.e., in poly-
nomial time), BDDs are a powerful tool in logic synthesis and verification. We
are by no means saying that Boolean reasoning is easy because the BDD size
of a function can be exponential in the number of variables. Building the BDD
itself risks exponential memory blow-up. Consequently BDD shifts the difficulty
from Boolean reasoning to Boolean representation. Nevertheless once BDDs are
built, Boolean manipulations can be done efficiently. In contrast, CNF-based
SAT solving is memory efficient but risks exponential runtime penalty. Depend-
ing on problem instances and applications, the capability and capacity of state-
of-the-art BDD packages vary. Just to give a rough idea, BDDs with hundreds
of Boolean variables are still manageable in memory but not with thousands of
variables. In contrast, state-of-the-art SAT solvers typically may solve in reason-
able time the satisfiability problem of CNF formulas with up to tens of thousands
of variables.

23

x

a

(a)

0

y

a

1

bb

x

(b)

y

a

1

b

Fig. 10. ROBDDs (a) without and (b) with complemented edges.

For the implementation of effective BDD packages, there are several impor-
tant techniques. Firstly, complemented edges can be used to compactly repre-
sent a function as well as its complement [Madre 1988]. A complemented edge
indicates that the function rooted in the node that the edge points to has be
complemented. Introducing complemented edges does not destroy the canonicity
of the ROBDD if the edges to be complemented are selected properly.

Example 22. The ROBDDs for a function with and without complemented edges
are shown in Figure 10. Complemented edges are indicated by dots on them.

Secondly, a global unique table can be maintained wherein every node rep-
resenting a unique function is given a unique label. Before creating a new node
the table is checked to see if the function corresponding to this new node exists
in the table. If not, the node is created, given a new label, and added to the
unique table. If the function already exists, the node in the table corresponding
to this function is returned.

Thirdly, dynamic variable ordering [Rudell 1993] can effectively reduce BDD
sizes. A BDD variable ordering good for some functions may be bad for other
functions. In the manipulation of ROBDD, new functions can be created. As
a result, originally good variable ordering may become inadequate. Dynamic
variable ordering provides a way of adjusting variable ordering to keep BDD sizes
small. The description of an efficient implementation of an ROBDD package can
be found in [Rudell 1990].

AIG An And-Inverter graph (AIG) is a directed acyclic graph (DAG)
G = (V, E) consisting of vertices V representing and2 (two-input and) gates

24

a b c

f

(a)

d a b c

f

(b)

d

Fig. 11. AIGs (a) without and (b) with structure hashing.

and directed edges E ⊆ V ×V connecting gates. Inverters are denoted by markers
on edges. Since operators {∧,¬} are functionally complete, any Boolean func-
tion can be represented in an AIG. Most Boolean functions can be represented
compactly using AIGs.

The simple AIG data structure allows quick and cheap structural hash-
ing among AIG nodes. Two AIG nodes with the same inputs under the same
complementation conditions are merged (similar to the second reduction rule
of ROBDD). Unlike ROBDD, however, the AIG representation is not canonical
even when structural hashing is applied.

Example 23. Figure 11 shows the AIGs of function f = a¬cd + ¬b¬cd without
and with structural hashing in (a) and (b), respectively.

From the practical point of view, what make AIGs distinct from circuit
netlists composed of and2 gates and inverters are threefold:

1. Structural hashing — Structural hashing is applied during AIG construction;
it propagates constants and ensures that each node is structurally unique.
Accordingly AIGs are stored in a compact form.

2. Complemented edges — AIGs represent inverters as attributes on edges and
thus do not require extra memory. Such complemented edges facilitate fast
manipulation of AIGs and, in particular, lead to efficient structural hashing.

3. Regularity — As a result of regularity, memory management of an AIG
package can be done by a simple customized memory manager which uses
fixed amount of memory for each node (thanks to the fixed number of inputs
of each node). By allocating memory for nodes in a topological order, we
can optimize AIG traversal, which is repeatedly performed in many logic
synthesis algorithms, in the same order. Experience suggests that many AIG-

25

based applications have reduced memory footprint (namely, the amount
of main memory used or referenced during a program’s execution).

These features make a modern AIG package particularly efficient for Boolean
function representation and reasoning.

We analyze the usefulness of AIGs for Boolean manipulation. The and op-
eration has a constant time complexity since the conjunction of two given AIGs
can be done by adding an AIG node. The or operation is essentially the same as
the and operation except for the markings on the input and output edges of the
added AIG node, and thus is of constant time complexity. The complementation
corresponds to marking an edge and is therefore of constant time complexity,
too.

SAT and TAUTOLOGY checkings using AIGs are NP-complete and coNP-
complete, respectively. When used as a Boolean reasoning engine, an AIG pack-
age can be viewed as a solver performing satisfiability checking over circuits
rather than over CNF formulas, and is similar to automatic test pattern
generation (ATPG).

AIGs can also be used in verification applications, such as equivalence check-
ing and even model checking. For instance, checking if two given AIGs under
comparison are functionally equivalent can be reduced to TAUTOLOGY (SAT)
checking by adding an xnor (xor) gate, which can be expressed in terms of
and2 and inv gates, with its two-inputs feeded in by the outputs of the two AIGs.
The two AIGs are equivalent if and only if the output of the xnor (xor) gate
is tautological (unsatisfiable). Hence the equivalence checking problem is coNP-
complete. When it comes to synthesis, AIGs are used in multi-level logic min-
imization and technology mapping. In the academic system ABC [ABC 2005],
AIGs are used as a unifying data structure for both logic synthesis and verifica-
tion.

A new binary format called AIGER [Biere 2007] was recently proposed to
enable compact representation of AIGs in files and memory. With memory re-
quirements of about three bytes per AIG node, AIGER has become a standard
representation for circuit-based problems in SAT Competitions and Hardware
Model Checking Competitions, organized annually as satellite events of Inter-
national Conference on Theory and Applications of Satisfiability Testing and
International Conference on Computer Aided Verification, respectively.

Boolean Network A (combinational) logic circuit can be represented with a
Boolean network, a directed graph G = (V, E) with nodes V and directed
edges E. Every node i ∈ V is associated with a logic function fi and a Boolean
variable xi, called the output variable of node i, representing the output of
function fi. Hence the relation between variable xi and function fi obeys (xi ≡
fi). Every edge (i, j) ∈ E connecting from node i to node j signifies that variable
xi is an input to function fj , and we call that node i (j) is a fanin (fanout) of
node j (i). That is, variable xi syntactically appears in the Boolean expression
of fj as xi or ¬xi. We say xi is a (structural) support variable of fj . If,

26

in addition, the Boolean difference ∂fj

∂xi
is satisfiable, then xi is a functional

support variable of fj , as defined previously.
A node i without any fanin is a primary input and its associated logic

function is xi, i.e., identical to its output variable. Moreover, a subset of V is
specified as primary outputs. Among the variables of node outputs, we say
those of the primary inputs are the primary input variables, those of the
primary outputs are the primary output variables, and others are local (or
intermediate) variables.

The sets of fanins and fanouts of node i are denoted as FI (i) and FO(i),
respectively. The transitive fanins TFI (i) and transitive fanouts TFO(i) of
a node i are defined recursively as

TFI (i) = {k ∈ V | k = i, or k ∈ FI (j) for j ∈ TFI (i)}

and
TFO(i) = {k ∈ V | k = i, or k ∈ FO(j) for j ∈ TFO(i)},

respectively.
A (combinational) Boolean network can be acyclic or cyclic. Any acyclic

circuit must behave combinationally because no internal states can be main-
tained and the output only depends on the current input assignment, rather
than on the prior input assignments; a cyclic circuit, in contrast, may possi-
bly exhibit combinational behavior as well [Kautz 1970]. Because the existence
of cyclic structures substantially complicates the analysis and optimization of
logic design, most logic synthesis systems assume that combinational circuits
are acyclic. In the sequel we shall assume that a Boolean network is acyclic.
Therefore, TFI (i) ∩ TFO(i) = {i}.

A node function fi is a local function, in the sense that it is in terms of the
output variables of the immediate fanins of node i. The function of node i can
be alternatively expressed purely in terms of the primary input variables. In this
case, it is called the global function gi of node i. Function gi can be derived
from fi by recursively substituting fj for xj , for j ∈ TFI (i), until no further
substitution is possible. This substitution process is guaranteed to terminate
because of the assumption of acyclic combinational Boolean networks.

Example 24. Figure 12 shows a Boolean network example, where nodes 1, 2 and
3 are the primary inputs, and nodes 5 and 6 are the primary outputs. A local
function fi is shown in the corresponding node i. The global function of node i
can be obtained by either recursive composition or quantification. For instance,
the global function

g5 = x1(x1 + x2) + ¬x1¬(x1 + x2)

by recursive composition, or equivalently

g5 = ∃x4.(x1x4 + ¬x1¬x4)(x4 ≡ (x1 + x2))

by quantification.

27

x1 x2

f6 = x3x5

f5 = x1x4+¬x1¬x4

f4 = x1+x2

x3

x4

x5

x6

4

5

6

1 2 3
f1 = x1 f2 = x2 f3 = x3

Fig. 12. Boolean network example.

As for the implementation issue, how to represent the logic function fi of a
node i in a Boolean network is a matter of choice. Our previously mentioned
data structures, such as the truth table, SOP, BDD, AIG, and Boolean network
representations, can be adopted. Compared with AIGs, generic Boolean networks
may lack special structures to be exploited for effective Boolean reasoning. They
however are suitable for generic circuit representation.

2.4 Boolean Representation Conversion

CNF vs. DNF SOP-to-POS and POS-to-SOP conversions can be achieved
by applying double complements. By applying De Morgan’s Law, an SOP (a
POS) formula ϕ becomes a POS (an SOP) one ϕ′ after the first complement.
We can then convert the POS (SOP) formula ϕ′ to an SOP (a POS) one ϕ′′

by the distributive law. Finally, applying De Morgan’s Law again for the second
complement, we convert the SOP (POS) formula ϕ′′ to a POS (an SOP) one ϕ′′′.
Note that the conversions may suffer from an exponential blow-up in formula
sizes due to the intermediate step of applying the distributive law.

Example 25. The 2n-input Achilles heel function (x1 + y1)(x2 + y2) · · · (xn + yn)
has 2n product terms in an SOP representation but has a linear-sized POS
representation.

There exist Boolean functions whose SOP- and POS-formula sizes are in-
evitably exponential in the number of input variables. For example, the n-input

28

odd parity function (x1⊕x2 · · ·⊕xn) has 2n−1 product terms in an SOP represen-
tation and is equally large in a POS representation. As another example, integer
multiplication over n-bit operands, comparison of two n-bit operands, and addi-
tion and subtraction of n-bit operands all have SOP and POS realizations that
grow exponentially with n.

An interesting application of Boolean representation conversion is on Boolean
reasoning. Recall that SAT (respectively TAUTOLOGY) checking is trivial for
DNF (respectively CNF) formulas. If we are interested in knowing the satis-
fiability of a CNF formula, we may covert it into DNF and then check the
satisfiability of the DNF formula, which is a constant time checking. Similarly
we may check the tautology of a DNF formula by converting it into CNF. The
hardness of Boolean reasoning, of course, is shifted to the representation con-
version process. Another application of Boolean representation conversion is on
quantifier elimination for QBFs. Observe that the universal (respectively exis-
tential) quantification is easy for CNF (respectively DNF) formulas. The QBF
∀xi.ϕ(x) with ϕ(x) in CNF equals the induced quantifier-free Boolean formula
of removing every appearance of literals xi and ¬xi in ϕ(x); similarly the QBF
∃xi.ϕ(x) with ϕ(x) in DNF equals the induced quantifier-free Boolean formula
of removing every appearance of literals xi and ¬xi in ϕ(x). It is thus of linear
time complexity. Therefore given a QBF, we can convert the formula back and
forth between CNF and DNF to eliminate quantifiers. As a consequence, any
SOP-POS converter can be used as a Boolean reasoning engine and QBF solver.

Example 26. The QBF

∀a.(a + b + ¬c)(a + ¬b + c)(¬a + b + c)

equals the quantifier-free Boolean formula

(b + ¬c)(¬b + c)(b + c).

The QBF
∃a.(ab¬c + a¬bc + ¬abc)

equals the quantifier-free Boolean formula

b¬c + ¬bc + bc.

Boolean Formula vs. Circuit A Boolean formula ϕ can be translated into a
circuit, e.g., an AIG, in linear time. The translation can be done by following
the inductive construction of ϕ with the rules of Equation (1).

Example 27. Figure 13(a)-(e) show the AIGs of ¬x1, x1 ∧ x2, x1 ∨ x2, x1 ⇒
x2, and x1 ⇔ x2. They form the templates of the basic formation rules of
Equation (1). Given an arbitrary Boolean formula, its AIG can be built from
these templates, e.g., the AIG of (x1∧¬x2)∨(x2 ⇒ x3) is shown in Figure 13(f).

Any (combinational) circuit, on the other hand, represents some Boolean
function f : Bn → B, which can be specified with a Boolean formula. Recall
Example 24, which shows how an output function of a circuit can be obtained.

29

(a) (b)

x1 x1 x2

(c)

x1 x2

(d)

x1 x2

(e)

x1 x2

(f)

x1 x3x2

Fig. 13. (a) AIG of ¬x1; (b) AIG of (x1 ∧ x2); (c) AIG of (x1 ∨ x2); (d) AIG of
(x1 ⇒ x2); (e) AIG of (x1 ⇔ x2); (f) AIG of (x1 ∧ ¬x2) ∨ (x2 ⇒ x3).

BDD vs. Boolean Network A two-input multiplexor is a switch with two
data inputs i0, i1, one control input c, and one output o, with o = i0 if c = 0 and
o = i1 if c = 1. Because a non-terminal node in a BDD can be seen as a two-
input multiplexor and BDDs are universal for functional representation, any
Boolean function can be implemented using a circuit whose only constituent
gates are two-input multiplexors. Translating a BDD to a multiplexor-based
Boolean network is a straightforward process by substituting every BDD node
with a multiplexor, and can be accomplished in time linear in the size of the
BDD.

Given a Boolean network, the ROBDD of a primary output function in terms
of the primary input variables can be constructed. A näıve approach is to build an
OBDD representing the global function of the Boolean network and then reduce
it. Rather, a more effective way is to traverse the circuit from primary inputs to
primary outputs using a series of Boolean manipulations over ROBDDs based
on node functions. For a primary input, its ROBDD is a graph with a single
non-terminal node and two terminal nodes. For a functional node, its ROBDD
can be constructed using a series of complement and/or BddApply operations.

Example 28. Consider the circuit of Figure 14. The ROBDD for primary input
a is shown in Figure 15(a). Similarly, the ROBDD for primary input b will have
one node with control variable b with a 0-child (1-child) corresponding to the 0
(1) terminal node. The ROBDD for ¬a is shown in Figure 15(b). We can create
the ROBDD for signal d by performing an and operation on the ROBDDs for
the primary inputs a and b. This ROBDD is shown in Figure 15(c). We can
create the ROBDD for signal f by performing an or operation on the ROBDD
for signal d and the ROBDD for the primary input c.

As an application, ROBDD-based circuit equivalence checking can be achieved
by the conversion from Boolean networks to ROBDDs. Since ROBDDs are a

30

g

f

e

c

b

a

d

Fig. 14. Multi-level circuit.

0 1

a

(a) (b)

10

a

b

(c)

1 0

a

Fig. 15. (a) ROBDD for primary input a; (b) ROBDD for ¬a; (c) ROBDDs for a ∧ b.

canonical representation of Boolean functions, in order to check two circuits C1

and C2 for equivalence, we can use the following method.

1. Choose an ordering for the primary inputs of the circuits.
2. Create ROBDDs for the primary outputs of the two circuits.
3. Check if the ROBDDs are isomorphic. If so, the circuits are equivalent. If

not, the circuits are not equivalent.

In order to check two ROBDDs for equivalence, we can use the canonicity prop-
erty of ROBDDs and perform a linear-time graph isomorphism check as per
Definition 2. Notice that any ordering will suffice, as long as the same ordering
is chosen for both circuits. However, the size of the ROBDDs created is strongly
dependent on the ordering chosen.

2.5 Isomorphism between Sets and Characteristic Functions

A very profound application of Boolean functions is the concept of characteristic
functions in representing sets. It is a very important idea leading to a leap in
capacity of many logic synthesis and verification algorithms. A characteristic
function is a (total) function χA : U → B, where U is a finite set often in
the form of Bn for some n, such that χA(e) = 1 if and only if e ∈ A, that is,

31

the onset of χA equals A. It serves as a predicate indicating the membership
property. In other words, the function χA answers a query, whether an element
e ∈ U is in A ⊆ U . Essentially, any finite set A ⊆ U can be represented with a
characteristic function χA. Thereby set operations (e.g., intersection ∩, union ∪,
and complement) over sets are in effect Boolean operations (e.g., conjunction ∧,
disjunction ∨, and negation ¬, respectively) over characteristic functions. Note
that constant functions 0 and 1 are characteristic functions of the empty set ∅
and universal set U , respectively. Some applications of characteristic functions
are given below.

Incompletely Specified Function as Characteristic Function To repre-
sent an incompletely specified Boolean function I : Bn → {0, 1,−}, three char-
acteristic functions r, f , d can be used to represent its onset, offset and dcset,
respectively. That is, for a minterm m ∈ Bn,

r(m) = 1 if and only if I(m) = 0,

f(m) = 1 if and only if I(m) = 1, and
d(m) = 1 if and only if I(m) = −.

As the three sets form a partition on Bn, i.e., the three sets are pairwise disjoint
and union to Bn, two characteristic functions are sufficient in representing an
incompletely specified function. However, even so three characteristic functions
are often used for the sake of convenience in Boolean manipulation.

Boolean Relation as Characteristic Function A relation is more general
than a function as it allows one-to-many mappings, which are prohibited in a
function. A Boolean relation can be treated as a set of input-output mapping
pairs, and thus can be represented by a characteristic function.

Example 29. Given a set of Boolean functions f1(x), . . . , fm(x), they can be
converted into a Boolean relation

R(x, y) =
m∧

i=1

(yi ≡ fi(x))

by introducing a vector of output variables y = (y1, . . . , ym). For truth assign-
ments a ∈ Bn and b ∈ Bm on variables x and y, respectively, relation R(a, b)
valuates to true if and only if the ith bit of b equals the value of fi(a) for
i = 1, . . . ,m. In other words, R(a, b) = 1 if and only if a and b are consistent
assignments under the mapping of functions f1, . . . , fm.

Circuit Consistency Condition as Characteristic Function The consis-
tency condition imposed by a circuit can be converted into a Boolean formula,
in particular, a CNF formula by Tseitin’s procedure [Tseitin 1970], where every
gate of a circuit translates into a set of clauses of fixed sizes and, further, the
CNF formula of a circuit is the conjunction of the clauses of all gates. Therefore
the conversion is done in time linear to the circuit size.

32

x1 x3x2

x4 x5

x6

x7

Fig. 16. AIG example for CNF conversion.

Example 30. The CNF formula of the consistency condition imposed by an and2
gate with inputs a, b and output c is

(a ∧ b) ⇔ c

= ((a ∧ b) ⇒ c)(c ⇒ (a ∧ b))
= (¬a ∨ ¬b ∨ c)(¬c ∨ (a ∧ b))
= (¬a ∨ ¬b ∨ c)(¬c ∨ a)(¬c ∨ b).

Using the above three clauses for an and2 gate, we can obtain the CNF
formula

(¬x1 ∨ x2 ∨ x4)(¬x4 ∨ x1)(¬x4 ∨ ¬x2) ∧
(¬x2 ∨ x3 ∨ x5)(¬x5 ∨ x2)(¬x5 ∨ ¬x3) ∧
(x4 ∨ ¬x5 ∨ x6)(¬x6 ∨ ¬x4)(¬x6 ∨ x5) ∧
(x6 ∨ x7)(¬x6 ∨ ¬x7).

for the consistency condition imposed by the AIG of Figure 16. Note that the
first three clauses correspond to the AIG node of x4, the second three clauses
correspond to the AIG node of x5, the third three clauses correspond to the AIG
node of x6, and the last two clauses correspond to the inversion of x6 for x7.
Hence for given an AIG, the so-constructed CNF formula is of size linear in the
number of nodes.

Note that the function represented by the so-constructed CNF formula is
not the same as the primary output functions of a given circuit. A circuit and
its CNF formula are equivalent only in the sense that the CNF formula is true
under a truth assignment if and only if the truth assignment is consistent in
the circuit. A circuit implements some Boolean functions whereas such a CNF
formula represents a Boolean relation.

At first glance, Tseitin’s linear-time translation from circuits to CNF formu-
las seems contradictory to the exponential cost of the SOP-to-POS conversion

33

x1 x3x2 x4 X2n-1 x2nx5 x7x6 x8

Fig. 17. AIG of function f = x1x2 + x3x4 + . . . + x2n−1x2n.

because we may covert in linear time any SOP formula to an AIG and then
further convert the AIG to a CNF formula by Tseitin’s procedure. This paradox
can be clarified by observing that in Tseitin’s conversion new extra variables are
present in the resultant POS/CNF formula. It differs from the previous SOP-to-
POS conversion where no new variables are created. In fact, a Boolean relation
derived from the new conversion reduces to a Boolean function as derived from
the old one when the intermediate variables (those other than the primary input
and output variables) are existentially quantified out and further a positive co-
factor is performed on the Boolean relation with respect to the primary output
variable. The existential quantification and conversion back to a POS formula,
however, may result in exponential blow-up in formula sizes.

Example 31. Figure 17 shows the AIG of function f = x1x2 + x3x4 + . . . +
x2n−1x2n. By Tseitin’s conversion, the CNF formula is of size linear to n due
to the allowance of intermediate variables. Without intermediate variables, the
POS representation of f must have 2n clauses.

Set Manipulation as Boolean Manipulation By dealing with characteris-
tic functions, we are able to manipulate sets of elements simultaneously rather
than manipulate individual elements separately. For instance, the intersection of
two sets A and B can be done by performing χA ∧ χB instead of examining, for
every element e ∈ A, whether e is in B as well. It leads to substantial improve-
ments to many logic synthesis and verification algorithms. Such approaches that
manipulate sets of objects simultaneously are known as (implicit) symbolic al-
gorithms, in contrast to the traditional (explicit) enumerative algorithms
(which enumerate individual objects separately).

34

Example 32. Let set U be the universe {0, 1, 2, 3, 4, 5, 6, 7}, set A ⊆ U be {0, 1, 2, 4},
and set B ⊆ U be {2, 3, 4, 6}. Consider the binary encoding with Boolean
variables x1, x2, and x3 such that element 0 is encoded as ¬x1¬x2¬x3, 1 as
¬x1¬x2x3, 2 as ¬x1x2¬x3, 3 as ¬x1x2x3, 4 as x1¬x2¬x3, 5 as x1¬x2x3, 6 as
x1x2¬x3, and 7 as x1x2x3. Then the characteristic functions of these sets with
respect to the binary encoding are

χU = 1,

χA = ¬x1¬x2 + ¬x1¬x3 + ¬x2¬x3, and
χB = ¬x1x2 + x1¬x3.

It can be checked that formula ¬χA corresponds to the characteristic function
of the set U\A, formula χA ∧ χB corresponds to that of A ∩ B, and formula
χA ∨ χB corresponds to that of A ∪B.

Example 33. Image and pre-image computations are key operations in logic syn-
thesis and formal verification. The image of A ⊆ Bn under the functional vector
f = (f1, . . . , fm) is the set {q ∈ Bm | q = f(p), p ∈ A}. The characteristic func-
tion of the image is

Imgf (A) = ∃x.

m∧

i=1

(yi ≡ fi(x)) ∧ χA(x),

which refers to the newly introduced y variables taking on the function values. In
contrast, the pre-image of B ⊆ Bm under the functional vector f = (f1, . . . , fm)
is the set {p ∈ Bn | q = f(p), q ∈ B}. The characteristic function of the pre-image
is

PreImgf (B) = ∃y.

m∧

i=1

(yi ≡ fi(x)) ∧ χB(y),

which refers to the x variables only.

2.6 Boolean Reasoning Engines

Among the introduced data structures, BDD packages and SAT solvers are the
most widely used Boolean reasoning engines. They are extensively used in var-
ious symbolic, or called implicit, algorithms, such as image computation, don’t
care computation, state reachability analysis, and so on. Any Boolean reason-
ing engine can be more or less used in developing symbolic algorithms. In the
sequel when a computational task is expressed in terms of a QBF, we should be
aware that its computation is already achievable by Boolean manipulation using
a BDD package.

Although BDD-based algorithms and symbolic algorithms were once almost
synonymous in the 1990s, recently other data structures were developed as alter-
natives to BDDs. Due to the capacity limit of BDDs, more and more symbolic al-
gorithms are based on other data structures. Notably, Boolean reasoning engines

35

using SAT and AIGs, for instance, are gaining in popularity in hardware syn-
thesis and verification. Moreover, hybrid Boolean reasoning engines combining
complementary data structures may become important tools. In fact, combina-
tional equivalence checking of multi-million gate designs has been demonstrated
in an industrial setting through such hybrid solvers combining BDD and AIG
[Kuehlmann 1997].

36

3 Combinational Logic Minimization

Logic synthesis is typically divided into two phases: technology independent
optimization and technology dependent optimization. The former aims
at simplifying Boolean expressions and logic netlist structures regardless of the
target technology node for manufacturing, whereas the latter aims at optimizing
circuits under the target implementation technology. This divide-and-conquer
separation is often beneficial in orthogonalizing various design concerns. Sim-
plified Boolean expressions are often good for optimization with respect to the
target implementation technology. Also it allows a designer to migrate a design
from one technology node to another without substantial re-optimization. Our
study will begin with the first phase, and then proceed to the second one in
Section 4.

In technology independent optimization, combinational logic minimization
consists of two-level and multi-level logic minimization. Two-level logic min-
imization is a relatively simple and well-studied subject in both theory and
practice. As a multi-level logic netlist can be seen as a network of two-level
logic components, the results of two-level minimization are in part applicable to
multi-level minimization. Not only optimized two-level SOP representations can
be used as a starting point for multi-level synthesis, but two-level minimization
techniques can also be used in minimizing multi-level netlists. Hence we delve
into two-level logic minimization before considering the multi-level counterpart.

3.1 Two-Level Logic Minimization

There are a variety of two-level logic implementations. The most common one is
the SOP implementation, where the first level of logic corresponds to and gates
and the second level to or gates. nor-nor structures, nand-nand structures,
and-xor structures, and or-and structures are also possible.

Example 34. The function of Figure 18(a) can be reexpressed in POS form and
implemented as the circuit shown in Figure 18(c). An SOP implementation can
be directly converted into an equivalent nand-nand implementation by replac-
ing all the and gates and or gates by nand gates. A nand-nand implementation
of the function of Figure 18(a) is shown in Figure 18(b). Similarly, a POS imple-
mentation can be directly converted into a nor-nor implementation as shown
in Figure 18(d).

Two-level logic is typically implemented as a programmable logic array
(PLA) [Fleisher 1975] in a nor-nor form followed by inverters at the outputs.
PLAs have the advantage of being very structured and are therefore amenable to
automated logic and layout synthesis. Even though PLAs are no longer a popular
IC implementation style, they can be an important ingredient in modern system
designs because their regular structures [Mo 2004] provide a solution to alleviate
the infamous process variation problem of IC manufacturing in the nanometer
regime.

37

b

a

c

b

a

c

b

a

c

b

a

c

(a) (b)

(c) (d)

Fig. 18. Two-level logic implementations.

PLA Implementation vs. SOP Minimization Despite the fact that many
regular functions have a minimum two-level logic representation whose size grows
exponentially with the number of inputs to the function (e.g., parity functions
and adders), two-level logic circuits can efficiently implement control logic.

The hardware cost of a PLA implementing some SOP formula is directly
reflected in the formula. The number of literals (respectively product terms)
of the formula corresponds to the number of transistors (respectively product
lines) of the PLA. Therefore, minimizing an SOP expression not only reduces
PLA area cost, but also improves circuit performance due to the reduction in
capacitive loads.

Example 35. An NMOS PLA is shown in Figure 19(a), whose output marked f
implements the logic function of Figure 18. Note that while the input plane and
output plane are both nor-planes, we have inverters at the outputs. An SOP
representation can be directly mapped to a nor-nor PLA with output inverters
by complementing each literal in the input plane. The function f = a · b +¬a · c
has been implemented as

¬(¬(¬(¬a + ¬b) + ¬(a + ¬c))).

PLAs can implement multiple-output functions that share product terms
across outputs as shown in Figure 19(a). The multiple-output cover is repre-
sented as shown in Figure 19(b). The two outputs share the cube a · b in their
onsets. Therefore, in the PLA of Figure 19(a) the first row from the bottom
feeds transistors in both columns in the output plane. The number of columns
in a PLA equals two times the number of inputs plus the number of outputs, the

38

ba c

(a) (b)

f g

a b c f g
0 – 1 1 0
1 1 – 1 1

Fig. 19. (a)Programmable logic array; (b)multiple-output cover.

number of rows equals the number of product terms in the cover, the number
of transistors in the input plane equals the number of “1” or “0” literals in the
input part of the multiple-output cover, and the number of transistors in the
output plane equals the number of 1s in the output part of the multiple-output
cover.

Terminology We define terminology and notation used for two-level logic min-
imization.

As a notational convention, we write a cube (i.e. a product term) c in a
bit-vector form c = [c1 . . . cn], where ci is “0” if the ith variable xi appears
complemented in c, ci is “1” if variable xi appears uncomplemented in c, and ci

is “−” if variable xi does not appear in c.

Example 36. A cube c = x1¬x2 in the Boolean space spanned by variables
x1, x2, x3 can be represented as [10−].

For multi-output functions, the notion of cubes is slightly generalized. A
cube of a Boolean function f with n inputs and m outputs is written as c =
[c1 · · · cn|cn+1 · · · cn+m], which consists of the input part with ci’s for 1 ≤ i ≤ n
and output part with ci’s for n + 1 ≤ i ≤ n + m. In the input part, ci is defined
the same as before; in the output part, ci is “0,” “1,” and “−” if the input part
of c belongs to the offset, onset, and dcset, respectively, of the (i− n)th output
of f . For single-output functions, we may not write the (n + 1)st bit of the cube
if the function is fully specified.

39

A minterm, defined in Section 2, corresponds to a cube in which every vari-
able of a Boolean space appears. Minterms and cubes may be used to represent
the values of a set of input variables, e.g., x¬yz is shorthand for x = 1, y = 0, and
z = 1. Therefore, there is a natural correspondence between an input assignment
and a vertex in the Boolean n-space. This correspondence may be extended to
cubes where absent variables are assumed to be unassigned. Thus, if a circuit C
has inputs v, w, x, y, and z then applying the cube x¬yz to C is shorthand for
applying v = X, w = X, x = 1, y = 0, and z = 1, where “X” is used to denote
an unknown value.

A cube q contains another cube r if the literals in the input part of cube q
are a subset of the literals in the input part of cube r and the outputs in the
output part of q are a superset of the outputs in the output part of cube r.
In bit-vector notation, the cube [0−|1] of a two-input, single-output function
contains the cube [00|1]. Similarly, the cube [0−|11] of a two-input, two-output
function contains the cube [0−|10]. A cube is said to be contained by a cover
if every minterm contained by the cube is contained by some cube in the cover.
For example, the cover {00−−,−1−1} contains the cube [0−−1].

If a cube q contains only onset and dcset vertices of a Boolean function f ,
then q is called an implicant of f . A prime implicant (or prime) of f is
an implicant which is not contained by any other implicant of f and which is
not entirely contained in the dcset of f . An alternate operational definition,
which is crucial in Espresso, of a prime implicant is as follows. An implicant
is prime if no 0- or 1-literal can be “raised” (to include more minterms) to a
“−” without resulting in the implicant intersecting the offset of any component
of the multiple-output function. For instance, a cube [111] of a three-input,
single-output function would be a prime cube if each of [11−], [1−1] and [−11]
intersected the offset. A literal in a cube is said to be prime if raising that
particular literal to a “−” results in a cube that intersects the offset. Thus, [110]
may not be a prime cube of a function f because [11−] is an implicant of f , but
the first two literals may be prime in the implicant [110] because [−10] and [1−0]
intersect the offset of f . All the literals contained in a cube have to be prime in
order for the cube to be prime.

An essential prime implicant (or essential prime) is a prime implicant
which includes one or more onset vertices which are not included in any other
prime implicant. These vertices are termed essential vertices. An optional
prime implicant is a prime implicant for which all vertices are included in
other prime implicants.

A minimal cover for a function f is generated by selecting all of the essential
prime implicants and a minimal set of optional prime implicants such that all
vertices in the onset of f are included in the cover.

Example 37. For the example in Figure 1(b), there are three essential prime
implicants and no optional prime implicants. The minimal cover would be f =
¬x3 + ¬x1x2 + x1¬x2.

A relatively essential vertex of a cube q in a cover C is a vertex in the
onset that is contained by q and is not contained in any other cube in C.

40

Example 38. In Figure 1(b), x1¬x2x3 is a relatively essential vertex of the cube
x1¬x2, while the other vertex in this cube, x1¬x2¬x3, is not a relatively essential
vertex since it is also contained in the cube ¬x3.

A two-input, two-output function can also be represented as a multiple-
output cover, with cubes that have input as well as output parts.

Example 39. The two-output function F = {11|01, 00|10, 10|11} has two cubes
in each of its components F1 and F2. If the inputs are a and b, then F1 can be
represented as ¬a¬b + a¬b, and F2 is ab + a¬b. The cube a¬b is shared by F1

and F2, because its output part indicates that it belongs to both their onsets.

In order to keep cover sizes small, it is desirable to ensure some form of
minimality for the cover. An easily satisfiable property is that no cube c of a
cover contains another cube d of the cover. Such a cover is minimal with respect
to single cube containment.

An implicant in a cover is irredundant if it contains an essential or a rel-
atively essential vertex. Thus, removing the implicant changes the functionality
of the cover. Else it is redundant and can be safely removed from the cover.
A cover is prime if each of the implicants in the cover is prime. A cover is irre-
dundant if each of the implicants is irredundant. The definitions apply to both
completely specified and incompletely specified functions.

3.2 SOP Minimization

Two-level Boolean minimization is used to find an SOP representation for a
Boolean function that is optimum according to a given cost function. The typical
cost functions used are the number of product terms, the number of literals, or
a combination of both.

With any of these cost functions, the problem of two-level minimization con-
tains the subproblem of finding the solution of a minimum covering problem
which has been shown to be NP-complete [Garey 1979]. Nevertheless, sophisti-
cated exact minimizers (e.g., [Dagenais 1986] [Rudell 1987]) have been developed
whose average-case behavior for most commonly encountered functions is ac-
ceptable. Furthermore, heuristic minimization methods exist (e.g., [Hong 1974]
[Brayton 1984]) which have been shown to produce results that are close to the
minimum within reasonable amounts of time, even for large Boolean functions.

Two-level Boolean minimization for a given function consists of two steps:

1. generating the set of prime implicants, and
2. selecting a minimum set of prime implicants to cover all onset minterms.

The Quine-McCluskey Method The first algorithmic method proposed for
two-level minimization is the Quine-McCluskey method [McCluskey 1956], which
follows the two steps outlined above.

Prime Implicant Generation The set of prime implicants can be gener-
ated by iteratively merging two cubes which differ in exactly one position, where

41

D
E

C

(a)

B
A

0 0000
5 0101
7 0111
8 1000
9 1001
10 1010
11 1011
14 1110
15 1111

(b)

0, 8 –000
5, 7 01–1
7, 15 –111
8, 9 100–
8, 10 10–0
9, 11 10–1
10, 11 101–
10, 14 1–10
11, 15 1–11
14, 15 111–

(c)

8, 9, 10, 11 10––
10, 11, 14, 15 1–1–

Fig. 20. Prime implicant generation.

one is of literal x and the other is of literal ¬x assuming variable x is the cor-
responding variable in the position. For instance, two cubes c1 = [00−1] and
c2 = [01−1] can be merged as [0−−1]. This merging process continues until no
more merging is possible. Initially all onset and dcset minterms are the cubes
to start with. Upon termination, a maximal cube (not contained by every other
cube) is a prime implicant provided that it is not entirely contained by the dcset.

Example 40. Consider the completely specified Boolean function shown in Fig-
ure 20(a). It has been represented as a list of minterms. Each minterm has an
associated decimal value obtained by converting the binary number represented
by the minterm into a decimal number — for instance the value of 0000 is 0 and
that of 1100 is 12. The cubes generated by merging the pairs of cubes are shown
in Figure 20(b) and (c). We have five prime implicants, marked as A, B, C, D,
and E, for the function in this example.

Prime Implicant Table A prime implicant table is a table with rows
indexed by onset minterms and columns indexed by prime implicants. An entry
at position (i, j) in the table is marked “X” if prime implicant j contains onset
minterm i.

Example 41. Figure 21 shows the prime implicant table of the previous example.

Since we want a minimum set of prime implicants that covers all the onset
minterms, we have to select a minimum set of columns in a prime implicant table
such that there is at least one X in every row. This is the classical minimum
unate covering problem which has been shown to be NP-complete [Garey 1979].
Nevertheless there are several reduction techniques that help simplify solving
the unate covering problem:

Simplification by Essential Prime Implicants A row with a single X
represents a (relatively) essential vertex, and the corresponding column repre-
sents a (relatively) essential prime implicant. The column must be selected in

42

X

A B C D E

0000

0101

0111

1000

1001

1010

1011

1110

1111

X

XX

XX

X

X

X

X

X

X

X

X

Fig. 21. Prime implicant table.

X

A B C D E F G H
0000

0001

0101

0111

1000

1010

1110

1111

X

X

X

X

X

X

X

X

X

X

X

XX

XX

B C D E F G H
0101

0111

1000

1010

1110

1111

X

X

X

X

X

XX

X

XX

XX

C D E F G
0101

0111

1000

1010

1110

1111

X

X

X

XX

X

XX

XX

(a) (b) (c)

Fig. 22. Cyclic prime implicant table.

the final cover because any prime cover for the function will have to contain the
prime that contains the onset minterm corresponding to this row. Therefore we
can simplify the prime implicant table by removing the columns corresponding
to (relatively) essential prime implicants and removing the rows covered by these
removed columns.

Example 42. In the prime implicant table of Figure 21 A, B, D, and E are
essential prime implicants. We select the essential prime implicants since they
have to be contained in any prime cover. This results in a cover for the function,
since selecting columns A, B, D, and E results in the presence of X in every
row.

Some functions may not have essential prime implicants. Consider the hypo-
thetical prime implicant table of Figure 22(a). There is no row with a single X. It

43

is necessary to make an arbitrary selection of a prime to begin with. Assume that
prime A is selected. We obtain the reduced table of Figure 22(b) after deleting
column A and the first two rows contained by A from the table of Figure 22(a).

Simplification by Column Dominance A column U of a prime implicant
table is said to dominate another column V if U contains every row contained by
V. We can delete the dominated columns, since selecting the dominating column
will result in covering more uncontained minterms than the dominated column.
Note that the dominating column might not exist in a minimum solution. Fur-
ther if minimizing the literal count was our objective, then we can only delete
dominated columns that correspond to primes with equal or more literals than
the dominating prime.

Example 43. In the reduced table of Figure 22(b) column B is dominated by
column C and column H is dominated by column G. Reducing the table of
Figure 22(b) yields the table of Figure 22(c). In this table C and G are relatively
essential prime implicants. Choosing C and G results in the selection of E, which
completes the cover f = {A, C, E, G}. We are not guaranteed that this cover
is minimum; we have to backtrack to our arbitrary choice of selecting prime A
and delete prime A from the table, i.e., explore the possibility of constructing a
cover that does not have A in it. This results in f = {B, D, F, H}.

Simplification by Row Dominance A row i of a prime implicant table is
said to dominate another row j if i has a 1 in every column in which j has a 1.
Any minimum expression derived from a table which contains both rows i and
j can be derived from a table which only contains the dominated row.

Example 44. In Figure 22(c), row 0111 dominates row 0101 and can be deleted;
row 1010 dominates row 1000 and can be deleted as well.

A Branch-and-Bound Covering Strategy The covering procedure of the
Quine-McCluskey method is summarized below. The input to the procedure is
the prime implicant table T .

1. Delete the dominated primes (columns) and the dominating minterms (rows)
in T . Detect essential primes1 in T by checking to see if any minterm is
contained by a single prime implicant. Add these essential prime implicants
to the selected set. Repeat until no new essential primes are detected.

2. If the size of the selected set of prime implicants equals or exceeds the best
solution thus far, return from this level of recursion. If there are no elements
left to be contained, declare the selected set as the best solution recorded
thus far.

3. Heuristically select a prime implicant.
4. Add this prime implicant to the selected set and recur for the sub-table

resulting from deleting the prime implicant and all minterms that are con-
tained by this prime implicant. Then, recur for the sub-table resulting from
deleting this prime implicant without adding it to the selected set.

1 These primes may not be essential primes of the original function or table.

44

Other Methods State-of-the-art exact two-level logic minimization algorithms,
such as Espresso [Rudell 1987] and Scherzo [Coudert 1995], are all based on
the Quine-McCluskey method, but are able to outperform the Quine-McCluskey
method significantly due to superior prime generation, implicant table genera-
tion, and covering techniques. In particular, with decision diagram based data
structures, Scherzo [Coudert 1995] was able to outperform Espresso by two
orders of magnitude in terms of speed. Introductions to Espresso and decision
diagram based two-level logic minimization can be found in [Devadas 1994] and
[Minato 1996], respectively. A good overview on two-level logic minimization can
be found in [Coudert 1994].

3.3 Multi-Level Logic Minimization

Two-level logic is limited because not all Boolean functions can be efficiently
represented in the SOP form. Multi-level logic implementation of a function is
often faster and smaller than two-level logic. Therefore multi-level realizations
are the preferred means of implementing combinational logic in very large scale
integrated (VLSI) systems. Because of the increased potential for reusing sub-
circuits, there are more degrees of freedom in implementing a Boolean function
than in the two-level case. This increased freedom, however, largely expands the
search space in identifying an optimal solution.

The area of multi-level logic synthesis has blossomed since the mid-1980s.
Many of the methods developed have been successfully used in commercially
available computer-aided design packages. There are two types of basic ap-
proaches, rule-based local transformations and algorithmic transformations. Rule-
based local transformations were developed at IBM in the late 1970s, known as
the Lss system [Darringer 1981]. A rule transforms a pattern for a local set of
gates and interconnections into another equivalent one when certain patterns
are recognized in logic netlists. The transformations have somewhat limited op-
timization capability since they are local in nature and do not have a global
perspective of the design.

Algorithmic transformations began to evolve in about 1981, in parallel with
activity in two-level logic synthesis and influenced by it. The algorithmic coun-
terpart uses two phases: a technology-independent step based on algorithms for
manipulating general Boolean functions [Brayton 1982] and a technology map-
ping step (the subject of Section 4) where the design described in terms of generic
Boolean functions is mapped into a set of gates that can be implemented in the
design method of choice (gate arrays, standard cells, or macrocells). Both rule-
based methods (e.g., [Darringer 1984] [Bartlett 1986]) and algorithmic methods
(e.g., [Brayton 1987] [Bostick 1987]) have been successful. Algorithmic methods
for logic synthesis are our main focus.

We describe the various logic transformations used in algorithmic logic syn-
thesis systems, most of which use algebraic [Brayton 1982] [Brayton 1984] and
Boolean [Bostick 1987] [Devadas 1989] operations in technology-independent op-
timization, and use graph covering methods [Keutzer 1987] in technology map-
ping. We first introduce technology-independent optimization and focus primar-

45

ily on area minimization. Implementation details of the algorithms can be found
in [Brayton 1987] [Brayton 1990].

Logic Transformations The goal of multi-level logic optimization is to obtain
multi-level representation of a Boolean function optimal with respect to some
design constraints. In order to restructure a logic function, a collection of different
operations is helpful. The operations described below are commonly used and
can be composed in a script file for orchestrated optimization.

Decomposition Decomposition of a Boolean function is the process of
reexpressing a single function as a composition of new functions.

Example 45. The process of translating the expression

F = a · b · c + a · b · d + ¬a · ¬c · ¬d + ¬b · ¬c · ¬d

to the set of expressions

F = X · Y + ¬X · ¬Y,

X = a · b, and
Y = c + d

is decomposition.

Extraction Extraction, related to decomposition, is applied to multiple
functions. It is the process of identifying and creating new intermediate functions
and their corresponding output variables, and reexpressing the original functions
in terms of the original as well as the new variables.

Extraction creates nodes which feed multiple outputs. The operation identi-
fies common subexpressions among different logic functions forming a network.
New nodes corresponding to the common subfunctions are created and each of
the logic functions in the original network is simplified with respect to these new
nodes. The optimization problem of extraction is to find a set of intermediate
functions such that the resulting network has minimum area, delay, or power.

Example 46. Extraction applied to the following three functions

F = (a + b) · c · d + e,

G = (a + b) · ¬e, and
H = c · d · e

may yield

F = X · Y + e,

G = X · ¬e,

H = Y · e,
X = a + b, and
Y = c · d.

46

f = a+(b+c)d

a b c

d

a

b

c
d

Fig. 23. Factored form vs. complex CMOS gate implementation.

Factoring A factored form is a parenthesized representation of a tree net-
work where each internal node is an and or an or gate and each leaf is a literal.
Like SOP, factored forms are a way of representing Boolean functions and are
perhaps a more natural way for multi-level circuits than the SOP representation.

A factored-form Boolean expression can be implemented using a complex
CMOS gate. The number of transistors of the logic gate is closely related to
the number of literals of the factored form as can be seen from the following
example.

Example 47. Figure 23 shows a complex CMOS gate implementing the factored
form f = a + (b + c)d. In general, excluding the possible output buffer, 2n
transistors are needed to implement a factored form with n literals.

Consequently the literal count of a factored form can be used as a good estimate
of hardware cost. The optimization problem associated with factoring is to find
a factored form with a minimum number of literals.

Factoring is the process of deriving a factored form from an SOP represen-
tation of a function.

Example 48. The expression

F = a · c + a · d + b · c + b · d + e

can be factored into
F = (a + b) · (c + d) + e.

Substitution Substitution, also called resubstitution, of a function G
into F is the process of reexpressing F as a function of its original inputs and
G.

Example 49. Substituting
G = a + b

into
F = a + b · c

47

produces
F = G · (a + c).

This operation creates an arc in the Boolean network connecting the node of the
substituting function, namely G, to the node of the function being substituted
into, namely F .

Elimination Elimination, collapsing, or flattening is the the inverse op-
eration of substitution. If G is a fanin node of F , collapsing G into F reexpresses
F without G. It undoes the operation of substituting G into F .

Example 50. If

F = G · a + ¬G · b and
G = c + d,

then collapsing G into F results in

F = a · c + a · d + b · ¬c · ¬d and
G = c + d.

If the node G is not a primary output and does not fan out to other nodes, then
it may be removed from the Boolean network, resulting in a network with one
less node.

Flattening a logic function into the SOP form could result in an exponential
growth in representation.

Example 51. Consider the flattening of the nodes g1 through gk into F with

F = g1 · g2 · · · gk,

g1 = a1 + b1,

g2 = a2 + b2,

...
gk = ak + bk.

After flattening, the SOP representation for F will have 2k product terms.

Given a Boolean network, we may compute the value of a node, which rep-
resents the saved literal count due to the existence of this node rather than
collapsing this node into its fanout nodes. For nodes with little or negative val-
ues, we may eliminate them from the Boolean network by collapsing them into
their fanouts. It should be noted that eliminating a node may change other
nodes’ values.

Division and Common Divisors To realize the above logic transformations,
it is important to define operations which, when given functions f and p, find
functions q and r such that f = p · q + r, if such q and r exist. This operation

48

is called the division of f by p generating quotient q and remainder r. The
function p is called a divisor of f if r is not null and a factor if r is null.

The conditions for p being a Boolean factor or a Boolean divisor are stated
in the following propositions.

Proposition 1. A logic function p is a Boolean factor of a logic function f if
and only if f · ¬p = 0 (that is, the onset of f is contained in the onset of p).

Proposition 2. If f · p 6= 0, then p is a Boolean divisor of f .

For a given division operation, the resulting q and r may depend upon the
particular representation of f and p. Moreover for any logic function, there are
many Boolean factors and divisors. This fact poses a problem in choosing a
good factor and divisor. If the domain is restricted to a particular subset of
expressions, then the division operation is unique and much easier to carry out.
A restricted version of such division is called algebraic division.

Algebraic Division We begin the description of algebraic division with some
definitions. The support of a Boolean expression f denoted as sup(f) is the
set of all variables v that syntactically occur in f as v or ¬v. For example, if
f = a + ¬a + b · c, then sup(f) = {a, b, c}. We say that f is orthogonal to g,
written as f ⊥ g, if sup(f) ∩ sup(g) = ∅. For example, f = a + b and g = c + d
are orthogonal.

The function g is an algebraic divisor of f if there exist h and r such that
f = g · h + r, where h 6= 0, g ⊥ h, and the remainder r is minimal, i.e., has
as few cubes as possible. Under this condition on the remainder, the quotient
h, denoted as f/g, is in fact unique. We say the function g divides f evenly if
f = g · h, where h 6= 0, g ⊥ h, and r = 0.

We consider two main problems of algebraic optimization, namely computing
quotients f/g given f and g, and determining divisors g of a given function f .

Computing the Quotient Given two covers (sets of cubes) f = {b1, b2,
. . ., b|f |} and g = {a1, a2, . . . , a|g|}, we define hi = {cj | ai · cj ∈ f} for all
i = 1, 2, . . . , |g|, i.e., hi corresponds to all the multipliers of the cube ai in g that
produce elements of f . It is easy to see that

f/g =
|g|⋂

i=1

hi = h1 ∩ h2 . . . ∩ h|g|.

Example 52. Consider two covers

f = a · b · c + a · b · d + d · e, and
g = a · b + e.

We have |g| = 2 and |f | = 3. With 3× 2 = 6 comparisons, we obtain

h1 = {c, d}, and
h2 = {d}.

49

Hence h1 ∩ h2 = d, and

f = (a · b + e) · d + a · b · c.
The above algorithm requires O(|f | · |g|) operations. Encoding and sorting

the cubes of f and g can reduce the complexity to O((|f | + |g|) log(|f | + |g|))
[McGeer 1987].

Kernels and Algebraic Divisors Given an efficient method for algebraic
division, optimization can be carried out if good algebraic divisors can be found.
The set of algebraic divisors is defined as D(f) = {g | f/g 6= 0}. The primary
divisors of f are defined as P (f) = {f/c | c is a cube}.
Example 53. If

f = a · b · c + a · b · d · e,
then

f/a = b · c + b · d · e
is a primary divisor.

Proposition 3. Every divisor of f is contained in a primary divisor, i.e., if g
divides f , then g ⊆ p ∈ P (f).

Proof. Let c ∈ f/g be a cube. Then g ⊆ f/(f/g) and f/(f/g) ⊆ f/c ∈ P (f).

A function g is termed cube-free if the only cube that divides g evenly is 1.
The kernels of f are defined as K(f) = {k | k ∈ P (f), k is cube-free}. For a
kernel k ∈ K(f), its cokernel is the cube c with f/c = k.

Example 54. If
f = a · b · c + a · b · d · e,

then
f/a = b · c + b · d · e

is a primary divisor but not cube-free since b is a factor of f/a = b · (c + d · e).
However, f/(a · b) = c + d · e is a kernel, and a · b is a cokernel.

The following theorem (originally proven in [Brayton 1982]) is the basis of
algebraic optimization methods.

Theorem 2. Two expressions f and g have a non-cube common divisor d if
and only if there exist kernels kf ∈ K(f) and kg ∈ K(g) such that kf ∩ kg has
two or more terms (i.e., kf ∩ kg is not a cube).

Proof. For the “if” part, kf ∩ kg is clearly a common divisor of f and g. It
remains to prove the “only if” part.

Assume d divides both f and g, and d has two or more terms. Then there
is a cube-free SOP expression e such that e divides d. Also e divides f and g
as well. By Proposition 3, e ⊆ kf ∈ P (f) and e ⊆ kg ∈ P (g) for some kf and
kg. Since e is cube-free, kf and kg are cube-free as well. Hence, kf ∈ K(f) and
kg ∈ K(g). Finally, since e ⊆ kf ∩ kg, kf ∩ kg must have two or more terms.

50

We can therefore use the kernels of f and g to locate common divisors.
Note that these are not the only common divisors of f and g, but they are
good common divisors to consider during logic optimization. We compute the
set of kernels for each logic expression, then form intersections among kernels
from the different logic expressions. If this intersection set contains no non-cube
elements, then by Theorem 2, we need only look for divisors consisting of single
cubes. Otherwise, we have found an algebraic divisor common to two or more
expressions.

KERNELS(f) {
cf = largest cube (with maximum number of literals) factor of f ;
K = KERNEL1(0, f/cf) ;
if (f is cube-free)

return(f ∪K) ;
return(K) ;

}

KERNEL1(j, g) {
R = g ;
N = Maximum index of variables in g ;
for(i = j + 1; i ≤ N ; i = i + 1) {

if (li in 1 or no cubes of g) continue ;
c = largest cube dividing g/li evenly ;
if (for all k ≤ i, lk /∈ c) /* Pruning Condition */

R = R∪ KERNEL1(i, g/(li ∩ c)) ;
}
return(R) ;

}

Fig. 24. Procedure to determine all the kernels of a single-output logic function.

Computing the Kernels The kernels of a function f can be computed
using the algorithm of Figure 24. The kernel generation algorithm first makes f
cube-free by finding its largest cube factor. It then selects the literals of f in a
lexicographical order and divides them into f ; the resulting quotient is a kernel
if it is cube-free. (Note that this kernel might contain other kernels too.) If it
is not cube-free, then it is made cube-free by selecting its largest cube factor.
Note that in this context the largest cube is the cube with the most number
of literals. The procedure is repeated on the resulting functions until functions
with no kernels (called the level-0 kernels of f) are found. A major efficiency is
obtained by noting that if the largest cube factor extracted contains an already
selected literal, then the current branch can be terminated, since all the kernels
that can be found by continuing have already been generated. This leads to an
algorithm in which no cokernel is duplicated.

51

Example 55. Consider

f = a · b · c · d + a · b · c · e + a · b · e · f.

In the routine KERNELS cf = a · b. Therefore,

f/cf = c · d + c · e + e · f.

In the next step we call KERNEL1(0, c · d + c · e + e · f).
In KERNEL1 we set R = {c · d + c · e + e · f}. Since the ordering is

lexicographic, we have l1 = a, l2 = b, etc. Note that N = 6. The literals l1 and l2
are in none of the terms of R, and we move to l3 = c. The largest cube dividing
(c · d + c · e + e · f)/c, which is d + e, is 1.

We therefore make a recursive call to KERNEL1(3, (c·d+c·e+e·f)/(c∩1)).
This call returns with {d + e}. In the parent KERNEL1 R is set to {c · d +
c · e + e · f, d + e}. We skip l4 = d and move to l5 = e. The largest cube evenly
dividing (c ·d+c ·e+e ·f)/e, which is c+f , is 1. We next call KERNEL1(5, (c ·
d + c · e + e · f)/(e ∩ 1)). This returns with c + f .

We end with K = R = {c · d + c · e + e · f, d + e, c + f}.

If the largest cube factor extracted contains an already selected literal, then
the current branch can be terminated, since all kernels that can be found by
continuing have already been generated. We illustrate the pruning condition
with the following example.

Example 56. Consider

f = a · b · c · (d + e) · (k + l) + a · f · g + h.

In the first call to KERNEL1, we will generate the kernels corresponding to

f/a = b · c · (d + e) · (k + l) + f · g.

KERNEL1 calls itself recursively to compute

f/(a · b) = c · (d + e) · (k + l).

Since f/(a · b) is not cube-free, the next recursive call to KERNEL1 will use
(d + e) · (k + l). All the kernels of this expression will be generated.

We move up one level in the recursion and compute

f/(a · c) = b · (d + e) · (k + l).

At this stage, we note that f/(a·c) is not cube-free, and the largest cube dividing
this expression evenly is b. However, b is an already selected literal implying that
we have already generated the kernels for the cube-free expression (d+e) ·(k+ l).
We do not have to recursively call KERNEL1 for this branch and can go ahead
to f/(a · d).

52

GFACTOR(f) {
if (number of terms in f is 1)

return(f) ;
g = CHOOSE DIVISOR(f) ;
(h, r) = DIVIDE(f, g) ;
f = GFACTOR(g) · GFACTOR(h) + GFACTOR(r) ;
return(f) ;

}

Fig. 25. Procedure to algebraically factor a function.

It is possible to modify the KERNEL1 procedure to generate only the level-
0 kernels which do not contain other kernels. This modification is based on the
observation that if no kernels of g are found in the for loop, then g is a level-0
kernel.

Factoring Algorithm A function can be algebraically factored using the
generic factoring algorithm shown in Figure 25.

The procedure DIVIDE performs algebraic division and reexpresses f as
g · h + r. The procedure CHOOSE DIVISOR is critical to obtaining a good
factorization. One alternative is to select an arbitrary level-0 kernel as a divisor.
This may not produce the best final result. Another alternative is to select a
kernel which when substituted into the original function maximally reduces the
total number of literals.

Example 57. Given

X = a · c + a · d + a · e + a · g + b · c + b · d + b · e + b · f + c · e + c · f + d · f + d · g,

if, in the procedure CHOOSE DIVISOR, we choose literals in lexicographical
order, we obtain

X = a · (c + d + e + g) + b · (c + d + e + f) + c · (e + f) + d · (f + g).

However, if we choose kernels, we obtain a better factorization

X = (c + d + e) · (a + b) + f · (b + c + d) + g · (a + d) + c · e,

which has fewer literals.

Extraction and Resubstitution Algorithm To identify cube-free expres-
sions that occur in multiple functions {fi}, we do the following.

1. Generate kernels for each fi.
2. Select a pair of kernels k1 ∈ K(fi) and k2 ∈ K(fj) for i 6= j such that k1∩k2

is not a cube. If no such pair exists, stop.
3. Set a new variable v equal k1 ∩ k2.

53

4. Update the associated functions to

fi = v · (fi/(k1 ∩ k2)) + ri,

where ri is the remainder of the division fi/(k1 ∩ k2).

Common cubes are extracted as follows.

1. Select a pair of cubes c1 ∈ fi, c2 ∈ fj for i 6= j such that c1 ∩ c2 consists of
two or more literals. If no such pair exists, stop.

2. Set a new variable u equal c1 ∩ c2.
3. Update each function fi with the new variable u wherever possible in the

network.

Example 58. Consider the factored functions

X = a · b · (c · (d + e) + f + g) + h, and
Y = a · i · (c · (d + e) + f + j) + k.

We have d + e being a level-0 kernel of both functions. Extraction results in

L = d + e,

X = a · b · (c · L + f + g) + h, and
Y = a · i · (c · L + f + j) + k.

Now, we select c·L+f +g as a level-0 kernel of the reexpressed X and c·L+f +j
as a level-0 kernel of reexpressed Y . We obtain

M = c · L + f,

L = d + e,

X = a · b · (M + g) + h, and
Y = a · i · (M + j) + k.

Now X and Y have no kernel intersections that are not cubes. We now extract
common cubes. The cubes a · b ·M in X and a · i ·M in Y have two literals in
common. Extraction produces

N = a ·M,

M = c · L + f,

L = d + e,

X = b · (N + a · g) + h, and
Y = i · (N + a · j) + k.

Because we are continually recomputing level-0 kernels on the reexpressed
functions, it is possible to obtain decompositions corresponding to level-k kernels
for k > 0. If we collapse L into M into N above, we obtain

N = a · (c · (d + e) + f),
X = b · (N + a · g) + h, and
Y = i · (N + a · j) + k,

54

where N contains a level-1 kernel of the original X and Y , since it contains the
level-1 kernel M which contains the level-0 kernel d + e.

Algebraic Resubstitution with Complement Algebraic factorization
and resubstitution can be performed with the complement of a given divisor.

Example 59. Consider

f = a · b + a · c + ¬b · ¬c · d,

where we choose b + c as a level-0 kernel of f and decompose f as

f = a ·X + ¬b · ¬c · d, and
X = b + c.

In many cases it is useful to check if the complement of the new variable is an
algebraic divisor for the function. In this case we can obtain

f = a ·X + ¬X · d, and
X = b + c.

Common Divisors One of the key problems in algebraic optimization is the
identification of good (common) divisors. We have described the use of kernels
for determining a good set of divisors for algebraic factoring, decomposition,
and extraction. The problem of finding a kernel and finding a single-cube or
multiple-cube divisor can be reduced to the combinatorial optimization problem
of rectangle covering [Rudell 1989]. This formulation of the problem is not only
elegant, but it also favors the development of fast and effective algorithms.

Before introducing the method, we give some definitions.
A (combinatorial) rectangle (R, C) of a matrix B, with entries Bij ∈

{0, 1, ∗}, is a subset of rows R and subset of columns C such that Bij ∈ {1, ∗}
for all i ∈ R and j ∈ C. Note that the rows and columns forming the rectangle
do not have to be contiguous.

A rectangle (R1, C1) is said to strictly contain rectangle (R2, C2) if R2 ⊆ R1

and C2 ⊂ C1, or R2 ⊂ R1 and C2 ⊆ C1.
A rectangle (R, C) of B is said to be a prime rectangle if it is not strictly

contained in any other rectangle of B.
The corectangle of a rectangle (R,C) is the pair (R, C ′) where C ′ is the set

of columns not in C.
A set of rectangles {(Rk, Ck)} forms a rectangle cover of matrix B if

Bij = 1 implies that i ∈ Rk and j ∈ Ck for some k. Thus, each 1-entry in
B must be covered by at least one rectangle from the cover. A covering need
not be disjoint, and therefore a 1-entry in B can be covered by more than one
rectangle. The ∗-entries of B are not required to be covered by any rectangle in
the cover and therefore represent don’t-care points in the matrix.

Example 60. In the following matrix

55

1 2 3 4 5
1 1 1 1 0 0
2 1 * 1 0 *
3 0 1 1 0 1
4 1 0 1 1 1

The tuple ({1, 2}, {2, 3}) is a rectangle, but it is not prime as it is contained
by the prime rectangle ({1, 2}, {1, 2, 3}). The tuple ({2, 4}, {1, 3, 5}) is another
prime rectangle while ({2, 3}, {1, 2}) is not a rectangle.

Each rectangle (Rk, Ck) has an associated weight or cost defined by a weight
function w(Rk, Ck). The weight of a rectangle cover is then defined as the sum

∑

k

w(Rk, Ck).

The minimum-weighted rectangle covering problem is that of finding a rect-
angle cover of a matrix with minimum total weight.

Rectangles and Kernels Rectangles provide an alternate way of looking
at the kernels of a function. By representing a Boolean expression as a cube-
literal matrix, where each row corresponds to a cube in the expression and the
columns correspond to all the distinct literals, each prime rectangle is a cokernel
while each corectangle of a prime rectangle is a kernel of the expression.

Example 61. Consider the expression g = a · b · e + a · c · d + b · c · d. It can be
represented using a cube-literal matrix shown below.

a b c d e
a · b · e 1 1 0 0 1
a · c · d 1 0 1 1 0
b · c · d 0 1 1 1 0

Consider the prime rectangle (R,C) = ({2, 3}, {3, 4}) and its corectangle
(R, C ′) = ({2, 3}, {1, 2, 5}). The rectangle obviously corresponds to a cube c · d
that is common to all the product terms corresponding to rows in R. Since the
rectangle is prime, it is the largest cube common to all the product terms in
R. If this cube is extracted from these product terms, the resulting expression
is cube-free and is also a divisor of the original function g. In other words, the
resulting expression is a kernel of g. The expression resulting from the extraction
of the cube corresponds to the corectangle (R, C ′) = ({2, 3}, {1, 2, 5}), which
is a + b.

From the rectangle interpretation of kernels, it is also possible to understand
more clearly the notion of the level of a kernel. A level-0 kernel is the corectangle
of a prime rectangle which has no other rectangle containing its column set, i.e.,
a rectangle of maximal width. The corectangle of a prime rectangle of maximal
height, i.e., one whose row set is not contained in any other rectangle, corresponds
to a kernel of maximal level.

56

Common-Cube Extraction Common-cube extraction is the process of
finding cubes common to two or more expressions and extracting the common
cube to simplify each of the expressions. To optimize the network it is necessary
to find the particular cubes to introduce that provide an optimal decomposition.
The optimal decomposition can be defined as minimizing the total number of
literals summed over all expressions or minimizing the total number of literals
given a bound on the number of levels of logic in the final circuit.

Common cubes can be easily identified using the cube-literal matrix described
above.

Example 62. Consider the equations

F = a · b · c + a · b · d + e · g,

G = a · b · f · g, and
H = b · d + e · f.

The cube-literal matrix for these expressions is

a b c d e f g
F1 a · b · c 1 1 1 0 0 0 0
F2 a · b · d 1 1 0 1 0 0 0
F3 e · g 0 0 0 0 1 0 1
G1 a · b · f · g 1 1 0 0 0 1 1
H1 b · d 0 1 0 1 0 0 0
H2 e · f 0 0 0 0 1 1 0

The rectangle ({1, 2, 4}, {1, 2}) corresponds to the common cube a · b which is
present in functions F and G. If this common cube is extracted as a new function
X, the equations can be rewritten as

F = X · c + X · d + e · g,

G = X · f · g,

H = b · d + e · f, and
X = a · b.

The process of extracting a cube modifies a Boolean network. A new node is
added to the Boolean network with a logic function which is the common-cube
divisor. All functions which the cube divides are replaced with the algebraic divi-
sion of the function by the single cube. In order to extract cubes efficiently in an
iterative algorithm, it is necessary to modify the cube-literal matrix incremen-
tally to reflect the extraction of the cube. The advantage is that the cube-literal
matrix does not have to be recreated as each cube is extracted.

The modifications required to form the new cube-literal matrix are the fol-
lowing. A new row is added to reflect the new single cube expression added to
the network. The entries covered by the rectangle are marked with a ∗ to reflect
that the position has been covered. However, the ∗ allows other rectangles to
cover the same position.

57

The choice of the weight function for a rectangle measures the optimization
goal for cube extraction. To minimize the total number of literals in the network,
the weight of a rectangle is chosen so that the weight of a rectangle cover of the
cube-literal matrix equals the total number of literals in the network after the
new single-cube functions are added to the network. Hence, a minimum weighted
rectangle cover corresponds to the optimal simultaneous extraction of a collection
of cubes. The weight of a rectangle is defined as:

w(R, C) =
{ |C| if |R| = 1
|C|+ |R| if |R| > 1

If there is a single row in the rectangle, then it corresponds to leaving the cube
unchanged in the network. Hence, the weight of the rectangle counts the number
of literals in the cube, which equals the number of columns. When the number of
rows is greater than one, this corresponds to creating a new single cube function
with |C| literals and substituting this new function into |R| other cubes at a cost
of |R| literals.

Note that the above weight does not reflect the savings obtained in terms of
the number of literals by extracting a common cube. Therefore, when searching
for a cube to extract it is useful to define a second function called the value
of the rectangle. For cube extraction, the value of the rectangle should indicate
the savings obtained from extracting the corresponding cube. Since the number
of literals before cube extraction is the number of 1-entries in the rectangle and
the number of literals after cube extraction is the weight of the rectangle, the
value v(R,C) of a rectangle is defined as

v(R, C) = |{(i, j) | Bij = 1, i ∈ R, j ∈ C}| − w(R, C).

Example 63. For the rectangle ({1, 2, 4}, {1, 2}) in the cube-literal matrix of the
previous example, the weight is the number of rows plus the number of columns,
which equals 5. There are 6 positions in this rectangle and each of them has a 1.
Therefore, the value of the rectangle is 6− 5 = 1. Therefore only one literal can
be saved by extracting this rectangle, as illustrated in the previous example.

Kernel Intersection As described previously, intersections among the ker-
nels of a collection of expressions are useful for finding common multiple-cube
divisors between two or more expressions. If two functions share a common
multiple-cube divisor, then the common divisor can be found as the intersection
of a kernel from each of the functions.

The Boolean matrix associated with the optimal kernel intersection problem
is called the cokernel-cube matrix. A row in this matrix corresponds to a
cokernel (and its associated kernel) and each column corresponds to a cube
present in some kernel, called a kernel-cube. The entry Bij is set to 1 if the
kernel associated with row i contains the cube associated with column j. Then
a rectangle of the cokernel-cube matrix identifies an intersection of kernels. The
columns of the rectangle identify the cubes in the subexpression, and the rows
in the rectangle identify the particular functions the subexpression divides.

58

Example 64. Consider the functions

F = a · f + b · f + a · g + c · g + a · d · e + b · d · e + c · d · e,
G = a · f + b · f + a · c · e + b · c · e, and
H = a · d · e + c · d · e.

The kernels and cokernels of each of the functions are shown below.

Function Cokernel Kernel
F a d · e + f + g
F b d · e + f
F d · e a + b + c
F f a + b
F c d · e + g
F g a + c
G a c · e + f
G b c · e + f
G f a + b
G c · e a + b
H d · e a + c

Note that functions F and G are themselves kernels but have not been shown
above for ease of presentation. Let us number the cubes in the original function
from 1 to 13, with a ·f being 1, b ·f being 2, and so on. The cokernel-cube matrix
for this set of kernels is shown below. Note that instead of 1s in the matrix, we
have numbers. These numbers indicate a cube of the original functions formed
by multiplying the cokernel corresponding to a row and the cube corresponding
to a column. For example, in the third row under column a we have the number
5 corresponding to the the fifth cube a · d · e.

a b c ce de f g
F a 0 0 0 0 5 1 3
F b 0 0 0 0 6 2 0
F d · e 5 6 7 0 0 0 0
F f 1 2 0 0 0 0 0
F c 0 0 0 0 7 0 4
F g 3 0 4 0 0 0 0
G a 0 0 0 10 0 8 0
G b 0 0 0 11 0 9 0
G f 8 9 0 0 0 0 0
G c · e 10 11 0 0 0 0 0
H d · e 12 0 13 0 0 0 0

Rectangle ({3, 4, 9, 10}, {1, 2}) identifies the subexpression a + b. This corre-
sponds to the factorization of the equations into the form

F = d · e ·X + f ·X + a · g + c · g + c · d · e,

59

G = c · e ·X + f ·X,

H = a · d · e + c · d · e, and
X = a + b.

Whenever a new subexpression is identified, it is inserted into the Boolean
network. This insertion consists of adding a new node to the network and dividing
the node into each of the expressions which this node divides. A new cokernel-
cube matrix is then created for the modified Boolean network.

To reduce the complexity of extracting each factor from the network it is
desirable to modify the cokernel-cube matrix incrementally as each subexpression
is identified. To do this, new rows are added to the cokernel-cube matrix for each
kernel of the new subexpression. The cubes which are formed by the insertion
of this new factor into the network are then marked as covered. This includes
the points directly contained in the rectangle and other points which are labeled
with the same number. These points are marked ∗ so that other rectangles can
cover them.

The weight of a rectangle of the cokernel-cube matrix is chosen to reflect
the number of literals in the network if the corresponding common subexpres-
sion is inserted into the network. A minimum weighted rectangle cover of the
cokernel-cube matrix then corresponds to a simultaneous selection of a set of
subexpressions to add to the network in order to minimize the total number of
literals.

Let wc
j be the number of literals in the kernel-cube for column j. wc

j is also
called the column weight of column j. If a rectangle (R,C) is used to identify
a subexpression, then a new function is formed from the columns of C. This
new function has

∑
j∈C wc

j literals. Let wr
i be 1 plus the number of literals in

the cokernel corresponding to row i. wr
i is also called the row weight of row r.

The chosen subexpression divides the expressions indicated by the rows R of the
rectangle. After algebraic division by the subexpression, each of these expressions
consists of a sum of the corresponding cokernel cubes multiplying the literal
for the new expression. The number of literals in the affected functions after
the extraction of the subexpression corresponding to the rectangle is

∑
i∈R wr

i .
Therefore, the weight of a rectangle (R,C) in the cokernel-cube matrix is defined
as:

w(R,C) =
∑

i∈R

wr
i +

∑

j∈C

wc
j .

The value of a rectangle measures the difference in the number of literals in
the network if the particular rectangle is selected. The number of literals after
the rectangle is selected is the weight of the rectangle as defined above. Let
Vij be the number of literals in the cube which is covered by position (i, j) of
the cokernel-cube matrix. Then the number of literals before extraction of the
rectangle is simply

∑
i∈R,j∈C Vij . As elements of the cokernel-cube matrix are

covered, their values Vij are set to 0. This includes the elements Vij covered by
the matrix and all other elements which represent the same cube in the network.

60

The value of a rectangle (R, C) of the cokernel-cube matrix is thus defined as

v(R, C) =
∑

i∈R,j∈C

Vij − w(R, C).

Example 65. For the rectangle ({3, 4, 9, 10}, {1, 2}) of the cokernel-cube matrix
in the previous example,

∑
i∈R,j∈C Vij = 3 + 3 + 2 + 2 + 2 + 2 + 3 + 3 = 20,∑

i∈R wr
i = 3 + 2 + 2 + 3 = 10,

∑
j∈C wc

j = 1 + 1 = 2. Therefore, the value
of the rectangle is 20 − 10 − 2 = 8. Eight literals can be saved by extracting
the expression corresponding to the rectangle, as can be verified in the example
above.

Rectangle Covering Since minimum-weighted rectangle covering corre-
sponds to optimum algebraic extraction, it offers a unified approach to the ex-
traction, factorization, and decomposition of Boolean expressions. However, the
minimum-weighted rectangle covering problem is NP-complete [Rudell 1989] and
thus heuristic algorithms are resorted.

There are two types of algorithms for rectangle covering. The first type of
algorithm is greedy and selects one rectangle at a time and modifies the matrix
to reflect the extraction of the rectangle. The advantage of this technique is that
it immediately takes into account common factors between the newly extracted
function and the rest of the logic network. The disadvantage of this approach is
that it selects only one rectangle at a time and does not easily account for the si-
multaneous extraction of multiple rectangles. The second type of algorithm finds
the best collection of factors to extract at each step by solving the minimum-
weighted rectangle covering problem heuristically. First, all the prime rectangles
are generated, and a collection of rectangles are then extracted. Second, the ma-
trix is updated, and the entire process is repeated to find factors between the
new expressions and the remainder of the logic network. A detailed exposition
of this approach can be found in [Rudell 1989].

Boolean Division So far we have primarily described algebraic optimization
methods. Apparently the optimality of algebraic division is limited. For example,
the Boolean expression f = a¬b + ad + ¬ab + bd + ¬ac + ¬bc + cd can not be
factored into f = (a+b+c)(¬a+¬b+d) through algebraic division. It motivates
the development of Boolean division.

To do so, in Boolean resubstitution we would like to reexpress a given
Boolean function f(x) in terms of a given divisor g(x). The computation can be
done by first building the function

h(x, y) = f(x) ∧ (y ≡ g(x)),

where y is a newly introduced Boolean variable representing the output signal
of function g. We then minimize function h with respect to the don’t care set
y 6≡ g(x) while insisting y to be a support variable of h. If h after minimization
is “simpler” than function f , then the resubstitution is successful.

61

Boolean resubstitution can be formalized more generally as functional de-
pendency [Jiang 2004]. We say that a function f(x) functionally depends
on a set of functions g1(x), . . . , gm(x) if there exists some function h such that

f(x) = h(g1(x), . . . , gm(x)).

The necessary and sufficient condition, informally speaking, is that the set {g1, . . . , gm}
of functions must be more distinguishing than f on the domain elements. That
is, for every a, b ∈ Bn with f(a) 6= f(b) there must exist some gi such that
gi(a) 6= gi(b). ROBDD and SAT based computation of functional dependency
can be found in [Jiang 2004] and [Lee 2007] [Mishchenko 2007a], respectively.

To see that Boolean resubstitution is a special case of functional dependency,
for x = (x1, . . . , xn) we set gi(x) = xi for i = 1, . . . , n and gn+1(x) = g(x). Thus
functional dependency reduces to Boolean resubstitution f(x) = h(x, g(x)). In
fact, we can minimize the support variables of h by setting as many gi(x) = 0
(or 1) as possible to remove xi from the support set of h.

3.4 Combinational Complete Flexibility

The aforementioned multi-level logic minimization approaches, such as decom-
position, extraction, factoring, substitution, and elimination, change the struc-
ture of a Boolean network. In contrast, in this section we study how to per-
form logic minimization without changing a multi-level network structure. More
specifically, given a structurally optimized multi-level network, we may further
minimize it by simplifying the logic expression within every node.

To minimize the logic function of a node u in a Boolean network, we would
like to characterize the don’t care conditions of the node u, such that we may
choose the best among the set of valid functions, called permissible functions,
that can implement u without changing the functionality of the entire Boolean
network. Notice that node u imposes a topological constraint on a permissible
function whose inputs are restricted to the fanins of node u in the Boolean
network.

In fact, don’t cares exist pervasively in a multi-level logic netlist because
the Boolean space is largely expanded due to the existence of many interme-
diate variables. Let X be the set of primary input variables and Y the set of
all other variables of a Boolean network. In the B|X|+|Y | Boolean space, only
2|X| valuations are consistent because the valid valuations are determined by
the assignments on the primary input variables. Consequently a lot of invalid
valuations may not appear in the Boolean network and can be exploited for logic
minimization. Moreover the effect of one signal may be conditionally blocked by
other signals and cannot affect the valuations of primary outputs. Based on these
reasons, flexibility may exist to some extent in a multi-level logic network.

The don’t-care conditions arising in multi-level logic can either be specified
by the user or can be an artifact of the network structure. Essentially there are
three types of don’t cares: satisfiability don’t cares (SDC), observability don’t
cares (ODC), and external don’t cares (XDC). Internal don’t-cares arise in multi-
level logic because of the structure of a Boolean network. They are divided into

62

satisfiability and observability don’t-cares. User specified don’t-cares or don’t-
cares derived from considerations other than the network structure are called
external don’t-cares.

In the following discussion, for a Boolean network, let X be the set of primary
input variables, Y the set of all other variables, and Z ⊆ Y the set of primary
output variables. For a node i in a Boolean network, its output variable is denoted
as yi and its local or intermediate input variables, other than primary input
variables, are denoted as Yi; its local function is denoted as fi(X,Yi) and its
global function, in terms of only primary input variables, is denoted as gi(X).
Of course, since we consider only acyclic Boolean networks, fi depends only on
a subset of the Y variables that are not in the transitive fanout cone TFO i of
node i.

External Don’t-Cares External don’t-cares are specified for every primary
output, which indicate under what valuations on the primary input variables X
the value of the output is immaterial.

Satisfiability Don’t-Cares Satisfiability don’t-cares are a result of the ex-
istence of the additional intermediate variables introduced at the intermediate
nodes of a Boolean network. A node with output variable yi and immediate
function fi(X,Yi) of a Boolean network imposes the relation

yi ≡ fi(X,Yi), (14)

which characterizes the set of valuations on variables X and Y that are consistent
under the constraint imposed by node i. Therefore the set of satisfiability don’t
cares of the entire Boolean network is given by

SDC(X, Y) =
∨

i

(yi 6≡ fi(X, Yi)), (15)

which gives all the valuations on variables X and Y that will never occur due to
the network structure and is so called because each of the relations yi ≡ fi(X, Yi)
must be satisfied during the correct operation of the network. In order to optimize
a given node i we are typically interested in the satisfiability don’t cares imposed
by the transitive fanin cone TFI i of node i.

Example 66. Consider the network

y1 = x1 ∧ x2,

y2 = x2 ∨ x3, and
y3 = y1 ⊕ y2 = ¬y1y2 ∨ y1¬y2.

It implements function g3 = (x1 ∧ x2) ⊕ (x2 ∨ x3). We have the option of elim-
inating y1 and y2 or expanding the Boolean space to include these variables. If
we do the latter there are assignments of variables which will never occur. For

63

example, the assignment y1 = 1 and y2 = 0 will never happen. The assignments
that will never occur are expressed by

SDC = (y1 6≡ (x1 ∧ x2)) ∨ (y2 6≡ (x2 ∨ x3)) ∨ (y3 6≡ (y1 ⊕ y2)).

To optimize f3, the satisfiability don’t care set

SDC3 = (y1 6≡ (x1 ∧ x2)) ∨ (y2 6≡ (x2 ∨ x3))

imposed by the fanin nodes 1 and 2 of node 3 is of particular interest. Further-
more, SDC3 in terms of the local input variables of node 3 can be computed
by

∀x1, x2, x3.(y1 6≡ (x1 ∧ x2)) ∨ (y2 6≡ (x2 ∨ x3)) = y1¬y2,

which ensures that the computed SDC in term of variables y1 and y2 is valid
under any valuation on the X variables. Accordingly, we may optimize f3 using
the impossible condition y1¬y2. So f3 = ¬y1y2 is another permissible function
for node 3.

Observability Don’t-Cares Observability don’t-cares occur in a network be-
cause at each node there is a network structure that limits the observability of
the value of the node as seen at primary outputs.

To compute the observability don’t cares ODCi of a node i in a Boolean
network N . We construct a new Boolean network N ′ from N by treating yi as a
(pseudo) primary input and removing node i and other induced nodes without
fanouts from N . The condition that node i is observable at primary output j is
given by

∂gj
′

∂yi
= [gj

′(X, yi = 0) 6≡ gj
′(X, yi = 1)], (16)

where gj
′ is the global function of j in network N ′. That is, Formula (16) gives

the input conditions under which the gj
′ produces different values under different

yi values, i.e., the conditions under which output j is sensitive to yi. Therefore
the conditions under which the value of yi cannot be observed at any output are
characterized by

ODCi(X) =
∧

yj∈Z

(gj
′(X, yi = 0) ≡ gj

′(X, yi = 1))

=
∧

yj∈Z

¬
(

∂gj
′

∂yi

)
.

The above computation assumes the external don’t-care set is empty. For nonempty
XDC, the observability of a node at some primary output should be conditioned
on the external don’t care set of the primary output.

64

Local Don’t-Cares and Node Minimization Note that SDC is in terms of
X and Y variables; XDC and ODC are in terms of X variables. To minimize
a node i, they are not directly useful unless they are expressed in terms of the
local input variables of node i. Don’t cares in terms of the local input variables
are called local don’t cares. Let

DCi(X) =
∧

yk∈Z

XDCk(X) ∨ODCi(X).

Let Di be the local don’t cares of node i. Then it can be computed by

Di(Yi) = ¬(∃X.
∧

yj∈Yi

(yj ≡ gj(X)) ∧ ¬DCi(X)). (17)

It should be noted that we cannot simply project DCi(X) to the local space
spanned by Yi using image computation. Rather we should project the care
set into the local input space and then take the complement. It is because the
former may mistakenly include some care minterm in the local space if there
exists some care minterm and don’t care minterm in the global space mapping
to the same image. On the other hand, notice that, even though SDC is absent
from Formula (17), it has been implicitly computed in the image computation.

With the local don’t cares Di(Yi) of node i, we can minimize the SOP ex-
pression of node i using two-level logic minimization methods. The don’t-care
generation and logic minimization procedure can be summarized as follows.

1. Select a node i in the Boolean network.
2. Compute its local don’t care set Di.
3. Minimize the cover of node i with respect to Di.

Therefore by treating a multi-level netlist as a network of PLAs, two-level min-
imization methods can be applied as a baseline tool for multi-level logic mini-
mization.

The above computation assumes that the rest of the Boolean network is
not changed. One generalization is to consider compatible don’t cares among
multiple nodes simultaneously. Since the don’t care conditions of different nodes
may be conflicting with each other, they must be made compatible. The high
computational complexity however restricts the application of compatible don’t
cares. Often a network is iteratively optimized one node at a time with respect
to its local don’t cares.

Complete Flexibility The characterization of don’t cares, including SDC,
ODC, and XDC, can be unified through the concept of complete flexibility
[Mishchenko 2002]. The complete flexibility (CF) of a node in a Boolean net-
work is a Boolean relation that characterizes the set of all possible input-output
behaviors of the node assuming that the rest of the network is not changed.
The complete flexibility subsumes all the above don’t cares. In addition, it is

65

more powerful in capturing non-determinism, and can be generalized for a non-
deterministic Boolean network [Mishchenko 2006a] where each node represents
some relation allowing one-to-many mappings, not possible for functions.

Consider computing the complete flexibility of node i in a Boolean network
N . Let S(X, Z), given from specification, be the specification relation specifying
all the allowed input-output behavior of the Boolean network. Hence S(X, Z)
subsumes XDC. Let

Ei(X, Yi) =
∧

yj∈Yi

(yj ≡ gj(X))

be the environment relation characterizing the set of consistent assignments on
variables X and Yi. Hence ¬Ei(X,Yi) subsumes the SDC of node i. Let

Ii(X, yi, Z) =
∧

yj∈Z

(yj ≡ gj
′(X, yi))

be the influence relation characterizing the allowed valuations on yi consistent
with those on X and Z, where gj

′ is a primary output function of network N ′,
same as that obtained in the ODC computation. Hence

Ri(X, yi) = ∀Z.[Ii(X, yi, Z) ⇒ S(X, Z)]

subsumes the ODC of node i. The complete flexibility CFi of node i in terms of
the local input variables Yi can be obtained by

CFi(Yi, yi) = ∀X.[Ei(X,Yi) ⇒ Ri(X, yi)]
= ∀X.[Ei(X,Yi) ⇒ ∀Z.[Ii(X, yi, Z) ⇒ S(X,Z)]]
= ∀X, Z.[¬Ei(X, Yi) ∨ ¬Ii(X, yi, Z) ∨ S(X, Z)]
= ∀X, Z.¬[Ei(X, Yi) ∧ Ii(X, yi, Z) ∧ ¬S(X, Z)] (18)

ROBDD Implementation Notice that all of the above computations can be
realized using ROBDDs as operations over Boolean functions.

3.5 Advanced Subjects

AIG-based Multi-Level Logic Minimization In addition to the division-
based transformations, we may approach the multi-level logic minimization prob-
lem with a new view using the AIG representation.

Any Boolean expression can be converted into an AIG in polynomial time
while structural hashing can be applied during the AIG construction. The ob-
tained AIG can then be further simplified through rewriting [Bjesse 2004] [Mishchenko 2006b].
This simplification is in terms of AIG nodes and/or levels, rather than the con-
ventional literal or cube counts.

By grouping the nodes of the AIG into clusters (such that each cluster con-
sists of a set of connected nodes rooted at some node producing its output, and
the fanins of a cluster are outputs of some other clusters), each cluster can be

66

seen as a complex logic node in a Boolean network. Therefore an AIG can be
considered as a data structure that encompasses a set of multi-level logic netlists
subject to different interpretations of cluster boundaries, called cuts. Given an
AIG, the problem of multi-level logic minimization now boils down to the enu-
meration of good cuts, see, e.g., [Ling 2007] [Mishchenko 2007b]. This approach
to logic minimization is taken by the ABC package [ABC 2005].

Sequential Logic Minimization The aforementioned combinational logic
minimization methods can be applied to simplify sequential circuits. For a given
sequential circuit, treating the register outputs as primary inputs and register
inputs as primary outputs results in the combinational methods being applicable
to sequential circuit optimization. The optimization, of course, does not take full
advantage of sequential flexibilities.

We can in fact pursue more progressive logic transformations. State mini-
mization [Kohavi 1978], state encoding [Villa 1997], and logic minimization using
unreachable states or state equivalence [Kohavi 1978] as don’t cares, for example,
are valid transformation methods because they do not change the input-output
behavior of a sequential circuit. Furthermore, it is possible to characterize com-
plete flexibility in the sequential domain [Yevtushenko 2001] [Mishchenko 2005],
similar to the combinational counterpart. In the computation, however, we have
to manipulate finite automata, rather than Boolean formulas.

The above approaches are state-based in the sense that we have to know
some state information for a given sequential circuit. The expensive deriva-
tion of state information limits their applicability to large designs. In contrast,
there are structure-based transformations, which are carried out according to cir-
cuit structures and do not rely on state information. Retiming [Leiserson 1983]
[Leiserson 1991] and resynthesis [Malik 1991], for example, are practical trans-
formation methods for sequential logic minimization.

Although most designs are sequential and practical sequential optimization
techniques are available, logic synthesis flows for the industrial design typi-
cally consist of only combinational optimization methods. This phenomenon
can be attributed to the hardness of sequential circuit equivalence verifica-
tion [Jiang 2006]. From the complexity viewpoint, sequential equivalence check-
ing is PSPACE-complete, which is considered much harder than the coNP-
complete combinational equivalence checking problem. In industrial practice,
combinational equivalence checking is considered “solvable.” (In fact, equiva-
lence checking of industrial circuits with multi-million gates has been demon-
strated [Kuehlmann 1997]. Of course there are special cases of combinational
circuits that are hard to verify, e.g., multipliers with different circuit struc-
tures.) On the contrary, for sequential equivalence checking, there are almost
no good approaches that are general enough and work for the majority of prac-
tical test-cases. Making sequential circuit optimization scalable and verifiable is
an important research subject.

67

4 Technology Mapping

The logic optimization algorithms described thus far operate on Boolean net-
works. The optimization aims at simplifying logic expressions and is indepen-
dent of the target implementation technology. To finish the logic synthesis steps,
we need to implement logic gates with physical layouts. One solution to it is
to perform technology mapping, which is one of the most important tasks
in technology dependent optimization. It takes on a technology-independently
optimized logic netlist, and expresses the netlist using a set of pre-designed and
pre-characterized gate layouts from a technology library. Typically, the goal is
to make optimal use of all of the gates in the library to produce a circuit with
minimum area subject to the delay constraint for critical-path delay no greater
than a target value.

Technology mapping algorithms are constrained by the structure of the logic
netlists produced by technology-independent optimization. It is not the role of
technology mapping to change the structure of the circuit radically, for example,
by finding common sub-expressions between two or more parts of the circuit.
Likewise, it is not the main role of technology mapping to reduce the number of
levels of logic along the critical path. The role of technology mapping is to make
the actual gate choice to implement the logic netlist, for example, choosing the
fastest gates along the critical path and using the most area-efficient combination
of gates off the critical path.

A technology mapping algorithm should ideally achieve several goals. It
should be able to adapt to a variety of different libraries because an algorithm
which depends on characteristics of a particular library is of limited use, and an
algorithm which is geared to a subset of the gates in a library is limited in its op-
timization potential. To practically achieve this goal of adaptability, a user must
be able to provide new gates to the technology mapper without understanding
its detailed operation, and these gates should be used effectively.

4.1 Technology Libraries

The introduction of gate arrays and standard cells brought comparable ben-
efits to IC designers. A gate array is an array of transistors and routing channels
which can be configured into an IC through a metalization process during semi-
conductor fabrication. The metalization phases are used for cell definition, such
as defining a nor cell, and for interconnecting the cells. The electrical character-
istics of cells after metalization have been carefully defined and are embodied in
a databook. Standard cells are combinational and sequential logic gates whose
electrical characteristics have been carefully defined and embodied in a library.
Standard cells are similar to gate arrays in that they are precharacterized in a
databook, but they offer additional degrees of freedom since they go through all
the mask steps of semiconductor processing.

Logic gates of VLSI circuits, especially for ASICs, are usually restricted to
be implemented by selections from a technology library of gates. A gate is a

68

primitive element available in a particular implementation technology; a tech-
nology library is a collection of these gates. A technology library is assumed
to consist of a finite collection of gates. For example, the gates in a static CMOS
gate-array (or standard-cell) design typically include inverters, nand gates, nor
gates, and a variety of complex gates, whereas the gates in an emitter-coupled
logic (ECL) gate-array are typically nor gates and xor gates.

These libraries are typically composed of a few hundred gates and sequential
elements like latches and flip-flops for which highly optimized layouts have been
manually designed for a particular technology. Each gate is assigned a number
of values associated with the different cost functions under which it will be
optimized. For example, each gate is assigned a value called the area of the gate
representing the physical area occupied by the gate. The logic designers are then
restricted to using these gates in their logic circuits.

Example 67. The combinational subset of a very simple library is shown in Fig-
ure 26. The library cell names, associated area costs, their functions, and their
representations in terms of two-input nand (nand2) gates and inverters (inv’s)
are shown.

Given a technology library, the problem of technology mapping is finding
a multi-level circuit equivalent to the given Boolean network such that it is
comprised of gates in the library and has minimum cost, which could be the
area, delay, testability, or power consumption of the resulting circuit.

4.2 Graph Covering

A systematic approach to technology mapping is based on the notion of graph
covering. With this formulation, the technology mapping problem can be viewed
as the optimization problem of finding a minimum cost covering of the subject
graph by choosing from the collection of pattern graphs for all gates in the
library. A cover is a collection of pattern graphs such that every node of the
subject graph is contained in one or more of the pattern graphs. Moreover, one
restriction of any cover is that the inputs of one pattern in the covering must be
the outputs of some other pattern in the covering. Otherwise it would imply that
the inputs of one pattern come from internal nodes in another pattern. As these
internal signal values are not visible outside the pattern, any covering without
such a restriction would not be meaningful.

Example 68. The cover shown in Figure 27(a) is legitimate while that in Fig-
ure 27(b) is not.

In graph covering, the Boolean network to be covered is often represented
in a special form, where each gate is either of a nand2 or an inv. It is termed
the subject graph, or subject DAG. In addition to the Boolean network
to be covered, each library gate is also represented in this special form. Each
realization is termed a pattern graph, or pattern DAG. Note that a gate
may have more than one associated pattern DAG.

69

Gate Cost Symbol Pattern DAG

INV

NAND2

NAND3

NAND4

AOI21

AOI22

XOR

2

3

4

5

4

5

4

Fig. 26. Gate library.

Example 69. In Figure 26, the pattern DAGs of the library cells are shown. The
nand4 gate has more than one pattern DAGs.

Example 70. Figure 28(a) shows a subject DAG example.

The optimization problem of technology mapping can now be stated as: Find
a minimum cost covering of the subject DAG by the pattern DAGs.

4.3 Choice of Atomic Pattern Set

The choice of which atomic patterns to use for the subject and pattern graphs
is an important consideration for graph covering algorithms. This decision influ-
ences the range of solutions for the covering problem and the number of patterns
needed.

70

(a) (b)

AOI21

AOI21

NAND2

AOI21

INVNAND3

Fig. 27. Graph coverings: (a) legal and (b) illegal.

(a) (b)

Fig. 28. (a) Subject DAG example; (b) subject DAG decomposed into a forest of trees.

Why subject and pattern graphs are in terms of nand2 and inv is motivated
by the following observation. Adding additional functions such as a nor2 gate,
an and2 gate, or an or2 gate cannot provide higher-quality solutions; likewise,
adding nand, nor, and, or or gates with more than two inputs cannot provide
higher-quality solutions. This observation is based on the fact that given a cover
for a subject graph using a larger set of functions, it is possible to show an
equivalent cover where each function is replaced by an equivalent set of nand2
gates and inverters.

Restricting ourselves to only a nand2 gate and inverter does come at the price
of increasing the number of patterns needed to represent some logic functions, as
can be seen from the following example. Experience has shown that the increase
in the number of patterns (and hence the increase in the memory and time
required for technology mapping) is not significant.

Example 71. The logic function

f = a · b · c · d + e · f · g · h + i · j · k · l + m · n · o · p

71

requires only one pattern corresponding to a tree of five nand4 gates. However,
representing all patterns for this same function using nand2 gates and inv’s
requires 18 patterns.

4.4 Tree Covering Approximation

One technique (following the paradigm established in the domain of code gen-
eration [Aho 1976]) for solving the graph covering problem is to partition the
subject graph into a forest of trees and solve the covering problem on each of the
trees. A tree is a DAG where every node (including primary inputs) has a single
fanout. The tree necessarily has a single sink (primary output) called the root
and the sources (primary inputs) of the tree are called the leaves of the tree.

Example 72. The subject DAG of Figure 28(a) can be partitioned into a forest
of trees as shown in Figure 28(b).

The motivation for looking at the problem of tree covering is the existence of an
efficient algorithm for the optimal tree covering problem [Keutzer 1987].

The application of the tree covering to technology mapping proceeds as fol-
lows. The first step is to convert the Boolean network into the nand2-inv form,
that is, every logic gate after the conversion is of type either nand2 or inv. This
subject DAG is then partitioned into a forest of trees by cutting the graph at
each multiple-fanout stem. The resulting trees are optimally covered one tree
at a time. Finding the optimum covering of a tree is done by generating the
complete set of matches for each node in the tree (that is, the set of tree pat-
terns which are candidates for covering a particular node) and then selecting
the optimum match from among the candidates using a dynamic programming
algorithm.

Example 73. Consider a Boolean network given by

Z = X + Y + h,

Y = W · d,

X = e · f · g, and
W = a · b + c.

A nand2-inv representation of the Boolean network is given in Figure 29(a).
The trivial covering of the subject DAG by pattern DAGs from the library of
Figure 26 is also illustrated in Figure 29(a). The cost of this trivial covering
corresponds to the cost for seven nand2 gates and five inv’s, giving a cost of
31. A substantially better covering that exploits the larger gates in the library
is shown in Figure 29(b). The cost of this covering is the cost of two inv’s, two
nand2’s, one nand3, and one nand4 for a total cost of 19. A covering which
utilizes an aoi gate with a lower cost of 17 is shown in Figure 29(c).

72

(a)

(b)

(c)

Fig. 29. Tree coverings: (a) trivial covering; (b) better covering; (c) optimum covering.

73

4.5 Optimal Tree Covering

A solution to establishing the initial set of candidate matches for a tree is to
attempt to match each pattern at each node in the tree. If there are p patterns
in the pattern set and n nodes in the subject graph, then this approach has
complexity O(n · p).

Having generated a set of candidate matches for each node in the subject
graph, an optimal tree cover must then be selected from among the candidates.
Dynamic programming can be used for this purpose. Dynamic programming is
a general technique for algorithm design which can be applied when the solution
to a problem can be built from the solutions of a number of sub-problems.

Consider the problem of finding a minimum area cover for a subject tree T .
A scalar cost is assigned to each tree pattern, and the cost for a cover is the
sum of the costs for each pattern in the cover. The key observation is that the
minimum-area cover for a tree T can be derived from the minimum-area covers
for every node below the root of T . This is the principle of optimality for tree
covering and is used as follows to find an optimal cover for T . For every match
at the root of the tree the cost of an optimal cover containing that match equals
the sum of the cost of the corresponding gate and the sum of the costs of the
optimal covers for the nodes which are inputs to the match.2 Note that the
optimal covers for each input to the match at the root can be computed once
and stored; it is not necessary to recompute the optimal cover for each input of
each match.

Because each node in the tree is visited only once, the complexity of this
algorithm is proportional to the number of nodes in the subject tree times the
maximum number of matches at any node in the subject tree. The maximum
number of matches is a function of the library size and is therefore a constant
independent of the subject tree size. As a result the covering algorithm has linear
complexity in the size of the subject tree, and the memory requirements are also
linear in the size of the subject tree.

Example 74. We illustrate the optimum covering algorithm on the tree of Fig-
ure 30. We walk from the primary inputs to the primary output of the tree and
determine the best match at each gate output. At each gate output, the match
selected for the sub-tree whose root is the gate output has been shown along with
the total cost of the optimal cover for this sub-tree. For the first-level gates, only
nand2 and inv matches are possible. At the output of gate 2 the only match is
with a nand2, and therefore the total cost is 8. At the output of gate 12 two
matches are possible, with a nand2 or with a nand3. The former will result in
a cost of 8, so we pick the latter which has a cost of 4. At the output of gate 4
the best match corresponds to an aoi gate with a cost of 9. The final cost at the
primary output is 17. The optimum covering corresponds to that of Figure 29(c).

2 Recall the rules for legal coverings stated in Section 4.2.

74

NAND2
(3) NAND2

(8) NAND2
(13)

INV (2)

INV (2)

NAND2
(3) INV (5) NAND3

(4)

AOI21
(9) NAND2

(16)
INV
(18) NAND3

(17)

1

2
3 4

5 6

7

8

9

10

11

12

Fig. 30. Dynamic programming for optimum tree covering.

4.6 Improvement by Inverter-Pair Insertion

A simple way to improve the quality of circuits produced by the tree covering
algorithm is by inserting inverter pairs. Redundant inverters are added to each
tree to improve the number of patterns which can match at each node. This
leads to an examination of more possible covers for each tree, leading directly
to an improvement in the optimization quality.

The technique works as follows. Each edge in the subject tree and each edge in
a pattern which connects two nand gates is replaced with a pair of inverters. An
extra pattern consisting of a pair of inverters is added to the matching patterns.
This extra pattern is given zero area cost and zero delay cost. The tree covering
algorithm is then applied unmodified.

Because of the optimality of the tree covering algorithm adding these extra
inverters cannot lead to a cover with a greater cost. Each pair of inverters can be
covered by the inverter-pair pattern, which leads to the solution which existed
before the inverters were added. However, the advantage is that the tree covering
algorithm is able to make the optimal choice between covering the extra inverters
with the inverter-pair pattern at no cost or splitting the inverters between two
patterns if this leads to a cover with less cost. The only disadvantage is that
the number of nodes in the subject tree and the pattern trees has increased.
The increase in the number of nodes is bounded by a factor of three (two extra
inverter nodes for each node in the subject tree); however, the actual increase
is typically less because redundant inverters are added only at the output of a
nand gate and not at the output of each inverter in the subject tree.

4.7 Extension to Non-Tree Patterns

Some gates in a technology library cannot be represented in a tree form. Common
examples are the xor gate shown at the bottom of Figure 26, a two-to-one

75

multiplexor, and a three-input majority gate (logic function f = a ·b+a ·c+b ·c).
However, a simple extension allows these patterns to be included.

A leaf-DAG is a DAG where the only nodes with fanout greater than one are
the primary inputs. Patterns which are trees, and patterns which are leaf-DAGs
can be used directly by the tree covering algorithm. Hence the leaf-DAG patterns
may include the xor pattern shown in Figure 26. Note, however, that because
of the multiple-fanout of one of these matches, the xor gate must match at the
leaves of the tree.

4.8 Advanced Subjects

The success of the graph covering formulation has helped formulate the logic
synthesis and optimization problem as an integration of technology-independent
and technology-dependent portions. Graph covering based technology mapping
is able to address a morass of technology specific issues, such as technology
libraries and their area and timing characterization, which would significantly
complicate higher level optimizations. The major limitation of graph covering,
however, is its dependence on the structure of the given subject graph. This
limitation was overcome in [Lehman 1997], where logic decomposition during
technology mapping is proposed as a way of bridging the gap between technology-
independent optimization and technology mapping. The approach was further
developed in [Chatterjee 2006].

In our discussion, we focused on standard cell technology mapping. As the
mapping algorithms heavily depend on the target implementation technology,
different design styles may need different technology mapping methods. For in-
stance, technology mapping for FPGAs [Scholl 2001], and even for standard cells
[Kravets 2001], can be formulated very differently.

76

5 Timing Analysis

After correct logical functioning, the speed of an integrated circuit is one of the
most important design characteristics. Timing optimization is thus an important
aspect of logic synthesis. Any optimization system is only as good as the models
that guide it, and as a result good timing optimization is entirely dependent on
accurate timing analysis. For these reasons we spend a good deal of attention
on techniques for accurate timing estimation of synchronous sequential circuits.

Accurate timing estimation relies on component delay calculation and
circuit delay calculation. Component delay calculation is the method used for
actually calculating the delay of individual components, such as gates and wires,
within a circuit. In calculating gate delays, timing data such as the inertial and
propagation delays of gates are typically gathered from extensive transistor-
level and/or device-level simulation of the circuit components. In calculating
wire delays, timing data arising from the parasitic capacitances and resistances
of wires can be estimated through simulation or can be back-annotated from the
final circuit layout. In our discussion we are mainly concerned about gate delays
as wire delays can be embedded into the gate delays by the delay model to be
introduced.

If we view a circuit as a graph, then the method used for delay calculation at
the vertices of the graph is gate delay calculation while circuit delay calculation
is the model used for calculating delay for the entire graph.

Below we present a simple gate delay model and then focus on the topic of
circuit delay calculation, which is the most challenging and relevant problem in
timing estimation for the developer of a logic optimization system.

Gate Delay Model A popular (CMOS) gate delay model is a simple linear
model [Sutherland 1999]: The delay Td of a gate g is given by the equation

Td = Tp + Te × Cout

Cin
, (19)

where Tp is the parasitic delay of the gate, Te is the logical effort, Cin is the
input capacitance, and Cout is the capacitive load at the gate output. It does not
consider more refined details such as the effect of slow rising or falling transitions
on the transistors associated with this gate. In this model, parameters Tp, Te,
and Cin are fixed constants for a standard cell whereas Cout varies depending
on the fanout load of a gate (which may include wiring capacitances).

Gate delay calculations are performed extensively in timing analysis and logic
optimization, and as a result tradeoffs have evolved between the accuracy of a
model and the runtime of calculation. Although Equation (19) is a simple ap-
proximation, it is good enough for logic optimization purposes. More accurate
nonlinear models are possible and often stored as look-up tables. Delay calcula-
tion often depends on the circuit implementation method.

Circuit Delay Calculation We explain how to use gate delay calculation
to compute the delay of an entire synchronous circuit. A simple implementation
model of a clocked, or synchronous, sequential circuit is shown in Figure 31,

77

Combinational Logic

clock

inputs outputs

current state next state

Fig. 31. Clocked model for a sequential circuit.

where a clocked memory element (register), e.g., an edge-triggered flip-flop, is
used. At each active clock edge the next state is loaded into the flip-flops and
becomes the current state.

Registers have a propagation delay associated with the interval between a
clock edge and valid outputs. In order to guarantee that an input is not sampled
when invalid, a period of validity extending slightly before and after the active
edge is specified. Specification of a setup time ts and hold time th dictates
that the register inputs must be valid and stable during a period that begins ts
before the active clock edge and ends th after the edge.

Given a sufficiently long clock period and appropriate constraints on the tim-
ing of transitions on the inputs, the inputs to the flip-flops can be guaranteed to
be stable at each active clock edge, ensuring correct operation. Correct operation
depends on the assumptions that:

1. The clock period is longer than the sum of the maximum propagation delay
through the combinational logic, the setup time of the registers, and the
maximum propagation delay through the registers.

2. The circuit’s input signals are stable and valid for a sufficient period sur-
rounding each active clock edge to accommodate both the maximum prop-
agation delay through the combinational logic and the setup time of the
registers.

3. The minimum propagation delay through the combinational logic exceeds
the hold time requirement of the registers.

The most important constraint above is the first one. The length of the clock
period of a sequential circuit is directly related to the maximum propagation
delay through the combinational logic of the circuit.

Given that the delay calculation of the sequential circuit primarily depends
on the delay of the combinational logic, we will focus on the problem of correctly

78

computing the maximum propagation delay of a multi-level combinational cir-
cuit. We will show in the next section how to optimize a circuit so as to minimize
the delay through the circuit.

For some time the most common approach to estimating and validating the
delay of a synchronous circuit was timing simulation. The approach is di-
minishing in utility because of the incompleteness and excessiveness of input
stimuli required to accurately determine circuit performance. Instead, timing
verification is being used for validating the timing of circuits, and we will focus
exclusively on using timing verification for estimating and validating the timing
of a synchronous circuit.

Terminology Before delving into timing analysis, we introduce terminol-
ogy that will allow us to discuss timing issues. A combinational circuit can be
viewed as a DAG G = (V, E) where vertices or nodes V in the graph correspond
to gates in the circuit and edges E correspond to connections in the circuit.
Primary inputs are sources ⊆ V while primary outputs are sinks ⊆ V . A
path in a combinational circuit is an alternating sequence of vertices and edges,
{v0, e0, ..., vn, en, vn+1}, where edge ei = (vi, vi+1), 1 ≤ i ≤ n, connects the out-
put of vertex vi to an input of vertex vi+1. For 1 ≤ i ≤ n, vi is a gate gi, v0 is a
primary input, and vn+1 is a primary output. Each ei is a wire (or a two-terminal
net) in the actual circuit.

Let p = {v0, e0, ..., vn, en, vn+1} be a path. The inputs of vi other than ei−1

are referred to as the side-inputs to p, that is, the set of signals not on p but
feeding to the gates on p.

Each gate gi (or wire ei) is assumed to have a delay which can be a fixed
quantity under the fixed delay model or can vary in a given range under the
monotone speedup delay model.

A controlling value at a gate input is the value that determines the value
at the output of the gate independent of the other inputs. For example, 0 is a
controlling value for an and gate. A non-controlling value at a gate input
is the value which is not a controlling value for the gate. For example, 1 is a
non-controlling value for an and gate. We say that a gate g has the controlled
value if one of its inputs has a controlling value; otherwise, we say that g has
the non-controlled value.

Path sensitization studies the conditions under which signals can propa-
gate from the primary inputs to the primary outputs of a combinational circuit.
The conditions depend on the delay models and modes of operation assumed for
the circuit.

We will precisely characterize the delay of a multi-level logic circuit, and see
that the delay of a multi-level circuit depends on various assumptions relating to
the mode of operation of the circuit and the delay model chosen. We begin with
the simplest topological timing analysis, which is conservative but sound. The
complexity of the analysis is linear in the circuit size. We will then introduce
functional timing analysis, which is accurate at the cost of computation
overhead.

79

5.1 Topological Timing Analysis

Most timing analyzers fall into the topological timing analysis category, where
the topologically longest path in the circuit is assumed to dictate the critical
delay of the circuit. We describe a topological timing analyzer that determines
the longest path in the circuit without regard to the Boolean functionality of
the circuit.

Circuit speed is measured by most optimization systems using a fixed delay
model, where each gate and wire in the network has a given and fixed delay.
Typically, a worst-case design methodology is followed, where the given delay
for the gate is an upper bound on the actual delay of the fabricated gate.

The arrival time of a signal s, denoted As, is the time at which the signal
settles to its steady state value. For a given circuit, using the arrival times of the
primary inputs we can compute the arrival time of every signal in the circuit.
For a gate in the circuit, the arrival time of the gate output equals the maximum
among the arrival times of the gate inputs plus the gate delay. That is, the arrival
time of the output signal o of a gate g with gate delay d can be computed by

Ao = max
i∈FI(g)

{Ai}+ d,

where FI(g) denotes the set of fanin signals of g.
The required time of a signal s, denoted Rs, is the time at which the signal

is required to be stable. For a given circuit, using the required times of the
primary outputs we can compute the required time of every signal in the circuit.
For a gate in the circuit, the required time of any input of the gate equals the
minimum among the required times of the gate outputs minus the gate delay.
That is, the required time of any input signal i of a gate g with gate delay d can
be computed by

Ri = min
o∈FO(g)

{Ro} − d,

where FO(g) denotes the set of fanout signals of g.
The slack time of a signal s, denoted Ss, is the difference between its re-

quired time and arrival time, i.e.,

Ss = Rs −As.

The slack value of a signal measures its looseness in terms of timing criticality.
Negative slack values indicate timing violation.

Starting with the primary input arrival times, we can compute the arrival
time for every signal in a topological order from primary inputs to primary
outputs. Similarly, using the primary output required times, we can compute
the required times for every signal in a reverse topological order from primary
outputs to primary inputs. Thus the slack at each node can be obtained as well.

Example 75. The arrival time, required time, and slack of each signal in Figure
32 are shown as a 3-tuple. We are given the arrival times for the four primary
inputs and the required time for the output. The delay of each node is indicated

80

2

1 2

2

(0 3 3) (1 3 2) (1 2 1) (0 2 2)

(2 4 2)

(5 6 1)

(7 8 1)

(3 4 1)

a b c d

e

f

g

h

Fig. 32. Topological timing analysis.

within the node. The arrival time of signal e is the maximum of the arrival times
of primary inputs a and b (= 1) plus the delay of the node (= 1), equaling 2.
Similarly the arrival times of the other signals can be calculated. On the other
hand, given a required time of 8 at output h, the required times for signals f
and g can be computed as 8 minus the delay of the output node (= 2), equaling
6. However, given the required time of 6 at f, the required times at signals e
and g are calculated to be 4. The required time for signal g is the minimum
of the computed required times, namely 4. This is intuitive because, if g does
not stabilize by time 4, f will not stabilize by time 6 and the output h will
not stabilize by time 8. Similarly, the required times at the other signals can be
calculated.

The topologically longest path of a circuit is a path where each signal has
the minimum slack. Static timing analyzers assume that the critical delay of
the circuit is the delay of the topologically longest path. Under this (pessimistic)
assumption the longest path is also called the critical path.

5.2 Functional Timing Analysis

The problem with topological analysis of a circuit is that not all critical paths
in a circuit need be responsible for the circuit delay. Critical paths in a circuit
can be false, i.e., not responsible for the delay of a circuit. The critical delay
of a circuit is defined as the delay of the longest true path in the circuit. Thus,
if the topologically longest path in a circuit is false, then the critical delay of
the circuit will be less than the delay of the longest path. The critical delay of
a combinational logic circuit is dependent on not only the topological intercon-
nection of gates and wires, but also the Boolean functionality of each node in

81

mux
1

0

1

2

3

4

5

6
7

8

9

10

11

c0

a0
b0

a1
b1

s0

s1

c2

p0

p1

Fig. 33. 2-bit carry-bypass adder.

the circuit. Topological analysis only gives a conservative upper bound on the
circuit delay.

Example 76. Assume the fixed delay model, and consider the carry bypass circuit
of Figure 33. The circuit uses a conventional ripple-carry adder (the output of
gate 11 is the ripple-carry output) with an extra and gate (gate 10) and an
additional multiplexor. If the propagate signals p0 and p1 (the outputs of gates
1 and 3, respectively) are high, then the carry-out of the block c2 is equal to the
carry-in of the block c0. Otherwise it is equal to the output of the ripple-carry
adder. The multiplexor thus allows the carry to skip the ripple-carry chain when
all the propagate bits are high. A carry-bypass adder of arbitrary size can be
constructed by cascading a set of individual carry-bypass adder blocks, such as
those of Figure 33.

Assume the primary input c0 arrives at time t = 5 and all the other primary
inputs arrive at time t = 0. Let us assign a gate delay of 1 for and and or gates
and gate delays of 2 for the xor gates and the multiplexor. The longest path
including the late arriving input in the circuit is the path shown in bold, call it
P , from c0 to c2 through gates 6, 7, 9, 11, and the multiplexor (the delay of
this path is 11). A transition can never propagate down this path to the output
because in order for that to happen the propagate signals have to be high, in
which case the transition propagates along the bypass path from c0 through the
multiplexor to the output. This path is false since it cannot be responsible for
the delay of the circuit.

For this circuit, the path that determines the worst-case delay of c2 is the
path from a0 to c2 through gates 1, 6, 7, 9, 11, and the multiplexor. The output
of this critical path is available after 8 gate delays. The critical delay of the
circuit is 8 and is less than the longest path delay of 11.

82

Delay Models and Modes of Operation Whether a path is a true or false
delay path closely depends on the delay model and the mode of operation
of a circuit.

In the commonly used fixed delay model, the delay of a gate is assumed
to be a fixed number d, which is typically an upper bound on the delay of
the component in the fabricated circuit. In contrast, the monotone speedup
delay model takes into account the fact that the delay of each gate can vary.
It specifies the delays as an interval [0, d], with the lower bound 0 and upper
bound d on the actual delay.

Consider the operation of a circuit over the period of application of two
consecutive input vectors v1 and v2. In the transition mode of operation, the
circuit nodes are assumed to be ideal capacitors and retain their values set by v1

until v2 forces the voltage to change. Thus, the timing response for v2 is also a
function of v1 (and possibly other previously applied vectors). In contrast, in the
floating mode of operation the nodes are not assumed to be ideal capacitors,
and hence their state is unknown until it is set by v2. Thus, the timing behavior
for v2 is independent of v1.

Transition Mode and Monotone Speedup In our analysis of the carry-
bypass adder we assumed fixed delays for the different gates in the circuit and
applied a vector pair to the primary inputs. It was clear that an event (a signal
transition, either 0 → 1 or 1 → 0) could not propagate down the longest path
in the circuit. A precise characterization is that the path cannot be sensitized,
and thus false, under the transition mode of operation and under (the given)
fixed gate delays. Varying the gate delays in Figure 33 does not change the
sensitizability of the path shown in bold.

False path analysis under the fixed delay model and the transition mode of
operation, however, may be problematic as seen from the following example.

Example 77. Consider the circuit of Figure 34(a), taken from [McGeer 1989].
The delays of each of the gates are given inside the gates. In order to determine
the critical delay of the circuit we will have to simulate the two vector pairs
corresponding to a, making a 0 → 1 transition and a 1 → 0 transition. Applying
0 → 1 and 1 → 0 transitions on a does not change the output f from 0. Thus,
one can conclude that the circuit has critical delay 0 under the transition mode
of operation for the given fixed gate delays.

Now consider the circuit of Figure 34(b) which is identical to the circuit of
Figure 34(a) except that the buffer at the input to the nor gate has been sped
up from 2 to 0. We might expect that speeding up a gate in a circuit would not
increase the critical delay of a circuit. However, for the 0 → 1 transition on a,
the output f switches both at time 5 and time 6, and the critical delay of the
circuit is 6.

This example shows that a sensitization condition based on transition mode
and fixed gate delays is unacceptable in the worst-case design methodology,
where we are given the upper bounds on the gate delays and are required to
report the (worst-case) critical path in the circuit. Unfortunately, if we use only

83

2

a f2

2

2

2

1

1
0

2

1

3

2

a f2

2

2

0

1

1
0

2

1

1

2 2 4

3 4

5 6

(a)

(b)

Fig. 34. Transition mode with fixed delays.

the upper bounds of gate delays under the transition mode of operation, an
erroneous critical delay may be computed.

To obtain a useful sensitization condition, one strategy is to use the transition
mode of operation and monotone speedup as the following example illustrates.

Example 78. Consider the circuit of Figure 35, which is identical to the circuit
of Figure 34(a), except that each gate delay can vary from 0 to its given upper
bound. As before, in order to determine the critical delay of the circuit, we
will have to simulate the two vector pairs corresponding to a making a 0 → 1
transition and a 1 → 0 transition. However, the process of simulating the circuit
is much more complicated since the transitions at the internal gates may occur at
varying times. In the figure, the possible combinations of waveforms that appear
at the outputs of each gate are given for the 0 → 1 transition on a. For instance,
the nor gate can either stay at 0 or make a 0 → 1 → 0 transition, where the
transitions can occur between [0, 3] and [0, 4], respectively. In order to determine
the critical delay of the circuit, we scan all the possible waveforms at output
f and find the time at which the last transition occurs over all the waveforms.
This analysis provides us with a critical delay of 6.

84

2

a f2

2

2

2

1

1
0

0-2

0-1

0-1

0-2 0-2 0-4

0-3 0-4

0-5 0-6

Fig. 35. Transition mode with monotone speedup.

Timing analysis for a worst-case design methodology can use the above strat-
egy of monotone speedup delay simulation under the transition mode of opera-
tion. The strategy however has several disadvantages. Firstly, the search space is
22n where n is the number of primary inputs to the circuit, since we may have to
simulate each possible vector pair. Secondly, monotone speedup delay simulation
is significantly more complicated than fixed delay simulation. These difficulties
have motivated delay computation under the floating mode of operation.

Floating Mode and Monotone Speedup Under floating mode, the delay
is determined by a single vector. As compared to transition mode, critical delay
under floating mode is significantly easier to compute for the fixed or monotone
speedup delay model because large sets of possible waveforms do not need to
be stored at each gate. Single-vector analysis and floating mode operation, by
definition, make pessimistic assumptions regarding the previous state of nodes
in the circuit. The assumptions made in floating mode operation make the fixed
delay model and the monotone speedup delay model equivalent.3

3 To understand this effect, consider a circuit C with fixed values on its gate delays.
Let p be a path through C and v be a vector applied to C. In order to determine
if p is responsible for the delay of C on v, we inspect the side-inputs of p. At any
gate g on p, the side-inputs have to be at non-controlling values when the controlling
or non-controlling value propagates along p through g. If the value at a side-input
i to g is non-controlling on v, monotone speedup (under the transition or floating
mode) allows us to disregard the time that the non-controlling value arrives, since
we can always assume that it arrives before the value along p. Let the delay of
all paths from the primary inputs to i be greater than the delay of the sub-path
corresponding to p ending at g. Under monotone speedup, we can speed up all the
paths to i, ensuring that the non-controlling value arrives in time. Under floating
mode with fixed delays we cannot change the delays of the paths to i, but we can
assume that v1, the vector applied before v, was providing a non-controlling value!
We do not have to wait for v to provide the non-controlling value. In either case, the
arrival time of non-controlling values on side-inputs does not matter.

85

dt1

t2

MAX{t1,t2}+d
dt1

t2

MAX{t1,t2}+d

(a)

dt1

t2

MIN{t1,t2}+d
dt1

t2

MIN{t1,t2}+d

(b)

dt1

t2

t1+d
dt1

t2

t2+d

(c)

t2+d

Fig. 36. Fundamental assumptions made in floating mode operation.

True Floating Mode Delay The necessary and sufficient condition for a path
to be responsible for circuit delay under the floating mode of operation is a
delay-dependent condition.

The fundamental assumptions made in single-vector delay-dependent analy-
sis are illustrated in Figure 36. Consider the and gate of Figure 36(a). Assume
that the and gate has delay d and is embedded in a larger circuit, and a vec-
tor pair 〈v1, v2〉 is applied to the circuit inputs, resulting in a rising transition
occurring at time t1 on the first input to the and gate and a rising transition
at time t2 on the second input. The output of the gate rises at a time given by
max{t1, t2} + d. The abstraction under floating mode of operation only shows
the value of v2. In this case a 1 arrives at the first and second inputs to the
and gate at times t1 and t2, respectively, and a 1 appears at the output at time
max{t1, t2}+d. Similarly, in Figure 36(b) two falling transitions at the and gate
inputs result in a falling transition at the output at a time that is the minimum
of the input arrival times plus the delay of the gate.

Now consider Figure 36(c), where a rising transition occurs at time t1 on
the first input to the and gate and a falling transition occurs at time t2 on
the second input. Depending on the relationship between t1 and t2 the output
will either stay at 0 (for t1 ≥ t2) or glitch to a 1 (for t1 < t2). It is possible
to accurately determine whether the and gate output is going to glitch or not
if a simulation is carried out to determine the range of values that t1 and t2
can have on 〈v1, v2〉. (This was illustrated in Figure 35.) However, under the
floating mode of operation we only have the vector v2. The 1 at the first input

86

to the and gate arrives at time t1, and the 0 at the second input arrives at
time t2. The output of the and on v2 obviously settles to 0 on v2, but at what
time does it settle? If t1 ≥ t2, then the output of the gate is always 0, and the
0 effectively arrives at time 0. If t1 < t2, then the gate output becomes 0 at
t2 + d. In order not to underestimate the critical delay of a circuit all single-
vector sensitization conditions have to assume that the 1 (the non-controlling
value for the and gate) arrives before the 0 (the controlling value for the and
gate), i.e., that t1 < t2. Under the floating mode of operation this corresponds
to assuming that the values on the previous vector v1 were non-controlling. (The
above assumption also captures the essence of transition mode delay under the
monotone speedup delay model. Given that the and gate is embedded in a
circuit, under the monotone speedup model the sub-circuit that is driving the
first input can be sped up to cause the rising transition to arrive before the
falling transition.)

The rules in Figure 36 represent a timed calculus for single-vector simulation
with delay values that can be used to determine the correct floating mode delay
of a circuit under an applied vector v2 (assuming pessimistic unknown values for
v1) and the paths that are responsible for the delay under v2. The rules can be
generalized as follows:

1. If the gate output is at a controlling value, pick the minimum among the
delays of the controlling values at the gate inputs. (There has to be at least
one input with a controlling value. The non-controlling values are ignored.)
Add the gate delay to the chosen value to obtain the delay at the gate output.

2. If the gate output is at a non-controlling value, pick the maximum of all the
delays at the gate inputs. (All the gate inputs have to be at non-controlling
values.) Add the gate delay to the chosen value to obtain the delay at the
gate output.

To determine whether a path is responsible for floating mode delay under a
vector v2, we simulate v2 on the circuit using the timed calculus. As shown in
[Chen 1991], a path is responsible for the floating mode delay of a circuit on v2

if and only if for each gate along the path:

1. If the gate output is at a controlling value, then the input to the gate corre-
sponding to the path has to be at a controlling value and furthermore has to
have a delay no greater than the delays of the other inputs with controlling
values.

2. If the gate output is at a non-controlling value, then the input to the gate
corresponding to the path has to have a delay no smaller than the delays at
the other inputs.

Let us apply the above conditions to determine the delay of the following
circuits.

Example 79. Consider the circuit of Figure 34(a) reproduced in Figure 37. Ap-
plying the vector a = 1 sensitizes the path of length 6 shown in bold, illustrating
that the sensitization condition takes into account monotone speedup (unlike

87

2

a f2

2

2

2

1

1

1(0)

1(2)

0(1)
0(3)

0(2)

0(4)

0(4)

0(6)

Fig. 37. First example of floating mode delay computation on a circuit.

1

a

g1

1

0(0)

0(0)

0(2)

0(3)

1

b

c

d

e

f

1(1)

0(1)

0(0)

Fig. 38. Second example of floating mode delay computation on a circuit.

transition mode fixed delay simulation). Each wire has both a logical value and
a delay value (in parentheses) under the applied vector.

Example 80. Consider the circuit of Figure 38. Applying the vector (a, b, c) =
(0, 0, 0) gives a floating mode delay of 3. The paths {a, d, f, g} and {b, d, f, g}
can be seen to be responsible for the delay of the circuit.

Example 81. Consider the circuit of Figure 39. Applying a = 0 and a = 1 results
in a floating mode delay of 5.

We presented informal arguments justifying the single-vector abstractions
of Figure 36 to show that the derived sensitization condition is necessary and
sufficient for a path to be responsible for the delay of the circuit under the floating
mode of operation. For a topologically oriented formal proof of the necessity and
sufficiency of the derived condition, see [Chen 1991].

5.3 Advanced Subjects

There has been significant research done in an effort to arrive at the correct
sensitization criterion in the late 1980s and early 1990s. A detailed history may

88

0a 0

1

2

1(0) 3

4

1(2)
1(1)

1(2)

1(5)

1(6)

1(5)
f

0a 0

1

2

0(0) 3

4

0(1)
0(1)

0(2)

0(4)

0(5)

0(5)
f

(a)

(b)

Fig. 39. Third example of floating mode delay computation on a circuit.

be found in [McGeer 1991]. The computation of true critical delay of a circuit can
be formulated with satisfiability solving [McGeer 1991] [Guerra E Silva 2002] or
timed automatic test pattern generation [Devadas 1992].

As for sequential circuit timing analysis, depending on the register types
(e.g., edge-triggered flip-flops and level-sensitive latches) and the number of
clock phases used, their timing correctness requires careful analysis and veri-
fication. On the other hand, for IC manufacturing in the nanometer regime,
process variations may cause substantial variations in circuit performance. This
fabrication imperfection has motivated the development of statistical static
timing analysis in replacement of the traditional (worst-case) static timing
analysis (i.e., the presented topological timing analysis). A good introduction
to sequential circuit timing analysis and statistical static timing analysis can be
found in [Sapatnekar 2004].

89

6 Timing Optimization

Being able to meet timing requirements is absolutely essential in synthesizing
logic circuits. Timing optimization of combinational circuits can be performed
both at the technology-independent level and during technology mapping. We
consider the restructuring operations used in logic synthesis systems to improve
circuit speed. We give an overview of basic restructuring methods that take
into account timing constraints specified as input-arrival times of the primary
inputs and output-required times of the primary outputs. The goal is to meet the
timing constraints while keeping the area increase to a minimum. The methods
use topological timing analysis, described in Section 5.1, to compute arrival
times, required times, and slack times. Topological timing analysis is typically
deployed in timing optimization tools due to its simple and fast calculation;
functional timing analysis, in contrast, is mostly used for timing verification
purposes instead due to its expensive computation cost.

6.1 Technology-Independent Timing Optimization

For a given circuit to be delay minimized, the timing constraints are specified as
the arrival times at the primary inputs and required times at the primary out-
puts. The optimization algorithm manipulates the network topology to achieve
improved speed until the timing constraints are satisfied or no further decrease
in the delay can be achieved.

The critical section of a Boolean network is composed of all the critical
paths from primary inputs to primary outputs. Given a critical path, the total
delay on the path can be reduced if any section of the path is sped up. Col-
lapsing and redecomposition are the basic steps taken in restructuring. The
nodes along the critical paths chosen to be collapsed and redecomposed form
the redecomposition region.

Example 82. In Figure 40(a) we have a critical path {a, x, y}. The critical path
can be reduced by first collapsing x and y and then redecomposing y in a different
way to minimize the critical path as shown in Figure 40(b).

Since a critical section usually consists of several overlapping critical paths,
we select a minimum set of subsections, called redecomposition points, which
when sped up will reduce the delays on all of the critical paths. (Note that it is
not always possible to do so.) A weight is assigned to each candidate redecom-
position point to account for possible area increase and for the total number of
redecomposition points required. The goal is to select a set of points which cut
all the critical paths and have the minimum total weight.

Once the redecomposition points are chosen, they are sped up by the collapsing-
decomposing procedure as described in Section 3.3. Since in a multi-level network
we can reduce the area by sharing common functions, we first attempt to extract
area saving divisors that do not contain critical signals. After all such divisors
have been extracted, we decompose the node into a tree and place late arriving

90

a b c

x

y

cba

z

y

(a) (b)

Fig. 40. Collapsing and redecomposition.

signals closer to the outputs, thus making them pass through a smaller number
of gates.

Example 83. In Figure 41, the critical paths in the original network are shown
in bold and begin from signals c and d. Node f is collapsed, and a divisor k is
selected which has the desired property that substituting k into f, places the
critical signals c and d closer to the output.

Note that the critical paths in the decomposed network may have changed.
The collapsing-decomposing procedure can be iterated by identifying a new crit-
ical section. The algorithm proceeds until the requirement is satisfied or no
improvement in delay can be made. A detailed exposition of speed optimization
algorithms can be found in, e.g., [Singh 1992] [Devadas 1994].

6.2 Timing-Driven Technology Mapping

Technology-independent delay optimization algorithms cannot estimate the de-
lay of a circuit accurately, largely due to the lack of accurate technology-independent
delay models. Therefore, such algorithms are not guaranteed to produce faster
circuits, when circuit speed is measured after technology mapping and physical
design. We will present a more accurate approach to delay optimization during
technology mapping. The tree covering algorithm presented in Section 4.5, in
the context of technology mapping for minimum area, will be modified to target
circuit speed.

The most accurate estimation of the delay of a gate in a circuit can only be
obtained after the entire circuit has been placed and routed. Since technology
mapping has to be performed before placement and routing, an approximate
delay model with reasonable accuracy has to be used. We adopt the linear delay
model of Equation (19) of Section 5 in the following discussion.

91

a

b
c

f

(a)

d

e a

b c

f

d

e

Collapsed Node

(b)

b c

f

(c)

d

e

divisor

a

k

Fig. 41. Basic idea of timing decomposition.

Delay Optimization Using Tree Covering The tree covering algorithm of
Section 4.5 can only be used if the cost of a match at a gate can be determined
by examining the cost of the match and the cost of the inputs to the match
(for which the cost has already been determined). For area optimization the
cost of a gate depends on the area cost of the match and the area cost of the
inputs of the match. For delay optimization, the cost is signal arrival time at
the output of the match. Therefore, the cost of a match for delay optimization
depends not only on the structure of the tree beneath the gate, but also on the
capacitive load seen by the match. This load cannot be determined at the time
of the selection of the match as it depends on the unmapped portion of the
tree. Several attempts have been made to generalize tree covering to produce
minimum delay implementations [Rudell 1989] [Touati 1990] [Chaudhary 1992].

Load-Independent Tree Covering The tree covering algorithm of Sec-
tion 4.5 can be used to produce a minimum delay implementation of a circuit
provided the loads of all the gates in the circuit are the same. Under the as-
sumption that the delay of a gate is independent of the fanout of the gate, the
tree covering algorithm provides the minimum arrival time cover, if we compute
and store the arrival time at each node and choose the minimum arrival time
match at each node.

Example 84. Consider the technology library shown in Figure 42 and the circuit
shown in Figure 43(a). For each gate in the library, its name, area, symbol,
and pattern DAG are presented. In addition, the delay parameters for our delay
model are shown. By Equation (19), the intrinsic delay, Tp, is denoted by A, the
load dependent coefficient Te/Cin is denoted by B, and the load Cin presented
by the gate to any input gate is denoted by G. Note that in order to calculate
the delay of a gate using Equation (19), we will use A and B for the gate and
sum up the G values for all its fanout gates.

92

Gate Area Symbol Pattern DAG

INV

NAND2

NAND3

NAND4

AOI21

1

2

3

4

3

Delay Parameters

A=0,B=1,G=1

A=1,B=1,G=2

A=1,B=2,G=3

A=5,B=2,G=5

A=1.5,B=1,G=3

Fig. 42. Gate library.

If the load of each gate in the circuit is considered to be 1, then the perfect
match at each gate can be determined in one bottom-up pass, as in Section 4.5.
For gate 1, this corresponds to a 2-input nand gate with a delay of 2. The best
match at gate 2 is a 3-input nand gate with a delay of 3. The best covering for
this circuit under the fixed load assumption is shown in Figure 43(b).

Load-Dependent Tree Covering The above load-independent tree cov-
ering does not necessarily produce the optimal solution because the load of all
gates is not the same. As can be seen from the library in Figure 42, different
gates provide different load values to their inputs.

An algorithm, originally presented in [Rudell 1989], can be used to take into
account the effect of different loads. The first step of the algorithm is a pre-
processing step over the technology library in order to create n load bins and
quantize the load values for all the pins in the library. For each load bin, a rep-
resentative load value is selected, and the remaining load values are mapped to
their closest value in the chosen set. The value of n determines the accuracy and
the run time of the algorithm. If n is equal to the number of distinct loads in
the library, then the algorithm is most accurate. However, the larger the value
of n, the more computation will be required. Instead of quantizing load values a
priori based on the library information, a better way is to adapt the quantiza-
tion intervals to each gate. In one pre-computation phase, we can determine all
possible load values at a gate by examining all the possible matches at the gate.
These load values can then be used to determine the values of the quantization
intervals.

93

3

1

4

2

(a)

3

1

4

2

(b)

NAND3

INV

NAND3

Fig. 43. Circuit and its mapped implementation.

For a match at a gate, an array of costs (one for each load value) is calculated.
The cost is the arrival time of the signal at the output of the gate. For each bin
or load value, the match that gives the minimum arrival time is stored. For each
input i of the match, the optimum match for driving the pin load of pin i of the
match is assumed, and the arrival time for that match is used. This calculation
can be done by traversing the tree once forward from the leaves of the tree to its
root. The tree is then traversed backward from the root to the leaves, whereby
the load values are propagated down and, for each gate, the best match at the
gate is selected depending on the value of the load seen at the gate.

Example 85. We illustrate the algorithm using the circuit of Figure 43(a) and
the library of Figure 42. Consider the best matches shown in Figure 44. Since
the number of distinct load values in our example is only four, four bins are
considered. For gate 1 the only match is a nand2 gate. For each load value,
the delay of this gate then gives the arrival time at the output of the match
(assuming zero arrival time at the inputs). For the inverter at the output of this
nand gate, the only match is that of an inverter. Since the inverter presents a
load of 1 to the nand gate, the arrival time at the input of the inverter is the
arrival time corresponding to the first bin of the nand gate. Using this arrival
time, the arrival times at the output of the inverter for all possible load values
are computed and are shown in the figure.

At gate 2, there are two possible matches corresponding to 2-input and 3-
input nand gates. If we consider the nand2 gate, the two arrival times at the
inputs of the match are 0 (corresponding to the primary input connection to
gate 2) and 4 (corresponding to the inverter connection to gate 2 seeing a load

94

3

1

4

2

load=1: NAND2: delay=2
load=2: NAND2: delay=3
load=3: NAND2: delay=4
load=5: NAND2: delay=6

load=1: NAND3: delay=3
load=2: NAND3: delay=5
load=3: NAND3: delay=7
load=5: NAND2: delay=10

load=1: NAND2: delay=7
load=2: NAND2: delay=8
load=3: NAND2: delay=9
load=5: NAND2: delay=11

load=1: NAND3: delay=10
load=2: NAND2: delay=11.5
load=3: NAND2: delay=12.5
load=5: NAND2: delay=14.5

load=1: INV: delay=3
load=2: INV: delay=4
load=3: INV: delay=5
load=5: INV: delay=7

load=1: INV: delay=1
load=2: INV: delay=2
load=3: INV: delay=3
load=5: INV: delay=5

load=1: AOI21: delay=7.5
load=2: AOI21: delay=8.5
load=3: AOI21: delay=9.5
load=5: AOI21: delay=11.5

Fig. 44. Technology mapping considering load values.

of 2). The maximum arrival time at the inputs is 4. The arrival times at the
output of the gate for the four different load values are 6, 7, 8, and 10. E.g., for
a load value of 5, a nand2 gate has a delay 1 + 1× 5 = 6. This delay added to
the arrival time of 4 at the input of the nand gate produces an arrival time of
10 at the output. For the nand3 gate, the arrival times of all inputs are 0, and
therefore the arrival times at the output are 3, 5, 7, and 11. Therefore, for the
first three load values, the nand3 is a better choice, while for the last load value
the nand2 is a better choice.

The final mapping is determined during backward traversal and depends on
the load seen by gate 4. Assuming a load of 1, the best match at gate 4 is a nand3
gate. This gate presents a load of 3 to its inputs, implying that the best match
for a load value of 3 at gate 2 has to be chosen. This match is another nand3
gate. The resulting mapping is shown in Figure 45(a), which is coincidentally
the same mapping obtained assuming constant load (Figure 43(b)). However, if
the load is greater than 1, then the mapping of Figure 45(b) is better.

To improve the computation, we may apply adaptive quantization of load
values. For instance, for gate 1 in the circuit of Figure 44, only a load value of 1
has to be considered because all possible matches at the inverter consist of only
an inverter; for gate 2, load values of 2 and 3 have to be considered. This type of
adaptive quantization produces results close to the optimum within reasonable
amounts of computation time.

Note that, under the more general linear delay model, the principle of opti-
mality of tree covering does not apply.

95

3

1

4

2

(a)

3

1

4

2

(b)

NAND3

INV

NAND3

load = 1

load > 1

NAND2

AOI21INVNAND2

Fig. 45. Two different implementations of the circuit depending on load value.

Area Minimization under Delay Constraints The tree covering algorithm
used above can be generalized to minimize the area under a delay constraint.
It may not be necessary to obtain the fastest circuit, but instead we may want
to obtain a circuit that meets certain timing constraints and has the minimum
possible area. This timing constraint is expressed as a required time at the root
of the tree and can be propagated down the tree together with load values during
backward traversal. In this case the cost of a match at a gate includes not only
the arrival time but also the area of a match. During backward traversal the
minimum area solution that meets the required timing constraint is chosen. If
no such solution is available, then the minimum delay solution is chosen. Since
not all of the sub-trees need to be maximally fast, the area of the circuit can be
minimized.

Example 86. Consider the mapping shown in Figure 46(a). The circuit has been
mapped for minimum delay, and the arrival time at the output of gate 7 is 7.
However, the required time at the output of this gate is 9, and the other match
at gate 7 has an arrival time of 9 but a smaller area. Selecting this match gives
us a circuit with the same delay but a smaller area, as shown in Figure 46(b).

6.3 Advanced Subjects

Fanout Optimization Tree covering alone does not generate good quality
solutions because most circuits are not trees but DAGs. In such circuits, a signal
may feed two or more destinations. Due to the large amount of capacitance that

96

1

2

7

3

4

8

5

6

9

10

11

1

2

7

3

4

8

5

6

9

10

11

(a)

(b)

delay = 7
slack = 2

delay = 9
slack = 0

delay = 12
area = 24

delay = 9
slack = 0

delay = 9
slack = 0

delay = 12
area = 20

Fig. 46. Example illustrating area recovery.

97

has to be driven, the delay through the gate that drives this signal could be large.
The optimization of this delay is called fanout optimization. Buffer insertion
and gate sizing, among other techniques, are important approaches to fanout
optimization. A survey on fanout optimization can be found in [Hassoun 2002].

Sequential Circuit Timing Optimization In addition to logic restructuring,
we may exploit optimization techniques special for sequential circuits. Promising
sequential timing optimization methods include, for instance, retiming [Leiserson 1983]
[Leiserson 1991] and clock skew scheduling. See, e.g., [Sapatnekar 2004] for in-
troduction.

98

7 Concluding Remarks

This chapter presents some important classic problems in combinational logic
synthesis and basic techniques to solve them. Since logic synthesis has become
very broad and continues to evolve, many important developments cannot be
covered and only a few of them are mentioned here.

To invite and motivate future investigations, we list some logic synthesis
trends:

Scalable Logic Synthesis The capacity of logic synthesis tools is constantly
being challenged by the ever-increasing complexity of modern industrial de-
signs commonly consisting of millions of gates. The data structures and
algorithms of logic synthesis tools must be effective and robust enough in
order to handle large problem instances. It is interesting to note that every
capacity leap in the history of logic synthesis can be attributed to some data
structure revolution, e.g., from truth tables to covers, from covers to BDDs,
and from BDDs to AIGs and SAT. As SAT solvers have become much faster
in recent years, a paradigm shift is taking place in logic synthesis. More
and more SAT-based algorithms emerge in replacement of BDD-based ones.
Searching for new effective data structures may transform logic synthesis
tools.

Verifiable Logic Synthesis As noted earlier, due to the hardness of verifica-
tion, industrial synthesis methodologies are often conservative and mostly
conduct only combinational optimization, despite the existence of practical
sequential synthesis techniques.4 This phenomenon is changing because pro-
gressive optimization methods are necessary to meet more stringent timing
constraints, and also verification techniques are made more effective, espe-
cially for circuits optimized in particular ways [Jiang 2007]. To completely
overcome the verification barrier, a general consensus is that essential syn-
thesis information should be revealed to verifiers. Verifiable logic synthesis
sets forth the criterion that whatever can be synthesized can be verified
effectively [Brayton 2007].

Parallelizable Logic Synthesis One way to speed up logic synthesis algo-
rithms is to take advantage of hardware and software technologies. As multi-
core computers support more and more parallelism, EDA tools can benefit
from this technology advancement. How to utilize parallelism in logic syn-
thesis algorithms is a challenge for EDA companies.

Statistical Logic Synthesis The continuous miniaturization of semiconduc-
tor devices imposes serious threats to circuit design robust against process
variations and environmental fluctuations. Various uncertainties appear in
both pre- and post-design phases. How to synthesize a robust circuit opti-
mal in a statistical sense with respect to design constraints is an important
challenge that needs to be addressed.

4 One exception is FPGA synthesis, where sequential optimization methods find wide
applications. The reconfigurability of FPGAs makes verification not as critical as
general ASIC designs because incorrect logic transformations can be rectified later
through reconfiguration.

99

Physically Aware Logic Synthesis Logic synthesis and physical design are
traditionally separated to enable a divide-and-conquer approach to VLSI
design automation. This separation becomes problematic when interconnect
becomes the dominating factor of circuit delays. Lacking wiring information,
logic synthesis cannot produce accurate timing estimation and precise tim-
ing optimization; lacking logic information, physical design cannot exploit
logic flexibility and has limited optimization power. Therefore, before timing
constraints are met, often several iterations of logic synthesis and physical
design are performed in order to reach timing closure. Unfortunately there
is no guarantee that the process will converge. This phenomenon leads to a
serious design closure problem, which slows down design cycles and therefore
time to market. Even though there are approaches to timing closure, such
as gain-based synthesis, incremental placement and resynthesis, etc., there
is still plenty of room for improvement.

Logic Synthesis for Emerging Technologies As the miniaturization of elec-
tronic devices approaches physical limits, Moore’s Law is expected to be
broken sooner or later. Alternatives to silicon-based computation devices
are actively being researched. For the next computation model, we might
need very different logic synthesis tools, perhaps even beyond propositional
logic and Boolean algebra.

100

Acknowledgments

The authors are grateful to Prof. Robert Brayton and Dr. Alan Mishchenko of
the University of California at Berkeley, and Prof. Jianwen Zhu of the University
of Toronto for valuable feedback on the manuscript.

101

Exercises

6.1 (Commutativity between Cofactor and Boolean Operations) Given
two Boolean functions f and g and a Boolean variable v, prove or disprove
the following equalities:
(a) (¬f)v = ¬(fv)
(b) (f 〈op〉 g)v = (fv) 〈op〉 (gv) for 〈op〉 = {∧,⊕}.

6.2 (Boolean Difference) Let f(x, y, z) = h(g(x, y, z), y, z). Prove or disprove
the following equalities:
(a)

∂2f(x, y, z)
∂x∂y

=
∂2f(x, y, z)

∂y∂x
.

(b)

∂f(x, y, z)
∂x

=
∂h(u, y, z)

∂u

∂g(x, y, z)
∂x

.

(c)

∂f(x, y, z)
∂y

=
∂h(u, y, z)

∂u

∂g(x, y, z)
∂y

⊕ ∂2h(u, y, z)
∂u∂y

∂g(x, y, z)
∂y

∂y

∂y
.

6.3 (Quantified Boolean Formula) For Boolean functions f and g, show that
(a)

¬(∃x.f(x, y)) = ∀x.¬f(x, y)

(b)

¬(∀x.f(x, y)) = ∃x.¬f(x, y)

(c)

∃x.(f(x, y) ∧ g(x, y)) 6= (∃x.f(x, y)) ∧ (∃x.g(x, y))

(d)

¬∀x,∃z.(f(x, y) ∧ g(x, z)) = ∃x.(¬f(x, y) ∨ ∀z.¬g(x, z))

6.4 (Boolean Function Bi-decomposition) For a given Boolean function
f(XA, XB) with non-empty variable sets XA and XB , with XA ∩XB = ∅,
what is the condition on f(XA, XB) such that the rewriting f(XA, XB) =
fA(XA)∧fB(XB) is possible for some fA(XA) and fB(XB) to exist? (Express
the condition with a quantified Boolean formula.)

6.5 (Characteristic Functions) Let f : B3 → B2 be the vector (f1, f2) of
Boolean functions with f1 = x1 ∨ ¬x1x2 and f2 = x3 ∧ (x1 ∨ ¬x1x2); let
χS = x1 ∨ x2 be a characteristic function representing a set S ⊆ B3.

102

(a) Write down the characteristic function Imgf (S) (in terms of a quantified
Boolean formula) of the image of S under the mapping of f , that is, the
set {q ∈ B2 | q = f(p), p ∈ S}.

(b) Perform quantifier elimination to obtain a quantifier-free formula equiv-
alent to Imgf (S) in (a).

(c) Justify that the formula in (b) indeed represents the image of S un-
der f by enumerating all the truth assignments of (x1, x2, x3) and the
corresponding valuations of χS and f .

6.6 (BDD APPLY) Let F and G be the ROBDDs of Boolean functions f = abc
and g = bd′ + b′d, respectively, under the variable ordering index(a) <
index(b) < index(c) < index(d).
(a) Draw F and G.
(b) Derive the ROBDD of F ·G using the BddApply procedure.
(c) Derive the ROBDD of F + G using the BddApply procedure.
(d) Derive the ROBDD of F ⊕G using the BddApply procedure.

6.7 (ROBDD Variable Ordering) Let F be the ROBDD of an arbitrary
Boolean function f(a, b, c, d, e) under variable ordering

index(a) < index(b) < index(c) < index(d) < index(e).

Show that the new ROBDD F † under variable ordering

index(a) < index(b) < index(d) < index(c) < index(e),

must have the same BDD structure as F except for the nodes controlled by
variables c and d.

6.8 (ROBDD Variable Ordering) Consider the Boolean function

f = a1b1 + a2b2 + · · ·+ anbn.

(a) Show that the ROBDD under variable ordering

index(a1) < index(b1) < · · · < index(an) < index(bn)

has 2n + 2 nodes.
(b) Show that the ROBDD under variable ordering

index(a1) < · · · < index(an) < index(b1) < · · · < index(bn)

has 2n+1 nodes.
6.9 (ROBDDs of Symmetric Functions) Totally symmetric functions are

characterized by the fact that the value of each such function is determined
by the number of variables which are 1 under a truth assignment; it does not
matter which particular variables are. For example, functions f1 = x1∧· · ·∧
xn, f2 = x1∨· · ·∨xn, and f3 = x1⊕· · ·⊕xn are totally symmetric. A totally
symmetric function on n variables can be described by a set S ⊆ {0, 1, . . . , n}
such that for a minterm a ∈ Bn, f(a) = 1 iff the number of 1’s in a is
a member of S. Prove that the ROBDD of any n-ary totally symmetric
function has at most O(n2) nodes under any variable ordering.

103

6.10 (Circuit-to-CNF Conversion) Convert each of the following circuits to
a CNF formula representing the consistency condition. In each case, list the
truth assignments to the input/output variables that make the CNF true.
(a) An inverter with input a and output b.
(b) An or2 gate with inputs a, b and output c.
(c) An xor gate with inputs a, b and output c.

6.11 (Global Function Derivation) Consider the AIG of Figure 16. Derive
the global function of x7 (in terms of primary inputs x1, x2, x3) using the
following two methods.
(a) Existentially quantify out the intermediate variables x4, x5, x6 from its

corresponding consistency CNF formula and then perform a positive
cofactor with respect to the variable x7.

(b) Derive the global function of x7 by recursively substituting intermediate
variables with their local functions.

Verify that the above two methods yield the same result. Explain why these
two approaches are equivalent.

6.12 (SOP and Tautology) Show that the tautology checking of any SOP for-
mula with at most 2 literals in each product term can be done with time
complexity polynomial in the formula size.
(Remark: The dual problem is the 2SAT problem in computer science, which
is checkable in polynomial time.)

6.13 (Prime and Irredundant Cubes) Let

C = {a′c′d′, abd′, a′b′d′, a′bc′, ab′c′, a′b′c, abc, a′bd}

be a cover of a completely specified function f .
(a) For each cube in C, determine whether it is prime and/or irredundant.
(b) Can we delete all the redundant cubes at once without affecting the func-

tion of f? Which redundant cubes can we delete from C if we successively
delete removable cubes from left to right? How about from right to left?
(Assume the cubes listed in C is ordered.)

6.14 (Quine-McCluskey Two-Level Logic Minimization) Given function

f = w′x′y′z′ + wx′z′ + wxz + w′x′z

with don’t care set

d = w′xyz′ + wx′yz + w′xyz,

minimize f using the Quine-McCluskey procedure.
6.15 (Column Covering) Column covering is an essential computation step in

Quine-McCluskey procedure. It can be solved in different ways.
(a) Show that the column covering problem can be formulated as a CNF

satisfiability problem. Give an algorithm that performs such conversion.
(The so-derived covering need not be minimum.)

(b) Show that the minimum column covering problem can be formulated in
term of ROBDD. Give a polynomial-time algorithm solving the problem.

104

6.16 (Number of Prime Implicants) Show that

Cn
dn−2

3 e2
n−dn−2

3 e

n− dn−2
3 e

is a lower bound on the number of prime implicants for any n-ary Boolean
function.

(x4+x5)x6

x1x5+¬x5

¬x2+¬x3

x5

x6

x7

x2 x3 x4x1

Fig. 47. Boolean network

6.17 (Node Value and Elimination) Recall that the value of a node represents
the saved literal count due to the existence of the node rather than collapsing
it into its fanouts. Given the Boolean network of Figure 47, what are the
values of nodes 5 and 6? What is the new value of node 6 after collapsing
node 5 into its fanouts? (Here we treat Boolean formulas as polynomials in an
algebraic sense, and assume that Boolean simplifications, such as x∧¬x = 0,
x ∨ ¬x = 1, x ∧ x = x, and x ∨ x = x, are not involved.)

6.18 (Algebraic Division) Prove that algebraic division produces a unique quo-
tient and remainder. (Note that by definition the remainder is made as few
cubes as possible.)

6.19 (Kernels and Cokernels) Let expression

F = aefh + aegh + aei + befh + begh + bei + cdefh + cdegh + cdei.

Apply KERNEL1(0, F) to compute the kernels and corresponding cokernels of
F . Identify which kernels are of level 0.

105

6.20 (Factoring) Continuing Exercise 6.19, apply GFACTOR to factor the function
F . Use different level-0 kernels as divisors. What is the best factoring for F?
For an arbitrary expression, can GFACTOR always produce a minimum-literal
factoring with some proper level-0 kernels as divisors?

6.21 (Common Divisor Extraction) Let expressions

F = ac + ad + bc + bd + adf + aef + ag + bcdf + bcef + bcg, and
G = ag + bcg + bcf + bcg + bdf + bdg + bef + beg.

(a) Iteratively reexpress F and G in terms of a common expression that
yields the most reduction in literal count until no more common expres-
sions exist. (A common expression can be a cube-free expression or a
cube.)

(b) Extract an optimal common divisor of F and G by finding rectangles in
the cokernel-cube matrix.

6.22 (Kernel Intersection) For two expressions F and G, suppose any kernel
kf of F and any kg of G have at most one term in common. Show that F
and G have no common algebraic divisor with more than one term.

¬y1¬y2y3 ∨ y1y2¬y3

x2 ∨ x3

y1

z1

x2 x3 x4x1

x1 ∧ x2 ¬x3 ∨ ¬x4

y3 ∧ y4y1 ∨ y4

y2 y3

y4

z2

Fig. 48. Boolean network

6.23 (SDC and ODC) Consider the Boolean network of Figure 48.
(a) Write down a Boolean formula representing the SDC of the entire circuit.

That is, it represents the inconsistency condition of the circuit.

106

(b) Write down a Boolean formula for the satisfiability don’t cares SDC4 of
node 4 (with output y4). Since SDC4 is induced by the transitive fanins
of node 4, the formula should depend on variables x1, . . . , x4, y1, . . . , y3.
How can you make SDC4 refer only to y1, y2, y3 such that we can minimize
node 4 directly?

(c) Compute the observability don’t cares ODC4 of node 4.
6.24 (Don’t Cares in Local Variables) Continuing Exercise 6.23, suppose the

XDC for z1 is ¬x1¬x2¬x3¬x4 and that for z2 is x1x2x3x4.
(a) Compute the don’t cares D4 of node 4 in terms of its local input variables

y1, y2, and y3. (Note that in general the computation of ODC may be
affected by XDC especially when there exist different XDCs for different
primary outputs.)

(b) Based on the computed don’t cares, what is the best implementable
function for node 4 (in terms of the literal count and cube count)?

6.25 (Complete Flexibility) Continuing Exercise 6.24, let Y = {y1, y2, y3} and
Z = {z1, z2}.
(a) Suppose the XDC for z1 is ¬x1¬x2¬x3¬x4 and that for z2 is x1x2x3x4.

Write down the specification relation S(X, Z).
(b) What is the influence relation I4(X, y4, Z) of node 4?
(c) What is the environment relation E4(X, Y) of node 4?
(d) What is the complete flexibility CF4(Y, y4) of node 4?
(e) Is the previously computed don’t care set D4 of node 4 subsumed by

CF4?

a

g

3

b
c

d

e

2

2

2
2

2

f

h
i

j

Fig. 49. Circuit for timing analysis

6.26 (Static Timing Analysis) Given the circuit of Figure 49 with gate delays
shown, assume the arrival times for the primary inputs are 0 except for input
b with arrival time 1ns, and the required times for the primary output are
8ns. Compute the arrival time, required time, and slack of every net. Identify
the critical path(s).

6.27 (Time Slack and Critical Path) Prove or disprove the following state-
ment: The most critical path (with the smallest slack) must be a thorough
path all the way from some primary input to some primary output.

107

6.28 (Arrival/Required Time Computation) Given a black box that com-
putes arrival times for a Boolean network with specified gate delays and
input arrival times, devise a way of reusing this black box to compute re-
quired times for a Boolean network.

Fig. 50. Subject graph

6.29 (Tree Mapping) Decompose the subject DAG of Figure 50 into trees and
perform dynamic programming to find optimum tree mappings with respect
to the pattern graphs of Figure 26. What is the optimum solution that you
can get among different decomposition approaches?

6.30 (DAG Mapping as SAT Solving) Formulate the DAG mapping feasibil-
ity problem as a satisfiability problem. For the subject graph of Figure 50
and the pattern graphs of Figure 26, what is the CNF formula representing
feasible DAG mappings?

108

References

[R6.0—Books]
[Brayton 1984] R. K. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-

Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer,
1984.

[Brown 2003] F. M. Brown, Boolean Reasoning: The Logic of Boolean Equations,
Dover, 2003.

[Devadas 1994] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis, McGraw-Hill,
1994.

[Garey 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

[Hassoun 2002] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Kluwer,
2002.

[Kohavi 1978] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1978.
[McGeer 1991] P. McGeer and R. K. Brayton, Integrating Functional and Temporal

Domains in Logic Design, Kluwer, 1991.
[Mo 2004] F. Mo and R. K. Brayton, Regular Fabrics in Deep Sub-Micron

Integrated-Circuit Design, Kluwer, 2004.
[Minato 1996] S. Minato, Binary Decision Diagrams and Applications to VLSI CAD,

Kluwer, 1996.
[Papadimitriou 1993] C. Papadimitriou, Computational Complexity, Addison Wesley,

1993.
[Sapatnekar 2004] S. Sapatnekar, Timing, Springer, 2004.
[Scholl 2001] C. Scholl, Functional Decomposition with Applications to FPGA Syn-

thesis, Kluwer, 2001.
[Sutherland 1999] I. Sutherland, R. Sproull, and D. Harris, Logical Effort: Designing

Fast CMOS Circuits, Margan Kaufmann, 1999.
[Villa 1997] T. Villa, T. Kam, R. K. Brayton, and A. Sangiovanni-Vincentelli, Syn-

thesis of Finite State Machines: Logic Optimization, Kluwer, 1997.

[R6.1—Introduction]
[ABC 2005] Berkeley Logic Synthesis and Verification Group, ABC:

A system for sequential synthesis and verification,
http://www.eecs.berkeley.edu/∼alanmi/abc/, 2005.

[Brayton 1987] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang,
MIS: Multiple-level interactive logic optimization system, IEEE Trans.
on Computer-Aided Design, 6(6):1062–1081, November 1987.

[Gao 2002] M. Gao, J.-H. R. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha,
T. Villa, and R. K. Brayton, Optimization of multi-valued multi-level
networks, in Proc. IEEE Int. Symp. on Multiple-Valued Logic, pp. 168–
177, May 2002.

[Rudell 1987] R. Rudell and A. Sangiovanni-Vincentelli, Multiple-valued minimiza-
tion for PLA optimization, IEEE Trans. on Computer-Aided Design,
6(5):727–751, September 1987.

[Sentovich 1992] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, SIS: A system for sequential circuit synthesis, Memo.
UCB/ERL M92/41, 1992.

[R6.2—Data Structures for Boolean Representation and Reasoning]

109

[ABC 2005] Berkeley Logic Synthesis and Verification Group, ABC:
A system for sequential synthesis and verification,
http://www.eecs.berkeley.edu/∼alanmi/abc/, 2005.

[Akers 1978] S. B. Akers, Binary decision diagrams, IEEE Trans. on Computers,
C-27(6):509–516, June 1978.

[Biere 2007] A. Biere, The AIGER and-inverter graph (AIG) format,
http://fmv.jku.at/aiger/, 2007.

[Bryant 1986] R. E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Trans. on Computers, C-35(8):677–691, August 1986.

[Bryant 1991] R. E. Bryant, On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multi-
plication, IEEE Trans. on Computers, C-40(2):205–213, February 1991.

[Bryant 1992] R. E. Bryant, Symbolic Boolean manipulation with ordered binary de-
cision diagrams, ACM Computing Surveys, 24(3):293–318, September
1992.

[Kautz 1970] W. Kautz, The necessity of closed circuit loops in minimal combinational
circuits, IEEE Trans. on Computers, C-19(2):162–164, February 1970.

[Kuehlmann 1997] A. Kuehlmann and F. Krohm, Equivalence checking using cuts
and heaps, in Proc. ACM/IEEE Design Automation Conf., pp. 263–
268, June 1997.

[Lee 1959] C. Y. Lee, Representation of switching circuits by binary-decision pro-
grams, Bell Systems Technical J., 38(4):985–999, July 1959.

[Madre 1988] J-C. Madre and J-P. Billon, Proving circuit correctness using for-
mal comparison between expected and extracted behaviour, in Proc.
ACM/IEEE Design Automation Conf., pp. 205–210, June 1988.

[Rudell 1990] R. L. Rudell, K. S. Brace, and R. E. Bryant, Efficient implementation
of a BDD package, in Proc. ACM/IEEE Design Automation Conf., pp.
40–45, June 1990.

[Rudell 1993] R. Rudell, Dynamic variable ordering for binary decision diagrams,
in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 42–47,
November 1993.

[Rudell 1987] R. Rudell and A. Sangiovanni-Vincentelli, Multiple-valued minimiza-
tion for PLA optimization, IEEE Trans. on Computer-Aided Design,
6(5):727–751, September 1987.

[Tseitin 1970] G. S. Tseitin, On the complexity of derivation in propositional cal-
culus, in A. O. Slisenko, editor, Studies in Constructive Mathematics
and Mathematical Logic, Part II, pp. 115–125, Consultants Bureau, New
York, 1970.

[R6.3—Combinational Logic Minimization]
[ABC 2005] Berkeley Logic Synthesis and Verification Group, ABC:

A system for sequential synthesis and verification,
http://www.eecs.berkeley.edu/∼alanmi/abc/, 2005.

[Bartlett 1986] K. Bartlett, W. Cohen, A. J. De Geus, and G. D. Hachtel, Synthesis
of multilevel logic under timing constraints, IEEE Trans. on Computer-
Aided Design, CAD-5(4):582–595, October 1986.

[Bjesse 2004] P. Bjesse and A. Boralv, DAG-aware circuit compression for formal
verification, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,
pp. 42–49, November 2004.

[Bostick 1987] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas,
C. R. Morrison, and D. Ravenscroft, The Boulder optimal logic design

110

system, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp.
62–65, November 1987.

[Brayton 1982] R. K. Brayton and C. McMullen, The decomposition and factoriza-
tion of boolean expressions, in Proc. IEEE Int. Symp. on Circuits and
Systems, pp. 49–54, May 1982.

[Brayton 1984] R. K. Brayton and C. McMullen, Synthesis and optimization of mul-
tistage logic, in Proc. IEEE Int. Conf. on Computer Design, pp. 23–28,
October 1984.

[Brayton 1987] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang,
MIS: Multiple-level interactive logic optimization system, IEEE Trans.
on Computer-Aided Design, 6(6):1062–1081, November 1987.

[Brayton 1990] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli, Multi-
level logic synthesis, Proceedings of the IEEE, 78(2):264–300, February
1990.

[Coudert 1994] O. Coudert, Two-level logic minimization: An overview, Integration,
17(2):97–140, October 1994.

[Coudert 1995] O. Coudert, Doing two-level logic minimization 100 times faster, in
Proc. ACM/SIAM Symp. on Discrete Algorithms, pp. 112–121, January
1995.

[Dagenais 1986] M. Dagenais, V. K. Agarwal, and N. Rumin, McBOOLE: A proce-
dure for exact Boolean minimization, IEEE Trans. on Computer-Aided
Design, CAD-5(1):229–237, January 1986.

[Darringer 1981] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan, Logic synthe-
sis through local transformations, IBM J. of Research and Development,
25(4):272–280, July 1981.

[Darringer 1984] J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan, LSS:
A system for production logic synthesis, IBM J. of Research and Devel-
opment, 28(5):537–545, September 1984.

[Devadas 1989] S. Devadas, A. R. Wang, A. R. Newton, and A. Sangiovanni-
Vincentelli, Boolean decomposition in multilevel logic optimization,
IEEE J. of Solid State Circuits, 24(2):399–408, April 1989.

[Fleisher 1975] H. Fleisher and L. I. Maissel, An introduction to array logic, IBM J.
of Research and Development, 19(3):98–109, March 1975.

[Hong 1974] S. J. Hong, R. G. Cain, and D. L. Ostapko, MINI: A heuristic approach
for logic minimization, IBM J. of Research and Development, 18(4):443–
458, September 1974.

[Jiang 2004] J.-H. R. Jiang and R. K. Brayton, Functional dependency for verification
reduction, in Proc. Int. Conf. on Computer Aided Verification, pp. 268–
280, July 2004.

[Jiang 2006] J.-H. R. Jiang and R. K. Brayton, Retiming and resynthesis: A complex-
ity perspective, IEEE Trans. on Computer-Aided Design, 25(12):2674–
2686, December 2006.

[Keutzer 1987] K. Keutzer, DAGON: Technology mapping and local optimization, in
Proc. ACM/IEEE Design Automation Conf., pp. 341–347, June 1987.

[Kuehlmann 1997] A. Kuehlmann and F. Krohm, Equivalence checking using cuts
and heaps, in Proc. ACM/IEEE Design Automation Conf., pp. 263–
268, June 1997.

[Lee 2007] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko, Scalable
exploration of functional dependency by interpolation and incremental
SAT solving, in Proc. IEEE/ACM Int. Conf. on Computer-Aided De-
sign, pp. 227–233, November 2007.

111

[Leiserson 1983] C. Leiserson and J. Saxe, Optimizing synchronous systems, J. of
VLSI and Computer Systems, 1(1):41–67, Spring 1983.

[Leiserson 1991] C. Leiserson and J. Saxe, Retiming synchronous circuitry, Algorith-
mica, 6(1):5–35, December 1991.

[Ling 2007] A. Ling, J. Zhu, and S. Brown, BddCut: Towards scalable symbolic cut
enumeration, in Proc. Asia and South Pacific Design Automation Conf.,
pp. 408–413, January 2007.

[Malik 1991] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli,
Retiming and resynthesis: Optimizing sequential networks with com-
binational techniques, IEEE Transactions on Computer-Aided Design,
10(1):74–84, 1991.

[McCluskey 1956] E. J. McCluskey, Minimization of Boolean functions, Bell Systems
Technical J., 35(6):1417–1444, November 1956.

[McGeer 1987] P. C. McGeer and R. K. Brayton, Efficient, stable algebraic opera-
tions on logic expressions, in Proc. IFIP Int. Conf. on Very Large Scale
Integration, August 1987.

[Mishchenko 2002] A. Mishchenko and R. K. Brayton, Simplification of non-
deterministic multi-valued networks, in Proc. IEEE/ACM Int. Conf.
on Computer-Aided Design, pp. 557–562, November 2002.

[Mishchenko 2005] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, T. Villa, and N. Yev-
tushenko, Efficient solution of language equations using partitioned rep-
resentations, in Proc. Design Automation and Test in Europe, pp. 418–
423, March 2005.

[Mishchenko 2006a] A. Mishchenko and R. K. Brayton, A theory of non-deterministic
networks, IEEE Trans. on Computer-Aided Design, 25(6):977–999, June
2006.

[Mishchenko 2006b] A. Mishchenko, S. Chatterjee, and R. K. Brayton, DAG-aware
AIG rewriting: A fresh look at combinational logic synthesis, in Proc.
ACM/IEEE Design Automation Conf., pp. 532–536, June 2006.

[Mishchenko 2007a] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, SAT-
based logic optimization and resynthesis, in Proc. Int. Workshop on
Logic Synthesis, pp. 358–364, May 2007.

[Mishchenko 2007b] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, Combi-
national and sequential mapping with priority cuts, in Proc. IEEE/ACM
Int. Conf. on Computer-Aided Design, pp. 354–361, November 2007.

[Rudell 1987] R. Rudell and A. Sangiovanni-Vincentelli, Multiple-valued minimiza-
tion for PLA optimization, IEEE Trans. on Computer-Aided Design,
6(5):727–751, September 1987.

[Rudell 1989] R. Rudell, Logic Synthesis for VLSI Design, Ph.D. dissertation, Uni-
versity of California, Berkeley, 1989.

[Yevtushenko 2001] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and
A. Sangiovanni-Vincentelli, Solution of parallel language equations for
logic synthesis, in Proc. IEEE/ACM Int. Conf. on Computer-Aided De-
sign, pp. 103–110, November 2001.

[R6.4—Technology Mapping]
[Aho 1976] A. Aho and S. Johnson, Optimal code generation for expression trees,

J. of the ACM, 23(2):488–501, July 1976.
[Chatterjee 2006] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,

Reducing structural bias in technology mapping, IEEE Trans. on
Computer-Aided Design, 25(12):2894–2903, December 2006.

112

[Keutzer 1987] K. Keutzer, DAGON: Technology mapping and local optimization, in
Proc. ACM/IEEE Design Automation Conf., pp. 341–347, June 1987.

[Kravets 2001] V. Kravets, Constructive Multi-level Synthesis by Way of Functional
Properties, Ph.D. dissertation, University of Michigan, Ann Arbor, 2001.

[Lehman 1997] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, Logic decom-
position during technology mapping, IEEE Trans. on Computer-Aided
Design, 16(8):813–834, August 1997.

[R6.5—Timing Analysis]
[Chen 1991] H.-C. Chen and D. H. Du, Path sensitization in critical path problem, in

Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 208–211,
November 1991.

[Devadas 1992] S. Devadas, K. Keutzer, S. Malik, and A. Wang, Computation of
floating mode delay in combinational logic circuits: Practice and imple-
mentation, in Proc. Int. Symp. on Logic Synthesis and Microprocessor
Architecture, pp. 68–75, July 1992.

[Guerra E Silva 2002] L. Guerra E Silva, J. Marques-Silva, L. Silveira, and K. Sakallah,
Satisfiability models and algorithms for circuit delay computation, ACM
Trans. on Design Automation of Electronic Systems, 7(1):137–158, Jan-
uary 2002.

[McGeer 1989] P. McGeer and R. K. Brayton, Efficient algorithms for computing the
longest viable path in a combinational network, in Proc. ACM/IEEE
Design Automation Conf., pp. 561–567, June 1989.

[McGeer 1991] P. McGeer, A. Saldanha, P. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli, Timing analysis and delay-fault test gen-
eration using path-recursive functions, in Proc. IEEE/ACM Int. Conf.
on Computer Aided-Design, pp. 180–183, November 1991.

[R6.6—Timing Optimization]
[Chaudhary 1992] K. Chaudhary and M. Pedram, A near optimal algorithm for tech-

nology mapping minimizing area under delay constraints, in Proc.
ACM/IEEE Design Automation Conf., pp. 492–498, June 1992.

[Leiserson 1983] C. Leiserson and J. Saxe, Optimizing synchronous systems, J. of
VLSI and Computer Systems, 1(1):41–67, Spring 1983.

[Leiserson 1991] C. Leiserson and J. Saxe, Retiming synchronous circuitry, Algorith-
mica, 6(1):5–35, December 1991.

[Rudell 1989] R. Rudell, Logic Synthesis for VLSI Design, Ph.D. dissertation, Uni-
versity of California, Berkeley, 1989.

[Singh 1992] K. Singh, Performance Optimization of Digital Circuits, Ph.D. disser-
tation, University of California, Berkeley, 1992.

[Touati 1990] H. Touati, Performance-Oriented Technology Mapping, Ph.D. disserta-
tion, University of California, Berkeley, 1990.

[R6.7—Trends in Logic Synthesis]
[Brayton 2007] R. K. Brayton, The synergy between logic synthesis and equivalence

checking, in Proc. Formal Methods in Computer Aided Design, (Tuto-
rial), November 2007.

[Jiang 2007] J.-H. R. Jiang and W.-L. Hung, Inductive equivalence checking under
retiming and resynthesis, in Proc. IEEE/ACM Int. Conf. on Computer-
Aided Design, pp. 326–333, November 2007.

