
The
Complexity of

Boolean
Functions

Ingo Wegener
Johann Wolfgang Goethe-Universität

WARNING:

This version of the book is for your personal use only. The material

is copyrighted and may not be redistributed.

Copyright c© 1987 by John Wiley & Sons Ltd, and B. G. Teubner, Stuttgart.

All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated
into a machine language without the written permission of the publisher.

Library of Congress Cataloguing in Publication Data:
Wegener, Ingo

The complexity of boolean functions.
(Wiley-Teubner series in computer science)
Bibliography: p.
Includes index.
1. Algebra, Boolean. 2. Computational complexity.

I. Title. II. Series.
AQ10.3.W44 1987 511.3’24 87-10388

ISBN 0 471 91555 6 (Wiley)

British Library Cataloguing in Publication Data:

Wegener, Ingo
The complexity of Boolean functions.—(Wiley-Teubner series in computer science).
1. Electronic data processing—Mathematics 2. Algebra, Boolean
I. Title. II. Teubner, B. G.

004.01’511324 QA76.9.M3

ISBN 0 471 91555 6

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Wegener, Ingo
The complexity of Boolean functions/Ingo Wegener.—Stuttgart: Teubner; Chich-

ester; New York; Brisbane; Toronto; Singapore: Wiley, 1987
(Wiley-Teubner series in computer science)
ISBN 3 519 02107 2 (Teubner)
ISBN 0 471 91555 6 (Wiley)

Printed and bound in Great Britain

On this version of the “Blue Book”

This version of “The Complexity of Boolean Functions,” for some

people simply the “Blue Book” due to the color of the cover of the orig-

inal from 1987, is not a print-out of the original sources. It is rather a

“facsimile” of the original monograph typeset in LATEX.

The source files of the Blue Book which still exist (in 1999) have been

written for an old version of troff and virtually cannot be printed out

anymore. This is because the (strange) standard font used for the text

as well as the special fonts for math symbols seem to be nowhere to

find today. Even if one could find a solution for the special symbols, the

available text fonts yield a considerably different page layout which seems

to be undesirable. Things are further complicated by the fact that the

source files for the figures have been lost and would have to be redone

with pic.

Hence, it has been decided to translate the whole sources to LATEX

in order to be able to fix the above problems more easily. Of course,

the result can still only be an approximation to the original. The fonts

are those of the CM series of LATEX and have different parameters than

the original ones. For the spacing of equations, the standard mechanisms

of LATEX have been used, which are quite different from those of troff.

Hence, it is nearly unavoidable that page breaks occur at different places

than in the original book. Nevertheless, it has been made sure that all

numbered items (theorems, equations) can be found on the same pages

as in the original.

You are encouraged to report typos and other errors to Ingo Wegener

by e-mail: wegener@ls2.cs.uni-dortmund.de

Preface

When Goethe had fundamentally rewritten his IPHIGENIE AUF

TAURIS eight years after its first publication, he stated (with resig-

nation, or perhaps as an excuse or just an explanation) that, ˝Such a

work is never actually finished: one has to declare it finished when one

has done all that time and circumstances will allow.˝ This is also my

feeling after working on a book in a field of science which is so much

in flux as the complexity of Boolean functions. On the one hand it is

time to set down in a monograph the multiplicity of important new

results; on the other hand new results are constantly being added.

I have tried to describe the latest state of research concerning re-

sults and methods. Apart from the classical circuit model and the

parameters of complexity, circuit size and depth, providing the basis

for sequential and for parallel computations, numerous other models

have been analysed, among them monotone circuits, Boolean formu-

las, synchronous circuits, probabilistic circuits, programmable (univer-

sal) circuits, bounded depth circuits, parallel random access machines

and branching programs. Relationships between various parameters of

complexity and various models are studied, and also the relationships

to the theory of complexity and uniform computation models.

The book may be used as the basis for lectures and, due to the

inclusion of a multitude of new findings, also for seminar purposes.

Numerous exercises provide the opportunity of practising the acquired

methods. The book is essentially complete in itself, requiring only

basic knowledge of computer science and mathematics.

This book I feel should not just be read with interest but should

encourage the reader to do further research. I do hope, therefore, to

have written a book in accordance with Voltaire’s statement, ˝The

most useful books are those that make the reader want to add to

v

vi

them.˝

I should like to express my thanks to Annemarie Fellmann, who

set up the manuscript, to Linda Stapleton for the careful reading of

the text, and to Christa, whose complexity (in its extended definition,

as the sum of all features and qualities) far exceeds the complexity of

all Boolean functions.

Frankfurt a.M./Bielefeld, November 1986 Ingo Wegener

Contents

1. Introduction to the theory of Boolean functions and

circuits 1

1.1 Introduction 1

1.2 Boolean functions, laws of computation, normal forms 3

1.3 Circuits and complexity measures 6

1.4 Circuits with bounded fan-out 10

1.5 Discussion 15

Exercises 19

2. The minimization of Boolean functions 22

2.1 Basic definitions 22

2.2 The computation of all prime implicants and reductions

of the table of prime implicants 25

2.3 The minimization method of Karnaugh 29

2.4 The minimization of monotone functions 31

2.5 The complexity of minimizing 33

2.6 Discussion 35

Exercises 36

3. The design of efficient circuits for some fundamental

functions 39

3.1 Addition and subtraction 39

3.2 Multiplication 51

3.3 Division 67

3.4 Symmetric functions 74

3.5 Storage access 76

3.6 Matrix product 78

3.7 Determinant 81

Exercises 83

vii

viii

4. Asymptotic results and universal circuits 87

4.1 The Shannon effect 87

4.2 Circuits over complete bases 88

4.3 Formulas over complete bases 93

4.4 The depth over complete bases 96

4.5 Monotone functions 98

4.6 The weak Shannon effect 1 06

4.7 Boolean sums and quadratic functions 107

4.8 Universal circuits 110

Exercises 117

5. Lower bounds on circuit complexity 119

5.1 Discussion on methods 119

5.2 2 n - bounds by the elimination method 122

5.3 Lower bounds for some particular bases 125

5.4 2.5 n - bounds for symmetric functions 127

5.5 A 3n - bound 133

5.6 Complexity theory and lower bounds on circuit

complexity 138

Exercises 142

6. Monotone circuits 145

6.1 Introduction 145

6.2 Design of circuits for sorting and threshold functions 148

6.3 Lower bounds for threshold functions 154

6.4 Lower bounds for sorting and merging 158

6.5 Replacement rules 160

6.6 Boolean sums 163

6.7 Boolean convolution 168

6.8 Boolean matrix product 170

6.9 A generalized Boolean matrix product 173

6.10 Razborov’s method 180

6.11 An exponential lower bound for clique functions 184

6.12 Other applications of Razborov’s method 192

ix

6.13 Negation is powerless for slice functions 195

6.14 Hard slices of NP-complete functions 203

6.15 Set circuits - a new model for proving lower bounds 207

Exercises 214

7. Relations between circuit size, formula size and depth 218

7.1 Formula size vs. depth 218

7.2 Circuit size vs. formula size and depth 221

7.3 Joint minimization of depth and circuit size, trade-offs 225

7.4 A trade-off result 229

Exercises 233

8. Formula size 235

8.1 Threshold - 2 235

8.2 Design of efficient formulas for threshold - k 239

8.3 Efficient formulas for all threshold functions 243

8.4 The depth of symmetric functions 247

8.5 The Hodes and Specker method 249

8.6 The Fischer, Meyer and Paterson method 251

8.7 The Nechiporuk method 253

8.8 The Krapchenko method 258

Exercises 263

9. Circuits and other non uniform computation methods vs.

Turing machines and other uniform computation models 267

9.1 Introduction 267

9.2 The simulation of Turing machines by circuits: time and

size 271

9.3 The simulation of Turing machines by circuits: space and

depth 277

9.4 The simulation of circuits by Turing machines with

oracles 279

9.5 A characterization of languages with polynomial circuits 282

9.6 Circuits and probabilistic Turing machines 285

x

9.7 May NP-complete problems have polynomial circuits ? 288

9.8 Uniform circuits 292

Exercises 294

10. Hierarchies, mass production and reductions 296

10.1 Hierarchies 296

10.2 Mass production 301

10.3 Reductions 306

Exercises 318

11. Bounded-depth circuits 320

11.1 Introduction 320

11.2 The design of bounded-depth circuits 321

11.3 An exponential lower bound for the parity function 325

11.4 The complexity of symmetric functions 332

11.5 Hierarchy results 337

Exercises 338

12. Synchronous, planar and probabilistic circuits 340

12.1 Synchronous circuits 340

12.2 Planar and VLSI - circuits 344

12.3 Probabilistic circuits 352

Exercises 359

13. PRAMs and WRAMs: Parallel random access machines 361

13.1 Introduction 361

13.2 Upper bounds by simulations 363

13.3 Lower bounds by simulations 368

13.4 The complexity of PRAMs 373

13.5 The complexity of PRAMs and WRAMs with small

communication width 380

13.6 The complexity of WRAMs with polynomial resources 387

13.7 Properties of complexity measures for PRAMs and WRAMs 396

Exercises 411

xi

14. Branching programs 414

14.1 The comparison of branching programs with other

models of computation 414

14.2 The depth of branching programs 418

14.3 The size of branching programs 421

14.4 Read-once-only branching programs 423

14.5 Bounded-width branching programs 431

14.6 Hierarchies 436

Exercises 439

References 442

Index 455

1

1. INTRODUCTION TO THE THEORY OF BOOLEAN FUNC-

TIONS AND CIRCUITS

1.1 Introduction

Which of the following problems is easier to solve - the addition

or the multiplication of two n-bit numbers ? In general, people feel

that adds are easier to perform and indeed, people as well as our

computers perform additions faster than multiplications. But this is

not a satisfying answer to our question. Perhaps our multiplication

method is not optimal. For a satisfying answer we have to present

an algorithm for addition which is more efficient than any possible

algorithm for multiplication. We are interested in efficient algorithms

(leading to upper bounds on the complexity of the problem) and also in

arguments that certain problems cannot be solved efficiently (leading

to lower bounds). If upper and lower bound for a problem coincide

then we know the complexity of the problem.

Of course we have to agree on the measures of efficiency. Compar-

ing two algorithms by examining the time someone spends on the two

procedures is obviously not the right way. We only learn which algo-

rithm is more adequat for the person in question at this time. Even

different computers may lead to different results. We need fair crite-

rions for the comparison of algorithms and problems. One criterion

is usually not enough to take into account all the relevant aspects.

For example, we have to understand that we are able to work only

sequentially, i.e. one step at a time, while the hardware of computers

has arbitrary degree of parallelism. Nowadays one even constructs

parallel computers consisting of many processors. So we distinguish

between sequential and parallel algorithms.

The problems we consider are Boolean functions f : {0� 1}n →
{0� 1}m . There is no loss in generality if we encode all information by

the binary alphabet {0� 1} . But we point out that we investigate finite

2

functions, the number of possible inputs as well as the number of pos-

sible outputs is finite. Obviously, all these functions are computable.

In § 2 we introduce a rather general computation model, namely cir-

cuits. Circuits build a model for sequential computations as well as

for parallel computations. Furthermore, this model is rather robust.

For several other models we show that the complexity of Boolean

functions in these models does not differ significantly from the circuit

complexity. Considering circuits we do not take into account the spe-

cific technical and organizational details of a computer. Instead of

that, we concentrate on the essential subjects.

The time we require for the computation of a particular function

can be reduced in two entirely different ways, either using better com-

puters or better algorithms. We like to determine the complexity of a

function independently from the stage of the development of technol-

ogy. We only mention a universal time bound for electronic computers.

For any basic step at least 5�6 ·10−33 seconds are needed (Simon (77)).

Boolean functions and their complexity have been investigated

since a long time, at least since Shannon’s (49) pioneering paper. The

earlier papers of Shannon (38) and Riordan and Shannon (42) should

also be cited. I tried to mention the most relevant papers on the com-

plexity of Boolean functions. In particular, I attempted to present also

results of papers written in Russian. Because of a lack of exchange

several results have been discovered independently in both ˝parts of

the world˝.

There is large number of textbooks on ˝logical design˝ and ˝switch-

ing circuits˝ like Caldwell (64), Edwards (73), Gumm and Pogun-

tke (81), Hill and Peterson (81), Lee (78), Mendelson (82), Miller (79),

Muroga (79), and Weyh (72). These books are essentially concerned

with the minimization of Boolean functions in circuits with only two

logical levels. We only deal with this problem in Ch. 2 briefly. The

algebraical starting-point of Hotz (72) will not be continued here. We

develop the theory of the complexity of Boolean functions in the sense

of the book by Savage (76) and the survey papers by Fischer (74),

3

Harper and Savage (73), Paterson (76), and Wegener (84 a). As al-

most 60% of our more than 300 cited papers were published later

than Savage’s book, many results are presented for the first time in

a textbook. The fact that more than 40% of the relevant papers on

the complexity of Boolean functions are published in the eighties is a

statistical argument for the claim that the importance of this subject

has increased during the last years.

Most of the book is self-contained. Fundamental concepts of linear

algebra, analysis, combinatorics, the theory of efficient algorithms (see

Aho, Hopcroft and Ullman (74) or Knuth (81)) and the complexity

theory (see Garey and Johnson (79) or Paul (78)) will be applied.

1.2 Boolean functions, laws of computation, normal forms

By Bn�m we denote the set of Boolean functions f : {0� 1}n →
{0� 1}m . Bn also stands for Bn�1 . Furthermore we define the most

important subclass of Bn�m , the class of monotone functions Mn�m .

Again Mn = Mn�1 .

DEFINITION 2.1 : Let a = (a1� � � � � an) , b = (b1� � � � � bn) ∈ {0� 1}n .

We use the canonical ordering, i.e. a ≤ b iff ai ≤ bi for all i where

0 ≤ 1 . A Boolean function is called monotone iff a ≤ b implies

f(a) ≤ f(b) .

For functions f ∈ Bn we have 2n different inputs, each of them can

be mapped to 0 or 1 .

PROPOSITION 2.1. : There exist 22n
functions in Bn .

4

Because of the large number of Boolean functions we avoid proofs

by case inspection at least if n ≥ 3 . Since we use the 16 functions of

B2 as basic operations, we discuss these functions. We have the two

constant functions also denoted by 0 and 1 . Similarly, we use xi to

denote not only a variable but also to denote the i -th projection. Two

projections, x1 and x2 , are contained in B2 as there are two negations,

x1 and x2 (x = 1 iff x = 0) . The logical conjunction x∧ y computes 1

iff x = y = 1 , and the logical disjunction x ∨ y computes 1 iff x = 1

or y = 1 . Let x1 = x and x0 = x . For a� b� c ∈ {0� 1} we get 8

different functions of type-∧ , namely (xa ∧ yb)c . Obviously x ∨ y =

¬(x ∧ y) is of type-∧ . The same holds for NAND(x� y) = ¬(x ∧ y)

and NOR(x� y) = ¬(x ∨ y) = x ∧ y . The EXCLUSIVE - OR (XOR)-

function also called parity is denoted by x ⊕ y and computes 1 iff

exactly one of the variables equals 1 . The last 2 functions in B2 are

XOR and its negation x ≡ y = ¬(x ⊕ y) called EQUIVALENCE. ⊕
and ≡ are type-⊕ functions. We list some simple laws of computation.

PROPOSITION 2.2 : Let x� y and z be Boolean variables.

i) (Calculations with constants): x ∨ 0 = x , x ∨ 1 = 1 , x ∧ 0 = 0 ,

x ∧ 1 = x , x⊕ 0 = x , x⊕ 1 = x .

ii) ∨ , ∧ and ⊕ are associative and commutative.

iii) (∨�∧) , (∧�∨) and (⊕�∧) are distributive, e.g. x ∧ (y ⊕ z) =

(x ∧ y)⊕ (x ∧ z) .

iv) (Laws of simplification): x∨x = x , x∨x = 1 , x∧x = x , x∧x = 0 ,

x⊕ x = 0 , x⊕ x = 1 , x ∨ (x ∧ y) = x , x ∧ (x ∨ y) = x .

v) (Laws of deMorgan): ¬(x ∨ y) = x ∧ y , ¬(x ∧ y) = x ∨ y .

These laws of computation remain correct if we replace Boolean

variables by Boolean functions. By induction we may generalize the

laws of deMorgan to n variables. We remark that ({0� 1}�⊕�∧) is the

Galois field �2 . Instead of x ∧ y we often write only xy . In case of

doubt we perform conjunctions at first, so x∧y∨z stands for (x∧y)∨z .

5

Similarly to the iterated sum Σ and the iterated product Π , we use∧
,
∨

and
⊕

for iterated ∧ , ∨ , ⊕ .

Before presenting computation models for Boolean functions we

want to discuss how we can define and describe Boolean functions.

Because we consider finite functions f ∈ Bn�m we can describe them by

a complete table x → f(x) whose length is 2n . If f ∈ Bn it is sufficient

to specify f−1(1) or f−1(0) . In general it is easier to describe a function

by its behavior, e.g. f ∈ Bn computes 1 iff the number of ones in the

input is larger than the number of zeros.

As a second step we describe Boolean functions by Boolean opera-

tions. The disjunctive and conjunctive normal form (DNF and CNF)

are based on f−1(1) and f−1(0) resp.

DEFINITION 2.2 : The minterm ma for a = (a(1)� � � � � a(n)) ∈
{0� 1}n is defined by ma(x) = x

a(1)
1 ∧ · · · ∧ x

a(n)
n .

The appropriate maxterm is sa(x) = x
¬a(1)
1 ∨ · · · ∨ x

¬a(n)
n .

THEOREM 2.1 : f(x) =
∨

a∈f−1(1)

ma(x) =
∧

b∈f−1(0)

sb(x) .

The first and second representation are called disjunctive and conjunc-

tive normal form resp. (DNF and CNF).

Proof : By definition, ma(x) = 1 iff x = a and sa(x) = 0 iff x = a .

f(x) equals 1 iff x ∈ f−1(1) iff one of the minterms ma(x) for a ∈ f−1(1)

computes 1 . Similar arguments work for the CNF of f . �

Since (f∧g)−1(1) = f−1(1)∩g−1(1) and (f∨g)−1(1) = f−1(1)∪g−1(1) ,

it is easy to compute the DNF (or CNF) of f ∧ g or f ∨ g . Both rep-

resentations are not convenient for the solution of Boolean equations.

We are not able to subtract terms, because neither ({0� 1}�∧) nor

({0� 1}�∨) is a group as ({0� 1}�⊕) is.

6

THEOREM 2.2 : (Ring sum expansion (RSE) of f)

For each Boolean function f ∈ Bn there is exactly one 0-1-vector a =

(aA)A⊆{1�����n} such that

f(x) =
⊕

A⊆{1�����n}
aA ∧

∧
i∈A

xi� (2.1)

Proof : The existence of the vector a is proved constructively. We

start with the CNF of f . Using the laws of deMorgan, we replace dis-

junctions by conjunctions and negations, in particular, the maxterm

sb(x) is replaced by ¬(x
b(1)
1 ∧ · · · ∧ x

b(n)
n) . Afterwards we replace nega-

tions x by x ⊕ 1 . Since we obtain a representation of f by ∧ and ⊕ ,

we may apply the law of distributivity to get a ⊕-sum of ∧-products

and constants. Since t⊕ t = 0 , we set aA = 1 iff the number of terms∧
xi(i ∈ A) in our sum is odd.

For different functions f and g we obviously require different vectors

a(f) and a(g) . Since the number of different vectors a = (aA)A⊆{1�����n}
equals the number of functions f ∈ Bn , there cannot be two different

vectors a and a′ for f . �

The RSE of f is appropriate for the solution of Boolean equations.

Since t⊕ t = 0 , we may subtract t by ⊕-adding t .

1.3 Circuits and complexity measures

We may use the normal forms of § 2 for the computation of Boolean

functions. But intuitively simple functions may have exponential

length for all normal forms. Consider for example f ∈ Bn where

f(x) = 1 iff x1 + · · ·+ xn ≡ 0 mod 3 .

In order to develop an appropriate computation model we try to

simulate the way in which we perform calculations with long numbers.

7

We only use a small set of well-known operations, the addition of dig-

its, the application of multiplication tables, comparison of digits, and

if - tests. All our calculations are based on these basic operations only.

Here we choose a finite set Ω of one - output Boolean functions as ba-

sis. Inputs of our calculations are the variables x1� � � � � xn and w.l.o.g.

also the constants 0 and 1 . We do neither distinguish between con-

stants and constant functions nor between variables and projections

x → xi . One computation step is the application of one of the ba-

sic operations ω ∈ Ω to some inputs and/or already computed data.

In the following we give a correct description of such a computation

called circuit.

DEFINITION 3.1 : An Ω-circuit works for a fixed number n of

Boolean input variables x1� � � � � xn . It consists of a finite number b

of gates G(1)� � � � �G(b) . Gate G(i) is defined by its type ω i ∈ Ω

and, if ω i ∈ Bn(i) , some n(i)-tuple (P(1)� � � � �P(n(i))) of predecessors.

P(j) may be some element from {0� 1� x1� � � � � xn�G(1)� � � � �G(i − 1)} .

By resG(i) we denote the Boolean function computed at G(i) . res is

defined inductively. For an input I res I is equal to I .

If G(i) = (ω i�P(1)� � � � �P(n(i))) ,

resG(i)(x) = ω i(resP(1)(x)� � � � � resP(n(i))(x))� (3.1)

Finally the output vector y = (y1� � � � � ym) , where yi is some input or

gate, describes what the circuit computes, namely f ∈ Bn�m , where

f = (f1� � � � � fm) and f i is the function computed at yi .

It is often convenient to use the representation of a circuit by a

directed acyclic graph. The inputs are the sources of the graph, the

vertex for the gate G(i) is labelled by the type ω i of G(i) and has

n(i) numbered incoming edges from the predecessors of G(i) . If ω i is

commutative, we may withdraw the numbering of edges.

Our definition will be illustrated by a circuit for a fulladder

f(x1� x2� x3) = (y1� y0) . Here (y1� y0) is the binary representation of

8

x1 +x2 +x3 , i.e. x1 +x2 +x3 = y0 +2 y1 . We design a B2-circuit in the

following way. y1 , the carry bit, equals 1 iff x1 + x2 + x3 is at least 2 ,

and y0 , the sum bit, equals 1 iff x1 + x2 + x3 is odd. In particular,

y0 = x1⊕x2⊕x3 can be computed by 2 gates. Since x1⊕x2 is already

computed, it is efficient to use this result for y1 . It is easy to check

that

y1 = [(x1 ⊕ x2) ∧ x3] ∨ [x1 ∧ x2]� (3.2)

We obtain the following circuit where all edges are directed top - down.

G1 = (⊕� x1� x2) G2 = (⊕�G1� x3) G3 = (∧� x1� x2)

G4 = (∧�G1� x3) G5 = (∨�G3�G4) (y1� y0) = (G5�G2)

∧

∧

⊕

⊕∨

x1 x2 x3

G3 G1

G4

G2G5 = y1

Fig. 3.1

In the following we define circuits in a more informal way.

Many circuits are computing the same function. So we look for

optimal circuits, i.e. we need criterions to compare the efficiency of

circuits. If a circuit is used for a sequential computation the number

of gates measures the time for the computation. In order to ease

the discussion we assume that the necessary time is for all basic op-

erations the same. Circuits (or chips) in the hardware of computers

9

have arbitrary degree of parallelism. In our example G1 and G3 may

be evaluated in parallel at the same time, afterwards the inputs of G2

and G4 are computed and we may evaluate these two gates in parallel,

and finally G5 . We need only 3 instead of 5 computation steps.

DEFINITION 3.2 : The size or complexity C(S) of a circuit S equals

the number of its gates. The circuit complexity of f with respect to

the basis Ω , CΩ(f) , is the smallest number of gates in an Ω-circuit

computing f . The depth D(S) of S is the length (number of gates) of

the longest path in S . The depth of f with respect to Ω , DΩ(f) , is the

minimal depth of an Ω-circuit computing f .

For sequential computations the circuit complexity (or briefly just

complexity) corresponds to the computation time. In Ch. 9 we

derive connections between depth and storage space for sequential

computations. For parallel computations the size measures the cost for

the construction of the circuit, and depth corresponds to computation

time. In either case we should try to minimize simultaneously size

and depth. It does not seem to be possible to realize this for all

functions (see Ch. 7).

We want to show that the circuit model is robust. The complexity

measures do not really depend on the underlying basis if the basis is

large enough. In § 4 we show that the complexity of functions does

not increase significantly by the necessary (from the technical point of

view) restrictions on the number of edges (or wires) leaving a gate.

DEFINITION 3.3 : A basis Ω is complete if any Boolean function

can be computed in an Ω-circuit.

The normal forms in § 2 have shown that {∧�∨�¬} and {⊕�∧}
are complete bases. By the laws of deMorgan even the smaller bases

{∧�¬} and {∨�¬} are complete, whereas {∧�∨} is incomplete. Com-

plexity and depth of Boolean functions can increase only by a constant

10

factor if we switch from one complete basis to another. Therefore we

may restrict ourselves to the basis B2 and denote by C(f) and D(f)

the circuit complexity and depth resp. of f with respect to B2 . In

Ch. 6 we prove that C{∧�∨}(f)�C(f) can become arbitrarily large for

functions computable over {∧�∨} .

THEOREM 3.1 : Let Ω and Ω′ be complete bases, c = max{CΩ(g) |
g ∈ Ω′} and d = max{DΩ(g) | g ∈ Ω′} .

Then CΩ(f) ≤ c CΩ′(f) and DΩ(f) ≤ d DΩ′(f) for all f ∈ Bn .

Proof : We make use of the idea that subcircuits may be replaced by

equivalent subcircuits. Here we replace gates for g ∈ Ω′ , which are

small subcircuits, by optimal (with respect to size or depth) Ω-circuits

for g . Starting with an Ω′ - circuit computing f we obtain an Ω-circuit

with the required properties. �

1.4 Circuits with bounded fan - out

From the technical point of view it may be necessary to bound the

fan-out of gates by some constant s , i.e. the result of a gate may be

used only s times. The appropriate complexity measures are denoted

by Cs�Ω and Ds�Ω . By definition

CΩ ≤ · · · ≤ Cs+1�Ω ≤ Cs�Ω ≤ · · · ≤ C1�Ω� (4.1)

Any function computable by an Ω-circuit may be computed by an Ω-

circuit with fan-out 1 . This can be proved by induction on c = CΩ(f) .

Nothing has to be proved for c = 0 . For c � 0 we consider an Ω-circuit

for f with c gates. Let g1� � � � � gr be the functions computed at the

predecessors of the last gate. Since CΩ(gi) � c , gi can be computed

by an Ω-circuit with fan-out 1 . We take disjoint Ω-circuits with fan-

out 1 for g1� � � � � gr and combine them to an Ω-circuit with fan-out 1

11

for f . The depth of the new circuit is not larger than that of the old

one, thus DΩ(f) = Ds�Ω(f) for all s . In future we do not investigate

Ds�Ω anymore. With the above procedure the size of the circuit may

increase rapidly. For s ≥ 2 , we can bound the increase of size by

the following algorithm of Johnson, Savage and Welch (72). We also

bound the fan-out of the variables by s .

If some gate G (or some variable) has fan-out r � s we use s − 1

outgoing wires in the same way as before and the last outgoing wire

to save the information of G . We build a subcircuit in which again

resG is computed. We still have to simulate r− (s− 1) outgoing wires

of G. If s ≥ 2 , the number of unsimulated wires decreases with each

step by s − 1 . How can we save the information of gate G ? By

computing the identity x → x . Let l(Ω) be the smallest number of

gates in order to compute a function g = resG at some gate given g

as input. We claim that l(Ω) ∈ {1� 2} . Let ω ∈ Ω be a nonconstant

basic operation. Let ω ∈ Bm . Since ω is not constant, input vectors

exist differing only at one position (w.l.o.g. the last one) such that

ω(a1� � � � � am−1� 1) �= ω(a1� � � � � am−1� 0) . We need only one wire out

of G to compute ω(a1� � � � � am−1� resG) which equals resG , implying

l(Ω) = 1 , or ¬ resG . In the second case we repeat the procedure and

compute ¬ (¬ resG) = resG implying l(Ω) = 2 . At the end we obtain

a circuit for f in which the fan-out is bounded by s .

THEOREM 4.1 : Let k be the fan-in of the basis Ω , i.e. the largest

number of inputs for a function of Ω. If f ∈ Bn may be computed by

an Ω-circuit and if s ≥ 2 then

Cs�Ω(f) ≤ (1 + l(Ω)(k− 1)�(s− 1)) CΩ(f)� (4.2)

Proof : If the fan-out of some gate is large, we need many gates of

fan-out s for the simulation of this gate. But the average fan-out of

the gates cannot be large. Since the fan-in is bounded by k the average

fan-out cannot be larger than k . We explain these ideas in detail.

12

Let r be the fan-out of some gate or variable. If p ≥ 0 is the

smallest number such that s + p(s − 1) ≥ r , then it is sufficient to

save the information of the gate p times. For this, l(Ω) p gates are

sufficient. With the definition of p we conclude that

s + (p− 1)(s− 1) � r if r ≥ 1� (4.3)

Therefore p is bounded by (r − 1)�(s − 1) if r ≥ 1 . In an optimal

circuit for f ∈ Bn at most n − 1 variables and at most one gate have

fan-out 0 . Let c = CΩ(f) and let ri be the fan-out of the i -th gate

and rj+c the fan-out of xj . We have to sum up all ri − 1 where ri ≥ 1 .

The sum of all ri (where ri ≥ 1) equals the number of wires. Since the

fan-in of the basis is k , the number of wires is bounded by ck . As at

most n parameters ri are equal to 0 the sum of all ri − 1 where ri ≥ 1

is not larger than ck− c . Thus the number of new gates is bounded

by l(Ω)(ck− c)�(s− 1) . Altogether we proved that

Cs�Ω(f) ≤ c + c l(Ω)(k− 1)�(s− 1) (4.4)

= (1 + l(Ω)(k− 1)�(s− 1)) CΩ(f)�

�

For each basis Ω the number of gates is increased by a constant

factor only. l(Ω) = 1 and k = 2 , if Ω = B2 . For all s ≥ 2 we only

have to double the number of gates. For s = 1 our algorithm does not

work. The situation for s = 1 indeed is essentially different. In Ch. 8

we present examples in which C1�Ω(f)�CΩ(f) becomes arbitrarily large.

DEFINITION 4.1 : The circuits whose fan-out of gates is bounded by

1 are called (Boolean) formulas. LΩ(f) = C1�Ω(f) is called the formula

size of f .

We have motivated circuits with bounded fan-out by technical re-

strictions. These restrictions are not so strong that the fan-out is

restricted to 1 . Nevertheless we investigate Boolean formulas in Ch. 7

and 8. One reason for this is that we obtain a strong connection be-

13

tween formula size and depth (see Ch. 7). Another reason is that

Boolean formulas correspond to those expressions we usually call for-

mulas. Given a formula we may also bound the fan-out of the inputs

by 1 by using many copies of the inputs. From our graph representa-

tion we obtain a tree where the root is the last gate. Basically this is

the representation of arithmetical expressions by trees.

We could be satisfied. Bounding the fan-out does not increase the

depth of the circuit and the size has to be increased only by a small

constant factor, if s ≥ 2 . But with both algorithms discussed we

cannot bound the increase of size and depth simultaneously. This was

achieved at first by an algorithm of Hoover, Klawe and Pippenger (84).

Size and depth will increase only by a constant factor. Perhaps the

breadth is still increasing (see Schnorr (77) for a discussion of the

importance of breadth).

We present the algorithm only for the case l(Ω) = 1 . We saw that

p identity gates are sufficient to simulate a gate of fan-out r where

p is the smallest integer such that r ≤ s + p(s − 1) . For s = 3 we

show in Fig. 4.1 a how Johnson, Savage and Welch replaced a gate of

fan-out 12 . In general, we obtain a tree consisting of a chain of p + 1

nodes whose fan-out is bounded by s . Any other tree with p+1 nodes,

r leaves and fan-out bounded by s (as shown in Fig. 4.1 b) will also do

the job. The root is the gate that has to be simulated, and the other p

nodes are identity gates. The r outgoing wires can be used to simulate

the r outgoing wires of the gate we simulate. The number of gates

behaves as in the algorithm of Johnson et al. We have some influence

on the increase in depth of the circuit by choosing appropriate trees.

In a given circuit S with b gates G1� � � � �Gb we work bottom-up.

Let Sb = S . We construct Si−1 from Si by replacing gate Gi by an

appropriate tree. Then S′ = S0 is a circuit of fan-out s equivalent

to S . The best thing we could do in each step is to replace Gi by a

tree Ti such that the longest path in Si−1 , starting at the root of Ti ,

is kept as short as possible. In the following we describe an efficient

algorithm for the choice of Ti .

14

a) b)

Fig. 4.1

We define a weight function on the nodes of all trees T with r

leaves, fan-out bounded by s and p + 1 inner nodes. Here r is the

fan-out of Gi and p is the proper parameter. Let S(T) be the circuit

produced by the replacement of Gi by T in Si . Then the weight of a

node u ∈ T should be the length of the longest path in S(T) starting

in u . The weight of the r leaves of T is given and the weight of the

inner nodes is recursively defined by

w(u) = 1 + max{w(u′) | u′ is son of u}� (4.5)

In order to choose a tree whose root has minimal weight, we use

a so-called Huffman algorithm (for a discussion of this class of al-

gorithms see Ahlswede and Wegener (86), Glassey and Karp (72) or

Picard (65)).

It is easier to handle trees where all inner nodes have fan-out ex-

actly s. For that reason we add s + p(s− 1)− r dummy leaves whose

weight is −∞ . Altogether we now have exactly s + p(s− 1) leaves.

ALGORITHM 4.1 :

Input : V , a set of s + p(s− 1) nodes, and a weight function w on V .

Output : T a tree with p + 1 inner nodes of fan-out s . The leaves

correspond uniquely to the nodes in V .

15

Let W = V . If |W| = 1 , T is constructed. While |W| � 1 , we choose

those s nodes v1� � � � � vs ∈ W which have the smallest weight. These

nodes become the sons of a new node v′ whose weight is defined by

(4.5). We remove v1� � � � � vs from W and add v′ to W .

We would stray too much from the subject, if we presented those

results on Huffman algorithms which lead to the following estimation

of the depth of S′ . For the size of S′ we obtain the same bound as in

Theorem 4.1.

THEOREM 4.2 : Let S be an Ω-circuit with one output and let k be

the fan-in of Ω. For s ≥ 2 , we can efficiently construct an equivalent

circuit S′ whose fan-out is bounded by s such that

C(S′) ≤ (1 + l(Ω)(k− 1)�(s− 1)) C(S) (4.6)

and

D(S′) ≤ (1 + l(Ω) log s k) D(S)� (4.7)

In § 5 we summarize the conclusions drawn from the results of § 3

and § 4.

1.5 Discussion

It turned out that circuits build an excellent model for the compu-

tation of Boolean functions. Certainly circuit complexity and depth

of a Boolean function cannot be measured unambigously. These com-

plexity measures depend on

– the costs and the computation time of the different types of gates

– the underlying basis and

16

– the fan-out restriction.

This effect is unpleasant. How can we find out whether f is eas-

ier than g ? The results of § 3 and § 4 showed that the effect of

the above mentioned criterions on circuit complexity and depth of a

Boolean function can be estimated by a constant factor (with the only

exceptions of incomplete bases and the fan-out restriction 1). If we

ignore constant factors, we can limit ourselves to a fixed circuit model.

The basis is B2 , all gates cause the same cost, and the fan-out is not

restricted. Comparing two functions f and g not only C(f) and C(g)

but also D(f) and D(g) differ ˝by a constant factor˝. In fact we do not

consider some definite function f but natural sequences of functions

fn . Instead of the addition of two 7-bit numbers, a function f ∈ B14�8 ,

we investigate the sequence of functions fn ∈ B2n�n+1 where fn is the

addition of two n-bit numbers.

Let (fn) and (gn) be sequences of functions. If C(fn) = 11 n and

C(gn) = n2 , C(fn) ≤ C(gn) for n ≤ 11 but C(fn)�C(gn) is bounded

by 11 and converges to 0 . We state that (gn) is more complex than

(fn) , since for all circuit models the quotient of the complexity of fn
and the complexity of gn converges to 0 . We ignore that gn may be

computed more efficiently than fn for small n. We are more interested

in the asymptotic behavior of C(fn) and C(gn) .

Certainly, it would be best to know C(fn) exactly. If it is too

difficult to achieve this knowledge, then, in general, the asymptotic

behavior describes the complexity of fn quite good. Sometimes the

concentration on asymptotics may lead to absurd results.

If C(fn) = 15 n34816 and C(gn) = 2n�100 , C(fn)�C(gn) converges to 0 ,

but for all relevant n the complexity of fn is larger than the complexity

of gn . But this is an unrealistic example that probably would not

occur. In the following we introduce the ˝big-oh˝ notation.

17

DEFINITION 5.1 : Let f� g : � → � such that f(n)� g(n) � 0 for

large n .

i) f = O(g) (f does not grow faster than g) if f(n)�g(n) ≤ c for some

constant c and large n .

ii) f = Ω(g) if g = O(f) .

iii) f = Θ(g) (f and g have the same asymptotic behavior) if f = O(g)

and g = O(f) .

iv) f = o(g) (f grows slower than g) if f(n)�g(n) tends to 0 .

v) f = ω(g) if g = o(f) .

vi) f grows polynomially if f = O(p) for some polynomial p . Notation:

f = nO(1) .

vii) f grows exponentially if f = Ω(2nε
) for some ε � 0 .

We try to estimate C(fn) and C(gn) as accurately as possible. Often

we have to be satisfied with assertions like the following. The number

of gates of the circuits Sn for fn has the same asymptotic behavior as

n , n log n , n2 , n3 or even 2n . We want to emphasize the structural

difference of algorithms with n , n log n , n2 , n3 or 2n computation

steps. In Table 5.1 we compute the maximal input size of a problem

which can be solved in a given time if one computation step can be

performed within 0�001 seconds. The reader should extend this table

by multiplying the running times T(n) by factors not too large and by

adding numbers not too large.

The next table shows how much we gain if we perform 10 compu-

tation steps in the same time as we did 1 computation step before.

Constant factors for T(n) do not play any role in this table.

For the polynomially growing functions the maximal possible input

length is increased by a constant factor which depends on the degree of

the polynomial. But for exponentially growing functions the maximal

possible input length is only increased by an additive term. There-

fore functions whose circuit size is polynomially bounded are called

efficiently computable while the other functions are called intractable.

18

T(n) Maximal input length which can

be processed within

1 sec. 1 min. 1 h.

n 1 000 60 000 3 600 000

n log2 n 140 4 893 200 000

n2 31 244 1 897

n3 10 39 153

2n 9 15 21

Tab. 5.1

T(n) Maximal input length which Remarks

can be processed

before afterwards

n m 10 m

n log n m (nearly) 10 m

n2 m 3�16 m 10 ≈ 3�162

n3 m 2�15 m 10 ≈ 2�153

2n m m + 3�3 10 ≈ 23�3

Tab. 5.2

This notation is based on the experience that algorithms whose run-

ning time is a polynomial of very large degree or whose running time

is of size 2nε
for a very small ε are exceptions.

19

At the end of our discussion we refer to a property distinguishing

circuits and programs for computers. A program for the sorting prob-

lem or the multiplication of matrices or any other reasonable problem

should work for instances of arbitrary length. A circuit can work

only for inputs of a given length. For problems like the ones men-

tioned above, we have to construct sequences of circuits Sn such that

Sn solves the problem for instances of length n. The design of Sn and

the design of Sm are independent if n �= m . Therefore we say that cir-

cuits build a non uniform computation model while software models

like Turing machines build a uniform model. Non uniform models

are adequate for the hardware of computers. Designing circuits we do

not have if-tests to our disposal, but we can do different things for dif-

ferent input lengths. Hence it happens that any sequence of Boolean

functions fn ∈ Bn may be computed by (a sequence of) circuits while

not all sequences fn ∈ Bn can be computed by a computer or a Turing

machine. Furthermore, it is not astonishing that Turing machine pro-

grams may be simulated efficiently by circuits (see Ch. 9). Because of

our way of thinking most of the sequences of circuits we design may

be described uniformly and therefore can be simulated efficiently by

Turing machines.

EXERCISES

1. What is the cardinality of Bn�m?

2. Let f(x1� x2� x3) = (y1� y0) be the fulladder of § 3. y1 is monotone

but y0 is not. Design an {∧�∨}-circuit for y1 .

3. f is called non degenerated if f depends essentially on all its vari-

ables, i.e. the subfunctions of f for xi = 0 and xi = 1 are different.

Let Nk be the number of non degenerated functions f ∈ Bk and

N0 = 2 .

20

Then
∑

0≤k≤n

(n
k

)
Nk = |Bn| .

4. The fraction of degenerated functions f ∈ Bn tends to 0 as n →∞ .

5. How many functions have the property that we cannot obtain a

constant subfunction even if we replace n − 1 variables by con-

stants ?

6. Let f� g ∈ Mn , t = x1 · · · xn , t′ = x1 ∨ · · · ∨ xn .

a) t ≤ f ∨ g ⇒ t ≤ f or t ≤ g .

b) f ∧ g ≤ t′ ⇒ f ≤ t′ or g ≤ t′ .

7. Let different functions f� g ∈ Bn be given by their RSE. How can

one construct an input a where f(a) �= g(a) without testing all

inputs ?

8. Design circuits of small size or depth for the following functions :

a) fn(x1� � � � � xn� y1� � � � � yn) = 1 iff xi �= yi for all i .

b) fn(x0� � � � � xn−1� y0� � � � � yn−1) = 1 iff
∑

0≤i≤n−1
xi 2

i �
∑

0≤i≤n−1
yi 2

i .

c) fn(x1� � � � � xn) = 1 iff x1 + · · ·+ xn ≥ 2 .

9. Which functions f ∈ B2 build a complete basis of one function ?

10. Which of the following bases are complete even if the constants

are not given for free ?

a) {∧�¬} , b) {∨�¬} , c) {⊕�∧} .

11. sel ∈ B3 is defined by sel(x� y� z) = y , if x = 0 , and sel(x� y� z) = z ,

if x = 1 . Is { sel } a complete basis ?

21

12. Each function computed by an {∧�∨}-circuit is monotone.

13. Let Ω�Ω′ be complete bases. Define constants c and d such that

each Ω′-circuit S′ can be simulated by an Ω-circuit S such that

C(S) ≤ c C(S′) and D(S) ≤ d D(S′) .

14. Compute l({f}) (see § 4) for each nonconstant f ∈ B2 .

15. Construct a sequence of graphs Gn such that the algorithm of

Johnson et al. constructs graphs G
′
n whose depth d(G

′
n) grows

faster than c d(Gn) for any constant c if s = 2 .

16. Specify for the following functions ˝easy˝ functions with the same

asymptotic behavior.

a) n2�(n− log3 n)

b)
∑

1≤i≤n
log i

c)
∑

1≤i≤n
i−1

d)
∑

1≤i≤n
i 2−i .

17. log n = o(nε) for all ε � 0 .

18. nlog n does not grow polynomially and also not exponentially.

19. If f grows polynomially, there exists a constant k such that

f(n) ≤ nk + k for all n .

22

2. THE MINIMIZATION OF BOOLEAN FUNCTIONS

2.1 Basic definitions

How can we design good circuits ? If we consider specific functions

like addition or multiplication we take advantage of our knowledge

about the structure of the function (see Ch. 3). Here we treat the

design of circuits for rather structureless functions. Unfortunately, this

situation is not unrealistic, in particular for the hardware construction

of computers. The inputs of such a Boolean function f ∈ Bn�m may

be the outputs of another Boolean function g ∈ Bk�n . The properties

of f are described by a table x → f(x) . Since the image of g may be

a proper subset of {0� 1}n , f is not always defined for all a ∈ {0� 1}n .

Such Boolean functions are called partially defined.

DEFINITION 1.1 : A partially defined Boolean function is a func-

tion f : {0� 1}n → {0� 1� ? } . B∗
n is the set of all partially defined

Boolean functions on n variables.

A circuit computes f ∈ B∗
n at gate G iff f(x) = resG(x) for all

x ∈ f−1({0� 1}).

Since inputs outside of f−1({0� 1}) are not possible (or just not

expected ?!), it does not matter which output a circuit produces for

inputs a ∈ f−1(?) . Since Bn ⊆ B∗
n , all our considerations are valid also

for completely defined Boolean functions. We assume that f is given

by a table of length N = 2n . We are looking for efficient procedures for

the construction of good circuits. The running time of these algorithms

has to be measured in terms of their input size, namely N , the length

of the table, and not n , the length of the inputs of f .

23

The knowledge of circuits, especially of efficient circuits for an ar-

bitrary function is far away from the knowledge that is required to

design always efficient circuits. Therefore one has restricted oneself to

a subclass of circuits. The term ˝minimization of a Boolean function˝

stands for the design of an optimal circuit in the class of Σ2-circuits

(for generalizations of the concept of Σ2-circuits see Ch. 11). Inputs

of Σ2-circuits are all literals x1� x1� � � � � xn� xn . In the first step we may

compute arbitrary conjunctions (products) of literals. In the second

step we compute the disjunction (sum) of all terms computed in the

first step. We obtain a sum-of-products for f which also is called poly-

nomial for f . The DNF of f is an example of a polynomial for f . Here

we look for minimal polynomials, i.e. polynomials of minimal cost.

From the practical point of view polynomials have the advantage

that there are only two logical levels needed, the level of disjunctions

is following the level of conjunctions.

DEFINITION 1.2 :

i) A monom m is a product (conjunction) of some literals. The cost

of m is equal to the number of literals of m .

ii) A polynomial p is a sum (disjunction) of monoms. The cost of p

is equal to the sum of the costs of all m which are summed up by

p .

iii) A polynomial p computes f ∈ B∗
n if p(x) = f(x) for x ∈ f−1({0� 1}) .

p is a minimal polynomial for f , if p computes f and no polynomial

computing f has smaller cost than p .

Sometimes the cost of a polynomial p is defined as the number of

monoms summed up by p . By both cost measures the cost of the

circuit belonging to p is approximately reflected. On the one hand we

need at least one gate for the computation of a monom, and on the

other hand l gates are sufficient to compute a monom of length l and

to add it to the other monoms. Since different monoms may share the

same submonom we may save gates by computing these submonoms

only once. The following considerations apply to both cost measures.

24

Let p = m1 ∨ · · · ∨ mk be a polynomial for f . mi(a) = 1 implies

p(a) = 1 and f(a) ∈ {1� ?} . If m−1
i (1) ⊆ f−1(?) , we could cancel mi

and would obtain a cheaper polynomial for f .

DEFINITION 1.3 : A monom m is an implicant of f if m−1(1) ⊆
f−1({1� ?}) and m−1(1) �⊆ f−1(?) . I(f) is the set of all implicants of f .

We have already seen that minimal polynomials consist of impli-

cants only. Obviously the sum of all implicants computes f . If m and

m′ are implicants, but m is a proper submonom of m′ , m∨m′ = m by

the law of simplification, and we may cancel m′ .

DEFINITION 1.4 : An implicant m ∈ I(f) is called prime implicant

if no proper submonom of m is an implicant of f . PI(f) is the set of

all prime implicants of f .

To sum up we have proved

THEOREM 1.1 : Minimal polynomials for f consist only of prime

implicants.

All algorithms for the minimization of Boolean functions start with

the computation of all prime implicants. Afterwards PI(f) is used to

construct a minimal polynomial. It is not known whether one may

compute efficiently minimal polynomials without computing implicitly

PI(f) .

25

2.2 The computation of all prime implicants and reductions of the

table of prime implicants

The set of prime implicants PI(f) may be computed quite efficiently

by the so-called Quine and McCluskey algorithm (McCluskey (56),

Quine (52) and (55)). It is sufficient to present the algorithm for

completely defined Boolean functions f ∈ Bn . The easy generalization

to partially defined Boolean functions is left to the reader. Since f is

given by its table x → f(x) implicants of length n can be found directly.

For each a ∈ f−1(1) the corresponding minterm ma is an implicant. It

is sufficient to know how all implicants of length i−1 can be computed

if one knows all implicants of length i .

LEMMA 2.1 : Let m be a monom not containing xj or xj . m is an

implicant of f iff m xj and m xj are implicants of f .

Proof : If m ∈ I(f) , we can conclude m xj(a) = 1 ⇒ m(a) = 1 ⇒
f(a) = 1 , hence m xj ∈ I(f) . Similarly m xj ∈ I(f) . If m xj , m xj ∈ I(f) ,

we can conclude m(a) = 1 ⇒ m xj(a) = 1 or m xj(a) = 1 ⇒ f(a) = 1 ,

hence m ∈ I(f) . �

ALGORITHM 2.1 (Quine and McCluskey) :

Input : The table (a� f(a)) of some f ∈ Bn .

Output : The nonempty sets Qk and Pk of all implicants and prime

implicants resp. of f with length k . In particular PI(f) is the union of

all Pk .

Qn is the set of all minterms ma such that f(a) = 1 , i = n .

While Qi �= � ◦
i := i− 1 ;

Qi := {m | ∃ j : xj , xj are not in m but m xj�m xj ∈ Qi+1 } ;

Pi+1 := {m ∈ Qi+1 | ∀ m′ ∈ Qi : m′ is not a proper sub-

monom of m } .

26

By Lemma 2.1 the sets Qk are computed correctly. Also the sets of

prime implicants Pk are computed correctly. If an implicant of length

k has no proper shortening of length k− 1 which is an implicant, then

it has no proper shortening which is an implicant and therefore it is a

prime implicant. In order to obtain an efficient implementation of Al-

gorithm 2.1 we should make sure that Qi does not contain any monom

twice. During the construction of Qi it is not necessary to test for all

pairs (m′�m′′) of monoms in Qi+1 whether m′ = m xj and m′′ = m xj for

some j . It is sufficient to consider pairs (m′�m′′) where the number of

negated variables in m′′ is by 1 larger than the corresponding number

in m′ . Let Qi+1�l be the set of m ∈ Qi+1 with l negated variables. For

m′ ∈ Qi+1�l and all negated variables xj in m′ it is sufficient to test

whether the monom m′
j where we have replaced xj in m′ by xj is in

Qi+1�l−1 . Finally we should mark all m ∈ Qi+1 which have shortenings

in Qi . Then Pi+1 is the set of unmarked monoms m ∈ Qi+1 .

We are content with a rough estimation of the running time of the

Quine and McCluskey algorithm. The number of different monoms is

3n . For each j either xj is in m or xj is in m or both are not in m . Each

monom is compared with at most n other monoms. By binary search

according to the lexicographical order O(n) comparisons are sufficient

to test whether m is already contained in the appropriate Qi�l . This

search has to be carried out not more than two times for each of the at

most n 3n tests. So the running time of the algorithm is bounded by

O(n2 3n) . The input length is N = 2n . Using the abbreviation log for

log2 we have estimated the running time by O(Nlog 3 log2 N) . Mileto

and Putzolu (64) and (65) investigated the average running time of

the algorithm for randomly chosen Boolean functions.

The relevant data on f is now represented by the table of prime

implicants.

27

DEFINITION 2.1 : The table of prime implicants (PI-table) for f is

a matrix whose rows correspond to the prime implicants m1� � � � �mk

of f and whose columns correspond to the inputs y1� � � � � ys ∈ f−1(1) .

The matrix entry at place (i� j) equals mi(yj) .

Due to the properties of prime implicants the disjunction of all

prime implicants equals f and for a disjunction of some prime impli-

cants g we know that g ≤ f . We are looking for a cheap set of prime

implicants whose disjunction equals f . It is sufficient and necessary to

choose for each yj ∈ f−1(1) some mi such that mi(yj) = 1 . A choice of

prime implicants is a choice of rows in the PI-table. If and only if the

submatrix consisting of the chosen rows contains no column without

any 1 the disjunction of the chosen prime implicants equals f.

We can simplify our problem by two easy reduction rules. Let ri

be the row corresponding to the prime implicant mi and let cj be the

column corresponding to yj ∈ f−1(1) .

LEMMA 2.2 :

i) If the only 1-entry of cj is contained in ri , we have to choose mi

and may cancel ri and all ck such that mi(yk) = 1 .

ii) If cj ≤ cj′ for some j �= j′ , we may cancel cj′ .

Proof : i) Obviously mi is the only prime implicant such that

mi(yj) = 1 . Therefore we have to choose mi . If mi(yk) = 1 , we have

done the job for the input yk .

ii) We still have to choose a prime implicant mi such that mi(yj) = 1 .

Since cj ≤ cj′ implies mi(yj′) = 1 , we ensure that we choose a prime

implicant for input yj′ . �

We perform the reductions until no further reductions are possible.

The result of this procedure is called a reduced PI-table.

28

EXAMPLE 2.1 : We save the first step and define f ∈ B4 by Q4 , the

set of implicants of length 4 .

Q4: Q4�4 = � ◦ , Q4�3 = {a b c d � ab c d} , Q4�2 = {a b c d � a b c d � a b c d} ,

Q4�1 = {a b c d � a b c d � a b c d} , Q4�0 = {a b c d} .

Q3: Q3�3 = � ◦ , Q3�2 = {a b c � a b c � b c d} ,

Q3�1 = {a b d � a c d � a b c � a c d � b c d} , Q3�0 = {a b c � a c d � b c d} .

P4 = � ◦ .

Q2: Q2�2 = � ◦ , Q2�1 = {b c} , Q2�0 = {c d� a c} .

P3 = {a b c� ab d} .

Q1 = � ◦ .

P2 = Q2 .

PI(f) = {a b c � a b d � b c � c d � a c}�

The PI-table of f

0010 0011 0100 0101 0111 1010 1011 1110 1111

a b c 0 0 1 1 0 0 0 0 0
a b d 0 0 0 1 1 0 0 0 0

b c 1 1 0 0 0 1 1 0 0
c d 0 1 0 0 1 0 1 0 1

a c 0 0 0 0 0 1 1 1 1

c1 � c3 and c8 have a single one. Therefore a minimal polynomial

has to contain a b c � b c and a c . We may cancel r1 � r3 and r5 and all

columns up to c5 . We could have cancelled c6 since c8 ≤ c6 or c7 since

c9 ≤ c7 . We obtain the following reduced table.

29

0111

a b d 1
c d 1

For a minimal polynomial we choose the cheaper prime implicant c d .

Here the minimal polynomial is uniquely determined and equals a b c∨
b c ∨ a c ∨ c d . Using three logical levels we obtain a more efficient

circuit by the representation a b c ∨ c (b ∨ a ∨ d) . In our example

the construction of a minimal polynomial from the reduced PI-table

was trivial. In general, this is a hard problem as we shall see in § 5.

2.3 The minimization method of Karnaugh

For larger n , at least for n ≥ 7 , computers should be used for the

minimization of Boolean functions. The method of Karnaugh (53)

is advantageous if one tries to perform the minimization for n ≤ 6

with one’s own hand. The main idea is a better representation of our

information.

The set of inputs {0� 1}n is an n-dimensional cube. A monom m

of length k corresponds to an (n− k)-dimensional subcube where the

k variables of m are fixed in the right way. f is a coloring of {0� 1}n by

the colors 0 and 1 . m is an implicant iff the corresponding subcube is

1-colored. It is even a prime implicant iff no larger subcube, i.e. shorter

monom, is 1-colored. A vector a ∈ {0� 1}n has n neighbors which differ

from a in exactly one position. The recognition of neighborhoods is

exceptionally simple in the Karnaugh diagrams.

30

EXAMPLE 3.1 : The Karnaugh diagram for the function of Exam-

ple 2.1

a b 00 01 11 10
c d

00 0 1 0 0
01 0 1 0 0

11 1 1 1 1
10 1 0 1 1

We find f(a� b� c� d) in column ab and row cd . Where are the neigh-

bors of (a� b� c� d) ? It is easy to check that the neighbors can be

reached by one step in one of the four directions. The left neighbor of

an element in the first column is the last element in the same row, and

so on. These diagrams are clearly arranged for n = 4 . For n � 4 , we

even obtain smaller diagrams. For n = 5 , we use two of the diagrams

above, one for e = 0 and one for e = 1 . Then the fifth neighbor may

be found at the same position of the other diagram. For n = 6 , we

already have to work with 4 of these diagrams. For n ≥ 7 the situation

becomes unintelligible and Karnaugh diagrams should not be used.

In our example each one in the diagram corresponds to an implicant

of length 4 . Ones which are neighbors correspond to implicants of

length 3 . The ones in the first column correspond to a b c and the

first two ones in the second column correspond to a b c . The 1-colored

subcube for a b c can be enlarged to the 1-colored subcube of the ones

in the first and last column corresponding to the implicant b c . Since

the 1-colored subcube for a b c cannot be enlarged, a b c is a prime

implicant. We easily detect prime implicants in Karnaugh diagrams.

Furthermore, we see that the one in the first row is contained only

in one maximal 1-colored subcube, namely for a b c , which therefore

31

has to be contained in a minimal polynomial. Altogether we follow

the same procedure as described in § 2 but we have a more adequat

representation of the information. Veitch (52) suggested a similar

procedure.

2.4 The minimization of monotone functions

Quine (53) has shown that the computation of the always unique

minimal polynomial for a monotone Boolean function is easy.

THEOREM 4.1 : Each prime implicant of a monotone function

f ∈ Mn only contains positive literals.

Proof : Let m = m′ xj ∈ I(f) . It is sufficient to prove that the short-

ening m′ ∈ I(f) . If m′(a) = 1 either aj = 0 implying m′ xj(a) = 1 and

f(a) = 1 or aj = 1 . In the last case let b be defined by bj = 0 and

bi = ai for i �= j . Then m′ xj(b) = 1 implying f(b) = 1 . Since b ≤ a

and f is monotone, also f(a) = 1 . In either case m′(a) = 1 implies

f(a) = 1 . Hence m′ ∈ I(f) . �

THEOREM 4.2 : For monotone functions f the unique minimal

polynomial consists of all prime implicants.

Proof : By Lemma 2.2 it is sufficient to construct for each m ∈ PI(f)

some input a ∈ f−1(1) such that m(a) = 1 and m′(a) = 0 for all

m′ ∈ PI(f) , m′ �= m . By Theorem 4.1 we may assume w.l.o.g. that

m(x) = x1 · · · xk . Let ai = 1 iff i ≤ k . Obviously m(a) = 1 . If

m′(a) = 1 , m′ �= m and m′ ∈ PI(f) , m′ can contain by Theorem 4.1

and by definition of a only variables xi where i ≤ k . Therefore m′ is a

proper submonom of m and m is no prime implicant. Contradiction.

�

32

The minimal polynomial for f ∈ Mn is also called monotone dis-

junctive normal form (MDNF).

THEOREM 4.3 : The set of functions computable by monotone

circuits, i.e. {∧�∨}-circuits, is equal to the set of monotone functions.

Proof : By Theorem 4.1 each monotone function may be computed by

a monotone circuit. By induction on the number of gates of a mono-

tone circuit we prove that monotone circuits compute only monotone

functions. The inputs 0� 1� x1� � � � � xn are monotone. For the induction

step it is sufficient to prove that f ∧ g and f ∨ g are monotone if f and

g are monotone. Let a ≤ b . Then

(f ∧ g)(a) = min{f(a)� g(a)} ≤ min{f(b)� g(b)} = (f ∧ g)(b) (4.1)

and

(f ∨ g)(a) = max{f(a)� g(a)} ≤ max{f(b)� g(b)} = (f ∨ g)(b)� (4.2)

�

Monotone circuits will be investigated in detail in Ch. 6. The mono-

tone basis {∧�∨} is denoted by Ωm and the corresponding complexity

measures are denoted by Cm and Dm .

33

2.5 The complexity of minimizing

So far we have described efficient algorithms for the computation

of PI(f) and the reduced PI-table. No efficient algorithm for the sec-

ond part, the computation of a minimal polynomial from the reduced

PI-table, is known. We argue that with high probability no such algo-

rithm exists. For this purpose we use the concept of NP-completeness

(see Garey and Johnson (79)). For all those who are not familiar with

the NP-theory we give the following short explanation. Many (more

than 1000) problems are known to be NP-complete. It can be proved

that one of the following statements is correct. Either all NP-complete

problems have polynomial algorithms or no NP-complete problem may

be solved by a polynomial algorithm. The conjecture of most of the

experts is that the second statement holds. One of the well-known

NP-complete problems is the set cover problem which we prove to be

equivalent to our minimization problem.

DEFINITION 5.1 : An instance of the set cover problem is given

by different sets S1� � � � � Sm ⊆ {1� � � � � n} such that the union of all Si

is {1� � � � � n} , and some number k ≤ m . The problem is to decide

whether the union of k of the sets Si equals {1� � � � � n} .

The problem of determining the minimum k such that k subsets

are sufficient to cover {1� � � � � n} is not easier. The connection with our

minimization problem is easy to see. The inputs a ∈ f−1(1) correspond

to the elements 1� � � � � n and the prime implicants correspond to the

sets Si . In particular, j ∈ Si iff mi(yj) = 1 . We may still hope that

minimization problems only lead to easy instances of the set cover

problem. This hope has been destroyed by Paul (75).

34

DEFINITION 5.2 : A 0-1-matrix is called reduced if each row con-

tains at least one 1-entry, each column contains at least two 1-entries

and if no columns c and c′ have the property c ≤ c′ .

THEOREM 5.1 : For each reduced matrix M there exists a Boolean

function f , whose reduced PI-table equals M . Furthermore f can be

chosen such that all prime implicants of the reduced PI-table have the

same length.

Proof : Let n be the number of rows of M and let S be the set of

columns of M . It will turn out that the following function f ∈ Bn+2

satisfies the assertion of the theorem.

For a ∈ {0� 1}n we denote a1 ⊕ · · · ⊕ an , the parity of a , by |a| . The

vector of zeros only is denoted by 0 .

f(a� 0� 0) = 1 a �= 0 . (5.1)

f(a� 1� 1) = 0 for all a ∈ {0� 1}n . (5.2)

f(a� 1� 0) = 1 if a �= 0 , a �∈ S and |a| = 0 . (5.3)

f(a� 0� 1) = 1 if a �= 0 , a �∈ S and |a| = 1 . (5.4)

We claim that PI(f) consists of the following three subsets where ma

again is the minterm for a .

PI(f) = {ma xn+1 | a �= 0 , a �∈ S , |a| = 1} (5.5)

∪ {ma xn+2 | a �= 0 , a �∈ S , |a| = 0}

∪ {xi xn+1 xn+2 | 1 ≤ i ≤ n}�

At first it is easy to see that all monoms in (5.5) are implicants and

no monom is a shortening of another one. Therefore it is sufficient to

prove that all other implicants of f are lengthenings of the monoms in

(5.5).

35

Let t ∈ I(f) . Because of (5.2) t contains either xn+1 or xn+2 or

both of them. Because of (5.1) t contains some xi if it contains xn+1

and xn+2 . If t contains xn+1 but not xn+2 , then t contains a full

minterm ma . Otherwise t does not contain xi and xi for some i and we

find vectors a and a′ differing only at position i such that t(a� 0� 1) =

t(a′� 0� 1) = 1 implying f(a� 0� 1) = f(a′� 0� 1) = 1 . Because of (5.4)

|a| = |a′| = 1 which is impossible if a and a′ differ only at one position.

Altogether t contains xn+1 and ma for some a ∈ {0� 1}n . Again (5.4)

implies that a �= 0 , a �∈ S and |a| = 1 . Similar arguments hold if t

contains xn+2 but not xn+1 . Altogether we have proved (5.5).

We consider the PI-table of f . The column for (a� 0� 1) ∈ f−1(1)

has a single one in the row ma xn+1 . The PI-table may be reduced

by eliminating the row ma xn+1 and the columns (a� 0� 1) and (a� 0� 0) .

Similar arguments hold for rows ma xn+2 and inputs (a� 1� 0) ∈ f−1(1) .

We obtain the following partially reduced PI-table M′ . M′ has rows for

xi xn+1 xn+2 (1 ≤ i ≤ n) and columns for (a� 0� 0) and some a ∈ S . The

columns (a� 0� 1) and (a� 1� 0) have all been eliminated. Column (a� 0� 0)

has been eliminated either during the elimination of row ma xn+1 iff

a �∈ S and |a| = 1 or during the elimination of row ma xn+2 iff a �∈ S

and |a| = 0 . Furthermore xi xn+1 xn+2(a� 0� 0) = ai . Therefore the

partially reduced PI-table M′ is equal to the given matrix M . Since

M is reduced, M′ is reduced too. All prime implicants have length 3 .

�

2.6 Discussion

As we have shown the minimization of a Boolean function is (prob-

ably) a hard problem. Furthermore, a minimal polynomial for f does

not lead to an optimal circuit for f . We only obtain an optimal circuit

in the rather restricted class of two-level-circuits. The following ex-

ample of Lupanov (65 a) shows that a very simple function may have

36

an expensive minimal polynomial.

PROPOSITION 6.1 : Let f(x) = x1⊕· · ·⊕xn be the parity function.

Then C(f) ≤ n− 1 but the minimal polynomial consists of 2n−1 prime

implicants of length n each.

Proof : By definition C(f) ≤ n − 1 . PI(f) is the set of minterms ma

such that a1 ⊕ · · · ⊕ an = 1 . Since |m−1
a (1)| = 1 , all prime implicants

are necessary for the minimal polynomial. �

In Ch. 11 we show that even k-level-circuits computing the parity

function require an exponential number of gates. Of course parity is

an extreme example. Korshunov (81 b) and Kuznetsov (83 b) have

shown that for almost all f ∈ Bn the number of prime implicants in a

minimal polynomial is at least (1−εn) 2n�(log n log logn) where εn → 0

and at most 1�6 2n�(log n log logn) . In Ch. 4 we construct efficiently

a circuit with at most 2n�n + o(2n�n) gates for each f ∈ Bn .

Finally we mention that it is possible to develop a dual theory by

exchanging the roles of ∧ and ∨ and of 0 and 1 . Instead of monoms

we obtain Boolean sums and instead of (prime) implicants (prime)

clauses. For monotone functions the monotone conjunctive normal

form (MCNF) is the counterpart of the MDNF.

EXERCISES

1. Compute a minimal polynomial for

f(a� b� c� d) = ab c d ∨ a b c d ∨ a b c d ∨ a b c d ∨ a b c d ∨
a b c d ∨ a b c d

2. How often do we obtain m ∈ Qi while constructing Qi according

to the Quine and McCluskey algorithm ?

37

3. Describe the set of prime implicants of f ∈ Bn where f computes

1 iff x1 + · · ·+ xn �≡ 0 mod k .

4. Define a function f ∈ Bn with Ω(3n�n) prime implicants.

5. D(f) ≤ n + log n for all f ∈ Bn .

6. Define a function f ∈ Bn which has not a unique minimal polyno-

mial.

7. Design polynomial {∧�∨�¬}-circuits for the parity function such

that the number of logical levels grows as slowly as possible.

8. Prove the dual counterpart of Proposition 6.1 for the parity func-

tion.

9. Let f� g ∈ Mn . f ≤ g ⇔ ∀ p ∈ PI(f) ∃ q ∈ PI(g) : p ≤ q .

10. Compute all prime implicants and prime clauses of Tn
k , the k -th

threshold function, computing 1 iff the number of ones in the input

is at least k .

For the following problems (Oberschelp (84)) we need some defini-

tions. Let S = {0� � � � � s− 1} and let i⊕ j ≡ i + j mod s . An interval

[a� b] contains a� a⊕ 1� � � � � b . A (generalized) rectangle is a Cartesian

product of intervals. For a rectangle D ⊆ Sn and some c ∈ S−{0} the

corresponding monom m is defined by m(x) = c if x ∈ D and m(x) = 0

otherwise. m ∈ I(f) if m ≤ f . m ∈ PI(f) if no implicant m′ ∈ I(f)

corresponds to D′ and c′ such that D ⊆ D′ , D �= D′ and c = c′ or

D = D′ and c � c′ . The partial derivative of f at a with respect to xi

is defined by

�f��xi(a) = min{f(a1� � � � � ai−1� ai ⊕ 1� ai+1� � � � � an)� f(a1� � � � � an)}�

38

11. For s = 2 the above definitions of monoms and (prime) implicants

are equal to the definitions in § 1.

12. The order of partial derivatives is arbitrary.

13. �f�� jxi = �f�� j′xi if j� j′ ≥ s− 1 .

14. Describe the set of functions f : Sn → S such that

�f�� i(1)x1 · · · � i(n)xn(a) = b .

15. g : Sn → S has a local maximum at a if g(bi) � g(a) for all

bi = (a1� � � � � ai−1� ai ⊕ 1� ai+1� � � � � an) .

If g = �f�� i(1)x1 · · · � i(n)xn has a local maximum at a , the monom

h corresponding to D = [a1� a1 ⊕ i(1)] × · · · × [an� an ⊕ i(n)] and

c = g(a) is a prime implicant of f .

16. By the consideration of all local maxima we do not detect all

prime implicants. Describe an algorithm for the computation of

all prime implicants. Consider at first the case s = 2 .

39

3. THE DESIGN OF EFFICIENT CIRCUITS FOR SOME FUN-

DAMENTAL FUNCTIONS

In this chapter we design for some fundamental functions circuits

of small size and small depth. The design methods we use are im-

portant, since they are quite general. It may be astonishing that we

already need clever and subtle methods for the design of efficient ad-

dition, multiplication and division circuits. The basic methods learnt

in school are not efficient enough. In order to estimate the value of

our circuits we mention that for all functions f ∈ Bn�m considered in

this chapter n − 1 gates and depth �log n� are necessary (see Ch. 5).

Here and in the rest of the book we use the so-called upper and lower

Gaussian brackets.

�x� = min{z ∈ � | z ≥ x} and �x� = max{z ∈ � | z ≤ x}�
The binary number a = (an−1� � � � � a0) ∈ {0� 1}n has the value |a| =

a0 20 + · · ·+ an−1 2n−1 .

3.1 Addition and subtraction

DEFINITION 1.1 : The addition function fadd
n ∈ B2n�n+1 has two

n-bit numbers x and y as inputs and computes the (n + 1)-bit repre-

sentation s of |x|+ |y| .

In this section fn means fadd
n . How efficient is the addition method

we learnt in school ? We use a halfadder to compute s0 = x0 ⊕ y0 and

the carry bit c0 = x0 ∧ y0 . Afterwards we use n − 1 fulladders for

the computation of si and ci from xi , yi and ci−1 . Finally sn = cn−1 .

40

Already in Ch. 1 we have defined a fulladder of size 5 and depth 3 by

sj = xj ⊕ yj ⊕ cj−1 and (1.1)

cj = xj yj ∨ (xj ⊕ yj) cj−1� (1.2)

Altogether we obtain a circuit of size 5n− 3 and depth 2n− 1 . Here

we compute in parallel all xj yj and xj ⊕ yj . Afterwards sj and cj can

be computed in depth 2 if cj−1 is computed.

THEOREM 1.1 : The school method of addition leads to a circuit

of size 5n− 3 and depth 2n− 1 .

This circuit is of minimal size (see Ch. 5). But its depth is far too

large. This is not astonishing, since the method has been designed

for sequentially working people. We try to reduce the depth. The

problem is the computation of the carry bits. Later we compute all

carry bits in advance. Now we compute the sum under the condition

that the carry bits have certain values. Afterwards we select the right

output. This procedure due to Sklansky (60 a) and (60 b) is called

Conditional Sum Adder.

For the sake of simplicity we assume that n = 2k . It should always

be easy for the reader to generalize the algorithms to arbitrary n .

The numbers x and y have n = 2k bits and can be divided into 2k−l

blocks each of length 2l . The i -th block of x of length L = 2l , namely

(xiL−1� � � � � x(i−1)L) , is denoted by Xi�l . Our problem is the addition of

X1�k (the number x) and Y1�k where the carry bit at position 0 is 0 .

The subproblem Pi�l �c where 0 ≤ l ≤ k , 1 ≤ i ≤ 2k−l and c ∈ {0� 1}
is the problem of adding Xil , namely (xiL−1� � � � � x(i−1)L) , Yil , namely

(yiL−1� � � � � y(i−1)L) , and c . Altogether we have to solve P1�k�0 .

Since we are looking for a circuit of small depth, we solve the

problems Pi�l �c for fixed l in parallel. For l = 0 and c = 0 we have to

compute the sum bits xj ⊕ yj and the carry bits xj ∧ yj . For l = 0

and c = 1 we have to compute the sum bits xj ⊕ yj and the carry bits

xj ∨ yj . Altogether step 0 , the solution of all Pi�0�c , can be realized

41

with 4n gates in depth 1 .

In step l (1 ≤ l ≤ k) we solve all problems Pi�l �c where we may use

the results of all problems Pi�l−1�c . Let us consider Pi�l �c in more detail.

We have to add the summands (xiL−1� � � � � x(i−1)L) , (yiL−1� � � � � y(i−1)L)

and c . In order to use the solutions of smaller problems, we describe

the summands in another way where L′ = 2l−1 .

Summands for Pi�l �c :(
x2iL′−1� � � � � x(2i−1)L′� x(2i−1)L′−1� � � � � x(2i−2)L′

)
� (1.3)(

y2iL′−1� � � � � y(2i−1)L′� y(2i−1)L′−1� � � � � y(2i−2)L′
)

and c�

By (1.3) the second half of the solution of Pi�l �c is the solution of

P2i−1�l−1�c without the foremost carry c′ . The first half of the solution

of Pi�l �c is the solution of P2i�l−1�c′ . Since c is given we may directly

use the solution of P2i−1�l−1�c . But c′ is not known in advance. c′ is

an output of P2i−1�l−1�c . Let z0
j ((2i − 1)L′ ≤ j ≤ 2iL′) and z1

j be the

output bits of P2i�l−1�0 and P2i�l−1�1 resp. Using c′ we may select the

right output bit (z0
j if c′ = 0 or z1

j if c′ = 1) by

zj = (c′ ∧ z1
j) ∨ (c′ ∧ z0

j) (1.4)

in depth 2 using 3 gates. Altogether step l can be realized in depth 2

using for each of the 2k−l · 2 problems 3(2l−1 + 1) gates. The circuit

size of step l is 3(2k + 2k−l+1) .

The depth of the whole circuit is 1 + 2k = 2 log n + 1 and the size

is

4n +
∑

1≤l≤k
3(2k + 2k−l+1) = 4n + 3k 2k + 3(2k+1 − 2) (1.5)

= 3n log n + 10n− 6�

THEOREM 1.2 : The Conditional Sum Adder may be realized (if

n = 2k) in depth 2 log n + 1 and size 3n log n + 10n− 6 .

42

According to our remark at the beginning of this chapter the depth

of this circuit is only double the size of the lower bound. But the size

of the circuit is not linear. The Carry Look Ahead Adder due to Of-

man (63) simultaneously has size O(n) and depth O(log n) . Constant

factors for depth have stronger consequences than constant factors for

size. Therefore the adder of Brent (70) of size O(n log n) and depth

log n + O(log1�2 n) is interesting. Krapchenko (70) came up with an

adder of linear size and depth log n + O(log1�2 n) .

THEOREM 1.3 : Krapchenko’s adder for n-bit numbers has size

3n + 6 · 2m and depth m + 7(2m)1�2 + 16 where m = �log n� .

For n = 2k the size of Krapchenko’s adder is only by the factor

of 1�8 larger than the minimal size for an adder. The additive term

7(2m)1�2 + 16 for the depth seems to be quite large, in particular

for small n . In fact the additive term is smaller but our estimations

are not exact. The following proof is long and technically involved,

although the ideas are easy.

Proof of Theorem 1.3 : Krapchenko’s adder S consists of five parts

S1� � � � � S5 . In S1 uj = xj yj and vj = xj ⊕ yj are computed by n half-

adders. The crucial part is the computation of the carry bits cj in

S2 , S3 and S4 . Afterwards, it is easy to compute in S5 the outputs

s0 = v0 , sj = vj ⊕ cj−1 for 1 ≤ j ≤ n− 1 and sn = cn−1 . Therefore

C(S1) = 2n D(S1) = 1 and (1.6)

C(S5) = n− 1 D(S5) = 1� (1.7)

By applying (1.2) for j + 1 times we can compute cj from the u- and

v-parameters.

cj = uj ∨ vj cj−1 = uj ∨ uj−1 vj ∨ vj−1 vj cj−2 = · · · = (1.8)

=
∨

0≤i≤j
ui vi+1 · · · vj�

This can be interpreted in the following way. Carry cj = 1 iff for some

i ≤ j at position i we have two ones (ui = 1) and at the positions

43

i + 1� � � � � j exactly a zero and a one (vi+1 = · · · = vj = 1). More

generally, we define for b ≥ a

Gb�a = gb−a+1 (ub� vb� � � � � ua+1� va+1� ua) = (1.9)

=
∨

a≤i≤b
ui vi+1 · · · vb

Vb�a = va · · · vb� (1.10)

In particular cj = Gj�0 . In Fig. 1.1 we give a triangle representation

for Gd�a where one has to combine the rows by disjunctions. Let a �

b � d . Since

Gd�a : ua va+1 � � � vb−1 vb vb+1 vb+2 � � � vd−1 vd

ua+1 � � � vb−1 vb vb+1 vb+2 � � � vd−1 vd Vd�b+1

· ·
ub vb+1 vb+2 � � � vd−1 vd

Gb�a

ub+1 vb+2 · · · vd−1 vd

· · · · · · · · · · · ·
ud−1 vd

ud

Gd�b+1

Fig. 1.1

Gd�a = Gd�b+1 ∨Gb�a Vd�b+1 and (1.11)

Vd�a = Vb�a Vd�b+1� (1.12)

According to Fig. 1.1 G-functions are called triangles and V-functions

are called rectangles.

In S2 we compute some not too large triangles and rectangles. For

some parameter τ to be chosen later we partition {0� � � � � n − 1} to

blocks of size 2� 4� � � � � 2τ and compute the corresponding triangles and

rectangles. These results are used in S3 for the computation of all carry

44

bits cj where j = k 2τ−1 for some k . In S4 we fill the gaps and compute

all cj .

We have already computed triangles of size 1 , namely uj , and

rectangles of size 1 , namely vj . By (1.11) and (1.12) we may compute

rectangles and triangles of size 2l from the rectangles and triangles of

size 2l−1 with 1 and 2 gates resp. in depth 2 . The number of blocks

of size 2l may be estimated by 2m−l . Altogether

C(S2) ≤ 3 · 2m(1− 2−τ) and D(S2) = 2τ � (1.13)

S4 is rather simple too. In S3 we have computed all ck 2τ−1 . The

other carry bits are computed in τ steps where we compute all c
k 2τ−l−1

in step l . For even k these carry bits have already been computed.

For odd k = 2j + 1 by (1.8) – (1.12)

c
(2j+1) 2τ−l−1

= (1.14)

G
(2j+1) 2τ−l−1� (2j) 2τ−l ∨ V

(2j+1) 2τ−l−1� (2j) 2τ−l c
(2j) 2τ−l−1

�

The terms on the right-hand side are computed in S2 , S3 or in earlier

steps of S4 . The depth of step l is 2 while the size is 2 for each new

carry. j may take values in {0� � � � � 2m−τ+l−1 − 1} . Thus

C(S4) ≤ 2 · 2m(1− 2−τ) and D(S4) = 2τ � (1.15)

In S3 we use the triangles u′j and rectangles v′j of size 2τ as inputs

(0 ≤ j ≤ 2m−τ − 1) and compute all G′
j�0 = gj+1(u

′
j� v

′
j� � � � � u

′
0) . By

(1.11) and (1.12) we can conclude that G′
j�0 is the carry bit at position

(j + 1) 2τ − 1 . We have to solve the problem of computing all carry

bits but the input size has been reduced from n to 2m−τ .

At first we explain our ideas by an implementation of small depth

and large size. Afterwards we bound depth and size simultaneously.

Considering depth only to consider one output only is sufficient, say

G2m−1�0 = g2m(u2m−1� v2m−1� � � � � u0) .

45

Again by (1.11) and (1.12)

G2m−1�0 = (1.16)∨
0≤i≤2m−r−1

G2m−i 2r−1� 2m−(i+1) 2r V2m−1� 2m−i 2r�

All triangles on the right side have length 2r , the rectangles can be

computed in depth m , all conjunctions between triangles and rect-

angles can be done in parallel and by divide-and-conquer, the outer

disjunction can be performed in depth m− r .

D(g2m) ≤ m− r + 1 + max{D(g2r)�m}� (1.17)

since all triangles and rectangles can be computed in parallel. For the

sake of simplicity let us assume that m = h(l) =
(l
2

)
. Then we choose

r = h(l − 1) . By induction we can prove that

D(g
2h(l)) ≤ h(l + 1)� (1.18)

For l = 1 , m = 0 and g1 has depth 0 ≤ h(2) = 1 . For the induction

step l − 1 → l we apply (1.17). By induction hypothesis the depth

of g2r is bounded by h(l) = m . Thus the depth of g2m is bounded

by 2m − r + 1 or 2
(l
2

) − (l−1
2

)
+ 1 =

(l+1
2

)
= h(l + 1) . Furthermore(l+1

2

)
=
(l
2

)
+ l = m + O(m1�2) and for n ≤ 2m the depth of gn is

bounded by log n + O(log1�2 n) .

In order to guarantee also linear size we have reduced the number

of inputs by the use of S2 and S4 and we use a more complicated

implementation of all g-functions. Here we have 2m′
inputs where

m′ = m − τ . We choose the smallest t such that m′ ≤ (t
2

)
= h(t) .

Since
(t−1

2

)
� m′ , it is easy to prove that

t � (2m′)1�2 + 2� (1.19)

For 1 ≤ l ≤ t and 0 ≤ j ≤ 2m′ − 1 let d(l � j) be the largest multiple of

2h(l) not larger than j . Then

j− 2h(l) + 1 ≤ d(l � j) ≤ j� in particular d(t� j) = 0� (1.20)

For 2 ≤ l ≤ t and 0 ≤ j ≤ 2m′ − 1 let

46

e(l � j) = (d(l − 1� j)− d(l � j))�2h(l−1)� (1.21)

By (1.20) we obtain for l � t

e(l � j) ≤ (j− d(l � j))�2h(l−1) � 2h(l)−h(l−1) = 2l−1 and (1.22)

e(t� j) = d(t− 1� j)�2h(t−1) ≤ j�2h(t−1) � 2m′−h(t−1) ≤ 2t−1� (1.23)

We now compute all triangles G′ and rectangles V′ based on the

inputs u′j and v′j . The rectangles are computed in t− 1 steps (1 ≤ l ≤
t−1). In step l we compute for 1 ≤ k ≤ e(l +1� j) and 0 ≤ j ≤ 2m′−1

V′
j� d(l �j)−k 2h(l) = (1.24)

V′
j� d(l �j) ∧ ∧

1≤r≤k
V′

d(l �j)−(r−1) 2h(l)−1� d(l �j)−r 2h(l)�

The correctness of (1.24) is obvious. It is necessary to prove that the

rectangles on the right side are computed before step l . For k = e(l � j) ,

we get d(l � j) = d(l − 1� j)− k 2h(l−1) by (1.21). Therefore V′
j� d(l �j) has

been computed before. For the other rectangles let j′ = d(l � j)− (r−
1) 2h(l) − 1 . By definition of d(l � j) we can find some k such that

d(l � j) = k 2h(l) , thus j′ = (k− r) 2h(l) + 2h(l) − 1 .

Furthermore d(l � j)− r 2h(l) = (k− r) 2h(l) = d(l � j′) by definition of d .

So also the other rectangles are of the form V′
j′� d(l �j′) and are computed

before step l .

The triangles are computed in t− 1 steps (2 ≤ l ≤ t). In step l we

compute for 0 ≤ j ≤ 2m′ − 1

G′
j� d(l �j) = G′

j� d(l−1�j) ∨∨
1≤r≤e(l �j)

V′
j� d(l−1�j)−(r−1) 2h(l−1) ∧ (1.25)

G′
d(l−1�j)−(r−1) 2h(l−1)� d(l−1�j)−r 2h(l−1)�

(1.25) is correct by our standard arguments. The rectangles are com-

puted before step l as has been shown above. The triangles on the

right have been computed at step l − 1 . Finally G′
j� d(t�j) = G′

j� 0 is the

carry bit at position (j + 1) 2τ − 1 .

47

We estimate the depth and size of S3 . In (1.24) we compute the

conjunction of at most e(l + 1� j) rectangles. By (1.22) and (1.23) this

can be done in depth l . In (1.25) we perform the conjunctions in

depth 1 in parallel. Afterwards we compute the disjunction of at most

e(l � j) + 1 terms. By (1.22) the depth of step l is bounded by l and by

(1.23) the depth of step t is bounded by m′ −h(t− 1) +1 . Altogether

by (1.19)

D(S3) ≤ 1 + · · ·+ t− 1 + m′ − h(t− 1) + 1 = m′ + t (1.26)

� m′ + (2m′)1�2 + 2�

The size of S3 is estimated in the same way. For the computation of

all rectangles the following number of gates is sufficient.∑
1≤l≤t−1

∑
0≤j≤2m′−1

∑
1≤k≤e(l+1�j)

k ≤ ∑
1≤l≤t−1

∑
0≤j≤2m′−1

2l(2l − 1)�2

= 2m′ (
2(4t−1 − 1)�3− 2t−1) � (1.27)

The number of gates for the triangles is estimated by∑
2≤l≤t

∑
0≤j≤2m′−1

2 e(l � j) ≤ 2m′ (
2t+1 − 2t− 1

)
� (1.28)

By (1.27) and (1.28)

C(S3) ≤ 2m′
22t−1� (1.29)

We summarize our complexity estimations.

D(S) ≤ m′ + (2m′)1�2 + 4τ + 4 = m + (2m′)1�2 + 3τ + 4 (1.30)

and

C(S) ≤ 3n + 5 · 2m(1− 2−τ) + 2m′
22t−1 (1.31)

where m = �log n� , m′ = m− τ and t � (2m′)1�2 + 2 . For

τ =
⌈
2(2m)1�2

⌉
+ 3 (1.32)

m′ + 2t− 1 ≤ m and the bounds of the theorem are proved. �

48

Since addition is the most fundamental operation, we present an-

other adder which simultaneously has linear size and logarithmic depth

(Ladner and Fischer (80)). The structure of this adder is easier than

Krapchenko’s adder.

At first we solve the prefix problem, the efficient computation of

all prefixes pi = x1 ◦ · · · ◦ xi for an associative operation ◦ . Later

we explain how the prefix problem may be used for the design of an

efficient adder. Ladner and Fischer present a family of algorithms

Ak(n) for inputs of length n . For n = 1 nothing has to be done. Let

n � 1 .

A0(n) : In parallel we apply A1(�n�2�) to x1� � � � � x�n�2� and A0(�n�2�)
to x�n�2�+1� � � � � xn . Afterwards pi is computed for i ≤ �n�2� . All

pi = (x1 ◦ · · · ◦ x�n�2�) ◦ (x�n�2�+1 ◦ · · · ◦ xi) for i � �n�2� may be

computed in one step each in parallel.

Ak(n) (k ≥ 1) : In parallel we compute the �n�2� pairs x1 ◦ x2 ,

x3 ◦ x4� � � � . Afterwards we apply Ak−1(�n�2�) to these pairs and, if

n is odd, xn . We compute all p2i� p1 and pn . The missing �n�2� − 1

prefixes p2i+1 = p2i ◦ x2i+1 can be computed in parallel.

By C(k� n) and D(k� n) we denote the size and depth resp. of Ak(n) .

Furthermore D∗(k� n) is the depth of pn using Ak(n) . Considering the

description of the algorithms we conclude

C(k� 1) = D(k� 1) = 0� (1.33)

C(0� n) = C(1� �n�2�) + C(0� �n�2�) + �n�2� � (1.34)

D(0� n) = max{D(1� �n�2�)�D∗(1� �n�2�) + 1�D(0� �n�2�) + 1}�
(1.35)

C(k� n) = C(k− 1� �n�2�) + 2 �n�2� − 1� (1.36)

D(k� n) ≤ D(k− 1� �n�2�) + 2� (1.37)

D∗(k� n) ≤ D(k− 1� �n�2�) + 1� (1.38)

We have used the fact that Ak(n) computes pn before the last step.

The solution of (1.33) – (1.38) easily follows from induction.

49

THEOREM 1.4 : The prefix problem is solved by Ak(n) . For

0 ≤ k ≤ �log n�
C(k� n) ≤ 2n(1 + 2−k) and (1.39)

D(k� n) ≤ k + �log n� � (1.40)

How can we use the prefix problem for the addition of binary num-

bers ? We use the subcircuits S1 and S5 of Krapchenko’s adder with

size 2n and n− 1 resp. and depth 1 each. S1 computes a coding of the

inputs bits.

uj = xj yj� vj = xj ⊕ yj� (1.41)

After having computed the carry bits we compute the result by

s0 = v0� sj = vj ⊕ cj−1 for 1 ≤ j ≤ n− 1� sn = cn−1� (1.42)

We know that cj = uj ∨ vj cj−1 . Since (uj� vj) may take the values

(0� 0) , (0� 1) and (1� 0) we consider the functions A(0� 0) , A(0� 1) and

A(1� 0) where

A(u� v)(c) = u ∨ v c for c ∈ {0� 1}� (1.43)

By definition we may compute the carry bits by

ci = A(ui� vi) ◦ · · · ◦A(u0� v0)(0)� (1.44)

This looks like the prefix problem.

We have to prove that G = ({A(0� 0)�A(0� 1)�A(1� 0)}� ◦) is a monoid.

Since the functions are defined on {0� 1} it is easy to check by case

inspection that

A(0� 0) ◦A(u� v) = A(0� 0)� (1.45)

A(0� 1) ◦A(u� v) = A(u� v)� and (1.46)

A(1� 0) ◦A(u� v) = A(1� 0)� (1.47)

The operation ◦ on sets of functions is always associative. Therefore

the conditions for the application of the prefix algorithms are fulfilled.

50

We only have to design a circuit for the operation ◦ .

Let A(u� v) = A(u2� v2) ◦A(u1� v1) . Again by (1.45) – (1.47) it is easy

to check that

(u� v) = (u2 ∨ u1v2� v1v2)� (1.48)

Here we find again the characteristic computation of triangles and

rectangles as in Krapchenko’s adder. By (1.48) a subcircuit for the

operation ◦ has size 3 and depth 2 . By the prefix algorithm Ak(n) we

may compute all (Gi�Vi) ∈ {(0� 0)� (0� 1)� (1� 0)} such that A(Gi�Vi)

is equal to A(ui� vi) ◦ · · · ◦ A(u0� v0) with a circuit of size 3 C(k� n)

and depth 2 D(k� n) . By (1.43) and (1.44) ci = A(Gi�Vi)(0) = Gi . We

may save n gates, since we may eliminate the gates for the computation

of Vi . Vi is not necessary for the computation of ci , and the prefix

algorithm uses Vi only for the computation of other Vj (see (1.48)).

Summarizing, the depth of the resulting circuit is 2 D(k� n)+2 and

its size is 3 C(k� n) + 2n− 1 . By Theorem 1.4 we have proved

THEOREM 1.5 : For 0 ≤ k ≤ �log n� there exist adders based

on prefix algorithms whose size is (8 + 6 · 2−k) n and whose depth is

2 �log n�+ 2k + 2 .

Even the most fundamental operation, the addition, is as we have

seen a fascinating problem.

We do not consider the subtraction of binary numbers in detail.

The complexity of subtraction is nearly the same as the complex-

ity of addition. If we use the first bit of a number as a sign (0 =

negative number , 1 = positive number), we have to distinguish be-

tween the different cases. More appropriate is the use of the well-

known 1-complement or 2-complement of binary numbers. These

representations of binary numbers are easy to compute. Afterwards

we may use the same algorithms for addition and subtraction (see e.g.

Spaniol (76)).

51

3.2 Multiplication

DEFINITION 2.1 : The multiplication function fmult
n ∈ B2n�2n has

two n-bit numbers x and y as inputs and computes the 2n-bit repre-

sentation p of |x| · |y| .

We learnt in school how to multiply x and y . For each i we multiply

yi by x , the result is zi = (zi�n−1� � � � � zi�0) where zi�j = yi xj . By a shift

which is gratis in circuits we compute |zi| 2i . Finally we add all |zi| 2i

in order to compute the product of x and y . The computation of all

zi�j can be done by n2 gates in depth 1 . By divide-and-conquer we can

add the n numbers in �log n� addition steps. With the efficient adders

of § 1 we obtain the following result.

LEMMA 2.1 : The school method for the multiplication implemented

with efficient addition circuits leads to a circuit of size O(n2) and depth

O(log2 n) .

The depth can be reduced by an easy trick due to Ofman (63)

and Wallace (64). Since the addition of n-bit numbers requires depth

Ω(log n) , they used Carry Save Adder (CSA gates). CSA gates

have three n-bit numbers a� b� c as inputs and produce two (n + 1)-bit

numbers u and v as outputs such that |a|+ |b|+ |c| = |u|+ |v| .

LEMMA 2.2 : CSA gates may be realized in size 5n and depth 3 .

Proof : We use n fulladders. By the i -th fulladder we add ai , bi and

ci and produce the sum bit ui and the carry bit vi+1 (0 ≤ i ≤ n − 1).

Moreover un = v0 = 0 . Finally

|a|+ |b|+ |c| = ∑
0≤i≤n−1

(ai + bi + ci) 2i =
∑

0≤i≤n−1
(ui + 2vi+1) 2i (2.1)

52

=
∑

0≤i≤n
ui 2

i +
∑

0≤i≤n
vi 2

i = |u|+ |v|�

�

We improve the school method for multiplication by the application

of this ingenious but nevertheless simple idea. The numbers zi again

are computed with n2 gates in depth 1 . The following CSA gates work

on numbers whose length is bounded by 2n , thus all CSA gates have

linear size and depth 3 . The number of summands is reduced by 1

by each CSA gate. Therefore n− 2 CSA gates are sufficient to reduce

the number of summands from n to 2 . Finally we use Krapchenko’s

adder to add these two summands. The resulting circuit has quadratic

size. In order to reduce the depth we always use the largest possible

number of CSA gates in parallel. If we still have 3k + i summands

where i ∈{0,1,2} we may reduce the number of summands to 2k + i

by k parallel CSA gates. Let n0 = n and let nj be the number of

summands after the j -th step. Obviously n1 ≤ 2
3n+ 2

3 and by induction

nj ≤
(

2

3

)j

n +

(
2

3
+

(
2

3

)2

+ · · ·+
(

2

3

)j
)
≤
(

2

3

)j

· n + 2� (2.2)

For j =
⌊
log3�2 n

⌋
, we conclude nj ≤ 3 . So

⌊
log3�2 n

⌋
+ 1 steps are

sufficient to reduce the number of summands to 2 .

THEOREM 2.1 : The school method for multiplication implemented

with CSA gates and a Krapchenko adder leads to a circuit of size O(n2)

and depth O(log n) .

This multiplication circuit is asymptotically optimal with respect

to depth. It is hard to imagine that o(n2) gates are sufficient for

multiplication. Let us try a divide-and-conquer algorithm. Let n = 2k

and let x = (x′� x′′) and y = (y′� y′′) be divided into two parts of length

n�2 . Then

53

|p| = |x| |y| = (2n�2 |x′|+ |x′′|) (2n�2 |y′|+ |y′′|) (2.3)

= 2n |x′| |y′|+ 2n�2 (|x′| |y′′|+ |x′′| |y′|) + |x′′| |y′′|�

In (2.3) we multiply four times numbers of length n�2 . The multi-

plications by 2n or 2n�2 are shifts which are gratis in circuits. Moreover

we perform three additions which have linear size. For the size of the

resulting circuit C∗(n) we obtain the recursion

C∗(n) ≤ 4 C∗(n�2) + c∗ n and C∗(1) = 1 (2.4)

for some constant c∗ . By Exercise 1 C∗(n) = Θ(n2) and nothing

has been gained. Karatsuba and Ofman (63) reduced the number of

multiplications of n�2-bit numbers from 4 to 3 .

We compute |p1| = |x′| |y′| , |p2| = |x′′| |y′′| and |p3| = (|x′|+|x′′|) (|y′|+
|y′′|) . Now the term |x′| |y′′|+ |x′′| |y′| can be obtained as |p3|− (|p1|+
|p2|) . We note that p3 is a product of two numbers of length n�2+1 .

It is easy to see that C(n) ≤ C(n − 1) + O(n) for the size C(n) of

multiplication circuits. Besides the three multiplications the circuit

has by earlier results size O(n) and depth O(log n) . Altogether, since

the multiplications can be done in parallel,

C(n) ≤ 3 C(n�2) + O(n)� D(n) ≤ D(n�2) + O(log n)� (2.5)

C(1) = D(1) = 1�

Obviously D(n) = O(log2 n) and, by Exercise 1, C(n) = O(nlog 3) .

THEOREM 2.2 : Circuits for multiplication may have size O(nlog 3)

and depth O(log2 n) . log 3 ≈ 1�585 .

For sequential computations the school method of addition is op-

timal whereas the school method of multiplication is not. Only for

rather long numbers the multiplication method of Karatsuba and Of-

man is better than the school method. The reader is asked to investi-

gate exactly the following multiplication method M(k) . If n ≤ k , use

the school method and, if n � k , start with the method of Karatsuba

and Ofman but solve subproblems for numbers with at most k bits by

54

the school method. The optimal k is kopt = 17 . Since 220 ≈ 106 , we

have improved the school method for numbers of reasonable size.

The depth of the Karatsuba and Ofman circuit can also be reduced

to O(log n) . Such a reduction was easy for the school method by the

use of CSA gates. Here we have to consider additions, subtractions

and multiplications by powers of 2 . In the following we present a

redundant representation of numbers where these operations can be

performed efficiently. We know that |p| � 22n and therefore we can

compute |p| exactly if we perform our calculations modm , i.e. in �m ,

for some m ≥ 22n . The following representation of numbers has been

investigated by Mehlhorn and Preparata (83).

DEFINITION 2.2 : A radix-4 representation of x ∈ �m , where �m

is a Fermat ring, i.e. m = 2p + 1 and p even, is a vector (xL−1� � � � � x0)

such that L = p�2 + 1 , −3 ≤ xi ≤ 3 and x =
∑

0≤i≤L−1
xi 4

i .

Radix-4 representations and computations in Fermat rings will also

play an important role in a further multiplication method that we dis-

cuss later. The binary representation (x′p� � � � � x
′
0) of x can be under-

stood as a radix-4 representation by taking xi = x′2i + 2 x′2i+1 . Obvi-

ously it is easy to change the sign in constant depth and linear size.

Therefore we do not have to consider subtractions but only additions.

Let (xL−1� � � � � x0) and (yL−1� � � � � y0) be radix-4 representations of

x and y which we like to add. We start our computation similar to a

CSA gate. We compute vi and ci such that xi + yi = vi + 4 ci . Since

−6 ≤ xi + yi ≤ 6 , it is possible to choose vi ∈ {−2�−1� 0� 1� 2} and

ci ∈ {−1� 0� 1} . The exact definition of vi and ci is given in Tab. 2.1.

The trick is to represent 3 not as 0 · 4+3 · 1 , but as 1 · 4+ (−1) · 1 .

By this trick, −3 ≤ s∗i = vi +ci−1 ≤ 3 . If cL−1 = 0 , we have computed

by (s∗L−1� � � � � s
∗
0) a radix-4 representation of x + y . Otherwise we have

to add s∗ , whose radix-4 representation is (s∗L−1� � � � � s
∗
0) , and cL−14

L .

55

xi + yi −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

vi −2 −1 0 1 −2 −1 0 1 2 −1 0 1 2

ci −1 −1 −1 −1 0 0 0 0 0 1 1 1 1

Tab. 2.1

By definition,

4L = 4 · 2p = 4 m− 4 ≡ −4 mod m (2.6)

and (0� � � � � 0�−cL−1� 0) is a radix-4 representation of cL−1 4L mod m .

Either −3 ≤ s∗1 − cL−1 ≤ 3 or cL−1 = −1 and s∗1 = 3 or cL−1 = 1 and

s∗1 = −3 . In the first case we obtain a radix-4 representation of x + y

by (s′L−1� � � � � s
′
0) where s′1 = s∗1− cL−1 and s′i = s∗i for all other i . In the

other cases we have to work harder. In our description of the algorithm

we use if-tests which are not possible in circuits. In circuits we have to

perform the computations for both situations and at the end to select

the right result (such a selection has been described in detail in § 1 for

the Conditional Sum Adder). If |s∗1 − cL−1| = 4 , we add (s∗L−1� � � � � s
∗
0)

and (0� � � � � 0�−cL−1� 0) by the same procedure as we started to add

(xL−1� � � � � x0) and (yL−1� � � � � y0) . We claim that the procedure stops.

Since |s∗1 − cL−1| = 4 , we get v∗1 = 0 and |c∗0| ≤ 1 . Therefore we

obtain the vector (s∗∗L−1� � � � � s
∗∗
0) where |s∗∗1 | = |v∗1 + c∗0| ≤ 1 . Since

|c∗L−1| ≤ 1 , it is not possible that |s∗∗1 −c∗L−1| = 4 . Hence (s∗∗L−1� � � � � s
∗∗
2 ,

s∗∗1 − c∗L−1� s
∗∗
0) is a radix-4 representation of x + y .

56

We also have to consider the computation of a radix-4 represen-

tation for x 2s mod m . A multiplication by a power of 2 consists of

a multiplication by a power of 4 and, if necessary, a multiplication

by 2 , i.e. an addition. That is why we consider only the computation

of x 4r mod m . Since 4L ≡ −4 mod m , as already shown,

x 4r ≡ ∑
r≤h≤L−1

xh−r 4h +
∑

0≤h≤r−1
xL−r+h 4h(−4) mod m (2.7)

for 0 ≤ r ≤ L−1 . Therefore it is sufficient to add the radix-4 represen-

tations (xL−1−r� � � � � x0� 0� � � � � 0) and (0� � � � � 0�−xL−1� � � � �−xL−r� 0) .

Finally we consider the transformation of a radix-4 representation

(xL−1� � � � � x0) of some number x into its binary representation. Let

x+
i = max{xi� 0} and x−i = min{xi� 0} . Let (x+

i�1� x
+
i�0) and (x−i�1� x

−
i�0)

be the binary representation of x+
i and −x−i resp. We obtain the

binary representation of x by an ordinary subtraction of x+ and x−

which have the binary representations (x+
L−1�1� x

+
L−1�0� � � � � x

+
0�1� x

+
0�0) and

(x−L−1�1� � � � � x
−
0�0) . We summarize our results.

THEOREM 2.3 : The binary representation of x is also a radix-4

representation of x . Numbers in radix-4 representation can be added,

subtracted and can be multiplied by a power of 2 with circuits of linear

size and constant depth. Furthermore, they can be transformed into

binary representation in linear size and logarithmic depth.

Since the recursion depth of the Karatsuba - Ofman algorithm is

log n , we obtain the following improvement of Theorem 2.2.

THEOREM 2.4 : The Karatsuba and Ofman algorithm for multi-

plication can be implemented such that the resulting circuit has size

O(nlog 3) and depth O(log n) .

In the rest of this section we present a circuit for multiplication due

to Schönhage and Strassen (71). The circuit simultaneously has size

O(n log n log log n) and depth O(log n) . No multiplication circuit of

57

smaller size is known. The problem whether multiplication circuits of

linear size exist or whether multiplication is harder than addition with

respect to circuit size is still open. Unfortunately the multiplication

circuit beats the other circuits only for very long numbers. These

long numbers are interesting for special applications, e.g. public key

cryptosystems. The algorithm is recursive, so we should solve small

subproblems with other methods.

To ensure that the subproblems are of the same type as the initial

problem, we make the following assumptions. n = 2k , 0 ≤ |x|� |y| ≤
2n , and we are only interested in |p| mod (2n + 1) . We obtain the

correct result if we start with n�2-bit numbers. In the following we do

not distinguish between |x| and x . Also we assume that x� y ≤ 2n−1 .

The cases x = 2n or y = 2n are easy and are treated in parallel. At

the end the correct result is selected. Since 2n ≡ −1 mod (2n + 1) ,

2ny ≡ 2n + 1 − y mod (2n + 1) and we only have to subtract y from

2n + 1 . If x� y ≤ 2n − 1 , their binary representations have length n .

After these preliminary remarks we discuss the ideas of the multi-

plication method of Schönhage and Strassen. While it is obvious that

for the multiplication of polynomials we have to multiply numbers, it

is interesting to see that the multiplication of numbers can be done by

the multiplication of polynomials. We partition x and y into b blocks

of l bits each, i.e. x = (xb−1� � � � � x0) and y = (yb−1� � � � � y0) , where

xi� yi ∈ {0� 1}l . The parameters are chosen as

b = 2�k�2� and l = n�b = 2�k�2�� (2.8)

Let f(z) =
∑

0≤i≤b−1
xi z

i and g(z) =
∑

0≤i≤b−1
yi z

i be polynomials. By

definition x = f(2l) and y = g(2l) , thus p = x y = h(2l) where h = f g .

Therefore we can multiply x and y by multiplying the polynomials f

and g and evaluating h at 2l . How can we compute the coefficients

vk of h ? By the law of distributivity vk is the sum of all xi yj where

i + j = k .

58

DEFINITION 2.3 : The convolution v = (v2b−2� � � � � v0) of x =

(xb−1� � � � � x0) and y = (yb−1� � � � � y0) is given by

vk =
∑

i+j=k
xi · yj� (2.9)

If we compute all vk by (2.9) we have to perform b2 multiplications

of l -bit numbers. Since bl = n , this is no improvement to previous

methods. The following trick is convenient. By the fundamental the-

orem of algebra a polynomial f of degree d− 1 is uniquely determined

by the value of f at d different inputs. For the sake of simplicity we

treat h as a polynomial of degree 2b− 1 . Altogether we may multiply

the polynomials f and g by evaluating f and g at 2b different inputs

a1� � � � � a2b , by computing h(ai) = f(ai) g(ai) and by computing the

coefficients of h from h(a1)� � � � � h(a2b) .

Later we shall see that the computation of f(a1)� � � � � f(a2b) can be

done very efficiently if we choose the right values for a1� � � � � a2b . In

the second step we have to perform 2b multiplications. The method

can only be efficient if the numbers to be multiplied are much shorter

than x and y . Schönhage and Strassen observed that the length of the

numbers can be reduced by Chinese Remaindering (explained later in

this section) and that the number of multiplications can be reduced

to b by replacing the convolution by its negative envelope.

DEFINITION 2.4 : The negative envelope w = (wb−1� � � � �w0) of the

convolution v of x and y is given by

wi =
∑

0≤j≤i
xj · yi−j −

∑
i�j≤b−1

xj · yb+i−j� (2.10)

If we define v2b−1 = 0 , we obtain the following connection between

the convolution and its negative envelope, wi = vi−vb+i . Now we are

able to present the main steps of the multiplication algorithm.

59

ALGORITHM 2.1 : We use the notation introduced above.

Step 1 : Compute w′
i = wi mod (22l + 1) for 0 ≤ i ≤ b− 1 .

(This will be done by the recursive procedure we have discussed.)

Step 2 : Compute w′′
i = wi mod b for 0 ≤ i ≤ b− 1 .

(This will be done directly.)

Step 3 : Compute wi from w′
i and w′′

i for 0 ≤ i ≤ b− 1 .

(This will be done by Chinese Remaindering.)

Step 4 : Compute p , the product of x and y , from (wb−1� � � � �w0) .

(This will be done by standard methods.)

We still have to work hard to implement the four steps of the

algorithm efficiently. At first we discuss the efficiency of the algorithm.

In Step 1 we perform recursively b multiplications of numbers of length

2l . These multiplications are done in parallel. All other work will be

done by a circuit of size O(bl log b) = O(n log n) and depth O(log n) .

So we obtain a circuit of size C(n) and depth D(n) , where

C(n) ≤ b C(2l) + O(n log n) and (2.11)

D(n) ≤ D(2l) + O(log n)� (2.12)

Since l ≤ (2n)1�2 , it is easy to show that D(n) = O(log n) . For

C′(n) = C(n)�n we obtain by (2.11)

C′(n) ≤ 2 C′(4 n1�2) + O(log n)� (2.13)

Now it is not difficult (though a little bit tedious) to prove C′(n) =

O(log n log log n) and C(n) = O(n log n log log n) .

For the implementation we do the easier steps first. Why is it

sufficient to compute the negative envelope of the convolution ?

LEMMA 2.3 : p ≡ ∑
0≤i≤b−1

wi 2
i l mod (2n + 1) .

60

Proof : We have already seen that

p = h(2l) =
∑

0≤i≤2b−1
vi · 2il � (2.14)

where v2b−1 = 0 . Since wi = vi − vb+i , it is sufficient to prove that

vb+i · 2(b+i)l equals −vb+i · 2il mod (2n + 1) . This is obvious since

2bl = 2n ≡ −1 mod (2n + 1) . �

By (2.10) we can estimate wi by

−(b− 1− i) · 22l � wi � (i + 1) · 22l � (2.15)

Therefore wi mod (b(22l +1)) is sufficient for the unique identification

of wi . The length of a radix-4 representation of wi mod (b(22l + 1)) is

O(l log b) . We have to add b numbers, therefore the depth is bounded

by O(log n) . We estimate the length of the numbers. In particular, we

do not add w0 20l and wb−1 2(b−1)l at the beginning, but always ˝neigh-

boring˝ numbers. After the j -th addition step we have computed sums

of 2j ˝neighboring˝ numbers. Due to the structure of the numbers

wi 2
il the length of these O(b 2−j) sums is O(l log b+2jl) . The number

of gates of the j -th addition step is bounded by O(2−jn log n+n) . Sum-

ming up for j ∈ {0� � � � � �log n�} , the size is bounded by O(n log n) .

We now have computed the sum p∗ of all wi 2
il . It is necessary to

compute p ≡ p∗ mod (2n + 1) . Since wi � b(22l + 1) , p∗ ≤ 23n .

We partition the binary representation of p∗ to three blocks of length

n each, i.e. p∗ = p2 22n + p1 2n + p0 . Since 2n ≡ −1 mod (2n + 1) ,

p ≡ p2 − p1 + p0 mod (2n + 1) . We compute p′ = p2 − p1 + p0 . Obvi-

ously −2n � p′ ≤ 2n+1 . We compute p′ , p′ + 2n + 1 and p′ − (2n + 1)

and select the number in {0� � � � � 2n} as p . Altogether we have imple-

mented Step 4 efficiently.

For the implementation of Step 3 we make use of the Chinese Re-

mainder Theorem which we prove in its general form. In § 3 we apply

the theorem in its general form.

61

THEOREM 2.5 (Chinese Remainder Theorem) : Let m1� � � � �mk be

relatively prime and m = m1 · � � � ·mk . For given a1� � � � � ak there is a

unique a ∈ {0� � � � �m− 1} such that a ≡ ai mod mi for all i . This a is

given by

a ≡ ∑
1≤i≤k

ai · ri · si mod m (2.16)

where ri = m�mi and si ≡ (m�mi)
−1 mod mi�

Proof : It is an easy fact from elementary number theory that si is well

defined, since mi and m�mi are relatively prime. Since mj is a factor

of m�mi if i �= j , ri ≡ 0 mod mj . By definition ri si ≡ 1 mod mi . So

a ≡ ai mod mi . The uniqueness of the solution is easy to prove too.

If a and b are solutions, a − b ≡ 0 mod mi . Because of the relative

primality of all mi even a−b ≡ 0 mod m . Since a� b ∈ {0� � � � �m−1} ,

we conclude a = b . �

Here we like to compute wi mod (b(22l + 1)) from w′
i ≡ wi mod

(22l + 1) and w′′
i ≡ wi mod b . Since b is a power of 2 , b and 22l + 1

are relatively prime. We claim

wi = w′
i + (22l + 1)[(w′′

i − w′
i) mod b]� (2.17)

By the Chinese Remainder Theorem it is sufficient to investigate

wi mod b and wi mod (22l + 1) . The second number equals w′
i . Since

b ≤ 22l , 22l ≡ 0 mod b . Therefore the right-hand side of (2.17) mod

b is equal to w′′
i . By (2.17) all wi can be computed in size O(n log n)

and depth O(log n) . Also Step 3 is implemented efficiently.

The computation of all wi ≡ wi mod b is rather easy since b is

rather small. Since b is a power of 2 we know x′i ≡ xi mod b and y′i ≡
yi mod b . We hide all computations in a multiplication of long but not

too long numbers. Let f ′(z) =
∑

0≤i≤b−1
x′i z

i and g′(z) =
∑

0≤i≤b−1
y′i z

i .

For m = 3 log b let x′′ = f ′(2m) and y′′ = g′(2m) . x′′ is the sequence

x′b−1 , 2 log b zeros, x′b−2� � � � � 2 log b zeros, x′0 , similarly for y′′ . By

62

Theorem 2.4 we may compute x′′ · y′′ = f ′ g′(2m) by a circuit of size

O((b log b)log 3) = o(n log n) and depth O(log(b log b)) = O(log n) .

By definition of the convolution vector v′ of x′ and y′ we know that

f ′ g′(2m) =
∑

0≤k≤2b−1
v′k 2mk . Since x′i� y

′
i ∈ {0� � � � � b − 1} , 0 ≤ v′k �

b3 = 2m . Thus f ′ g′(2m) contains all v′k as substrings. Now it is easy

to compute efficiently all w′′
i ≡ (v′i − v′b+i) mod b .

The most difficult part is the computation of all w′
i ≡ wi mod (22l +

1) in Step 1. Here we use the recursive procedure discussed at the

beginning. The ideas for the computation of the negative envelope

of convolution are discussed here in the general situation that vectors

a = (a0� � � � � an−1) and b = (b0� � � � � bn−1) are given. ai and bi are

elements of a commutative ring with a one. The negative envelope

w = (w0� � � � �wn−1) is defined similarly to (2.10). We like to evaluate

the polynomials f and g whose vectors of coefficients are a and b , resp.,

at 2n (for the convolution) or n (for the negative envelope) different

inputs. The naive procedure has Θ(n2) arithmetic operations. By

choosing the inputs carefully we get by with only O(n log n) arithmetic

operations.

This so-called Fast Fourier Transform has already been described

by Runge and König (24) and has been rediscovered for computer

science by Cooley and Tukey (65). As inputs we choose r0� r1� � � � � rn−1

where r is an n-th root of identity.

DEFINITION 2.5 : r is an n-th root of identity in a commutative

ring R with one if r �= 1 , rn = 1 and
∑

0≤j≤n−1
rjk = 0 for 1 ≤ k ≤ n−1 .

First of all we prove the existence of roots of identity in some

Fermat rings.

63

LEMMA 2.4 : Let n and r �= 1 be powers of 2 and m = rn�2 + 1 .

Then r is an n-th root of identity in �m and n−1 and r−1 are defined

in �m .

Proof : The existence of n−1 and r−1 again follows from elementary

number theory, since n and r are relatively prime to m . By definition

r �= 1 . Since rn�2 ≡ −1 mod m , rn ≡ 1 mod m . For the last condition

we prove by induction on p = log n∑
0≤j≤n−1

rjk =
∏

0≤i≤p−1
(1 + r2

ik)� (2.18)

This claim is obvious for p = 1 . The induction step follows from the

following elementary calculation∑
0≤j≤n−1

rjk = (1 + rk)
∑

0≤j≤(n�2)−1
(r2)jk (2.19)

= (1 + rk)
∏

0≤i≤p−2
(1 + (r2)2

i k) =
∏

0≤i≤p−1
(1 + r2

i k)�

Now it is sufficient to prove that one of the factors 1+r2
i k ≡ 0 mod m .

Let k = 2s k′ and k′ odd. Then 0 ≤ s � p . Furthermore, if i =

p − 1 − s , 2i k = 2p−1−s 2s k′ = k′ n�2 . Since rn�2 ≡ −1 mod m ,

1 + r2
i k ≡ (1 + (−1)k′

) ≡ 0 mod m. �

Later we apply the Fast Fourier Transform for m = 22l + 1 and

n = b . Since l = b or l = 2b , the existence of a b-th and a 2b-th

root of identity is guaranteed and so is the existence of b−1 , (2b)−1

and r−1 .

DEFINITION 2.6 : Let a = (a0� � � � � an−1) ∈ Rn and let r be an

n-th root of identity in R . Let f be the polynomial of degree n whose

coefficients are a0� � � � � an−1 . The Discrete Fourier Transform DFTn(a)

is given by f(r0)� � � � � f(rn−1) .

In particular fj := f(rj) =
∑

0≤i≤n−1
ai r

ij .

64

DFTn can be written as matrix vector product of the matrix A ,

whose elements are rij , and the column vector a .

THEOREM 2.6 : The Discrete Fourier Transform DFTn(a) can be

computed by an arithmetic circuit ({+�−� ∗}-circuit) of size O(n log n)

and depth O(log n) .

Proof : This efficient algorithm again is based on divide-and-conquer

and on the properties of roots of identity.

fj =
∑

0≤i≤n−1
ai r

ij = (2.20)

=
∑

0≤i≤(n�2)−1

a2i (r
2j)i + rj ∑

0≤i≤(n�2)−1

a2i+1 (r2j)i�

Instead of evaluating f at r0� r1� � � � � rn−1 we may evaluate the polynomi-

als given by (a0� a2� � � � � an−2) and (a1� a3� � � � � an−1) at r0� r2� � � � � r2n−2 .

Since rn = 1 , it is even sufficient to evaluate both polynomials of de-

gree (n�2) − 1 at r0� r2� � � � � rn−2 . Since it is easy to prove that r2 is

an (n�2)-th root of identity, we may compute DFTn�2(a0� a2� � � � � an−2)

and DFTn�2(a1� a3� � � � � an−1) by the same procedure. To start with we

compute r0� r1� � � � � rn−1 . Afterwards we may compute fj with two fur-

ther operations. The preprocessing, the computation of all ri , can be

done in linear size and logarithmic depth. The problem is not harder

than the prefix problem (see § 1). For the complexity of the other

computations we obtain the following recurring relations

C(n) ≤ 2 C(n�2) + 2n and D(n) ≤ D(n�2) + 2� (2.21)

Here we took advantage of the fact that the two subproblems and

afterwards the computation of all fj can be done in parallel. By (2.21)

the claim of the theorem follows. �

Now we know how to evaluate polynomials efficiently at certain

inputs. We have already discussed that we also like to compute ef-

ficiently the coefficients of a polynomial given by its values at these

65

well-chosen inputs. DFTn(a) = Aa is a matrix vector product. If A−1

exists, DFT−1
n (b) = A−1b is the inverse Discrete Fourier Transform.

If b = DFTn(a) , also a = DFT−1
n (b).

LEMMA 2.5 : If n−1 and r−1 exist, then A−1 exists also, and its

elements are n−1r−ij .

Proof : We prove that the product of A = (rij) and B = (n−1r−ij) is

the identity matrix.

The elements of AB are given by n−1 ∑
0≤k≤n−1

rik r−jk . If i = j , this

equals 1. For i � j (the case i � j is analogous)∑
0≤k≤n−1

rik r−jk =
∑

0≤k≤n−1
r(i−j)k = 0 (2.22)

by the last property of roots of identity. �

Since r−1 also is an n-th root of identity (it is easy to check the

three properties) we obtain the following corollary.

COROLLARY 2.1 : The inverse Discrete Fourier Transform

DFT−1
n (a) can be computed by an arithmetic circuit of size O(n log n)

and depth O(log n) .

Now we combine our observations and compute the negative enve-

lope of convolution.

THEOREM 2.7 : Let R be a commutative ring with a one, a =

(a0� � � � � an−1� 0� � � � � 0) , b = (b0� � � � � bn−1� 0� � � � � 0) ∈ R2n , r be an n-th

root of identity such that r−1 and n−1 exist.

i) DFT−1
2n (DFT2n(a)∗DFT2n(b)) , where ∗ is the componentwise mul-

tiplication, is the convolution of a and b .

ii) Let s be a (2n)-th root of identity and r = s2 .

Let a∗ = (a0� s a1� � � � � s
n−1 an−1) , b∗ = (b0� s b1� � � � � s

n−1 bn−1) and

66

w∗ = (w0� s w1� � � � � s
n−1 wn−1) where w = (w0� � � � �wn−1) is the

negative envelope of a = (a0� � � � � an−1) and b = (b0� � � � � bn−1) .

Then w∗ = DFT−1
n (DFTn(a

∗) ∗DFTn(b
∗)) .

Proof : Part i) is a formal description of the algorithm for the compu-

tation of the convolution already discussed. At first both polynomials

are evaluated at the same 2n inputs. Then the product polynomial is

evaluated at these inputs, and finally the coefficients of the product

polynomial are computed.

For Part ii) let (f0� � � � � fn−1) = DFTn(a
∗) , (g0� � � � � gn−1) = DFTn(b

∗)
and (h0� � � � � hn−1) be the vector claimed to be equal to w∗ . Then by

definition

hm = n−1 ∑
0≤i≤n−1

fi gi r
−im (2.23)

= n−1 ∑
0≤i≤n−1

∑
0≤j≤n−1

∑
0≤k≤n−1

sj aj s
k bk r(j+k−m)i

=
∑

0≤j≤n−1

∑
0≤k≤n−1

sj+k aj bk ·
(

n−1 ∑
0≤i≤n−1

r(j+k−m) i

)
�

If j + k = m or j + k = m + n the inner sum is 1 , since rn = 1 .

Otherwise the inner sum is 0 . Therefore

hm = sm

(∑
j+k=m

aj bk + sn ∑
j+k=n+m

aj bk

)
(2.24)

= sm (vm − vn+m) = sm wm�

Here we used the fact that sn = rn�2 = −1 . �

We apply Theorem 2.7. ii for the computation of all w′
i ≡ wi mod

(22l+1) . We work in the Fermat ring �m where m = 22l +1 . The roots

of identity and the multiplicative inverses we need are well-defined. In

our application n is replaced by b , a power of 2 . Also the (2b)-th

root of identity s and the b-th root of identity r = s2 can be chosen by

67

Lemma 2.4 as power of 2 . Since rb = s2b = 1 , also r−1 = rb−1 , s−1 =

s2b−1 and b−1 = 2−�k�2� = rb 2−�k�2� can be chosen as power of 2 . Using

radix-4 representations all additions and all multiplications by a power

of 2 have size O(l) and constant depth. By Theorem 2.6, Corollary 2.1

and Theorem 2.7 we have to perform O(b log b) of these operations and

b multiplications of numbers of 2l bits. These b multiplications can

be done in parallel. The depth of the other operations is O(log b) =

O(log n) . Since O(bl log b) = O(n log n) , the algorithm of Schönhage

and Strassen fulfils the complexity estimations of (2.11) and (2.12).

We have proved the following result.

THEOREM 2.8 : The algorithm of Schönhage and Strassen leads

to a circuit for multiplication of size O(n log n log log n) and depth

O(log n) .

3.3 Division

Since y�z = y(1�z) , we consider only the computation of the in-

verse z−1 . In general the binary expansion of z−1 is not finite, e.g.

for z = 3 . So we are satisfied with the computation of the n most

significant bits of z−1 . W.l.o.g. 1�2 ≤ z � 1 .

DEFINITION 3.1 : The division function fdiv
n ∈ Bn−1�n has

(zn−1 = 1� zn−2� � � � � z0) as input.

For z = 1�2 zn−1 + (1�2)2 zn−2 + · · · + (1�2)n z0 the n most significant

bits of z−1 build the output of fdiv
n .

The school method of division produces the output bits one after

another. The divisor always is (zn−1� � � � � z0) , the ˝actual˝ dividend

68

changes. At first the dividend is (1� 0� � � � � 0) . During one step we

subtract the divisor from the dividend if the divisor is not larger than

the dividend. If the divisor is not larger the next output bit is 1 ,

otherwise 0 . We obtain the new dividend by multiplying (in the first

case) the result of the subtraction or (in the second case) the old

dividend by 2 . By our previous results we are able to estimate the

efficiency of the school method.

THEOREM 3.1 : The school method of division leads to a circuit of

size O(n2) and depth O(n log n) .

The depth of such a circuit cannot be accepted. Anderson, Earle,

Goldschmidt and Powers (67) presented a circuit of depth O(log2 n) .

At the beginning of § 2 we have reduced the multiplication of two

numbers to the addition of n numbers. Here we reduce division to

repeated multiplication. Let x = 1 − z . Then 0 � x ≤ 1�2 and by

the binomial formula we obtain the following basic relation where x(j)

stands for x2j
.

1

z
=

1

1− x
=

1

1− x
· 1 + x(0)

1 + x(0)
· 1 + x(1)

1 + x(1)
· · · 1 + x(k− 1)

1 + x(k− 1)
= (3.1)

=
Pk(x)

1− x(k)
�

Since x ≤ 1�2 , the denominator is approximately 1 . We compute

approximations for all x(j) , afterwards an approximation P∗
k(x) for

Pk(x) . Since 1 � z−1 ≤ 2 , we may take the n most significant bits of

P∗
k(x) as output bits if

|P∗
k(x)− z−1| ≤ 2−n+1� (3.2)

We compute x∗(j) by computing the first s bits of (x∗(j−1))2 following

the binary point. Similarly we compute P∗
j (x) by computing the first

s bits of P∗
j−1(x) · (1 + x∗(j− 1)) following the binary point. How large

do we have to choose s and k such that P∗
k(x) fulfils (3.2) ?

69

Let δ = 2−s . In each step we are rounding off the result by at most

δ . Since the old errors are squared, the errors are growing slowly.

LEMMA 3.1 : x(j)− 2 δ ≤ x∗(j) ≤ x(j) .

Proof : The second inequality is obvious since we are only rounding

off the results. The first inequality is proved by induction.

For j = 0 the assertion is obvious. Since x ≤ 1�2 , x(j) ≤ 1�4 for j ≥ 1

and 4 δ x(j) ≤ δ . By induction hypothesis

x∗(j + 1) ≥ x∗(j)2 − δ ≥ (x(j)− 2 δ)2 − δ ≥ x(j)2 − 4 δ x(j)− δ

≥ x(j + 1)− 2 δ� (3.3)

�

LEMMA 3.2 : Pj(x)− εj(x) ≤ P∗
j (x) ≤ Pj(x)

where εj(x) = (3j− 2) δ (1− x(j− 1))�(1− x) .

Proof : Again the second inequality is obvious. Since ε1(x) = δ and

P1(x) = 1 + x , the first inequality holds for j = 1 . Since we are

rounding off the results by at most δ , we can conclude by induction

hypothesis and Lemma 3.1 that

P∗
j (x) ≥ P∗

j−1(x) (1 + x∗(j− 1))− δ (3.4)

≥ (Pj−1(x)− εj−1(x)) (1 + x(j− 1)− 2 δ)− δ

≥ Pj−1(x) (1 + x(j− 1))− εj−1(x) (1 + x(j− 1))

− 2 δ Pj−1(x)− δ�

The first term is equal to Pj(x). Since x(j− 1) � x(j− 2) ,

εj−1(x)(1 + x(j− 1)) � (3 j− 5) δ (1− x(j− 2))(1 + x(j− 2))�(1− x)

= (3 j− 5) δ (1− x(j− 1))�(1− x)� (3.5)

Furthermore by definition 2 δ Pj−1(x) = 2 δ(1 − x(j − 1))�(1− x) and

70

δ � δ (1− x(j− 1))�(1− x) . By these estimations, (3.4) and (3.5)

P∗
j (x) � Pj(x)− (3 j− 2)(1− x(j− 1))�(1− x) = Pj(x)− εj(x)�

(3.6)

�

We combine our estimations. By the triangle inequality

|z−1 − P∗
k(x)| ≤ |z−1 − Pk(x)|+ |Pk(x)− P∗

k(x)|� (3.7)

By (3.1)

|z−1 − Pk(x)| = |z−1 − (1− x(k)) z−1| (3.8)

= x(k)�(1− x) ≤ 2 · 2−2k
�

By Lemma 3.2

|Pk(x)− P∗
k(x)| ≤ εk(x) ≤ (3 k− 2) · 2 · 2−s� (3.9)

(3.8) and (3.9) can be estimated by 2−n if we choose

k = �log n�+ 1 and s = n + 3 + �log k� � (3.10)

By this choice |z−1 − P∗
k(x)| ≤ 2−n+1 and we may output the n most

significant bits of P∗
k(x). Altogether we perform one subtraction and

2k−2 multiplications of (s+1)-bit numbers which have to be performed

sequentially.

THEOREM 3.2 : The algorithm of Anderson et al. leads to a circuit

for division which has depth O(log2 n) and size O(n2 log n) (if we use

convential multiplication circuits) or size O(n log2 n log log n) (if we use

Schönhage and Strassen multiplication circuits).

For several years one believed, that depth O(log2 n) is necessary for

division circuits. Reif (83) was the first to beat this bound. Generaliz-

ing the ideas of Schönhage and Strassen (see § 2) to the multiplication

of n numbers he designed a division circuit of polynomial size and

71

depth O(log n log log n) . Afterwards Beame, Cook and Hoover (84)

applied methods of McKenzie and Cook (84) and proved that the

depth of division is Θ(log n) .

One-output circuits of depth d have at most 2d−1 gates. Therefore

circuits of depth O(log n) always have polynomial size. Since the new

division circuit beats the older ones only for rather large n , we do

not estimate accurately the depth of the new circuit. Because of the

approximation algorithm introduced at the beginning of this section,

it is sufficient to prove that n n-bit numbers may be multiplied in

depth O(log n) . Then we can compute all x∗(j) in parallel in depth

O(log n) and afterwards we multiply all 1 + x∗(j) in depth O(log n) .

For the basic results of number theory that we apply the reader is

referred to any textbook on number theory, e.g. Ayoub (63). For our

algorithm it is crucial that problems for small numbers may be solved

efficiently by table-look-up. Let T be a table (a1� b1)� � � � � (aN� bN)

where N and the length of each ai are bounded by a polynomial in n .

If all ai are different, we may compute for x ∈ {a1� � � � � aN} in depth

O(log n) that bi which has the same index as x = ai . Obviously we

can test in depth O(log n) whether x = aj . Let cj = 1 iff x = aj . All cj

can be computed in parallel. Afterwards all ym where ym is the m-th

output bit, can be computed in parallel as disjunction of all cj ∧ bjm

(1 ≤ j ≤ N). Here bjm is the m-th bit of bj . Altogether the circuit

has depth O(log n) . In general, tables of functions f have exponential

length and table-look-up is not very efficient.

By table-look-up circuits we multiply the input numbers modulo

small prime numbers. By the Chinese Remainder Theorem these prod-

ucts are sufficient to compute the product exactly. The size of the

product is bounded by M = (2n − 1)n . Therefore it is sufficient to

compute the product mod m for some m � M . We describe the main

steps of our algorithm before we discuss their efficient implementation.

ALGORITHM 3.1 :

Input : x1� � � � � xn , n n-bit numbers.

72

Output : x , the product of all xi , as binary number.

Step 1 : Choose the smallest r such that p , the product of the r

smallest primes p1� � � � � pr , is larger than M .

Step 2 : Compute yij ≡ xi mod pj for all 1 ≤ i ≤ n and 1 ≤ j ≤ r .

Step 3 : Compute xj ≡ ∏
1≤i≤n

yij ≡
∏

1≤i≤n
xi mod pj for 1 ≤ j ≤ r .

Step 4 : Use the Chinese Remainder Theorem to compute x (or

x mod p , which is the same) from all xj .

The computations in Step 1 depend only on the input length which

is fixed for circuits. All pi and p can be computed in advance and are

inputs of the circuit. Since pi ≥ 2 , r ≤ n2 . Better estimations of r can

be computed by the prime number theorem. Likewise by the prime

number theorem pmax = max{p1� � � � � pr} is bounded by a polynomial

q(n) .

The computation of all yij in Step 2 can be done in parallel. All

ajk ≡ 2k mod pj are independent of the input and can be computed in

advance, i.e. all ajk are inputs of the circuit. Let xik be the k -th bit of

xi . Then

xi =
∑

0≤k≤n−1
xik 2k ≡ ∑

0≤k≤n−1
xik ajk mod pj� (3.11)

Since xik ∈ {0� 1} , all xik ajk can be computed in depth 1 . As we

already know (see § 2), the sum sij of all xik ajk can be computed in

depth O(log n) . Since 0 ≤ sij � npj , we may compute a table of all

sij − l pj for 0 ≤ l � n in depth O(log n) . By table-look-up we choose

that sij− l pj which lies in {0� � � � � pj− 1} and is therefore equal to yij .

In Step 3 we take advantage of some properties of prime numbers.

Gj = {1� � � � � pj − 1} is a cyclic group with respect to multiplication

modpj . This implies the existence of a generator g ∈ Gj such that for

all k ∈ Gj there exists a unique index ind(k) ∈ {0� � � � � pj − 2} with

respect to g and Gj such that

73

k ≡ gind(k) mod pj� (3.12)

At first we test in parallel whether some yij = 0 (1 ≤ i ≤ n). In

this case xj = 0 . Otherwise we compute xj in the following way. The

table (k� ind k) for 1 ≤ k ≤ pj − 1 (with respect to g and Gj) does not

depend on the input and is computed in advance. By table-look-up

we compute in parallel in depth O(log n) all ind(yij) . Afterwards we

compute in parallel in depth O(log n) all I(j) , where I(j) is the sum

of all ind(yij) . Since 0 ≤ I(j) � n(pj − 1) , we can compute in parallel

in depth O(log n) all I∗(j) ≡ I(j) mod (pj − 1) . These computations

are done similarly to the computation of yij from sij in Step 2. It is

an easy fact from elementary number theory that gp′−1 ≡ 1 mod p′ for

prime numbers p′ . Therefore

xj ≡ ∏
1≤i≤n

yij ≡
∏

1≤i≤n
gind(yij) ≡ gI(j) ≡ gI∗(j) mod pj� (3.13)

Finally we can compute xj from I∗(j) by table-look-up. Instead of

multiplying all yij , it is sufficient to add all ind(yij) , and we know

already that the sum of n numbers can be computed efficiently.

By the Chinese Remainder Theorem 2.5

x ≡ ∑
1≤j≤n

xj rj mod p (3.14)

where rj = ujvj , uj = p�pj and vj ≡ (p�pj)
−1 mod pj . The numbers

rj do not depend on the input and can be computed in advance. We

multiply in parallel all xj and rj . Since 0 ≤ xj � pj and 0 ≤ rj � p ,

these multiplications have depth O(log n) as has the addition of all

xj rj . Obviously, 0 ≤ x∗ � p n pmax for the sum x∗ of all xj rj , and x can

be computed from x∗ in depth O(log n) similarly to the computation

of yij from sij in Step 2.

Altogether we obtain an efficient implementation of Algorithm 3.1.

THEOREM 3.3 : The algorithm of Beame, Cook and Hoover leads

to a division circuit of depth O(log n) and polynomial size.

74

It is still an open problem whether one can design a division circuit

whose depth is bounded by c log n for a small constant c and whose

size is acceptable.

The methods for the design of the division circuit may also be

applied to the approximation of power series. The computation of the

n most significant bits of e.g. ex or ln x is possible in depth O(log n)

(Alt (84)).

3.4 Symmetric functions

The class of symmetric functions contains many fundamental func-

tions like sorting and all types of counting functions.

DEFINITION 4.1 : Sn�m is the class of all symmetric functions

f ∈ Bn�m , that is all functions f such that for all permutations π ∈ Σn

f(x1� � � � � xn) = f(xπ(1)� � � � � xπ(n)) .

Each vector a ∈ {0� 1}n with exactly i ones is a permutation of

any other vector with exactly i ones. That is why f is symmetric iff

f only depends on the number of ones in the input. For symmetric

functions we may shorten the table (a� f(a)) for f to the (value) vector

v(f) = (v0� � � � � vn) such that f(x) = vi if x1+· · ·+xn = i . We introduce

some fundamental symmetric functions.

DEFINITION 4.2 :

i) En
k(x) = 1 iff x1 + · · ·+ xn = k (exactly - k - function).

ii) Tn
k(x) = 1 iff x1 + · · ·+ xn ≥ k (threshold - k - function).

iii) Sn(x) = (Tn
1(x)� � � � �Tn

n(x)) (sorting function).

iv) Cn
k�m(x) = 1 iff x1 + · · ·+ xn ≡ k mod m (counting function).

75

If the input length (and upper index) n is uniquely determined by

the context, then we can omit n . The term sorting function for Sn is

justified, since for inputs x with exactly k ones T1(x) = · · · = Tk(x) =

1 but Tk+1(x) = · · · = Tn(x) = 0 . The output is the sorted sequence

of the inputs. The functions E0� � � � �En build a kind of basis for all

symmetric functions, since for all f ∈ Sn

f(x) =
∨

0≤k≤n
Ek(x) ∧ vk� (4.1)

v0� � � � � vn are constants independent from the input, thus

C(f) ≤ C(E0� � � � �En) + n and (4.2)

D(f) ≤ D(E0� � � � �En) + �log(n + 1)� � (4.3)

Furthermore Tk = Ek ∨ · · · ∨ En . Because of the algorithms for the

prefix problem (see § 1) we can compute Sn from E1� � � � �En by a circuit

of linear size and logarithmic depth.

Due to these observations it is essential to design an efficient circuit

for the computation of E0� � � � �En . At first we compute with n − 2

CSA gates and one Krapchenko adder the binary representation a =

(ak−1� � � � � a0) of x1 + · · · + xn . Here k = �log(n + 1)� . The depth of

this circuit is O(log n) . The length of the summands is 1 .

At step j of the adder-tree the inputs of the CSA gates are of

length j , hence the CSA gates have size O(j) . The number of CSA

gates at step j may be estimated by 1
3

(2
3

)j−1
n . Since the sum of all(2

3

)j−1
j is a constant, the size of the adder-tree is O(n) .

Ei(x) = 1 iff the number |a| represented by a is equal to i . There-

fore Ei(x) is a minterm on ak−1� � � � � a0 . We compute E0� � � � �En by

the computation of all minterms on ak−1� � � � � a0 .

LEMMA 4.1 : All minterms on x1� � � � � xn can be computed by a

circuit of size 2n + O(n 2n�2) and depth O(log n) .

Proof : O(n 2n�2) gates are sufficient to compute in parallel all 2�n�2�

minterms on x1� � � � � x�n�2� and all 2�n�2� minterms on x�n�2�+1� � � � � xn .

76

Afterwards each of the 2n minterms on x1� � � � � xn can be computed

with one gate. �

By this lemma E0� � � � �En can be computed from a in linear size

and logarithmic depth since k = �log(n + 1)� . Altogether we obtain

an efficient circuit for all symmetric functions.

THEOREM 4.1 : Each symmetric function f ∈ Sn with one output

as well as the sorting function may be computed by a circuit of size

O(n) and depth O(log n) .

The proof of Theorem 4.1 is due to Muller and Preparata (75)

though the result has been proved implicitly already by Lupanov

(62 a). By Theorem 4.1 we have designed efficient circuits for sev-

eral fundamental functions.

3.5 Storage access

DEFINITION 5.1 : The storage access function SAn ∈ Bn+k where

n = 2k is defined on a k-bit number a = (ak−1� � � � � a0) and n variables

x = (x0� � � � � xn−1) . SAn(a� x) = x|a| .

We consider a storage of n memory cells containing the 1-bit in-

formations x0� � � � � xn−1 . The vector a contains the number of the

memory cell whose contents is interesting for us. SAn(a� x) computes

the contents of this memory cell. Bit ak−1 decides whether we should

77

search in the first or in the second half of the memory. Therefore

SAn(ak−1� � � � � a0� x0� � � � � xn−1) = (5.1)

= (ak−1 ∧ SAn�2(ak−2� � � � � a0� xn�2� � � � � xn−1)) ∨
∨(ak−1 ∧ SAn�2(ak−2� � � � � a0� x0� � � � � x(n�2)−1))�

Since SA1(x0) = x0 , (5.1) leads to a circuit for SAn of size C(n) and

depth D(n) where

C(n) = 2 C(n�2) + 3� D(n) = D(n�2) + 2� (5.2)

C(1) = D(1) = 0�

The solution of this recurring relation is C(n) = 3n − 3 and D(n) =

2 log n .

LEMMA 5.1 : The storage access function SAn can be computed by

a circuit of size 3n− 3 and depth 2 log n .

In Ch. 5 we prove a lower bound of 2n − 2 for the circuit size of

SAn . Klein and Paterson (80) proved that this lower bound is nearly

optimal.

Let Mi(a) be the minterm of length k computing 1 iff |a| = i .

Obviously

SAn(a� x) =
∨

0≤i≤n−1
Mi(a) ∧ xi� (5.3)

In order to beat the (3n− 3)-bound of Lemma 5.1 we partition a

into two halves b = (ak−1� � � � � a�k�2�) and c = (a�k�2�−1� � � � � a0) . Then

|a| = |b| 2�k�2� + |c| . For r = 2�k�2� and s = 2�k�2� we conclude from

(5.3) by the law of distributivity that

SAn(a� x) =
∨

0≤i≤r−1

∨
0≤j≤s−1

Mi(b) ∧Mj(c) ∧ xis+j (5.4)

=
∨

0≤i≤r−1
Mi(b) ∧

(∨
0≤j≤s−1

Mj(c) ∧ xis+j

)
�

78

By Lemma 4.1 we can compute all Mi(b) and all Mj(c) by a circuit of

size r+s+o(r+s) = O(n1�2) and depth �log(k�2)� = �log log n�−1 . For

the computation of all
∨

Mj(c)∧ xis+j n ∧-gates and n− r ∨-gates are

sufficient, the depth of this part of the circuit is �k�2�+1 . Afterwards

SAn(a,x) can be computed by r ∧-gates and r − 1 ∨-gates in depth

�k�2�+ 1 . This way we have proved

THEOREM 5.1 : The storage access function SAn can be computed

by circuits of size 2n + O(n1�2) and depth log n + �log log n�+ 1 .

3.6 Matrix product

For the sake of simplicity we consider here only square matrices of

n rows and n columns. As it is well known the matrix product of two

matrices of integers or reals is defined by

zij =
∑

1≤k≤n
xik ykj� (6.1)

We investigate arithmetic circuits ({+�−� ∗}-circuits, straight line pro-

grams) for the computation of Z = (zij) . Arithmetic circuits lead to

Boolean circuits if we replace each arithmetic operation by a Boolean

circuit of suitable input size for this operation. Furthermore we are in-

terested in the Boolean matrix product which is useful in graph theory

(see Exercises). Here we consider matrices X = (xij) and Y = (yij) of

ones and zeros only. The Boolean matrix product Z = (zij) is defined

by

zij =
∨

1≤k≤n
xik ∧ ykj� (6.2)

Obviously the Boolean (arithmetic) matrix product can be computed

with n3 conjunctions (multiplications) and n3 − n2 disjunctions (ad-

ditions) in depth �log n� + 1 . Strassen (69) proved in his pioneering

79

paper that this school method is not optimal for the arithmetic matrix

product. His arithmetic circuit has size O(nlog 7) and depth O(log n) .

Arlazarov, Dinic, Kronrod and Faradzev (70) designed an arithmetic

circuit of size O(n3� log n) that only works for 0-1-matrices but is bet-

ter than the school method also for very small n . For 9 years no one

improved Strassen’s algorithm. Then a violent development started.

Its end was the arithmetic circuit of Coppersmith and Winograd (82)

whose size is O(nc) for some c � 2�496 . Pan (84) gives a survey on

this development. Now Strassen (86) improved the exponent to some

c � 2�479 . We describe here only Strassen’s classical algorithm and

point out how the computation of the Boolean matrix product may

be improved by this algorithm too.

Strassen’s algorithm depends on divide-and-conquer. Again we

assume n = 2k . We partition X , Y and Z into four matrices of n�2

rows and n�2 columns each.

X =

[
X11 X12

X21 X22

]
� Y =

[
Y11 Y12

Y21 Y22

]
� Z =

[
Z11 Z12

Z21 Z22

]
�

It is easy to see that the submatrices Zij may be computed similarly

to the product of 2×2-matrices, e.g. Z12 = X11Y12 +X12Y22 . Here ad-

ditions and multiplications are operations on (n�2)× (n�2)-matrices.

By the school method we perform 8 matrix multiplications and 4 ma-

trix additions. The addition of two n × n-matrices obviously can be

performed with n2 additions in depth 1 while multiplications seem to

be harder.

By our experience with divide-and-conquer algorithms we should

try to get by with less than 8 multiplications. It was a long way

from this knowledge to the following algorithm. Though it is diffi-

cult to discover such an algorithm, it is easy to check its correctness.

We describe the 7 multiplications of the algorithm, but before these

multiplications we have to perform 10 additions and subtractions to

compute the factors.

80

m1 = (X12 − X22) · (Y21 + Y22)� m2 = (X11 + X22) · (Y11 + Y22)�

m3 = (X11 − X21) · (Y11 + Y12)� m4 = (X11 + X12) ·Y22� (6.3)

m5 = X11 · (Y12 −Y22)� m6 = X22 · (Y21 − Y11)�

m7 = (X21 + X22) · Y11�

Now it is easy to verify that

Z =

[
m1 + m2 −m4 + m6 m4 + m5

m6 + m7 m2 −m3 + m5 −m7

]
� (6.4)

Let C(n) and D(n) be the size and depth resp. of Strassen’s arithmetic

circuit. Then

C(n) = 7 C(n�2) + 18(n�2)2� D(n) = D(n�2) + 3� (6.5)

C(1) = D(1) = 1

implying

THEOREM 6.1 : Strassen’s algorithm leads to an arithmetic circuit

for matrix multiplication of size 7nlog 7 − 6n2 and depth 3 log n + 1 .

(log 7 ≈ 2�81) .

We emphasize that Strassen’s algorithm as well as Karatsuba and

Ofman’s multiplication algorithm is based on additions, multiplica-

tions and subtractions. If only additions and multiplications (of posi-

tive numbers) are admissible operations, then the school method can-

not be improved (see Ch. 6). The profitable use of subtractions for a

problem where subtractions seem to be superfluous should be taken

as a warning. One should be very careful with stating that certain

operations are obviously not efficient for certain problems.

Fischer and Meyer (71) applied Strassen’s algorithm to Boolean

matrix multiplication. Similar results for the other matrix multipli-

cation methods have been obtained by Lotti and Romani (80) and

Adleman, Booth, Preparata and Ruzzo (78).

81

The inputs of the Boolean matrix product are numbers xij� yij ∈
{0� 1} . Let zij be the Boolean matrix product and z∗ij the conventional

matrix product. Obviously

0 ≤ z∗ij ≤ n� z∗ij is an integer� and (6.6)

z∗ij = 0 ⇔ zij = 0�

Strassen’s algorithm consists of additions, substractions and multipli-

cations. Therefore, by (6.6), we can compute z∗ij correctly if we perform

all computations in �m for some m � n . In particular, the length of

the numbers is O(log n) . Finally all zij , by (6.6) the disjunction of all

bits of z∗ij , can be computed in parallel in depth O(log log n) . Since all

multiplications of Strassen’s agorithm can be done in parallel, we may

estimate the complexity of the new algorithm for the Boolean matrix

product by our results of § 1 and § 2.

THEOREM 6.2 : The Boolean matrix product can be computed in

size O(nlog 7 log n log log n log log log n) and depth O(log n) .

3.7 Determinant

In Ch. 9 we consider the simulation of programs by circuits in gen-

eral. Here we investigate as a second example the computation of the

determinant (the first one was the Boolean matrix product). The well

known algorithm based on Gaussian elimination whose time complex-

ity is O(n3) can be simulated by a circuit of size O(n3) . Gaussian

elimination is a typical sequential algorithm, so we need additional

tricks to reduce the depth.

DEFINITION 7.1 : The determinant of a Boolean n× n-matrix X

with respect to the field �2 is detn(X) =
⊕

π∈Σn

x1�π(1) · � � � · xn�π(n) .

82

ALGORITHM 7.1 (Gaussian elimination) (see e.g. MacLane and

Birkhoff (67)) :

1. det(x11) = x11 .

2. If the first column of X consists of zeros only, detn(X) = 0 .

3. The componentwise addition (in �2) of one row of X to another

does not change the determinant of the matrix. If the first column

of X contains a one, e.g. xm�1 = 1 , we add the m-th row to all

other rows starting with a one. We obtain a matrix X′ with a

single one in the first column and detn(X) = detn(X
′) .

4. By expansion according to the first column of X′ we eliminate the

first column and the m-th row and obtain an (n − 1) × (n − 1)-

matrix X′′ where detn−1(X
′′) = detn(X) .

THEOREM 7.1 : detn may be computed by a circuit of size

3n3 + n2 − 4n.

Proof : We simulate the Gaussian elimination algorithm. Let X =

Xn�Xn−1� � � � �X1 be the matrices constructed by the algorithm. Since

Xi has i columns and i rows, we can test with i − 1 gates whether

the first column of Xi contains zeros only (gi = 0) or at least a one

(gi = 1). detn(X) = g1 · · · · · gn can be computed with n− 1 gates.

We only have to describe how to compute Xk−1 from Xk = (yij) .

We may assume that gk = 1 , otherwise detn(X) = 0 will be computed

correctly independent from gk−1� � � � � g1 . um = y11∧· · ·∧ym−1�1∧ym1 =

1 iff the m-th row of Xk is the first one starting with a one. All

u1� � � � � uk can be computed by 2k− 3 gates (if k ≥ 2) . We use these

pointers for selecting v = (v1� � � � � vk) , the first row of Xk starting with

a one. Obviously vj , the disjunction of all uryrj , can be computed by

2k − 1 gates. v is added (componentwise in �2) to all rows of Xk

starting with a one. Since we eliminate afterwards the first column we

83

do not compute this column. We compute

zij = yi1 ∧ yij ∨ (yi1 ∧ (vr ⊕ yij)) (1 ≤ i ≤ k� 2 ≤ j ≤ k) (7.1)

by altogether 4k (k − 1) gates. Finally we have to eliminate the m-

th row where um = 1 . Let t1 = u1 and tj = tj−1 ∨ uj . t1� � � � � tk−1

can be computed by k − 2 gates. Then t1 = · · · = tm−1 = 0 while

tm = · · · = tk−1 = 1 . Therefore the elements y∗ij of Xk−1 can be

computed by

y∗ij = ti zij ∨ ti zi+1�j (7.2)

by 3 (k−1)2 gates. Altogether the number of gates for the computation

of gk and Xk−1 from Xk equals

(k− 1) + (2k− 3) + k (2k− 1) + 4k (k− 1) + (k− 2) + 3 (k− 1)2

= 9k2 − 7k− 3� (7.3)

and the number of gates in the whole circuit equals

n− 1 +
∑

2≤k≤n
(9k2 − 7k− 3) = 3n3 + n2 − 4n� (7.4)

�

EXERCISES

1. Prove that the recursion relation R(n) = a R(n�b) + cn , R(1) = c

for n = bk , b � 1 , a� c � 0 has the solution R(n) = Θ(n) , if

a � b , R(n) = Θ(n log n) , if a = b , R(n) = Θ(nlogb a) , if a � b .

2. The Carry-Look-Ahead Adder partitions the input bits into g(n)

groups of nearly the same size. If we know the carry bit for some

group we add the bits of this group using the school method and

we compute directly by (1.8) the carry bit for the next group.

Estimate size and depth of this adder.

84

3. The Carry-Look-Ahead Adder of second order adds the bits of a

group by a Carry-Look-Ahead Adder (of first order). Estimate

size and depth of this adder.

4. Estimate size and depth of the Conditional-Sum Adder, if the

numbers are partitioned into

a) 3 b) k parts of nearly the same size.

5. Design efficient circuits for the transformation of an integer given

by its sign and the binary representation of its absolute value into

its 2-complement representation and vice versa.

6. Design efficient circuits for subtraction.

7. The adder tree of n− 2 CSA gates has at least depth log3�2(n�2) .

8. Investigate the mixed multiplication algorithm M(k) .

9. Two complex numbers can be multiplied with only three multipli-

cations of reals and some additions and subtractions.

10. Let X and Y be independent random variables that take the value

k ∈ {0� � � � � n− 1} with probability pk and qk resp. Compute the

distribution of X + Y , the so-called convolution of X and Y .

11. � has only for n = 2 an n-th root of identity.

12. ei 2π�n is an n-th root of identity in � .

13. Design an efficient circuit for the computation of x 2−k , where x

is given by a radix-4 representation.

85

14. Solve the recurring relations (2.11) and (2.12).

15. Design a circuit for division based on Newton’s approximation

method.

16. Multiply (0� 1� 0) , (1� 0� 1) and (1� 1� 1) by the method of Beame,

Cook and Hoover.

17. For f ∈ Sn (4.1) consists either for f or for f of at most (n + 1)�2

summands.

18. Design a circuit for f ∈ Sn whose size is bounded by 11�5 n+o(n) .

19. Prove a good upper bound on C(f) for f ∈ Sn�m .

20. Estimate the size of the circuit for (E0� � � � �En) in § 4 as exact as

possible.

21. Let G(x) = ({1� � � � � n}�E(x)) be a graph defined by the variables

xij (1 ≤ i � j ≤ n), i.e. {i� j} ∈ E(x) iff xij = 1 . Xk , the k -th

Boolean power of matrix X = (xij) (where xij = xji and xii = 1)

contains a one at position (i� j) iff G(x) contains a path from i to j

of length bounded by k .

22. Design an efficient circuit for the decision whether the graph G(x)

is connected.

23. Implement Strassen’s algorithm for arbitrary n and compute the

number of arithmetic operations.

24. Compute the number of arithmetic operations of the following

algorithm A(l) for matrix multiplication. Let n = 2k . If k � l the

86

algorithm applies Strassen’s method. Problems and subproblems

of size m ≤ 2l are solved by the school method. (See Mehlhorn (77)

for a discussion of A(l) .)

25. Design for f ∈ Bn�n where fi(x) is the conjunction of all xj (i �= j)

a circuit of size not larger than 3n− 6 .

26. f(x1� � � � � xn� y1� � � � � yn) =
∨

1≤i�j≤n� |i−j|≤m
xi yj has linear circuit size

for all m .

27. f(x1� � � � � xn) = x1 ∨ (x2 ∧ (x3 ∨ (· · ·))) has logarithmic depth.

28. Design efficient circuits for f� g ∈ Sn where

f(x) = 1 if x1 + · · ·+ xn mod 4 ∈ {1� 3}
g(x) = 1 if x1 + · · ·+ xn mod 5 ∈ {1� 3}�

87

4. ASYMPTOTIC RESULTS AND UNIVERSAL CIRCUITS

4.1 The Shannon effect

For many fundamental functions we have designed efficient circuits.

Is it possible to compute each function by an efficient circuit ? In this

chapter we prove that almost all functions are hard functions, optimal

circuits for almost all functions have exponential size and linear depth.

This can be proved quite easily using Shannon’s counting argument

(Shannon (49)). The number of circuits with small circuit size or

small depth grows much slower than the number of different Boolean

functions implying that almost all functions are hard. This means that

a random Boolean function is hard with very large probability. We

obtain a random Boolean function by 2n independent coin tosses with

an unbiased coin, for each input a the output f(a) is determined by

one of the coin tosses. By this experiment we can expect a Boolean

function that has no recognizable structure. This lack of structure

implies that the function is hard. The converse is not correct. We shall

see later that certain functions whose structure is easy to describe are

(probably) hard. Hence, the structure of our fundamental functions

is only a necessary condition for the existence of efficient circuits.

In this chapter we investigate the complexity of almost all func-

tions, or equivalently, the expected complexity of a random function.

It turns out that almost all functions have nearly the same complex-

ity as the hardest function. This effect is called Shannon effect by

Lupanov (70).

DEFINITION 1.1 : The notion ˝almost all functions f of a class

Fn ⊆ Bn have property P ˝ stands for the assertion that

|{f ∈ Fn | f has P}| � |Fn| → 1 as n →∞� (1.1)

88

DEFINITION 1.2 : For a complexity measure CM and a class of func-

tions Fn we denote by CM(Fn) the complexity of the hardest functions

in Fn , i.e. max{CM(f)|f ∈ Fn} .

DEFINITION 1.3 : The Shannon effect is valid for a class of functions

Fn and a complexity measure CM if CM(f) ≥ CM(Fn) − o(CM(Fn))

for almost all f ∈ Fn .

We prove that the Shannon effect is valid for several classes of

Boolean functions and complexity measures. With Shannon’s count-

ing argument we prove that almost all functions are hard, i.e. their

complexity is at least an − o(an) for some large an . Then we design

circuits (or formulas) for all functions whose complexity is bounded

by an .

For almost all functions we obtain nearly optimal circuits. These

circuits may be used for f ∈ Bn if we have no idea of designing a better

circuit for f . In Ch. 3 we have seen that we can design much more

efficient circuits for many fundamental functions.

4.2 Circuits over complete bases

In order to apply Shannon’s counting argument we estimate the

number of B2-circuits of size b .

LEMMA 2.1 : At most S(b� n) = (b + n + 1)2b 16b b�b! functions

f ∈ Bn can be computed by B2-circuits of size b .

Proof : We estimate the number of B2-circuits of size b . For each gate

there are |B2| = 16 possibilities to choose its type and b+n+1 possi-

bilities to choose each of its two predecessors, namely the other b− 1

gates, n variables and 2 constants. Each B2-circuit computes at most

89

b different functions at its gates. Finally we take into account that

each circuit is counted b! times, namely for b! different numberings of

its gates. Altogether we obtain the claimed bound. �

If b = b(n) = C(Bn) , |Bn| functions in Bn can be computed by a B2-

circuit of size b . By Lemma 2.1 we can conclude S(b� n) ≥ |Bn| . We

use this inequality for an estimation of b . When considering S(b� n)

and |Bn| as functions of n we see that S(b� n) is exponential while |Bn|
is even double exponential. Since S(b� n) as a function of b is also only

exponential, b = b(n) grows exponentially. We now estimate b more

exactly. By Stirling’s Formula b! ≥ c bb+1�2 e−b for some constant

c � 0 and thus

log S(b� n) ≥ log |Bn| ⇒ (2.1)

2b log(b + n + 1) + 4b + log b

−(b + 1�2) log b + b log e− log c ≥ 2n�

For n sufficiently large, b ≥ n + 1 and therefore

b log b + (6 + log e)b + (1�2) log b− log c ≥ 2n� (2.2)

If b ≤ 2nn−1 , we could conclude

2nn−1(n− log n + 6 + log e) + (1�2)(n− log n)− log c ≥ 2n (2.3)

which for large n is false. Therefore

C(Bn) ≥ 2nn−1 for sufficiently large n� (2.4)

We can prove even more. If we consider a subclass B∗
n of Bn such that

log |B∗
n| ≥ 2n − 2nn−1 log log n =: a(n)

we can prove in the same way that C(B∗
n) ≥ 2nn−1 for sufficiently large

n. In particular, we may choose B∗
n as the class of those 2a(n) functions

in Bn of the smallest circuit size.

90

THEOREM 2.1 : For sufficiently large n at least |Bn|(1 − 2−r(n)) of

the |Bn| functions in Bn , where r(n) = 2n n−1 log logn , have circuit

size at least 2n n−1 . In particular, almost all f ∈ Bn have circuit size

at least 2n n−1 .

We now show that 2n n−1 + o(2n n−1) gates are sufficient for the

computation of an arbitrary f ∈ Bn . At first we present two less

efficient circuits. The first one is called decoding circuit. Let f0 ∈ Bn−1

and f1 ∈ Bn−1 be the subfunctions of f ∈ Bn for xn = 0 and xn = 1

resp. Obviously

f = (xn ∧ f0) ∨ (xn ∧ f1) (2.5)

implying

C(Bn) ≤ 2C(Bn−1) + 3� C(B2) = 1 and (2.6)

C(Bn) ≤ 2n − 3� (2.7)

We note that decoding circuits are even formulas. Decoding circuits

can be improved in the following simple way. In a decoding circuit

we compute all 2n−3 subfunctions in B3 in disjoint subcircuits. It is

much more efficient to compute all 28 functions in B3 in advance. Let

C∗(Bk) be the circuit complexity for the computation of all functions

in Bk . By (2.5)

C∗(Bk) ≤ C∗(Bk−1) + 3|Bk| and (2.8)

C∗(B2) ≤ 16� hence

C∗(Bk) ≤ 3 · 22k

+ 6 · 22k−1

� (2.9)

For the computation of f we compute at first all functions in Bk .

The decoding circuit for f can stop after n−k steps, since all necessary

subfunctions are already computed. Similarly to (2.7) 3 ·2n−k−3 gates

are sufficient to compute f if the functions in Bk are given. Hence

91

C(Bn) ≤ 3(2n−k + 22k

) + 6 · 22k−1

for arbitrary k . (2.10)

For k = �log n� − 1

C(Bn) ≤ 12 · 2n n−1 + o(2n n−1)� (2.11)

These simple ideas already lead to circuits whose size is for almost

all Boolean functions only by a factor of 12 larger than the size of

an optimal circuit. In order to eliminate the factor 12 , we have to

work harder. Lupanov (58) introduced the so-called (k� s) - Lupanov

representation of Boolean functions. We represent the values of f by a

table of 2k rows for the different values of (x1� � � � � xk) and 2n−k columns

for the different values of (xk+1� � � � � xn) . The rows are partitioned to

p =
⌈
2k s−1

⌉ ≤ 2k s−1 + 1 blocks A1� � � � �Ap such that A1� � � � �Ap−1

contain s rows and Ap contains s′ ≤ s rows. We try to find simpler

functions than f and to reduce f to several of these simpler functions.

Let fi(x) = f(x) if (x1� � � � � xk) ∈ Ai and fi(x) = 0 otherwise. Obviously

f = f1 ∨ · · · ∨ fp .

Let Bi�w be the set of columns whose intersection with Ai is equal

to w ∈ {0� 1}s (for i = p , w ∈ {0� 1}s′) and let fi�w(x) = fi(x) if

(xk+1� � � � � xn) ∈ Bi�w and fi�w(x) = 0 otherwise. Obviously f is the

disjunction of all fi�w . Now consider the 2k × 2n−k table of fi�w . All

rows outside of Ai consist of zeros only, the rows of Ai have only two

different types of columns, columns w and columns of zeros only. We

represent fi�w as the conjunction of f1i�w and f2i�w where f1i�w(x) = 1 iff for

some j wj = 1 and (x1� � � � � xk) is the j -th row of Ai , and f2i�w(x) = 1

iff (xk+1� � � � � xn) ∈ Bi�w . Altogether we obtain Lupanov’s (k� s)-repre-

sentation

f(x1� � � � � xn) =
∨

1≤i≤p

∨
w

f1i�w(x1� � � � � xk) ∧ f2i�w(xk+1� � � � � xn)� (2.12)

We may compute f now in the following way.

92

Step 1 : By Lemma 4.1, Ch. 3 , we compute with O(2k + 2n−k) gates

all minterms on {x1� � � � � xk} and on {xk+1� � � � � xn} .

Step 2 : We compute all f1i�w by their DNF , the minterms are already

computed. Since the blocks Ai are disjoint, each minterm is used at

most once for fixed w . Altogether 2s 2k gates are sufficient.

Step 3 : We compute all f2i�w by their DNF, the minterms are already

computed. Since the blocks Bi�w are disjoint for fixed i , each minterm

is used once for fixed i . Altogether p 2n−k gates are sufficient.

Step 4 : By (2.12) 2 p 2s gates are sufficient to compute f if all f1i�w and

f2i�w are given.

The number of gates of our circuit can be estimated, since p ≤
2k s−1 + 1 , by

O(2k + 2n−k) + 2s+k + 2n s−1 + 2n−k + 2k+s+1 s−1 + 2s+1� (2.13)

We choose k = �3 log n� and s = n− �5 log n� .

THEOREM 2.2 : C(f) ≤ 2n n−1 + o(2n n−1) for all f ∈ Bn .

By Theorem 2.1 and Theorem 2.2 we have proved that the Shannon

effect is valid for Bn and B2-circuit size. Lupanov’s circuits are nearly

optimal and for almost all Boolean functions much better than min-

imal polynomials, i.e. optimal circuits of 2 logical levels. Lupanov’s

circuits have only 4 logical levels.

93

4.3 Formulas over complete bases

We proceed as in § 2.

LEMMA 3.1 : At most F(b� n) = (n + 2)b+1 16b 4b functions f ∈ Bn

can be computed by B2-formulas of size b .

Proof : We estimate the number of B2-formulas of size b . W.l.o.g. the

last gate is the only one without successor and the output is computed

at the last gate. As already discussed in Ch. 2 B2-formulas are binary

trees if we copy the variables and constants. There exist less than 4b

binary trees with b inner nodes. For each gate starting at the root

of the tree we have for each of the two predecessors at most the two

possibilities of choosing an inner node or a leaf. Each gate is labelled

by one of the 16 functions of B2 . Finally each of the b + 1 leaves is

labelled by one of the n variables or the 2 constants. Altogether we

obtain the claimed bound. �

If b = b(n) = L(Bn) , log F(b� n) ≥ log |Bn| implying

(b + 1) log(n + 2) + 6b ≥ 2n� (3.1)

(3.1) is not fulfilled for b = 2n log−1 n(1 − (log log n)−1) and suffi-

ciently large n . The same estimation holds for classes B∗
n ⊆ Bn where

log |B∗
n| = 2n(1− log−1 n) .

THEOREM 3.1 : For sufficiently large n at least |Bn|(1 − 2−s(n)) of

the |Bn| functions in Bn , where s(n) = 2n log−1 n , are of formula size

at least 2n log−1 n(1 − (log log n)−1) . In particular, almost all f ∈ Bn

are of formula size at least 2n log−1 n(1− (log log n)−1) .

We already proved in § 2 an upper bound of 2n − 3 on L(Bn) . By

94

Lupanov’s (k� s)-representation we shall obtain for each f ∈ Bn a B2-

formula with 6 logical levels and (2 + o(1))2n log−1 n gates. Since in

formulas all gates have fan-out 1 we have to compute the functions

f1i�w and f2i�w in another way as in § 1. As only a few inputs are mapped

to 1 by f1i�w or f2i�w , we consider functions f ∈ Bn where |f−1(1)| = r is

small.

DEFINITION 3.1 : L(r� n) = max{L(f) | f ∈ Bn , |f−1(1)| = r} .

The obvious upper bound on L(r� n) is rn− 1 , consider the DNF.

This upper bound has been improved by Finikov (57) for small r .

LEMMA 3.2 : L(r� n) ≤ 2n− 1 + r2r−1 .

Proof : We describe a function f ∈ Bn where |f−1(1)| = r by an r× n-

matrix consisting of the r inputs in f−1(1) . For small r , in particular

r � log n , several columns of the matrix are the same. We make the

most of this fact.

We do not increase the formula size of f by interchanging the roles

of xj and xj . With such interchanges we obtain a matrix whose first

row consists of zeros only. Now the number l of different columns in

the matrix is bounded by 2r−1 . Let c1� � � � � cl be the different columns

and A(i) be the set of numbers j such that the j -th column equals ci .

Let a(i) be the minimal element of A(i) .

By definition, f(x) = 1 iff x equals one of the rows of the matrix.

This can now be tested efficiently. f1 tests whether for each i all

variables xj (j ∈ A(i)) have the same value, and afterwards f2 tests

whether x and some row agree at the positions a(i) (1 ≤ i ≤ l). f2 is

the disjunction of r monoms of length l , hence L(f2) ≤ rl − 1 , and

f1(x) =
∧

1≤i≤l

(∧
p∈A(i)

xp ∨ ∧
p∈A(i)

xp
)

(3.2)

95

implying L(f1) ≤ 2n−1 . Since f = f1∧ f2 and l ≤ 2r−1 , we have proved

the lemma. �

LEMMA 3.3 : L(r� n) ≤ (2 + o(1))nr log−1 n if r ≥ log2 n .

Proof : For r′ =
⌈
log(n log−2 n)

⌉
we represent f as a disjunction of

�r�r′� functions fi , where |f−1
i (1)| ≤ r′ . We apply Lemma 3.2 to all fi .

Therefore, if r ≥ log2 n ,

L(r� n) ≤ �r�r′� − 1 + �r�r′� (2n− 1 + r′ 2r′−1) (3.3)

= (2 + o(1))nr log−1 n�

�

Lupanov (62 b) applied this result to the construction of efficient for-

mulas.

THEOREM 3.2 : The formula size of all f ∈ Bn is bounded by

(2 + o(1))2n log−1 n .

Proof : We use Lupanov’s (k� s)-representation. Again by (2.12) 2p 2s

gates are sufficient if all f1i�w and f2i�w are computed. By definition, each

f1i�w can be computed as disjunction of at most s minterms of length k .

All f1i�w can be computed by disjoint formulas with altogether p 2sks

gates. Let qi(r) be the number of vectors w which appear exactly r

times as a column in block Ai . The sum of all qi(r) equals the number

of different vectors w and is therefore bounded by 2s . The sum of all

rqi(r) equals 2n−k , which is the number of columns. If w appears r

times as a column in Ai , |(f2i�w)−1(1)| = r . f2i�w is defined on m = n− k

variables. If r � log2 m , we compute f2i�w by its DNF, otherwise we

apply Lemma 3.3. Altogether for each block Ai

96

∑
w

L(f2i�w) ≤ ∑
r

L(r�m)qi(r) (3.4)

≤ ∑
r�log2 m

(rm− 1)qi(r) +
∑

r≥log2 m

(2 + o(1)) rm log−1 mqi(r)

≤ m log2 m
∑
r

qi(r) + (2 + o(1)) m log−1 m
∑
r

rqi(r)

≤ 2s m log2 m + (2 + o(1)) 2m m log−1 m�

Altogether we obtain a formula for f of at most

2p 2s + p 2s ks + p 2s m log2 m + (2 + o(1)) p 2m m log−1 m (3.5)

gates. We prove the theorem by choosing k = �2 log n� and s =

n − �3 log n� , implying m = n − �2 log n� and , since p ≤ 2k s−1 + 1 ,

p = O(n) as well as p 2m ≤ 2n s−1 + 2m . �

4.4 The depth over complete bases

Here the lower bound for almost all Boolean functions can be de-

rived easily from the results on formula size by the following funda-

mental lemma. A partial converse is proved in Ch. 7.

LEMMA 4.1 : D(f) ≥ �log(L(f) + 1)� for all Boolean functions.

Proof : Using the results of § 4, Ch. 1 , we can consider a Boolean

formula of depth D(f) for f . A formula is a binary tree. Binary trees

of depth d have at most 2d − 1 inner gates. Therefore our formula for

f has size l bounded by 2D(f) − 1 . Hence L(f) ≤ l ≤ 2D(f) − 1 and the

lemma follows. �

We combine Theorem 3.1 with Lemma 4.1.

97

THEOREM 4.1 : The depth of almost all f ∈ Bn is at least

n− log logn− o(1).

THEOREM 4.2 : The depth of each f ∈ Bn is not larger than

n + �log n� − 1 .

Proof : W.l.o.g. we assume that |f−1(1)| ≤ 2n−1 and use the DNF.

Otherwise we could use the CNF. All minterms can be computed in

parallel in depth �log n� . As the number of minterms is bounded by

2n−1 , we can sum up the minterms in depth n− 1 . �

By Theorem 4.1 and Theorem 4.2 the Shannon effect is valid for Bn

and the depth of B2-circuits. The trivial upper bound of Theorem 4.2

has been improved several times. We describe the history of these

improvements.

DEFINITION 4.1 : Let log(1) x = log x and log(k) x = log log(k−1) x .

For x ≤ 1 , log∗ x = 0 and , for x � 1 , log∗ x is the minimal k such

that log(k) x ≤ 1 .

log∗ x is an increasing function tending to ∞ as x →∞ . But log∗ x

is growing rather slowly. So log∗ x ≤ 5 for all x ≤ 265536 .

Let a(n) be the following number sequence : a(0) = 8 , a(i) = 2a(i−1) +

a(i−1) . Now we are able to describe the improved bounds on D(Bn) .

Spira (71 b): n + log∗ n .

Muller and Preparata (71): n + i for n ≤ a(i) .

McColl and Paterson (77): n + 1 .

Gaskov (78): n− log log n + 2 + o(1) .

The bound of Gaskov is optimal at least up to small additive terms

(see Theorem 4.1). McColl and Paterson even use a circuit scheme,

i.e. a fixed underlying graph. For different functions only the types

of the gates are changed. By easy counting arguments one can prove

that the depth of a circuit scheme cannot be smaller than n− 1 .

98

Because already the simple construction of Theorem 4.2 is not too

bad, we only discuss some ideas of the construction of McColl and

Paterson. For each partition of the set of variables X to an m-element

set Z and an (n−m)-element set Y we can generalize (2.5) to

f(y� z) =
∨

c∈{0�1}m

mc(z) ∧ f(y� c) =
∧

c∈{0�1}m

(sc(z) ∨ f(y� c))� (4.1)

McColl and Paterson ˝smuggled˝ the computation of mc(z) or sc(z)

into the computation of f(y� c) . This leads to a saving of depth if we

are content with the computation of an approximation of f . These

approximations can be chosen such that f can be computed efficiently

from its approximations.

4.5 Monotone functions

The importance of the class of monotone functions will be discussed

in Ch. 6. We know already that the minimal polynomial of a mono-

tone function is the unique MDNF. We have considered in Ch. 3 the

following monotone functions: threshold functions, sorting function,

and Boolean matrix product. Further examples can be found in Ch. 6.

In order to apply Shannon’s counting argument to the estimation of

C(Mn) and Cm(Mn) we have to estimate |Mn| . This problem has been

formulated (in another context) already by Dedekind. Contributions

to this problem can be traced back to Alekseev (73), Gilbert (54),

Hansel (66), Kleitman (69) and (73), Kleitman and Markowsky (75),

and Korshunov (77) and (81 a). We cite the results of Korshunov who

obtained his exact bounds by a description of the structure of almost

all f ∈ Mn .

99

DEFINITION 5.1 : Let Mt
n contain all f ∈ Mn such that

x1 + · · ·+ xn � t− 1 ⇒ f(x) = 0� (5.1)

x1 + · · ·+ xn � t + 1 ⇒ f(x) = 1� (5.2)

|{x | x1 + · · ·+ xn = t− 1 and f(x) = 1}| ≤ 2�n�2�� and (5.3)

|{x | x1 + · · ·+ xn = t + 1 and f(x) = 0}| ≤ 2�n�2�� (5.4)

THEOREM 5.1 : Let k = �n�2� and E(n) =
(n

k

)
. Almost all f ∈ Mn

are in Mk
n , if n is even, and in Mk

n ∪ Mk+1
n , if n is odd. Furthermore,

let an ∼ bn iff an�bn → 1 as n →∞ . Then

|Mn| ∼ 2E(n) exp

[(
n

n�2− 1

)
(2−n�2 + n2 2−n−5 − n 2−n−4)

]
� (5.5)

if n is even, and

|Mn| ∼ 2 · 2E(n) exp

[(
n

(n− 3)�2

)
(2−(n+3)�2 − n2 2−n−6 − n 2−n−3)

+

(
n

(n− 1)�2

)
(2−(n+1)�2 + n2 2−n−4)

]
�

if n is odd.

By these results almost all monotone Boolean functions have only

prime implicants and prime clauses whose length is about n�2 . For

our purposes (see also § 2 and § 3) a good estimation of log |Mn| is

sufficient. Such a result is much easier to prove.

PROPOSITION 5.1 : The number of monotone functions f ∈ Mn is

larger than 2E(n) where E(n) =
(n
�n�2�

)
is larger than c2nn−1�2 for some

constant c � 0 .

Proof : The estimation of E(n) follows from Stirling’s formula. E(n) is

the number of different monotone monoms of length �n�2� . For each

subset T of this set of monoms we define fT as the disjunction of all

m ∈ T . Since no monom of length �n�2� is a shortening of another,

100

PI(fT) = T and fT �= fT′ if T �= T′ . We have defined 2E(n) different

functions fT ∈ Mn . �

Now we can apply the results in § 2 and § 3 on the number of

circuits or formulas of size b . If we consider monotone circuits or

formulas, we may replace the factor 16b by 2b , since |Ωm| = 2 . By

Shannon’s counting argument we obtain from elementary calculations

the following results.

THEOREM 5.2 : For some constants c1� c2 � 0 almost all f ∈ Mn

have (monotone) circuit size bounded below by c1 2n n−3�2 , (mono-

tone) formula size bounded below by c2 2n n−1�2 log−1 n , and (mono-

tone) depth bounded below by n− (1�2) log n− log logn + log c2 .

What is known about upper bounds ? One can show for the (mono-

tone) circuit size upper bounds of the same size as the lower bounds

of Theorem 5.2. Lupanov (62 a) and (65 b), who proved asymp-

totically optimal bounds on the circuit and formula size of almost

all Boolean functions, could design for monotone functions only cir-

cuits of size larger than 2n n−3�2 . Pippenger (76) and (78) described

for all monotone functions B2-circuits of size O(2n n−3�2) . The old

O(2n n−3�2 log2 n) bound of Reznik (62) on Cm(Mn) has been improved

at first by Pippenger (76) to O(2n n−3�2 log n) , and finally Red’kin (79)

proved that all monotone functions can be computed by monotone cir-

cuits of size O(2n n−3�2) . This implies that for almost all monotone

functions f ∈ Mn C(f) and Cm(f) are of the same size. In Ch. 6 we

learn that for certain f ∈ Mn C(f) may be much smaller than Cm(f) .

Since the O(2n n−3�2) bounds are rather complicated, we only prove

the O(2n n−3�2 log n) bound of Pippenger for monotone circuits. More

important than the actual size of the bound it is to learn why no

monotone function belongs to the hardest functions in Bn . The fol-

lowing circuit design takes advantage of structural particularities of

monotone functions.

101

The fundamental equality (2.5) for decoding circuits, namely

f = (xn ∧ f0) ∨ (xn ∧ f1), contains a negation. For monotone functions,

f0 ≤ f1 , and, considering the cases xn = 0 and xn = 1 , we can prove

the following monotone decompositions of f ∈ Mn .

f = f0 ∨ (xn ∧ f1) = (xn ∨ f0) ∧ f1� (5.6)

Applying the first part of (5.6) n−m times, we obtain

f(x1� � � � � xn) = (5.7)∨
i(m+1)�����i(n)∈{0�1}

(∧
i(j)=1

xi(j) ∧ f(x1� � � � � xm� i(m + 1)� � � � � i(n))
)
�

Later on we discuss how we compute the 2n−m subfunctions of f

on x1� � � � � xm efficiently in common. Furthermore we need all mono-

tone monoms on xm+1� � � � � xn . These monoms can be computed with

2n−m − (n − m) − 1 ∧-gates, since the empty monom and the n − m

monoms of length 1 are given and each monom of length l can be

computed with one ∧-gate from a monom of length l − 1 and a vari-

able. After having computed the subfunctions of f in (5.7) , less than

3 · 2n−m gates are sufficient for the computation of f .

According to the law of simplification xy∨y = y , it is not possible

that both p and some proper shortening or lengthening of p are prime

implicants of f . If p1� � � � � pr is a chain of monoms, i.e. pi+1 is the

lengthening of pi by one variable, then at most one monom of the

chain is a prime implicant of f . We show how we may partition the

set of monoms into the smallest possible number of chains. These

chains are grouped into b blocks. Then we compute all subfunctions

of f in the following three steps.

Step 1 : Compute all monoms on x1� � � � � xm . This can be done with

less than 2m gates.

Step 2 : Compute for each block all monotone functions having only

prime implicants of that block, or equivalently, having at most one

prime implicant of each chain of the block.

102

Step 3 : Each subfunction f ′ of f on x1� � � � � xm can be computed

as the disjunction of f ′1� � � � � f
′
b where f ′i is the disjunction of all prime

implicants of f ′ belonging to the i -th block. Thus Step 3 can be im-

plemented with (b− 1) 2n−m ∨-gates.

As Step 2 will be implemented by ∨-gates only, the whole circuit

will contain only 4 logical levels.

Since there exist E(m) =
(m
�m�2�

)
monoms of length �m�2� , which

have to belong to different chains, E(m) chains are necessary. By

solving the marriage problem we prove that E(m) chains suffice.

LEMMA 5.1 : Let G = (A∪B�E ⊆ A×B) be a bipartite graph. For

A′ ⊆ A let Γ(A′) be the set of vertices b ∈ B such that (a� b) ∈ E for

some a ∈ A′ . G contains |A| vertex disjoint edges iff |ΓA′| ≥ |A′| for

all A′ ⊆ A .

Sketch of Proof : Obviously the condition is necessary. For the

sufficiency part of the proof e = |E| ≥ |A| , since |ΓA| ≥ |A| .
Case 1 : e = |A| . Since |ΓA| ≥ |A| , all edges are vertex disjoint.

Case 2 : ∃ A′ : � ◦ �= A′ �= A and |ΓA′| = |A′| . Let B′ = ΓA′ ,
A′′ = A−A′ and B′′ = B−B′ . The condition of the lemma is fulfilled

for the smaller subgraphs on A′ ∪ B′ and A′′ ∪ B′′ . By induction

hypothesis we obtain |A′| and |A′′| vertex disjoint edges resp. on these

subgraphs, altogether |A| vertex disjoint edges.

Case 3 : ∀ A′ �= � ◦ : |ΓA′| � |A′| . By eliminating an arbitrary edge we

obtain a smaller graph fulfilling the condition of the lemma.

Case 4 : ∀ A′ �= � ◦�A′ �= A: |ΓA′| � |A′| , |ΓA| = |A| and |E| � |A| .
The degree of some b ∈ B is at least 2 . By eliminating some edge

(a� b) we obtain a smaller graph fulfilling the condition of the lemma.

�

103

Now we build E(m) chains containing all monoms on x1� � � � � xm .

We start on level �m�2� where each chain contains one monom of

length �m�2� . We show how the
(m
k+1

)
monoms of length k+1 can be

added to the
(m

k

)
chains containing one monom of length k ≥ �m�2� .

The addition of the short monoms can be performed in the same way.

Let A and B contain the monoms of length k+1 and k resp. a ∈ A

and b ∈ B are connected by an edge iff a is a lengthening of b . If

we find a set S of |A| vertex disjoint edges, we can add each monom

a ∈ A to that chain ending in b where (a� b) ∈ S . We only have to

check the condition of Lemma 5.1. Let A′ ⊆ A be a set of l monoms.

Each monom of length k + 1 has k + 1 shortenings in B , therefore

(k + 1)l edges are leaving A′ and go to ΓA′ . Each monom of length

k has m − k lengthenings in A , therefore at most (m − k)r , where

r = |ΓA′| , edges are gathered by ΓA′ . Since all edges leaving A′ are

gathered by ΓA′ ,

(k + 1)l ≤ (m− k)r (5.8)

implying l ≤ r , since k+1 ≥ m−k . Since the condition of Lemma 5.1

is fulfilled, our construction is possible. The set of all monoms can be

partitioned to E(m) chains C1� � � � �CE(m) .

If C1� � � � �Ci build a block B , at most

S(B) =
∏

1≤j≤i
(|Cj|+ 1) (5.9)

monotone functions have at most one prime implicant of each chain

Cj (1 ≤ j ≤ i) and no other prime implicant. These functions can be

computed by a circuit of size S(B) , if the monoms on x1� � � � � xm are

given. This is easy to see, since any function with l prime implicants

can be computed with one ∨-gate from a function with l − 1 prime

implicants and a monom. If we join the chains to b blocks B1� � � � �Bb ,

Step 2 and 3 of our circuit can be implemented with ΣS(Bi) and (b−
1) 2n−m gates resp.

b has to be chosen such that Step 2 and 3 can both be implemented

efficiently. The ˝size˝ S(B) of the blocks should be bounded by some

104

parameter 2s . Since each chain Cj contains at most m + 1 monoms,

each chain increases the size of a block at most by the factor of m+2 .

So we build the blocks by adding as many chains as possible without

skipping the size bound 2s . Then at most one block has a size less

than 2s�(m + 2) . We estimate the number of blocks b . The sum of

all |Cj| is 2m , since each monom is in exactly one chain.

Let H(Cj) = log(|Cj| + 1) . Then for all blocks B with at most one

exception by (5.9)∑
C∈B

H(C) = log S(B) ≥ s− log(m + 2)� (5.10)

Because of the concativity of log∑
1≤j≤E(m)

H(Cj) = E(m)
∑

1≤j≤E(m)
E(m)−1 log(|Cj|+ 1) (5.11)

≤ E(m) log

(∑
1≤j≤E(m)

E(m)−1(|Cj|+ 1)

)

= E(m) log(2m E(m)−1 + 1)�

Combining (5.10) and (5.11) we can estimate b by

b ≤ 1 + E(m)
(
log(2m E(m)−1 + 1))(s− log(m + 2)

)−1
� (5.12)

The size of the whole circuit can be estimated by

3 · 2n−m + 2m + b · 2s + (b− 1) 2n−m� (5.13)

since, by definition, S(B) ≤ 2s for all blocks B . We may choose m and

s and can estimate b by (5.12). Let

m = �n�3� and s = (2�3)n− log n� (5.14)

then, by Stirling’s formula, E(m) = Θ(2n�3 n−1�2) , and s is linear in

n , hence by (5.12)

b = O(2n�3 n−3�2 log n)� (5.15)

Inserting (5.14) and (5.15) into (5.13) we have proved the following

upper bound on Cm(Mn) .

THEOREM 5.3 : Each monotone function f ∈ Mn can be computed

by a monotone circuit of size O(2n n−3�2 log n) .

105

McColl (78 b) proved the following upper bound on Dm(Mn) . The

proof is rather simple, but contains the idea of smuggling computation

steps into other computations.

THEOREM 5.4 : Each monotone function f ∈ Mn can be computed

by a monotone circuit of depth n .

Proof : We define for f ∈ Mn functions g1� h1� � � � � gn−1� hn−1 such that

Dm(gi)�Dm(hi) ≤ i and f = g1 ∨ · · · ∨ gn−1 as well as f = h1 ∧ · · · ∧
hn−1 . This obviously implies the theorem. We prove the assertion by

induction on n . For n = 2 the claim is obvious. For the induction

step we use the representations of f in (5.6), namely f0 ∨ (xn ∧ f1) and

(xn ∨ f0) ∧ f1 . Since f0� f1 ∈ Mn−1 , by induction hypothesis

f0 = g1 ∨ · · · ∨ gn−2 where Dm(gi) ≤ i and (5.16)

f1 = h1 ∧ · · · ∧ hn−2 where Dm(hi) ≤ i� (5.17)

g1 has depth 1 . If g∗1 has depth 2 , g∗1 ∨ g2 ∨ · · · ∨ gn−2 also can be

computed in depth n−1 . Thus there is some place in the computation

of f0 where we may smuggle in xn . g∗1 = xn∨ g1 has depth 2 , so xn∨ f0
has depth n−1 . f = (xn∨ f0)∧ f1 has depth n where f1 = h1∧· · ·∧hn−2

and hn−1 = xn∨f0 such that Dm(hi) ≤ i . By dual arguments we obtain

the other representation of f . �

We have seen that the Shannon effect is valid for Mn and monotone

depth. Henno (79) generalized McColl’s design to functions in m-

valued logic. By a further improvement of Henno’s design Wegener (82

b) proved the Shannon effect also for the monotone functions in m-

valued logic and (monotone) depth.

106

4.6 The weak Shannon effect

The proof of the Shannon effect for various classes of functions and

complexity measures is a main subject in Russian language literature.

There also weak Shannon effects are studied intensively. The Shannon

effect is valid for Fn and CM iff almost all functions f ∈ Fn have nearly

the same complexity k(n) and k(n) = CM(Fn) is the complexity of the

hardest function in Fn . The weak Shannon effect concentrates on the

first aspect.

DEFINITION 6.1 : The weak Shannon effect is valid for the class

of functions Fn and the complexity measure CM if CM(f) ≥ k(n) −
o(k(n)) and CM(f) ≤ k(n) + o(k(n)) for almost all f ∈ Fn and some

number sequence k(n) .

The validity of the weak Shannon effect for Mn and circuit size

and monotone circuit size has been proved by Ugolnikov (76) and

Nurmeev (81) resp. It is not known whether the Shannon effect is

valid too. The complexity k(n) of almost all functions is not even

known for the (monotone) circuit size. How can the weak Shannon

effect be proved without knowing k(n) ? Often Nigmatullin’s (73)

variational principle is used. If the weak Shannon effect is not valid

there exist some number sequence k(n) , some constant c � 0 , and

some subclasses Gn�Hn ⊆ Fn such that for infinitely many n

|Gn|� |Hn| = Ω(|Fn|)� (6.1)

CM(f) ≤ k(n)� if f ∈ Gn� and (6.2)

CM(f) ≥ (1 + c)k(n)� if f ∈ Hn� (6.3)

Since Gn and Hn are large subclasses, there are functions gn ∈ Gn and

hn ∈ Hn which do not differ too much. Furthermore this implies that

hn cannot be much harder than gn in contradiction to (6.2) and (6.3).

107

Nurmeev’s proof is based on Korshunov’s description of the struc-

ture of almost all f ∈ Mn (see § 5). However, the proof is technically

involved.

4.7 Boolean sums and quadratic functions

In contrast with the large classes of Boolean functions, Bn and Mn ,

we consider here the smaller classes of k-homogeneous functions.

DEFINITION 7.1 : A Boolean function f ∈ Mn is called k-homo-

geneous if all prime implicants of f are of length k . Hk
n and Hk

n�m are

the classes of k-homogeneous functions. 1-homogeneous functions are

called Boolean sums, 2-homogeneous functions are called quadratic.

Important examples are the threshold functions, the Boolean ma-

trix product and the clique functions (see Ch. 6).

Since there are
(n

k

)
monoms of length k and since a k-homogeneous

function is a non empty disjunction of such monoms,

|Hk
n| = 2b(n�k) − 1 where b(n� k) =

(
n

k

)
� (7.1)

(For constant k ,
(n

k

)
= Θ(nk)). With Shannon’s counting argument

the following lower bounds can be proved.

THEOREM 7.1 : For constant k , the (monotone) circuit size as well

as the (monotone) formula size of almost all f ∈ Hk
n is Ω(nk log−1 n) .

We shall see that these bounds are asymptotically optimal for k ≥
2 . The case k = 1 is treated as an exercise. At first we prove that it

is sufficient to investigate the case k = 2 .

108

LEMMA 7.1 : i) C(Hk
n) ≤ Cm(Hk

n) .

ii) Cm(Hk
n) ≤ Cm(Hk−1

n�n) + 2n− 1 .

iii) Cm(Hk
n�n) ≤ n Cm(Hk

n) .

Proof : i) and iii) are obvious by definition. For ii) let f ∈ Hk
n and let

g′i be the disjunction of all prime implicants of f containing xi . We

factor out xi , hence g′i = xi ∧ gi for some gi ∈ Hk−1
n . The assertion

follows, since

f(x) =
∨

1≤i≤n
xi ∧ gi(x)� (7.2)

�

By Lemma 7.1 an O(n2 log−1 n)-bound for H1
n�n implies the same

bound for H2
n and O(nk log−1 n)-bounds for Hk−1

n�n and Hk
n . Savage (74)

presented the following design of monotone circuits for f ∈ H1
n�n . The

variables are partitioned to b = �n� �log n�� blocks of at most �log n�
variables each. All Boolean sums on each block can be computed with

less than 2�log n� ≤ n ∨-gates similarly to the computation of monoms

in § 5. Now each fi ∈ H1
n can be computed with b − 1 ∨-gates from

its subfunctions on the blocks. Since we have n outputs and b blocks,

we can compute f with (2b− 1)n∨-gates. We combine this result with

Lemma 7.1.

THEOREM 7.2 : Each k-homogeneous function f ∈ Hk
n can be

computed by a (monotone) circuit of size (2+o(1)) nk log−1 n , if k ≥ 2 .

We note that we have designed asymptotically optimal monotone

circuits for almost all f ∈ H1
n�n which consist of ∨-gates only. In Ch. 6

we get to know some f ∈ H1
n�n such that optimal monotone circuits

for f have to contain ∧-gates disproving the conjecture that Boolean

sums may be computed optimally using ∨-gates only.

Similar results for formulas are much harder to achieve. Using

the MDNF of f each prime implicant requires its own ∧-gate. We can

109

compute efficiently many prime implicants by the law of distributivity.

With m + r − 1 gates we can compute mr monoms of length 2 by

(x1 ∨ · · · ∨ xm) ∧ (xm+1 ∨ · · · ∨ xm+r) . The ratio of profit, number

of monoms, and costs, number of gates, is best, if m = r and m is

large. It is only useful to compute monoms of length 2 which are

prime implicants of f .

For f ∈ H2
n we consider the following graph G(f) on {1� � � � � n} .

G(f) contains the edge {i� j} iff xixj ∈ PI(f) . A complete bipartite

graph on disjoint m-vertex sets A and B contained in G(f) is called

Km�m . Such a Km�m corresponds to m2 prime implicants which can be

computed with 2m − 1 gates. Since the result has to be connected

with other terms, we define the cost of a Km�m as 2m . If we can cover

G(f) by a(m) copies of Km�m (1 ≤ m ≤ n�2), then f can be computed

by a monotone formula of size∑
1≤m≤n�2

2 a(m) m− 1� (7.3)

This suggests the following greedy algorithm. Starting with G(f)

search the largest complete bipartite subgraph, Km�m , compute its

edges with 2m−1 gates, eliminate the edges of this copy of Km�m in G(f)

and continue in the same way. At the end compute the disjunction of

all intermediate results. It is highly probable that the so constructed

monotone formula for f will not have size larger than O(n2 log−1 n) .

But this is difficult to prove.

Bublitz (86) investigated an algorithm that leads to monotone for-

mulas which might be not as good as the formulas of the greedy

algorithm above. For some carefully selected decreasing sequence

m(1)� � � � �m(k) = 1 he searches always for the largest Km�m where

m equals some m(i) . By this approach it is easier to estimate the

efficiency of the algorithm.

THEOREM 7.3 : L(Hk
n) ≤ Lm(Hk

n) ≤ 22 nk log−1 n , if k ≥ 2 .

Proof : By (7.2) we have to prove the claim for k = 2 only. For n ≤ 54

110

we use the MDNF of f whose size is bounded by 2
(n

2

)
= n2 − n and

smaller than 22 n2 log−1 n .

For n ≥ 55 let k = log∗ n (see Def. 4.1) and

m(i) =
⌊
(log n)�(4 log(k−i) n)

⌋
for 1 ≤ i ≤ k− 2 and m(k− 1) = 1�

(7.4)

We use the approach discussed above. Let e(i) be the number of

edges of G(f) after the elimination of all Km(i)�m(i) . Obviously e(0) =

|PI(f)| ≤ (n
2

)
and by results of graph theory (see Bollobás (78))

e(i) ≤ n2(m(i)�n)1�m(i) for 1 ≤ i ≤ k− 2 and e(k− 1) = 0� (7.5)

By elementary but tedious computations one can prove for n ≥ 55

that

e(i) ≤ n2�(4i log(k−i−1) n) for 0 ≤ i ≤ k− 2� (7.6)

After the elimination of all Km(i−1)�m(i−1) the graph has at most e(i−1)

edges, each Km(i)�m(i) has m(i)2 edges, therefore the algorithm selects

at most e(i−1)�m(i)2 copies of Km(i)�m(i) . The cost of these subgraphs

altogether is bounded by 2e(i− 1)�m(i) . According to (7.4) and (7.6)

this can be estimated by 16 n2�(4i−1 log n) . Summing up these terms

we obtain the upper bound of 22 n2 log−1 n . �

We emphasize the power of Shannon’s counting argument which

leads to asymptotically optimal results for large classes like Bn and

Mn as well as for small classes like Hk
n . For almost all functions in

these classes we know nearly optimal circuits.

4.8 Universal circuits

Each circuit computes a definite Boolean function. We now discuss

the concept of programmable circuits, which are also called universal

circuits. What does it mean to program a circuit ? How do we ˝read

in˝ such a program ? The only inputs of a Boolean circuit are Boolean

111

variables. Programmable circuits have input variables x1� � � � � xn , the

true input variables, and y1� � � � � ym , the program variables or con-

trol bits. For each of the 2m input vectors for y , the 2m admissible

programs, some Boolean function fy ∈ Bn is computed by the circuit.

DEFINITION 8.1 : A programmable circuit S is called (n� c� d)-uni-

versal if it contains n true input variables and c distinguished gates

such that for each circuit S′ of size c′ ≤ c and depth d′ ≤ d there is

some admissible program such that the i -th distinguished gate of S

computes the same function as the i -th gate of S′ (1 ≤ i ≤ c′).

Efficient universal circuits offer the possibility of applying the same

circuit to several purposes. We design two types of universal circuits.

The first one is optimal with respect to size but the depth is rather

large (whether it is possible to reduce depth is discussed in § 2 of

Ch. 7) whereas the other one is optimal with respect to depth and

also is of reasonable size. Since depth and time of parallel computers

are related, we refer to some papers on the construction of universal

parallel computers, namely Galil and Paul (83) and Meyer auf der

Heide (86).

We begin with lower bounds. Each (n� c� d)-universal circuit obvi-

ously has depth Ω(d) . What about its size ?

THEOREM 8.1 : Each (n� c�∞)-universal circuit has size Ω(c log c)

if c = O(2nn−1) .

The condition c = O(2nn−1) is not really to be seen as a restriction,

since each f ∈ Bn has circuit size O(2nn−1) (see § 2).

Proof of Theorem 8.1 : We prove the theorem by counting arguments.

If the universal circuit has m control bits, it can compute at most 2m c

different functions. For small r , each Boolean function f ∈ Br has

112

circuit size bounded by c . Due to the results of § 2 r can be chosen

as log c + log log c− k for some appropriate constant k . In particular

2mc ≥ |Br| ⇒ m− log c ≥ 2r = Ω(c log c)� (8.1)

Since m = Ω(c log c) and since we have to consider control bits of

positive fan-out only, the size of the circuit is Ω(c log c) . �

For the construction of universal circuits we design universal gates

and universal graphs. A universal gate has two true inputs x1 and x2 ,

four control bits y1 , y2 , y3 , and y4 and computes

y1 x1 x2 ∨ y2 x1 x2 ∨ y3 x1 x2 ∨ y4 x1 x2� (8.2)

For each f ∈ B2 there are control bits such that the universal gate

realizes f(x1� x2) by its DNF.

The construction of universal graphs is much more difficult.

Valiant (76 b) designed universal circuits of size O(c log c) if c ≥ n .

By the results of § 4, Ch. 1 , we have to consider only circuits of fan-

out 2 . We have to simulate the gates G′
1� � � � �G

′
c′ of each circuit S′

at the distinguished gates G1� � � � �Gc′ of the universal circuit S . The

distinguished gates of S will be universal gates, i.e. that the type of

G′
i can be simulated. Since G′

j may be a direct successor of G′
i in S′ ,

if j � i , we have to be able to transfer the result of Gi to any other

gate Gj where j � i . We design the universal circuit in such a way

that, if G′
j is direct successor of G′

i in S′ , we have a path from Gi to Gj

in S such that on all edges of this graph the result of G′
i is computed.

Since the successors of G′
i are different for different S′ , we use univer-

sal switches consisting of two true inputs x1 and x2 , one control bit

y , and two output bits computing

z1 = y x1 ∨ y x2 and z2 = y x1 ∨ y x2� (8.3)

In either case both inputs are saved, but by setting the control bit y

we control in which direction the inputs are transferred to. If y = 1 ,

z1 = x1 and z2 = x2 , and, if y = 0 , z1 = x2 and z2 = x1 .

113

We are looking for an (n+c)-universal circuit, i.e. a directed acyclic

graph G of fan-out and fan-in 2 with the following properties. There

are n + c distinguished nodes for n true input variables and for the

simulation of c gates. Furthermore, for each circuit S′ with n inputs

and c gates of fan-out and fan-in 2 we may map each edge (v′�w′) in

S′ to a path from the corresponding node v to w in S such that all

these paths are edge disjoint. Replacing the c distinguished nodes for

the gates in S by universal gates and all not distinguished nodes by

universal switches, we may simulate all circuits S′ . By the following

lemma we reduce the problem to the simulation of graphs of fan-out

and fan-in 1 .

LEMMA 8.1 : Let G = (V�E) be a directed acyclic graph of fan-out

and fan-in 2 . Then E may be partitioned to E1 and E2 , such that

Gi = (V�Ei) has fan-out and fan-in 1 for i = 1 and i = 2 .

Proof : Let V = {a1� � � � � an} , V′ = {b1� � � � � bn} , V′′ = {c1� � � � � cn}
and let G∗ = (V′ ∪V′′�E∗) be the bipartite graph containing the edge

(bi� cj) if (ai� aj) ∈ E . We may add some edges such that all nodes of

G∗ have degree 2 . Then the assumptions of Lemma 5.1 are fulfilled

implying the existence of n vertex disjoint edges. If E1 contains these

edges and E2 the other edges (and if we destroy the new edges), we

obtain a partition of E as required. �

Now it is sufficient to design an (n+ c)-universal circuit G∗ for the

simulation of graphs S′ with fan-out and fan-in 1 , such that in G∗ the

fan-out and fan-in of the distinguished nodes is 1 . Then we take two

copies of G∗ and identify the distinguished nodes. This new graph

has fan-out and fan-in 2 and may simulate all circuit graphs S′ with

fan-out and fan-in 2 and c gates. We partition the edge set of S′ by

Lemma 8.1 and simulate the edges of E1 and E2 in the first and second

copy of G∗ resp. This leads to the design of a size optimal universal

circuit.

114

THEOREM 8.2 : If c ≥ n , (n� c�∞)-universal circuits of size O(c log c)

may be designed.

Proof : According to our preliminary remarks we only have to con-

struct graphs U(m) of size O(m log m) , fan-out and fan-in 2 for all

nodes, fan-out and fan-in 1 for m distinguished nodes, such that all

directed acyclic graphs of size m and fan-out and fan-in 1 can be sim-

ulated. For m = 1 a single node and for m = 2 two connected nodes

are appropriate. For m ≥ 4 and m = 2k + 2 , we use a recursive con-

struction whose skeleton is given in Fig. 8.1. The edges are directed

from left to right. For m′ = m − 1 we eliminate pm . The skeleton of

U(m) has to be completed by two copies of U(k) on {q1� � � � � qk} and

on {r1� � � � � rk} . Since the q- and r-nodes have fan-out and fan-in 1

in the skeleton of U(m) as well as in U(k) (by induction hypothesis),

these nodes have fan-out and fan-in 2 in U(m) . Obviously the dis-

tinguished nodes p1� � � � � pm have fan-out and fan-in 1 in U(m) . How

can we simulate directed acyclic graphs G of size m and fan-out and

fan-in 1 ? We understand the pairs (p2i−1� p2i) of nodes as supernodes.

The fan-out and fan-in of the supernodes is 2 . By Lemma 8.1 we par-

tition the set of edges of G to E1 and E2 . Edges (p2i−1� p2i) in G are

simulated directly. The edges leaving a supernode, w.l.o.g. (p1� p2) ,

can be simulated in the following way. If the edge leaving p1 is in E1

and the edge leaving p2 is in E2 (the other case is similar), we shall

use edge disjoint paths from p1 to q1 and from p2 to r1 .

rk−1 rk

q1 qk−1 qk

p2 pm−2pm−3 pm−1 pm

r1

p1

Fig. 8.1 The skeleton of U(m) .

115

If the edges leaving p1 and p2 end in the supernodes p2i−1�2i and p2j−1�2j

resp. we shall take a path from q1 to qi−1 and from r1 to rj−1 resp. in

the appropriate U(k) . All these paths can be chosen edge disjoint by

induction hypothesis. Finally the paths from qi−1 and ri−1 to p2i−1

and p2i can be chosen edge disjoint. Thus the simulation is always

successful.

Let C(m) be the size of U(m) . Then, by construction

C(m) ≤ 2 C(�m�2� − 1) + 5 m� C(1) = 1� C(2) = 2� (8.4)

This implies C(m) = O(m log m) . In our application m = n+c . Since

n ≤ c , U(n + c) = O(c log c) . �

Cook and Hoover (85) designed a depth optimal universal circuit.

THEOREM 8.3 : If c ≥ n and c ≥ d ≥ log c , (n� c� d)-universal

circuits of size O(c3 d log−1 c) and depth O(d) may be designed.

The assumption c ≥ d ≥ log d is not really a restriction, since it is

easy to see that C(S) ≥ D(S) ≥ log C(S) for all circuits S . Perhaps

it is possible to design universal circuits of depth O(d) and of smaller

size. Until now we have some trade-off. If we use universal circuits

of optimal depth the circuit size increases significantly. If we use the

given circuits of size c and depth d , we have to pay the cost for the

production of different types of circuits.

Proof of Theorem 8.3 : We want to simulate all circuits S′ of size

c′ ≤ c and depth d′ ≤ d . What do we know about the depth of the

i -th gate G′
i of S′? Not much. G′

i may be a gate in depth 1 where

some path of length d − 1 starts. It may also be a gate in depth i .

Therefore, in order to simulate all circuits S′ in depth O(d) , we cannot

wait until all possible predecessors of the i -th gate are simulated.

For some parameter h chosen later, we simulate the circuits in

Step 0 , � � � , Step �d�h� . Step 0 consists of the inputs of the circuit.

116

In each further step we simulate all gates. Let zi�m be the simulation

of the i -th gate in Step m . If the depth of the i -th gate in S′ is at

most mh , zi�m will simulate this gate correctly. Finally, each gate is

simulated correctly after Step �d�h� .

We may choose zi�0 = 0 . For the computation of zi�m we use the

input variables and the simulations z1�m−1� � � � � zc�m−1 . In order to

apply only correct simulations, if zi�m has to be correct, we look for

the predecessors of the i -th gate in distance h . If a path starting

from the i -th gate backwards ends after l � h steps at some in-

put, this input will be chosen 2h−l times as predecessor in distance

h . For each of the 2h predecessors in distance h we have n + c pos-

sibilities: x1� � � � � xn� z1�m−1� � � � � zc�m−1 . We use a binary tree of depth

k = �log(n + c)� with n + c leaves for the n + c possibilities. The

nodes are universal selectors y x1 ∨ y x2 where y is a control bit. With

these universal selector trees we may select the right predecessors in

distance h . If we have to simulate the i -th gate correctly, its depth is

at most mh , and the depth of its predecessors in distance h is at most

m(h− 1) , these gates are correctly simulated in the previous step.

Obviously each circuit of depth h can be simulated by a complete

binary tree of depth h whose nodes are universal gates. Since we

have chosen the predecessors correctly, we can compute zi�m by such a

universal computation tree. Altogether we have designed an (n� c� d)-

universal circuit.

What is the depth and size of it ? We have �d�h� steps. Each

step consists of parallel universal selector trees of depth 2 �log(n + c)�
and parallel universal computation trees of depth 4 h . Therefore the

depth of the universal circuit is

�d�h� (2 �log(n + c)�+ 4 h) � (8.5)

The depth is O(d) if h = Ω(log c) . We note that it is possible to

bound the depth by approximately 6 d . In each step each of the c

gates is simulated by one universal computation tree of size O(2h) and

2h universal selector trees of size O(n+c) = O(c) . Altogether the size

117

may be estimated by

O(dh−1 c2 2h)� (8.6)

For h = �log c� the size is O(c3 d log−1 c) . �

If h = ε log c for some ε � 0 , the depth still is O(d) though the

constant factor increases by approximately ε−1 but the size decreases

to O(c2+ε d log−1 c) .

The concept of universal or programmable circuits leads to quite

efficient circuit schemes.

EXERCISES

1. The Shannon effect is valid for Bn and C{∧�∨�¬} .

2. Estimate C(Bn�m) for fixed m and discuss the result.

3. Prove Theorem 5.2.

4. Let h(n) = |Ω(n)| . Apply Shannon’s counting argument to

CΩ(n)(Bn) . For which h(n) the bounds are

a) non exponential b) polynomial ?

5. If f(x) = xi(1) ∨ · · · ∨ xi(k) for different i(j) , then C(f) = Cm(f) =

L(f) = Lm(f) = k− 1 .

6. The weak Shannon effect but not the Shannon effect is valid for

H1
n and C .

7. Define a class of Boolean functions such that Shannon’s counting

argument leads to much too small bounds.

118

8. Let Pk
n ⊆ Bn be the class of functions f which may be computed

by a polynomial whose monoms have not more than k literals.

Estimate C(Pk
n) .

9. f ∈ H2
n can be computed with n− 1 ∧-gates.

10. Which is the smallest n such that each f ∈ H2
n can be computed

with n− 2 ∧-gates ? (Bloniarz (79)).

11. Lm(Tn
2) = O(n log n) .

12. Apply the algorithms of § 7 to Tn
2 and estimate the size of the

constructed formulas.

13. Estimate the depth of the universal graph U(m) in § 8.

119

5. LOWER BOUNDS ON CIRCUIT COMPLEXITY

5.1 Discussion on methods

For almost all Boolean functions we know nearly optimal circuits

(see Ch. 4). But almost all functions have circuit complexity 2n n−1 +

o(2n n−1) . Usually we are in another situation. The function for which

we should design an efficient circuit is described by some of its prop-

erties, and it is quite easy to design a circuit of size o(2n n−1) . For

many fundamental functions (see Ch. 3) we can design circuits whose

size is a polynomial of small degree. For other important functions,

among them several NP-complete functions, the best known circuits

have exponential size but size 2o(n) . In this situation we have to ask

whether we can improve the best known circuits, and in the positive

case, whether we can bound the possible improvements. For (explicitly

defined) functions f we like to prove lower bounds on C(f) .

This is the hardest problem in the theory of Boolean functions.

The results known are poor. Why is it more difficult to prove lower

bounds than to prove upper bounds ? For an upper bound on C(f) it is

sufficient to design an efficient circuit, to prove that it computes f , and

to estimate its size. We are concerned only with one circuit for f . For a

lower bound on C(f) it is necessary to prove that all circuits computing

f have a certain circuit size. It is difficult to describe properties of all

efficient circuits for f . Although e.g. subtractions and negations resp.

seem to be useless for matrix multiplication, they are not useless at

all. Optimal circuits cannot be designed without negations (see Ch. 3

and Ch. 6).

We used the notion ˝explicitly defined Boolean function˝ in order

to exclude tricks like diagonalization. If we consider the lexicograph-

ical order on the tables of all fn ∈ Bn and if we define f∗n ∈ Bn as the

lexicographically first function where C(f∗n) ≥ 2n n−1 , we obtain by de-

120

finition a sequence of hard functions. Everybody will admit that the

sequence f∗n is not ˝explicitly defined˝. We discuss this notion in § 6.

The Boolean functions we actually consider are explicitly defined.

In particular, if the union of all f−1
n (1) is in NP , the sequence fn is

explicitly defined. Therefore, a reader who is not familiar with com-

plexity theory should not have any problem. All functions known to

him are explicitly defined, and he should not try tricks like the diag-

onalization trick for the definition of f∗n above.

We need the notion ˝explicitly defined˝ to explain the poorness of

the known results. Until now nobody was able to prove for some ex-

plicitly defined Boolean function fn ∈ Bn a lower bound on C(fn) larger

than 3 n . Large lower bounds for non explicitly defined Boolean func-

tions are easily achievable, but are of no use regarding our problem.

Thus it is necessary to concentrate on the investigation of explicitly

defined functions.

The situation is better for more restricted computation models. In

Ch. 6, 8, 11, 12, and 14 we prove in several restricted models larger

lower bounds for explicitly defined Boolean functions.

Since a long time it has been tried to prove lower bounds on circuit

complexity (Yablonskii (57)). A simple but general lower bound has

been derived by Lamagna and Savage (73).

DEFINITION 1.1 : f ∈ Bn is called non degenerated if f depends

essentially on all its variables, i.e. if the subfunctions of f for xi = 0

and xi = 1 are different.

THEOREM 1.1 : C(f) ≥ n− 1 for any non degenerated f ∈ Bn .

Proof : We count the number of edges in an optimal circuit for f . If

xi has fan-out 0 , the output f of the circuit cannot depend essentially

on xi . If another gate than the output gate has fan-out 0 , this gate

could be eliminated. Therefore the number of edges is at least n+c−1

121

where c = C(f) . Each gate has fan-in 2 implying that the number of

edges equals 2 c . Hence 2c ≥ n + c− 1 and c ≥ n− 1 . �

This simple linear bound is optimal for some functions like

x1 ⊕ · · · ⊕ xn. Usually one does not consider degenerated one-output

functions, since one can eliminate unnecessary variables. The situa-

tion is different for functions with many outputs. The Boolean matrix

product consists of degenerated functions. The i -th output bit si of

the addition function depends essentially on xi� yi� � � � � x0� y0 , only sn−1

and sn are non degenerated. Applications and generalizations of the

simple linear bound are treated in the exercises. Harper, Hsieh and

Savage (75) and Hsieh (74) improved the lower bound for many func-

tions to (7�6)n− 1 .

The proof of Theorem 1.1 is based only on the graph structure of

the circuit. The hope to prove nonlinear lower bounds by graph theo-

retical arguments only (described e.g. by Valiant (76 a)) has been de-

stroyed. Though it is astonishing, graphs like superconcentrators may

have linear size (Bassalygo (82), Gabber and Galil (79), Margulis (75),

Pippenger (77 a)). Nevertheless graph theoretical arguments build a

powerful tool for all types of lower bound proofs.

The (up to now) most successful method for general circuits is the

elimination method. One replaces some variables in such a way by

constants that one obtains a subfunction of the same type (in order to

continue by induction) and that one may eliminate several unnecessary

gates. A gate G becomes unnecessary if it computes a constant or a

variable. If G is not an output gate, it becomes already unnecessary

if one input is replaced by a constant. If the other input is g , the

output of G is 0 , 1 , g or g . 0 ,1 and g are computed elsewhere. If

G computes g , we use g and change the type of the successors of G

in the appropriate way. The disadvantage of this approach is that we

analyze only the top of the circuit. The effect of the replacement of

variables by constants on gates far off the inputs is hard to understand.

This leads to the prediction that nonlinear lower bounds will not be

122

proved by the elimination method. We discuss some applications of

this method in § 2 – § 5.

The most promising approach for the proof of nonlinear lower

bounds is to analyze the value of each single gate for the compu-

tation of the considered function. Such an approach has already been

suggested by Schnorr (76 b), but has been applied successfully only

for monotone circuits (see Ch. 6).

In order to gather knowledge on the structure of optimal circuits

one might try to characterize the class of all optimal circuits for some

function. This problem is already hard. Even simple functions may

have a large number of structurally different optimal circuits (see Sat-

tler (81) and Blum and Seysen (84)).

5.2 2n - bounds by the elimination method

The first bound of size 2n − O(1) has been proved by Kloss and

Malyshev (65). We discuss some other applications of the elimination

method.

DEFINITION 2.1 : A Boolean function f ∈ Bn belongs to the class

Qn
2�3 if for all different i� j ∈ {1� � � � � n} we obtain at least three different

subfunctions by replacing xi and xj by constants and if we obtain a

subfunction in Qn−1
2�3 (if n ≥ 4) by replacing xi by an appropriate

constant ci .

Qn
2�3 is defined in such a way that a lower bound can be proved

easily (Schnorr (74)).

THEOREM 2.1 : C(f) ≥ 2n− 3 if f ∈ Qn
2�3 .

123

Proof : Each function f ∈ Qn
2�3 is non degenerated. If f would not

depend essentially on xi , f could have at most two subfunctions with

respect to xi and xj . Let G be the first gate in an optimal circuit S for

f . Because of the optimality of S the predecessors of G are different

variables xi and xj . If xi and xj both have fan-out 1 , f depends on xi

and xj only via G , which may compute only 0 or 1 . Hence f can have

at most two subfunctions with respect to xi and xj . W.l.o.g. we may

assume that the fan-out of xi is at least 2 . If n = 3 , at least 4 edges

are leaving the variables, and we may prove the existence of 3 gates

by the method of Theorem 1.1. If n ≥ 4 , we replace xi by ci . At least

the two successors of xi can be eliminated. Furthermore we obtain a

circuit for a function in Qn−1
2�3 containing by induction hypothesis at

least 2n−5 gates. Therefore the original circuit contains at least 2n−3

gates. �

COROLLARY 2.1 : The circuit size of the counting functions Cn
k�3 is

at least 2n− 3 if n ≥ 3 .

Proof : By Def. 4.2, Ch. 3 , Cn
k�3(x) = 1 iff x1+· · ·+xn ≡ k mod 3 . The

restrictions of Cn
k�3 with respect to xi and xj are the different functions

Cn−2
k�3 �Cn−2

k−1�3 , and Cn−2
k−2�3 . If n ≥ 4 , Cn−1

k�3 , the subfunction of Cn
k�3 for

xi = 0 , is in Qn−1
2�3 . �

The following lower bound for the storage access function SAn has

been proved by Paul (77). We repeat that SAn(a� x) = x|a| .

THEOREM 2.2 : C(SAn) ≥ 2 n− 2 .

Proof : Replacing some address variable ai by a constant has the effect

that the function becomes independent from half of the x-variables.

Therefore we replace only x-variables, but this does not lead to storage

access functions. In order to apply induction, we investigate a larger

class of functions.

124

Let Fs ⊆ Bn+k be the class of functions f such that

f(ak−1� � � � � a0� x0� � � � � xn−1) = x|a| if |a| ∈ S (2.1)

for some s-element set S ⊆ {0� � � � � n − 1}. Since SAn ∈ Fn , it is

sufficient to prove a 2s − 2 lower bound for functions in Fs . The

assertion is trivial for s = 1 . For s ≥ 2 we prove that we obtain a

circuit for a function in Fs−1 after having eliminated 2 gates.

Case 1 : ∃ i ∈ S : xi has fan-out at least 2 . Replace xi by a constant.

This eliminates at least the successors of xi . S is replaced by S−{i}.
Case 2 : ∃ i ∈ S : xi has fan-out 1 and the successor gate G is of type-∧
(see § 2, Ch. 1). Then G computes (xb

i ∧ gc)d for some function g and

some constants b� c� d ∈ {0� 1} . If we replace xi by b , the output of G

is replaced by the constant 0d . Since the circuit computes a function

in Fs−1 , G cannot be the output gate. G and its successors, at least

2 gates, can be eliminated.

Case 3 : ∃ i ∈ S : xi has fan-out 1 and the successor gate G is of

type-⊕ (see § 2, Ch. 1). Then G computes xi⊕g⊕b for some function

g and some constant b ∈ {0� 1} . Again G is not the output gate. Let

j ∈ S− {i} and |a| = j . The circuit has to compute xj independently

from the value of xi . A change of the value of xi leads to a change of

the result at G . Since for |a| = j ∈ S−{i} the value of xi does not have

any influence on the output, we obtain a function in Fs−1 , if we replace

xi by an arbitrary function. In particular, we choose the function g .

Then G computes the constant b , and G and its successors, at least

2 gates, can be eliminated. �

In Ch. 3 we have proved an upper bound of 2n+O(n1�2) on C(SAn) .

An example where upper and lower bound exactly agree is the addition

function. The 5n− 3 upper bound (Theorem 1.1 , Ch. 3 , the school

method for addition) has been proved to be optimal by Red’kin (81).

125

5.3 Lower bounds for some particular bases

The proof of Theorem 2.2 makes clear that type-⊕ gates are more

difficult to deal with than type-∧ gates. By replacing one input of a

type-⊕ gate by a constant it is impossible to replace its output by a

constant. Therefore it is not astonishing that lower bounds for the

basis U2 = B2 − {⊕�≡} are easier to prove. Schnorr (74) proved

that parity requires in U2-circuits three times as many gates as in

B2-circuits.

THEOREM 3.1 : For n ≥ 2 and c ∈ {0� 1} the B2-circuit complexity

of the parity function x1 ⊕ · · · ⊕ xn ⊕ c is n − 1 while its U2-circuit

complexity equals 3(n− 1) .

Proof : The assertion on B2-circuits follows from the definition and

Theorem 1.1. The upper bound for U2-circuits follows, since x⊕ y is

equal to (x∧y)∨(x∧y) . For the lower bound we prove the existence of

some xi whose replacement by a suitable constant eliminates 3 gates.

This implies the assertion for n = 2 directly and for n ≥ 3 by induction.

Let G be the first gate of an optimal circuit for parity. The inputs

are different variables xi and xj . The fan-out of xi is at least 2 . Other-

wise, since G is of type-∧ , we could replace xj by a constant such that

G is replaced by a constant. This would imply that the output became

independent from xi in contradiction to the definition of parity. We

replace xi by such a constant that G becomes replaced by a constant.

Since parity is not replaced by a constant, G has positive fan-out. We

may eliminate G and the successors of G and G′ , where G′ is another

successor of xi . Either these are at least 3 gates, or G′ is the only

successor of G . Then G′ as successor of G and xi is replaced by a

constant, and we can eliminate also the successors of G′ . In either

case we eliminate at least 3 gates. �

126

As a further example we compute the complexity of the equality

test f=n ∈ B2n defined by

f=n (x1� � � � � xn� y1� � � � � yn) = 1 iff (x1� � � � � xn) = (y1� � � � � yn)� (3.1)

THEOREM 3.2 : C(f=n) = 2 n− 1 and CU2
(f=n) = 4 n− 1 .

Proof : The upper bounds follow, since

f=n (x� y) = (x1 ≡ y1) ∧ · · · ∧ (xn ≡ yn) and (3.2)

(xi ≡ yi) = (xi ∧ yi) ∨ (xi ∧ yi)� (3.3)

The lower bound on C(f=n) follows from Theorem 1.1. The basis of

the induction for the lower bound on the U2-complexity is contained

in Theorem 3.1.

Now it is sufficient to prove the existence of some pair (xi� yi) of

variables and some constant c such that we may eliminate 4 gates if we

replace xi and yi by c . Similarly to the proof of Theorem 3.1 we find

some variable z , whose replacement by a suitable constant c eliminates

3 gates. Afterwards the function is not independent from the partner

z′ of z . Replacing z′ also by c eliminates at least one further gate. �

Red’kin (73) proved that the {∧�∨�¬}-complexity of f=n is 5n− 1 .

Furthermore parity has complexity 4(n− 1) in {∧�∨�¬}-circuits and

complexity 7(n − 1) in {∧�¬}- or {∨�¬}-circuits. Soprunenko (65)

investigated the basis {NAND} . The complexity of x1 ∧ · · · ∧ xn is

2(n− 1) whereas the complexity of x1 ∨ · · · ∨ xn is 3(n− 1) .

127

5.4 2�5n - bounds for symmetric functions

The 2 n lower bounds for B2-circuits in § 2 were quite easy to

prove. No easy proof of a larger lower bound is known. So Paul’s (77)

2�5 n bound for a generalized storage access function (of no practical

relevance) was a qualitative improvement. Stockmeyer (77) applied

the ideas of Paul to several fundamental symmetric functions. Here

the value vector v(f) = (v0� � � � � vn) of a symmetric function f ∈ Sn

is written as a word v0 � � � vn . By W we denote the words in {0� 1}4

having three different subwords of length 2 . W has 8 elements, namely

0100 , 0010 , 0011 , 0110 , 1001 , 1100 , 1011 , and 1101 . Stockmeyer

proved that symmetric functions where some w ∈ W is near the middle

of v(f) are not very easy.

THEOREM 4.1 : If the value vector v(f) of f ∈ Sn can be written as

w′ w w′′ where w ∈ W and the length of w′ as well as of w′′ is at least

k , f has circuit complexity at least 2 n + k− 3 .

At first we apply this bound to threshold and counting functions.

COROLLARY 4.1 : C(Tn
k) ≥ 2n + min{k − 2� n − k − 1} − 3 if

2 ≤ k ≤ n− 1 . In particular, C(Tn
�n�2�) ≥ 2�5 n− 5 .

Proof : v(Tn
k) = 0k−2(0011)1n−k−1 where 0m is a word of m zeros. If

k = �n�2� , k− 2 as well as n− k− 1 is at least 0�5 n− 2 . �

COROLLARY 4.2 : C(Cn
k�m) ≥ 2�5 n − 0�5 m − 4 if 0 ≤ k � m � n

and m ≥ 3 .

Proof : Exercise. �

Proof of Theorem 4.1 : Let Sk
n be the subclass of symmetric functions

f ∈ Sn whose value vector has the form w′ w w′′ for some w ∈ W and

128

words w′ and w′′ of a length of at least k . Let C(n� k) be the complexity

of the easiest function in Sk
n . Then we have to prove that

C(n� k) ≥ 2 n + k− 3� (4.1)

Subfunctions of symmetric functions f are easy to describe. If v(f) =

v0 � � �vn , the subfunction of f where we replace some xi by 0 or 1 , has

value vector v0 � � �vn−1 or v1 � � � vn resp.

We prove (4.1) by induction on k . For k = 0 we prove S0
n ⊆ Qn

2�3

and apply Theorem 2.1. Since f ∈ S0
n , v(f) contains some subword

vm vm+1 vm+2 vm+3 ∈ W . Let f00 , f01 , and f11 be the subfunctions

of f where we have replaced xi and xj both by zeros, by different

values, and both by ones resp. We consider only the positions m

and m + 1 of the value vectors of f00 , f01 , and f11 . These subwords

are vm vm+1 , vm+1 vm+2 and vm+2 vm+3 and by definition of W f00 ,

f01 and f11 are different. If n ≥ 4 , we may replace xi by a constant

such that vm � � �vm+3 is a subword of the value vector of the produced

subfunction f ′ . Hence f ′ ∈ S0
n−1 .

For k ≥ 1 we prove

C(n� k) ≥ min{C(n− 1� k− 1) + 3�C(n− 2� k− 1) + 5} (4.2)

by the elimination method. (4.1) can be derived from (4.2) by induc-

tion. For the proof of (4.2) it is sufficient to prove that we either may

eliminate 3 gates by replacing some xi by a constant (the subfunction

of f obviously is in Sk−1
n−1) , or we may eliminate 5 gates by replacing

some xi and xj by different constants (in this case the subfunction of

f is in Sk−1
n−2) .

We investigate an optimal circuit for f ∈ Sk
n . Furthermore we

choose among all optimal circuits one where the number of edges leav-

ing the variables is as small as possible. At the moment we may forget

this condition, it will be useful in the last case of the proof. We do

not replace more than 2 variables by constants. Since k ≥ 1 , n ≥ 5

and we cannot obtain constant subfunctions. Therefore gates being

replaced by constants have at least one successor which also can be

eliminated.

129

If some variable xi has fan-out at least 3 or fan-out 2 and some

type-∧ gate as a direct successor, we may eliminate 3 gates by replac-

ing xi by an appropriate constant.

In all other cases we consider the first gate A of the circuit and its

different inputs xi and xj . Since f ∈ Sk
n ⊆ S0

n ⊆ Qn
2�3 , we may conclude

as in the proof of Theorem 2.1 that w.l.o.g. xj has fan-out 2 . Let C1

be the second successor of xj and B1 the second successor of xi if such

a successor exists. In the following we assume the existence of B1 ,

otherwise the proof is easier.

By our preliminary remarks all gates A , B1 and C1 are type-⊕
gates. Because of the optimality of the circuit B1 �= C1 . We build

the maximal chain of gates C1� � � � �Cq such that Cr is of type-⊕ and

is the only successor of Cr−1 . Hence either Cq is the output gate or it

has at least two successors or the only successor is of type-∧ . Let Er

be that predecessor of Cr different from Cr−1 . Similarly we build the

chain B1� � � � �Bp . The part of the circuit we consider is described in

Fig. 4.1. The label of a gate describes only the type of the gate. We

rebuild this circuit such that the C-chain has length 1 . It is impossible

that Bl = Cm . Otherwise xi = xj = 0 and xi = xj = 1 would lead

to the same subfunction contradicting f ∈ Qn
2�3 . If B1 exists, the circuit

+

+

+

+

++

+

Fig. 4.1

xi xj

B1

B2

Bp

A C1

C2

Cq

Eq

E2

E1

130

is symmetric with respect to xi and xj . W.l.o.g. we assume that

no path leads from Bp to Cq . This implies Bp �= Em . Furthermore

Bl �= Em for l � p , since otherwise Bl+1 = Cm . Indeed no path can

lead from Bl to Em . Such a path would pass through Bp and could

be extended to Cq . Altogether the C-chain receives no information

from the B-chain. Let em be the function computed at Em . At Cq we

compute xj ⊕ e1 ⊕ · · · ⊕ eq ⊕ a for some a ∈ {0� 1} . The intermediate

results at C1� � � � �Cq−1 are necessary only for the computation of the

result at Cq , since all Ci (i � q) have fan-out 1 . Without increasing

the number of gates or the number of edges leaving the variables we

rebuild the circuit by computing at some gate E the function e1 ⊕
· · · ⊕ eq ⊕ a and at gate C the function xj ⊕ resE . The new situation

is shown in Fig. 4.2.

Either C is the output gate or C has fan-out at least 2 or C has

exactly one successor which is of type-∧ . No path leads from B1 to

E . Because of the optimality of the circuit A �= E .

It is essential that we do not decide which of the variables xi and

xj is replaced by 0 and which is replaced by 1 . In place of that we

replace for some appropriate e ∈ {0� 1} xi by resE⊕e . How can this be

done if resE depends on xi and/or xj? Such a dependence is possible

only via A where resA = xi ⊕ xj ⊕ c for some c ∈ {0� 1} . Since xi and

xj will be replaced by different values, resA will always be replaced

by c . At first we replace A by c . Then resE is independent from xi

+ ++

xi xj

Fig. 4.2CAB1

E

131

and xj , and we can perform the intended replacements of xi and xj .

We obtain a subfunction f ′ ∈ Sk−1
n−2 of f . It is sufficient to show that

we can eliminate A , C and 3 further gates. Let G be the set of direct

successors of A or C . Since A �= E , A , C �∈ G . All gates in G can

be eliminated, since at least one input is constant.

Case 1 : |G | ≥ 3 . We eliminate at least 3 further gates.

Case 2 : |G | = 2 . Let G be a direct successor of A and H �= G be

a direct successor of C . Since |G | = 2 , the fan-out of C is bounded

by 2 . We distinguish three subcases as shown in Fig. 4.3.

Case 2.1 : C has fan-out 2 . Since resA and resC are constant, also

resG is constant. If D �= H , we eliminate G , H and D . If D = H , resD

is constant, and we eliminate G , H , and the successors of H .

Case 2.2 : C has fan-out 1 . By construction the only successor H

of C is of type-∧ . We choose the constant e (see above) in such a

way that H is replaced by a constant. Therefore H has a successor D .

∧
∧

++++++

Case 2.2.b

C

Case 2.2.a

xi
xj E

G

A

E

Case 2.1

xjxi

A

G

D

H

C C

H

D

A

G

E

H

D′

Fig. 4.3

xjxi

132

If D �= G , we eliminate G , H , and D (Case 2.2.a). If D = G , resG is

constant, and we eliminate G , H , and the successors of G (Case 2.2.b).

Case 3 : |G | = 1 . The only successor of A and C is gate G of type-∧
(see Fig. 4.4).

Case 3.1 : E is a variable, say xm . We show that Case 3.1 is impos-

sible. Because of the optimality of the circuit m �∈ {i� j} . For suitable

constants a� b� c ∈ {0� 1}
resG = (xi ⊕ xj ⊕ a) ∧ (xj ⊕ xm ⊕ b)⊕ c (4.3)

= xj(xi ⊕ xm ⊕ 1⊕ a⊕ b)⊕ xi xm ⊕ a xm ⊕ b xi ⊕ a b⊕ c�

If we replace xi by 0 and xm by 1⊕a⊕b , resG and therefore the whole

circuit becomes independent from xj . But the subfunction f ′ of f we

have to compute is not constant. Since f ′ is symmetric, it depends

essentially on xj . Contradiction.

Case 3.2 : E is a gate. We rebuild the circuit as shown in Fig. 4.4.

The number of gates is not increased, but the number of edges leaving

+ +

∧

+ +

∧

+ +

∧

Case 3

xi Exj

CA

G

xi xjE

A′ C′

G′

xi
xj

G

A C

Case 3.1 Case 3.2

xm

Fig. 4.4

133

variables is decreased by 1 . If resG = resG′ , this is a contradiction to

our specific choice of the optimal circuit at the beginning of the proof.

For suitable constants c0� c1� c2 ∈ {0� 1}
resG = (xi ⊕ xj ⊕ c0) ∧ (xj ⊕ resE⊕c1)⊕ c2� (4.4)

Similarly

resG′ = (xi ⊕ resE⊕d0) ∧ (xj ⊕ resE⊕d1)⊕ d2 (4.5)

where we may choose d0� d1� d2 ∈ {0� 1} in an arbitrary way. If we

define d0 = 1⊕ c0 ⊕ c1 , d1 = c1 and d2 = c2 , then resG = resG′ . Also

Case 3.2 is impossible. We have proved (4.2). �

5.5 A 3n - bound

The methods of Paul (77) have been further developed by

Schnorr (80) whose proof of a 3n-bound is not complete. Blum (84)

stepped into the breach. He modified the function considered by

Schnorr. Then he could apply many of Schnorr’s ideas in such a way

that the problems in Schnorr’s proof discovered by the author do not

occur. In contrast to the functions considered up to now this function

is of no practical relevance.

DEFINITION 5.1 : Let n = 2k, a = (ak−1� � � � � a0), b = (bk−1� � � � � b0),

c = (ck−1� � � � � c0), x = (x0� � � � � xn−1) and p , q , r be Boolean variables.

f ∈ Bn+3k+3 is defined by

f(a� b� c� p� q� r� x) = q ∧ [(x|a| ∧ x|b|) ∨ (p ∧ x|b| ∧ xr
|c|)
] ∨ (5.1)

q ∧ (x|a| ⊕ x|b|)�

For p = 0 we obtain the function considered by Paul (77). The

object of this section is the proof of the following theorem.

134

THEOREM 5.1 : C(f) ≥ 3 n− 3 .

Since f is based on the storage access function, we consider the class

Fs of all functions g ∈ Bn+3k+3 which agree with f if |a|� |b|� |c| ∈ S for

some s-element set S . Since f ∈ Fn , it is sufficient to prove a 3s − 3

lower bound for all g ∈ Fs . This is done by induction on s . For s = 1

the lower bound is trivial.

The following cases can be dealt with the methods of § 4.

– ∃ i ∈ S : xi has fan-out at least 3 .

– ∃ i ∈ S : xi has fan-out 2 and some direct successor is a gate of

type-∧ .

– ∃ i ∈ S : all direct successors of xi are gates of type-⊕ .

In all these cases we may replace xi by some constant or some function

resE⊕ e (for a gate E and a constant e) such that we can eliminate

3 gates and obtain a circuit for a function in Fs−1 . The case, that each

xi has exactly one successor Gi of type-∧ , cannot be excluded here as

it could in § 4. If some Gi had at least two successors, we again

could eliminate 3 gates by replacing xi by an appropriate constant.

Therefore we assume that Qi is the unique successor of the type-∧
gate Gi for i ∈ S . By G and Q we denote the sets of all Gi and Qi .

In this last case the elimination method was not successful. By

a precise analysis of the structure of optimal circuits we prove the

existence of 3s− 3 gates.

LEMMA 5.1 : G contains s gates.

Proof : Otherwise Gi = Gj for some i �= j . Replacing xi by an

appropriate constant the output of the circuit becomes independent

from xj in contradiction to the definition of Fs . �

135

We introduce some notation for the analysis of optimal circuits.

DEFINITION 5.2 : A path from gate A to gate B is denoted by

[A�B] . R is the output gate where the result is computed. A path

[A�B] is called free if no inner node of the path is contained in G . A

gate A is called split if its fan-out is at least 2 . A split B is called free

if there are free paths [B�R] via at least two direct successors of B . A

gate C is a collector of free paths [Gi�R] and [Gj�R] (i �= j) if C lies on

both paths, and if the paths enter C via different edges.

LEMMA 5.2 : If i ∈ S , then there exists a free path [Gi�R] .

Proof : Otherwise we could replace all xj (j ∈ S − {i}) in such a way

by constants that resR becomes independent from xi in contradiction

to the definition of Fs . �

LEMMA 5.3 : Let C be a collector of free paths [Gi�R] and [Gj�R] .

Then at least one of the statements (∗) or (∗∗) holds :

(∗) There exists a free split B �= C on [Gi�C] or [Gj�C] .

(∗∗) C is of type-⊕ , and there exists a free path [Gi�Gj] or [Gj�Gi] .

Proof : We assume that (∗) and (∗∗) are both false.

Case 1 : C is of type-⊕ . We replace all variables but xi and xj by

constants. |a| = i , |b| = j , |c| ∈ S , p = 0 , q = 1 , r and xm (m �∈ S)

arbitrary, xk (k ∈ S − {i� j}) such that Gk computes a constant. By

definition f is replaced by xi ∧ xj . Since (∗) and (∗∗) both are false,

all information on xi and xj is transmitted via the unique free paths

[Gi�C] and [Gj�C] . One input of C is xu
i , the other xv

j , hence its

output is xi⊕ xj ⊕w for some u� v�w ∈ {0� 1} . The output of C is the

same for xi = xj = 0 or xi = xj = 1 . The same must hold for R where

xi ∧ xj is computed. Contradiction.

Case 2 : C is of type-∧ . We replace the variables in the same way as

in Case 1 with the only exception that q = 0 . Hence f is replaced by

136

xi ⊕ xj . If the result of Gi depends essentially on xj , we shall replace

xj by an appropriate constant such that the result at Gi and therefore

the output at R become independent from xi . This contradicts the

fact that xi ⊕ xj is computed at R . Therefore the result at gate C is

(xu
i ∧ xv

j)
w for some u� v�w ∈ {0� 1} and all information on xi and xj is

transmitted via C . This is the same contradiction as before, since we

may replace xj by v in order to make R independent of xi . �

Now it is quite easy to prove that G ∪Q contains exactly 2 s gates.

LEMMA 5.4 : G ∪Q contains 2 s gates.

Proof : By Lemma 5.1 , G contains s gates. If Qi = Qj for some i �= j ,

Qi would be the collector of all free paths [Gi�R] and [Gj�R] . Since

statement (∗) cannot hold, statement (∗∗) of Lemma 5.3 holds. A free

path [Gi�Gj] passes Qi and can be extended via Gj to Qj = Qi . The

circuit would not be cycle free.

It remains to prove that Gj �= Qi . If i = j , this follows by definition.

If i �= j and Gj = Qi , all information concerning xi is transmitted via

Gj . By an appropriate replacement of xj by a constant the circuit

would become independent from xi in contradiction to the definition

of Fs . �

LEMMA 5.5 : The circuit contains at least s− 2 free splits.

Before we prove this essential lemma we deduce from it by a wire

counting argument the theorem.

Proof of Theorem 5.1 : At least 2(s−2) free edges (wires) are leaving

free splits by Lemma 5.5. At least 2 of the s gates of Q do not belong

to the considered s−2 free splits. By Lemma 5.2 at least one free edge

137

is leaving each Qi . We consider the graph consisting of those 2s − 2

free edges we have found and those free paths leading these free edges

to R . By definition we do not consider any gate in G . The gates in

Q are gathering at most s of these edges, since the other s input edges

are entering from gates in G . In order to gather the other s− 2 free

edges to the output R further s− 3 gates are necessary. �

Proof of Lemma 5.5 : We choose j ∈ S such that Gj is the last G-gate

in the numbering of the gates. In the following we refer always to the

numbering of gates. Let C be the first collector of free paths [Gk�R]

and [Gl �R] where k� l ∈ S − {j} and k �= l . By Lemma 5.3 we either

find a free split D �= C on [Gk�C] or [Gl �C] or we find a free path

[Gk�Gl] or vice versa. By Lemma 5.2 there is a split on [Gk�Gl] . If

we find a free split on these paths we shall choose the first free split,

otherwise the first split. If the chosen split is on [Gk�C] or [Gk�Gl] we

exclude xk from further consideration, otherwise we exclude xl . At

the end of this procedure we have chosen s− 2 different splits.

We prove that we indeed have chosen s − 2 free splits. Otherwise

for some first collector C of free paths [Gk�R] and [Gl �R] (k� l ∈ S −
{j} , k �= l) we cannot find any free split on [Gk�C] or [Gl �C] . By

Lemma 5.3 C is of type-⊕ and w.l.o.g. the free path [Gk�Gl] has

no free split. We prove for all m ∈ S − {k� l} (including m = j)

the existence of a free path [Gm�Gk] or [Gm�Gl] in contradiction to

the choice of j . We assume that this claim is false. We replace all

variables but xk , xl , xm and r by constants. |a| = k , |b| = l , |c| = m ,

q = 1 , p = 1 , xi (i �∈ S) arbitrary and xi (i ∈ S−{k� l �m}) such that Gi

is replaced by a constant. By definition R is replaced by xk xl ∨ xl x
r
m .

Case 1 : The result of Gl does not depend essentially on xk . We

replace xm such that Gm is replaced by a constant and r such that

xr
m = 0 . Then R is replaced by xkxl . We deduce a contradiction in

the same way as in Case 1 of the proof of Lemma 5.3.

138

Case 2 : The result of Gl depends essentially on xk . Then for some

d ∈ {0� 1} the result of Gl still depends on xk if we replace r by d . If no

free path [Gm�Gk] or [Gm�Gl] exists, then the function computed at Gl

can be represented as (xu
k ∧ xv

l)
w for some u� v�w ∈ {0� 1} . If xk = u ,

Gl is replaced by a constant and the circuit becomes independent from

xl . But the function computed at R , namely u xl ∨ xl x
d
m , depends

essentially on xl for arbitrary u and d . Contradiction. �

The lower bound of Theorem 5.1 based on N = n + 3k + 3 , the

number of variables, is of size 3 N− o(N) .

The proofs of § 4 and § 5 are so burdensome that one is convinced

that this is not the right way to obtain much larger lower bounds. But

the reader should not lose his courage and try out his own ideas for

the proof of lower bounds.

5.6 Complexity theory and lower bounds on circuit complexity

In § 1 we have shown that it is easy to define a sequence of provably

hard functions by the simple trick of diagonalization. In this section

we discuss more generally whether and how concepts (like diagonal-

ization) and results of complexity theory may lead to lower bounds

on circuit complexity. Furthermore we discuss the notion ˝explicitly

defined˝. For the rest of this section we assume that the reader is

familiar with fundamental concepts of complexity theory. But if the

reader should not have this knowledge, this section should still give

him a better understanding of the problems we are faced with.

The sequence of functions f∗n defined by diagonalization in § 1 can be

computed by a Turing machine whose working tape is 2O(n)-bounded.

For an input x = (x1� � � � � xn) ∈ {0� 1}n we may write the table of a

139

function f ∈ Bn on the working tape and can compute the lexicograph-

ical successor of f . We start with the lexicographically first function,

the constant 0 . For each function f we produce one after another each

circuit of size
⌈
2nn−1

⌉− 1 and compare its output with f . If we find

a circuit for f we produce the next Boolean function. Otherwise the

considered function f is equal to f∗n , and by table-look-up we compute

the output f∗n(x) . Therefore Turing machines with large resources are

powerful enough to construct hard Boolean functions. Nevertheless

explicitly defined Boolean functions are defined via Turing machines.

DEFINITION 6.1 : Let s : �→ � . The sequence fn ∈ Bn of Boolean

functions is s-explicitly defined if the language L =
⋃
n

f−1
n (1) can be de-

cided by a Turing machine whose working tape is bounded by O(s(n)) .

Because of our above considerations we should not use exponential

s . Furthermore, Scarpellini (85) has defined by diagonalization nk+1-

explicitly Boolean functions fn ∈ Bn of circuit size Ω(nk log−1 n) . But

many fundamental functions (those considered in Ch. 3 e.g.) can be

computed on working tapes of polylog length (O(logk n)), and many

NP-complete functions can be computed at least on linear working

tapes. Therefore Definition 6.1 is interesting for functions s growing

at most linear.

Diagonalization is not the only trick to define non explicitly hard

functions (see e.g. Ehrenfeucht (72) and Stockmeyer (74)). We shall

prove for a whole class of Boolean functions exponential lower bounds.

These functions are not defined by diagonalization. Nevertheless they

are not s-explicitly defined for any polynomial s .

DEFINITION 6.2 : A language L ⊆ {0� 1}∗ is called EXP - TAPE

- HARD if each language L′ ⊆ {0� 1}∗ , which can be decided for

some polynomial p by a Turing machine of working tape 2p(n) , is

polynomially reducible to L (L′ ≤p L). L′ ≤p L if there exists a Turing

140

machine M whose time complexity is bounded by a polynomial and

whose output resM(w) for input w is in L iff w ∈ L′ .

Meyer and Stockmeyer (72) proved that the following language

L is EXP - TAPE - HARD. L consists of all binary codings of two

regular expressions for the same language where the coding allows the

abbreviation α2 for the concatenation of α and α .

THEOREM 6.1 : Let L be EXP - TAPE - HARD. Let gn ∈ Bn be

defined by g−1
n (1) = L∩{0� 1}n . Then for some d , ε � 0 and infinitely

many n

C(gn) ≥ d 2nε
� (6.1)

Proof : Let f∗n ∈ Bn be the sequence of Boolean functions defined by

diagonalization in § 1. Then C(f∗n) ≥ 2n n−1 . Let L′ be the union of

all f∗n
−1(1) . Since L′ can be decided by a 2O(n) tape bounded Turing

machine, L′ ≤p L . Let M be a Turing machine for this reduction.

We design a circuit for f∗n consisting of subcircuits for g1� � � � � gn and

beyond that only a polynomial number of gates. Since C(f∗n) is large,

some of the circuits for g-functions cannot be efficient. We apply a

result which we shall prove in § 2 , Ch. 9. If the Turing machine M∗

is t(n) time bounded and decides L∗ , the circuit complexity of hn ,

defined by h−1
n (1) = L∗ ∩ {0� 1}n is bounded by O(t(n) log t(n)) .

Since the reduction machine M is p(n) time bounded for some poly-

nomial p , also the length of its output is bounded by p(n) if the input

w has length n . We extend the outputs, if necessary, by blanks B

such that the output (for each input of length n) has length p(n) .

These outputs can be encoded by (a1� b1� � � � � ap(n)� bp(n)) ∈ {0� 1}2 p(n)

where (ai� bi) is an encoding of the i -th output letter. By the re-

sult cited above all ai and bi can be computed by a circuit of size

O(p(n) log p(n)) .

141

Now we apply in parallel the circuits S1� � � � � Sp(n) . Si tests whether

exactly (a1� b1)� � � � � (ai� bi) are encodings of zeros and ones. It com-

putes x = (x1� � � � � xi) ∈ {0� 1}i where xj = 1 iff (aj� bj) is an encoding

of 1 . Then Si applies an optimal circuit for gi to compute gi(x) . Fi-

nally Si computes yi such that yi = 1 iff gi(x) = 1 and resM(w) has

length i . Hence

f∗n(w) = 1 ⇔ w ∈ L′ ⇔ resM(w) ∈ L (6.2)

⇔ y1 ∨ · · · ∨ yp(n) = 1�

The so constructed circuit for f∗n contains one copy of an optimal circuit

for gi (1 ≤ i ≤ p(n)) and beyond that q(n) gates for a polynomial q .

Therefore

2n n−1 ≤ C(f∗n) ≤ q(n) +
∑

1≤i≤p(n)
C(gi)� (6.3)

We define i(n) ∈ {1� � � � � p(n)} such that gi(n) is one of the hardest

functions among g1� � � � � gp(n) . By (6.3)

C(gi(n)) ≥ (2n n−1 − q(n))�p(n)� (6.4)

As the results of § 2, Ch. 4, show, C(gi(n)) is bounded by O(2i(n) i(n)−1) .

Therefore the sequence i(n) has infinitely many different values. Fur-

thermore i(n) ≤ p(n) ≤ cnk for appropriate constants c and k implying

n ≥ (i(n)�c)1�k and

C(gi(n)) ≥ d 2(i(n))ε for some d , ε � 0 . (6.5)

�

Many arguments used in this chapter have not been published.

Some of them were developed during discussions with several col-

leagues, others, I got to know by hearsay. Some of the colleagues

who have contributed to these arguments are M. Fürer, A. Meyer,

142

W. Paul, B. Scarpellini, and L. Valiant.

EXERCISES

1. Apply the simple linear bound (Theorem 1.1) to the functions

considered in Ch. 3.

2. Generalize the simple linear bound to Ω-circuits where Ω ⊆ Br .

3. If f1� � � � � fm are different functions

C(f1� � � � � fm) ≥ m− 1 + min{C(f1)� � � � �C(fm)}�

4. Let g(x� y) = (� � � (f(x)Δy1) � � �Δym) for some Δ ∈ B2 and some

non constant f . For which Δ the equality C(g) = C(f)+m holds ?

5. Let S be an optimal circuit for f with respect to circuit size.

Let g and h be the input functions of the output gate. Then

max{C(g)�C(h)} ≥ �C(f)�2� − 1 .

6. Let S be an optimal circuit for f with respect to depth. Let

g and h be the input functions of the output gate. Then

max{D(g)�D(h)} = D(f)− 1 .

7. The fulladder for the addition of 3 bits has 5 gates. Prove that

a) 4 b) 5 gates are necessary.

8. Let fn ∈ Bn�2 be defined by fn(x) = (x1 ∧ · · · ∧ xn� x1 ⊕ · · · ⊕ xn) .

Then C(fn) = 2n− 2 .

9. Design optimal circuits for the function fn of Exercise 8 which have

(if n ≥ 3) gates of fan-out larger than 1 .

143

10. Estimate the circuit complexity of fn where fn(x) = 1 iff x1+· · ·+xn

is even (0 is not even).

11. Let fn(x) = (x1⊕· · ·⊕xn−1)∨(x2∧· · ·∧xn) . Then C(fn) = 2n−3 .

12. Let fn(x) = x1 � � �xn ∨ x1 � � �xn . By the elimination method one

can prove only a lower bound of size n+Ω(1) . Try to prove larger

lower bounds.

13. Prove lower bounds for the functions defined in the Exercises 26,

27, and 28 in Ch. 3.

14. f≥n ∈ B2n is defined by f≥n (x� y) = 1 iff |x| ≥ |y| . The B2-complexity

of f≥n is at least 2n− 1 , its U2-complexity is at least 4n− 3 .

15. Let Gn be the class of those functions g ∈ Bn such that for some

disjoint partition of {1� � � � � n} to {i(1)� � � � � i(m)} , {j(1)� � � � � j(l)}
and {k(1)� � � � � k(l)}

g(x) =
⊕

1≤r≤m
xi(r) ⊕

⊕
1≤r≤l

xj(r) xk(r)�

Estimate the circuit complexity of functions g ∈ Gn�2 (Satt-

ler (81)).

16. Almost all f ∈ Sn have circuit complexity bounded below by 2�5 n−
o(n) .

17. Count the number of f ∈ Sn whose value vector does not contain

any word in W as a subword. Design efficient circuits for these

functions.

18. Prove Corollary 4.2.

144

19. Apply Theorem 4.1 to En
k (see Def. 4.2, Ch. 3).

20. Complete the proof of Theorem 5.1.

21. Let fn(a� b� c� r� x) = xr
|a| ∧ (x|b| ⊕ x|c|) (compare Def. 5.1). Modify

the proof of Theorem 5.1 and prove that C(fn) ≥ 3n− 3 .

22. Define a short 0-1-encoding of circuits. Describe how a Turing

machine with short working tape can simulate encoded circuits.

145

6. MONOTONE CIRCUITS

6.1 Introduction

The most important incomplete basis is the monotone basis Ωm =

{∧�∨} . We know already that a Boolean function is computable over

Ωm iff it is monotone. Although monotone circuits cannot be more effi-

cient than circuits over complete bases, the investigation of monotone

circuits is a fundamental subject.

One main problem is the testing of the correctness of circuits.

Monotone circuits can be tested much easier than circuits over com-

plete bases (see e.g. Lee (78)). Furthermore, the monotone disjunctive

normal form is a natural and monotone computation of a monotone

function.

If we replace in a monotone disjunctive normal form for f conjunc-

tions by multiplications and disjunctions by additions, we obtain a

monotone polynomial p(f) . Lower bounds on the monotone circuit

complexity of f imply lower bounds of the same size on the monotone

arithmetic complexity of p(f) (see Exercises). Monotone computa-

tions of monotone polynomials have absolute numerical stability (see

e.g. Miller (75)).

Can negations be useful for the computation of monotone func-

tions ? The best circuits for sorting and Boolean matrix product

both include negations (see Ch. 3). How large is Cm(f)�C(f) for these

and other monotone functions ? The quotient is Θ(log n) for sorting,

ω(n1�4) for the Boolean matrix product, and Ω(n1�2�(log2 n log log n))

for the Boolean convolution (n is the number of variables). For the log-

ical permanent (deciding whether a graph includes a perfect matching)

the quotient even is superpolynomial (nΩ(log n)). The question whether

negation may be exponentially powerful is still not answered.

146

Lower bounds on Cm(f)�C(f) require lower bounds on Cm(f) . We

present several methods for the proof of polynomial lower bounds and

Razborov’s bound for exponential lower bounds.

Since the logical permanent (see above) has polynomial circuit com-

plexity one might suppose that lower bounds on Cm(f) cannot have any

implications on C(f) . But for the fundamental class of slice functions

f we can prove that Cm(f)−C(f) is bounded by O(n log2 n) . Therefore

lower bounds of size ω(n log2 n) on Cm(f) imply lower bounds of the

same size on C(f) . Since we know NP-complete slice functions, the

NP �= P-conjecture might be proved by lower bounds on the monotone

circuit complexity. From the theory of slice functions we can learn a

lot about the structure of circuits, and we obtain a new model for the

proof of lower bounds on the circuit complexity of explicitly defined

Boolean functions.

The theory of slice functions is presented in § 13 - § 15. In § 2 we

design efficient monotone circuits for threshold functions and sorting.

In § 3 - § 12 we discuss lower bound methods. The lower bounds

we obtain may be generalized to many other functions by reduction

methods (see also Ch. 10, § 3).

DEFINITION 1.1 : f(x1� � � � � xn) is called a projection of g(y1� � � � � ym)

if f(x1� � � � � xn) = g(σ(y1)� � � � � σ(ym)) for some mapping σ :

{y1� � � � � ym} → {0� 1� x1� x1� � � � � xn� xn} . The projection is monotone

if σ(yj) (1 ≤ j ≤ m) is not a negated variable.

PROPOSITION 1.1 : C(f) ≤ C(g) if f is a projection of g . Cm(f) ≤
Cm(g) if f is a monotone projection of g .

Skyum and Valiant (85) and Valiant (79) studied monotone pro-

jections intensively. For a sequence of functions gn ∈ Bn and some

Boolean functions f the (monotone) P-complexity of f with respect to

(gn) is the smallest m such that f is a (monotone) projection of gm . In

this model negation can be exponentially powerful (Skyum (83)) as it

can be in arithmetic computations (Valiant (80)).

147

At the end of this introduction we discuss some properties of mono-

tone circuits. Why is it much more difficult to investigate {∧�∨�¬}-
circuits than to investigate monotone circuits ? If f ∈ Bn is given by

PI(f) it is a hard problem to compute PI(¬f) . If f� g ∈ Mn are given

by PI(f) and PI(g) it is easy to compute PI(f ∨ g) and PI(f ∧ g) . By

definition

f ∨ g =
∨

t∈PI(f)
t ∨ ∨

t′∈PI(g)
t′ =

∨
t∈PI(f)∪PI(g)

t� (1.1)

We have proved in Theorem 4.2, Ch. 2, that each monotone polynomial

for a monotone function includes all prime implicants. Hence

PI(f ∨ g) ⊆ PI(f) ∪ PI(g)� (1.2)

A monom t ∈ PI(f) ∪ PI(g) is not a prime implicant of f ∨ g iff some

proper shortening of t is an element of PI(f)∪PI(g) . Hence we obtain

the following characterization of PI(f ∨ g) .

PI(f ∨ g) = {t ∈ PI(f) ∪ PI(g) | � t′ ∈ PI(f) ∪ PI(g) : t � t′}� (1.3)

No new prime implicant is computed at an ∨-gate. Similarly we con-

clude that

f ∧ g =
(∨
t∈PI(f)

t
) ∧ (∨

t′∈PI(g)
t′
)

(1.4)

=
∨

t∈PI(f)� t′∈PI(g)
t t′

and

PI(f ∧ g) = {t t′ | t ∈ PI(f)� t′ ∈ PI(g)� (1.5)

� u ∈ PI(f)� u′ ∈ PI(g) : t t′ � u u′}�

We compute PI(f ∧ g) by listing all t t′ where t ∈ PI(f) and t′ ∈
PI(g) and by erasing afterwards all monoms for which we find a proper

shortening in the list. A prime implicant t of f is also a prime implicant

of f ∧ g iff some (not necessarily proper) shortening t′ of t is a prime

implicant of g .

148

6.2 Design of circuits for sorting and threshold functions

The only symmetric and monotone functions are the threshold

functions. The sorting function consists of all nontrivial threshold

functions. The efficient computation of threshold functions by mono-

tone circuits is fundamental for the theory of slice functions. The

linear sorting circuit of Ch. 3 is not monotone. In that circuit the

inputs xi are summed up which cannot be done in monotone circuits.

Most of the well-known sorting algorithms (see e.g. Aho, Hopcroft and

Ullman (74)) use if-tests. These algorithms cannot be simulated by

monotone circuits. But comparisons (x� y) → (min(x� y)�max(x� y))

can be realized easily by two gates (x� y) → (x ∧ y� x ∨ y) . We use

these comparisons as basic gates. The variables x1� � � � � xn are given

in an array A . The meaning of the basic step (i� j) (1 ≤ i � j ≤ n) is

the following. We compare A(i) and A(j) and store the minimum at

array place i and the maximum at array place j . Algorithms of this

type are called sorting networks.

It is easy to simulate the well-known bubble sort. In step k

(0 ≤ k ≤ n − 2) we carry out the basic steps (1� 2) , (2� 3) , � � � ,

(n− k− 1� n− k). Afterwards the k + 1 largest inputs are in increas-

ing order at the array places n− k� � � � � n . The large inputs climb up

the array like bubbles. Altogether
(n

2

)
comparisons and n(n−1) mono-

tone gates are sufficient for the computation of the sorting function.

If we want to compute Tn
k we may stop the sorting algorithm after

step k − 2 . Tn
k is the disjunction of the elements at the array places

1� � � � � n + 1− k . Hence

Cm(Tn
k) ≤ 2 ((n− 1) + · · ·+ (n− k + 1)) + (n− k) (2.1)

= 2 (k− 1)n− k2�

This result is interesting for small k . For large k we apply the du-

ality principle for monotone functions. The dual function fd of f is

¬f(x1� � � � � xn) . By the rules of de Morgan we obtain a monotone cir-

cuit for fd by replacing in a monotone circuit for f ∧-gates by ∨-gates

149

and vice versa. Obviously Cm(f) = Cm(fd) . The dual function of Tn
k

is ¬Tn
k(x1� � � � � xn) . (Tn

k)d computes 1 iff at most k− 1 of the negated

variables are 1 iff at least n − k + 1 of the variables are 1 . Hence

(Tn
k)d = Tn

n−k+1 . We summarize our results.

PROPOSITION 2.1 : i) Cm(Tn
k) = Cm(Tn

n−k+1) .

ii) Cm(Sn) ≤ n(n− 1) .

iii) Cm(Tn
k) ≤ (2k− 1)n− k2 .

The reader is asked to look for improvements of these simple upper

bounds. We present a sorting network (Batcher (68)) whose size is

O(n log2 n) and whose depth is O(log2 n) . This sorting network is

based on the ˝sorting by merging˝ principle. W.l.o.g. n = 2k .

ALGORITHM 2.1.a :

Input : Boolean variables x1� � � � � xn .

Output : Sn(x1� � � � � xn) = (Tn
n(x1� � � � � xn)� � � � �T

n
1(x1� � � � � xn)) .

Step 1. If n = 1 nothing has to be done.

Step 2. If n = 2k � 1 call this algorithm for x1� � � � � xn�2 and for

xn�2+1� � � � � xn . This can be done in parallel.

Step 3. Use a merging algorithm to merge the two output sequences

of Step 2.

Batcher designed an efficient monotone merging circuit. Merging is

much easier in non monotone circuits where we can simulate if-tests.

Batcher’s merging algorithm is recursive. Let a1 ≤ · · · ≤ am and

b1 ≤ · · · ≤ bm be the sorted input sequences. ai may be smaller than

b1 , but ai also may be larger than bm . Altogether m+1 rank numbers

are possible for ai . We merge the subsequences of elements with odd

indices and also the subsequences of elements with even indices (odd-

even-merge). After having done this we still have to merge two sorted

150

lists. But only two rank numbers are possible for each element.

ALGORITHM 2.1.b :

Input : a1� � � � � am and b1� � � � � bm , two sorted lists of Boolean variables.

Output : z1� � � � � zn (n = 2m), the sorted list of all ai and bj .

Step 1. If m = 1 one comparison is sufficient.

Step 2. If m � 1 call this algorithm for the sequences of all ai (i odd)

and all bj (j odd) , and also call this algorithm for the sequences of

all ai (i even) and all bj (j even). This can be done in parallel. Let

v1� � � � � vm and w1� � � � �wm be the output sequences.

Step 3. Compute by m− 1 (parallel) comparisons z1 = v1 , zn = wm ,

z2i = min{vi+1�wi} and z2i+1 = max{vi+1�wi} for 1 ≤ i ≤ m− 1 .

We prove the correctness of Algorithm 2.1. This is obvious for

part a. Let k and l be the number of zeros in (a1� � � � � am) and

(b1� � � � � bm) resp. �k�2� of the 0-elements of the a-sequence have

an odd index, and �k�2� have an even index. Hence the v-sequence

contains p = �k�2� + �l�2� zeros, and the w-sequence contains q =

�k�2�+ �l�2� zeros. Obviously 0 ≤ p− q ≤ 2 . For the three possible

values of p− q we represent the v- and the w-sequence in such a way

that wi , which we compare with vi+1 in step 3, stands below vi+1 .

p

0 0 � � � 0 1 1 � � � 1

0 � � � 0 0 1 � � � 1 1

p− q = 0

p

0 0 � � � 0 0 1 � � � 1

0 � � � 0 0 1 � � � 1 1

p− q = 1

p

0 0 � � � 0 0 1 � � � 1

0 � � � 0 1 1 � � � 1 1

p− q = 2

151

Now it is obvious that z1� � � � � zn is the sorted sequence of the in-

puts. What is the complexity of Batcher’s algorithm ? Let M(m) and

DM(m) be the number of comparisons and the depth of the merging

algorithm for m a power of 2 .

M(m) = 2 M(m�2) + m− 1 and M(1) = 1� hence (2.2)

M(m) = m log m + 1� (2.3)

DM(m) = DM(m�2) + 1 and DM(1) = 1� hence (2.4)

DM(m) = log m + 1� (2.5)

Let S(n) and DS(n) be the number of comparisons and the depth of

Batcher’s sorting algorithm for n = 2k .

S(n) = 2 S(n�2) + M(n�2) and S(1) = 0� hence (2.6)

S(n) = n(log n)(log n− 1)�4 + n− 1� (2.7)

DS(n) = DS(n�2) + DM(n�2) and DS(1) = 0� hence (2.8)

DS(n) = (log n)(log n + 1)�2� (2.9)

DEFINITION 2.1 : The merging function Mn is the partial Boolean

function which is equal to the sorting function if x1 ≤ · · · ≤ x�n�2� and

x�n�2�+1 ≤ · · · ≤ xn .

THEOREM 2.1 : If n = 2k

Cm(Sn) ≤ n(log n)(log n− 1)�2 + 2 n− 2� (2.10)

Dm(Sn) ≤ (log n)(log n + 1)�2� (2.11)

Cm(Mn) ≤ n log n− n + 2 and (2.12)

Dm(Mn) ≤ log n� (2.13)

Batcher’s algorithm is appropriate for practical purposes. Not only

x1� � � � � xn is sorted but also all blocks of length 2i (1 ≤ i ≤ k) namely

152

xj+1� � � � � xj′ where j = r 2i (0 ≤ r � 2k−i) and j′ = j + 2i are sorted.

In § 4 we prove that Batcher’s merging algorithm is asymptotically

optimal. The upper bound for sorting has been improved by Ajtai,

Komlós and Szemerédi (83).

THEOREM 2.2 : One can design a sorting network of size O(n log n)

and depth O(log n) .

We do not present this AKS sorting network as it is rather com-

plicated. Theorem 2.2 is a powerful theoretical result. But the AKS

sorting network beats Batcher’s sorting network only for very large n ,

in particular, only for n larger than in real life applications (see e.g.

Paterson (83)). The AKS sorting network sorts the input sequence but

no subsequence. It is an open problem whether Batcher’s algorithm

can be improved significantly for small n .

For the majority function we do not know of any monotone circuit

of size o(n log n) . The monotone complexity of the majority function is

still unknown. For constant k we improve Proposition 2.1. We design

a monotone circuit of size kn + o(n) . This result has been announced

by Adleman and has been proved by Dunne (84). The conjecture that

kn− o(n) monotone gates are necessary is also open.

THEOREM 2.3 : Cm(Tn
k) ≤ kn + o(n) for constant k .

Proof : Tn
k is the disjunction of all monotone monoms of length k .

If B1� � � � �Br form a partition of X = {x1� � � � � xn} the function

Tr
k(T1(B1)� � � � �T1(Br)) has only prime implicants of length k . The

number of prime implicants is large if all Bi are of almost the same

size. Certainly, we do not obtain all prime implicants of length k .

Therefore we use several partitions of X .

For the sake of simplicity we concentrate on those n where n = pk

for some natural number p . Let p(k) = pk and r = p(k − 1) . We

153

prove that k partitions Bq
1� � � � �B

q
p(k−1) (1 ≤ q ≤ k) are sufficient,

namely that

T
p(k)
k (X) =

∨
1≤q≤k

T
p(k−1)
k

(
Tp

1(B
q
1)� � � � �T

p
1(B

q
p(k−1))

)
� (2.14)

In order to obtain all monoms of length k , we have to ensure for all

different j(1)� � � � � j(k) the existence of some q such that xj(1)� � � � � xj(k)

are elements of different sets of the q-th partition. Such a construc-

tion will be explained later. At first we estimate the size of the cir-

cuit. For the computation of Tp
k at the end we apply the circuit of

Proposition 2.1. Besides the computation of T
p(k−1)
k we only need

k− 1 + k(n− p(k− 1)) ≤ k n gates. Since p = n1�k

Cm(T
p(k)
k) ≤ k n + k Cm(T

p(k−1)
k) (2.15)

≤ k n
(
1 + (k�p) + (k�p)2 + � � �

)
+ kk−1(2 k p) = k n + o(n)�

A number r ∈ {1� � � � � pk} or r ∈ {1� � � � � pk−1} is represented by

a vector r = (r1� � � � � rk) ∈ {0� � � � � p − 1}k or r = (r1� � � � � rk−1) ∈
{0� � � � � p−1}k−1 . For 1 ≤ r ≤ pk−1 the set Bq

r includes the p variables

xi where i = (r1� � � � � rq−1� j� rq� � � � � rk−1) for some 0 ≤ j ≤ p − 1 . It is

obvious that the sets Bq
r (1 ≤ r ≤ pk−1) build a partition of X . We

claim that we find for different j(1)� � � � � j(k) ∈ {1� � � � � pk} some q such

that xj(1)� � � � � xj(k) are in different sets of the q-th partition.

If xi and xj are in the same set Bq
r , i and j agree at all but the q-th

position. If i �= j and q �= q′ , it is impossible that xi� xj ∈ Bq
r∩Bq′

r′ . This

proves the claim for k = 2 . For k � 2 either q = k is appropriate or two

indices, w.l.o.g. j(k−1) and j(k) , agree on all but the last position. We

obtain j′(l) by cancelling the last position of j(l) . Then j′(k−1) = j′(k)

and among j′(1)� � � � � j′(k) are at most k−1 different vectors. We obtain

B′q
r (1 ≤ q ≤ k − 1) by cancelling the last position of all elements in

Bq
r . By induction hypothesis we find some q ∈ {1� � � � � k − 1} such

that for l �= m either j′(l) = j′(m) or xj′(l) and xj′(m) are not in the

same set B′q
r . This q is appropriate. If j′(l) = j′(m) , j(l) and j(m)

differ at the last position, hence xj(l) and xj(m) are for l �= m not in the

same set Bq
r . �

154

6.3 Lower bounds for threshold functions

We consider Tn
1 , Tn

2 , Tn
3 and the majority function Tn

�n�2� . By

C∨
m(f) and C∧

m(f) we denote the minimal number of ∨-gates and ∧-ga-

tes resp. in a monotone circuit for f . In monotone circuits we cannot

apply the deMorgan rules, and we cannot replace ∧-gates by ∨-gates

or vice versa. Alon and Boppana (85) proved that many ∨-gates are

only useful if there also are several ∧-gates available.

PROPOSITION 3.1 : Let f ∈ Mn . Then for k = max{C∧
m(f)� 1}

C∧
m(f) + C∨

m(f) ≤ Cm(f) ≤ k n +
(k−1

2

)− 1� (3.1)

Proof : The first inequality is obvious as is the second inequality for

C∧
m(f) = 0 . For C∧

m(f) � 0 let us consider a monotone circuit for f with

k ∧-gates, and let f1� � � � � fk−1 be the outputs of the first k− 1 ∧-gates

and let fk = f . It is sufficient to prove that fi can be computed out

of the ˝inputs˝ x1� � � � � xn� f1� � � � � fi−1 with n + i − 2 additional gates.

fi = s1 ∨ (s2 ∧ s3) where sj is the disjunction of some of the ˝inputs˝.

If input t is in s1 , then it can be cancelled in s2 and s3 . Hence we can

choose s1� s2 and s3 in such a way that each input is contained in at

most one sj . By this representation we can compute fi with at most

n + i− 2 additional gates. �

THEOREM 3.1 : i) C∧
m(Tn

1) = 0 , C∨
m(Tn

1) = Cm(Tn
1) = n− 1 .

ii) C∧
m(Tn

2) = �log n� , C∨
m(Tn

2) = 2n− 4 .

iii) Cm(Tn
2) � 2n− 4 + �log n� .

Proof : Part i) is obvious. The first claim of Part ii) is left as an

exercise. We omit the proof of Part iii) (Bloniarz (79)). Later we get

to know another example where C∧
m(f) + C∨

m(f) � Cm(f) .

155

We only prove that C∨
m(Tn

2) = 2n − 4 . In a sorting network the

following 2n−3 comparisons are sufficient (1� 2) , � � � , (n−1� n) , (1� 2) ,

� � � , (n− 2� n− 1) . We may save one ∨-gate, since we do not have to

compute Tn
1 , the maximum of the comparison (n− 1� n) . This proves

the upper bound.

The lower bound is proved by the elimination method and induc-

tion on n . The claim is obvious for n = 2 . For n � 2 we consider

a monotone circuit for Tn
2 with the minimal number of ∨-gates. It is

sufficient to find some i such that the replacement xi = 0 eliminates

at least 2 ∨-gates.

Let G be the first gate of the circuit. Its predecessors are different

variables xi and xj . The outdegree of xi is at least 2 (see Ch. 5).

Each path from xi to the output gate contains an ∨-gate. Otherwise

xi = 0 would replace Tn
2 by 0 . The first ∨-gates on these paths may be

eliminated. The only case to be considered, is that one where only one

such ∨-gate H exists. Let I and J be the predecessors of H . If there

are paths from xi to I and from xi to J we replace the outputs of I , J

and H by 0 for xi = 0 . Similarly to the above arguments each path

from H to the output gate contains an ∨-gate, and the first ∨-gate can

also be eliminated. Otherwise there is no path from xi to (w.l.o.g.) I .

All paths from xi to the output pass through J . In particular, there

is some path from xj via G to J consisting of ∧-gates only. If xj = 0 ,

resJ is replaced by 0 , and the output becomes independent from xi in

contradiction to the fact that Tn
2 is replaced by Tn−1

2 for xj = 0 . �

We only cite the largest lower bounds known on Cm(Tn
3) and

Cm(Tn
�n�2�) (Dunne (84)).

THEOREM 3.2 : Cm(Tn
3) ≥ 2�5 n− 5�5 .

THEOREM 3.3 : Cm(Tn
�n�2�) ≥ 3�5 n−O(1) .

156

We prove a weaker result containing most of the ideas of the proof

of Theorem 3.3. Theorem 3.4 combined with Theorem 3.2 leads to a

3�25 n− 11 lower bound on Cm(T�n�2�) .

THEOREM 3.4 : Cm(Tn
�n�2�) ≥ Cm(Tl

3) + 4(n − l) − 1 for some

l ≤ �n�2�+ 3 , if n ≥ 5 .

Proof : If n = 5 or n = 6 we may choose l = n . If n � 6 we apply

the elimination method. We prove that we can eliminate at least

4 or 8 gates by replacing 1 or 2 variables resp. by constants. This

replacement is performed until we obtain a subfunction Tl
3 , Tl

l−2 ,

Tl−1
2 or Tl−1

l−2 . In the last two cases we replace in the last step only one

variable. Then we eliminate at least 3 gates. Altogether we eliminate

at least 4(n − l) − 1 gates and obtain a circuit for Tl
3 or Tl

l−2 . By

the duality principle Cm(Tl
3) = Cm(Tl

l−2) . It is easy to see that l ≤
�n�2�+ 3 .

We investigate a monotone circuit for Tr
k where 3 � k � r− 2 .

Case 1 : ∃ xi : outdegree(xi) ≥ 3 or outdegree(xi) = 2 and one of the

direct successors of xi has outdegree bounded below by 2 .

We replace xi by a constant in such a way that a direct successor of

the highest outdegree is replaced by a constant. At least 4 gates can

be eliminated.

Case 2 : ∃ xi : outdegree(xi) = 2 and the direct successors of xi are of

the same type, w.l.o.g. of type-∧ .

We can eliminate at least 4 gates if xi is replaced by 0 .

In all other cases we consider some gate G where a longest path of

the circuit starts. The inputs of G are different variables xi and xj of

outdegree 2 . W.l.o.g. G is of type-∨ . The other direct successors of

xi and xj , namely G1 and G2 , are of type-∧ . The gates G , G1 and

G2 have outdegree 1 . The situation is shown in Fig. 3.1.

157

h

∨ ∧∧

xj

G4

g

G2

xi

G3

G1 G

Fig. 3.1

If G3 is of type-∧ , we can eliminate at least 4 gates if xi = 0 . Therefore

we assume that G3 is of type-∨ and, with similar arguments, that G4

is of type-∧ . In particular G3 �= G4 . Since the longest path of the

circuit starts at G , either g = xk or g = xk ∧ xl or g = xk ∨ xl . If

g = xk , outdegree(xk) ≥ 2 . Otherwise the circuit is independent from

xk if xi = xj = 0 . If xk = 0 we can eliminate at least 4 gates: G ,

G4 , the direct successors of G4 and the other direct successor of xk .

If g = xk ∧ xl or g = xk ∨ xl we go through the same discussion about

G′ , the gate where g is computed. The only situation we still have to

discuss is described in Fig. 3.2.

If xi = xj = 0 , we can eliminate G , G1 , G2 and G5 and hence also

G′ . Since G1 , G2 and G5 are replaced by 0 , we can even eliminate

3 additional gates. If only one variable is to be replaced, we choose

∧

∧

∨∧∧ ∧∨

xj

G2

xi

G1 G

G5

GG3 G4

xk xl

Fig. 3.2

158

xi = 0 . At least 3 gates can be eliminated. We should mention that

G1 �= G2 . Otherwise the output would be independent from xi if

xj = xk = xl = 0 . �

Before Razborov’s superpolynomial lower bounds were discovered (see

§ 10 - § 12) the following bound based on Theorem 3.1 and the duality

principle was the largest one for explicitly defined monotone functions

of one output (Tiekenheinrich (84)).

THEOREM 3.5 : Cm(f) ≥ 4n− 12 for f ∈ Mn defined by

f(x1� � � � � xn) = Tn−1
n−2(x1� � � � � xn−1) ∨ (xn ∧ Tn−1

2 (x1� � � � � xn−1)) (3.2)

Proof : C∨
m(f) ≥ 2(n− 1)− 4 = 2n− 6 , since Tn−1

2 is a subfunction of

f (for xn = 1) . C∧
m(f) ≥ 2n − 6 , since Tn−1

n−2 is a subfunction of f (for

xn = 0) and C∧
m(Tn−1

n−2) = C∨
m(Tn−1

2) by the duality principle. �

6.4 Lower bounds for sorting and merging

We prove Ω(n log n) lower bounds for sorting as well as for merging.

Because of these lower bounds the AKS sorting network and Batcher’s

merging network are asymptotically optimal. The lower bound for

merging implies the lower bound for sorting. Nevertheless we present

a simple proof for the lower bound on sorting (Lamagna (75), Lamagna

and Savage (74), Pippenger and Valiant (76), van Voorhis (72)).

THEOREM 4.1 : Cm(Sn) ≥ log(n!) ≥ n log n−O(n) .

Proof : log(n!) = n log n − O(n) by Stirling’s formula. We apply the

elimination method. We prove the existence of some input xi such

159

that �log n� gates can be eliminated if xi = 0 . Afterwards the circuit

computes Sn−1 . Hence

Cm(Sn) ≥ �log n�+ Cm(Sn−1) ≥ ∑
1≤i≤n

�log i� ≥ log(n!)� (4.1)

If xi = 0 , Tn
n is replaced by the constant 0 . In a monotone circuit

we compute the constant 0 at some gate G only if at some input of G

the constant 0 is computed. By backtracking we find a path Pi from

xi to the output Tn
n such that all gates compute 0 if xi = 0 . Since the

indegree of all gates is 2 , at least one path Pi (1 ≤ i ≤ n) is of length

not smaller than �log n� . We replace the corresponding input xi by 0 .

�

The lower bound for the merging function has been proved by La-

magna (79).

THEOREM 4.2 : Cm(Mn) ≥ (1�2)n log n−O(n) .

Proof : Let n = 2k . We only consider inputs where xk ≤ · · · ≤ x1

and yk ≤ · · · ≤ y1 . Then the outputs are Tn
1� � � � �T

n
n . Tn

i � � � � �T
n
i+k

depend essentially on xi . If x1 = · · · = xi−1 = 1 , xi+1 = · · · = xk = 0 ,

y1 = · · · = yj = 1 and yj+1 = · · · = yk = 0 , then Tn
i+j is equal to xi .

In this situation only the functions 0 , 1 and xi are computed in the

circuit. xi can be computed at gate G only if at least one input equals

xi . Therefore there is some path from input xi to output Tn
i+j such

that at each gate on this path xi is computed.

Let d(i� j) be the length of a shortest path from xi to Tn
j if i ≤ j ≤

i + k and d(i� j) = 0 else. Let e(j) = j , if j ≤ k , and e(j) = n− j + 1 ,

if j � k . Then at least e(j) x-variables are connected with output Tn
j .

Hence, for fixed j , the sum of all d(i� j) is the external path length of

some binary tree with at least e(j) leaves. The following lower bound

on the external path length is well-known (or can be proved as an easy

160

exercise).∑
1≤i≤k

d(i� j) ≥ e(j) �log e(j)� − 2�log e(j)� + e(j) =: t(j)� (4.2)

Let y1 = · · · = yl = 1 and yl+1 = · · · = yk = 0 . Then Tn
l+1� � � � �T

n
l+k

are not constant. If x1 = · · · = xk = 0 they all compute 0 . We increase

at first x1 , then x2� � � � � then xk from 0 to 1 . The output Tn
l+i switches

from 0 to 1 after we have switched xi . We find some path p(i) from xi

to Tn
l+i such that the results at all gates switch at that moment from 0

to 1 . Because of monotonicity these paths p(1)� � � � � p(k) are disjoint.

Hence we have proved the existence of∑
1≤i≤k

d(i� i + l) (4.3)

gates. The largest of these lower bounds is at least as large as the

average lower bound.

Cm(Mn) ≥ 1

k + 1

∑
0≤l≤k

∑
1≤i≤k

d(i� i + l) (4.4)

=
1

k + 1

∑
1≤j≤n

∑
1≤i≤k

d(i� j) ≥ 1

k + 1

∑
1≤j≤n

t(j)

=
1

2
n log n−O(n)

by (4.2) and the definition of e(j) . �

6.5 Replacement rules

A replacement rule for monotone circuits is a theorem of the fol-

lowing type: ˝If some monotone circuit for f computes at some gate

G a function g with certain properties and if we replace gate G by a

circuit for the monotone function h (depending perhaps on g), then

the new circuit also computes f .˝ If h is a constant or a variable,

the given circuit is not optimal. In particular, we obtain results on

161

the structure of optimal monotone circuits. Later we apply replace-

ment rules also in situations where h is a more complicated function.

Nechiporuk (71) and Paterson (75) used already replacement rules.

Mehlhorn and Galil (76) presented the replacement rules in the gen-

eralized form we discuss here.

It is easy to verify the correctness of the replacement rules, but it

is difficult and more important to get a feeling why such replacement

rules work. Let g be computed in a monotone circuit for f . If t ∈
PI(g) but t t′ �∈ PI(f) for all monoms t′ (including the empty monom),

t is of no use for the computation of f . At ∧-gates t can only be

lengthened. At ∨-gates either t is saved or t is eliminated by the law

of simplification. Because of the conditions on t we have to eliminate t

and all its lengthenings. Hence it is reasonable to conjecture that g can

be replaced by h where PI(h) = PI(g) − {t} . If all prime implicants

of f have a length of at most k and if all prime implicants of g have

a length of at least k + 1 , we can apply the same replacement rule

several times and can replace g by the constant 0 .

THEOREM 5.1 : Let f� g ∈ Mn and t ∈ PI(g) where t t′ �∈ PI(f)

for all monoms t′ (including the empty monom). Let h be defined by

PI(h) = PI(g)− {t} . If g is computed in some monotone circuit for f

and if we replace g by h the new circuit also computes f .

Proof : Let S be the given circuit for f and let S′ be the new circuit

computing f ′ . By definition h ≤ g . Hence by monotonicity f ′ ≤ f . If

f ′ �= f we choose some input a where f ′(a) = 0 and f(a) = 1 . Since

we have changed S only at one gate, h(a) = 0 and g(a) = 1 . Since

g = h∨ t , t(a) = 1 . Let t∗ be a prime implicant of f where t∗(a) = 1 .

We prove that t is a submonom of t∗ in contradiction to the definition

of t .

Let xi be a variable in t . ai = 1 since t(a) = 1 . Let bi = 0 and

bj = aj if j �= i . Obviously b ≤ a and t(b) = 0 . Hence f ′(b) = 0 ,

h(b) = 0 and g(b) = 0 . For input b the circuits S and S′ compute the

162

same output since they compute the same value at that gate where

they differ. Hence f(b) = f ′(b) = 0 . In particular t∗(b) = 0 . Since b

and a differ only at position i , xi is a variable in t∗ and t is a submonom

of t∗ . �

THEOREM 5.2 : Let g ∈ Mn be a function which is computed in

some monotone circuit S for f ∈ Mn . Let t , t1 and t2 be monoms

such that

t t1� t t2 ∈ I(g) and (5.1)

∀ t∗ monom : t∗ t t1� t
∗ t t2 ∈ I(f) ⇒ t∗ t ∈ I(f)� (5.2)

If we replace g by h = g ∨ t the new circuit S′ also computes f .

We motivate the replacement rule by the following considerations.

We assume that t t1 and t t2 are even prime implicants of g . Follow-

ing the discussion for the first replacement rule only (not necessarily

proper) lengthenings of t t1 and t t2 are useful for the computation

of f . Since both monoms are prime implicants of the same function,

˝ S treats t t1 the same way as t t2 ˝. By (5.2) for all common useful

lengthenings of t t1 and t t2 already the appropriate lengthening of t

is useful. In h = g ∨ t we replace t t1 and t t2 by t .

Proof of Theorem 5.2 : Let f ′ be the function computed by S′ . f ′ ≥ f

by monotonicity since h ≥ g . If f ′ �= f we choose some input a where

f ′(a) = 1 and f(a) = 0 . In particular h(a) = 1 , g(a) = 0 and t(a) = 1 .

We choose t′ ∈ PI(f ′) where t′(a) = 1 . If t t′ ∈ I(f) , we could conclude

that f(a) = 1 in contradiction to the construction of a . By (5.2) it is

sufficient to prove t′ t tj ∈ I(f) for j = 1 and j = 2 . Let b be an input

where t′ t tj(b) = 1 . Then f ′(b) = 1 (since t′ ∈ PI(f ′)), g(b) = 1 (since

t tj ∈ I(g)) and h(b) = 1 (since h ≥ g). For input b the circuits S

and S′ compute the same output since they compute the same value

at that gate where they differ. Hence f(b) = f ′(b) = 1 . Altogether

t′ t tj ∈ I(f) since t′ t tj(b) = 1 implies f(b) = 1 . �

163

6.6 Boolean sums

A Boolean sum f with one output is the disjunction of some, e.g.

s , variables. Obviously Cm(f) = C{∨}(f) = s−1 . The class of Boolean

sums f ∈ Mn�n with n outputs has been investigated very thoroughly,

since on the one hand the complexity of each single output is well-

known, but on the other hand it is difficult to determine the complexity

of n-output functions. At first we prove lower bounds on C{∨}(f) , and

then we prove that ∧-gates are only of little help for Boolean sums.

DEFINITION 6.1 : A Boolean sum f ∈ Mn�n is called (h� k)-disjoint,

if each sample of h + 1 outputs has at most k common summands.

The following results are based on Mehlhorn (79) who generalized

the results of Nechiporuk (71) and Wegener (80). Independently Pip-

penger (77) investigated (2� 2)-disjoint Boolean sums.

LEMMA 6.1 : Let f = (f1� � � � � fn) ∈ Mn�n and let fi be a Boolean sum

of si variables. Then∑
1≤i≤n

(⌈
sik

−1⌉− 1
)
h−1 ≤ C{∨}(f) ≤

∑
1≤i≤n

(si − 1)� (6.1)

Proof : The upper bound is obvious. For the lower bound we consider

an optimal {∨}-circuit for f . The only functions computed in {∨}-
circuits are Boolean sums, since constants may be eliminated. At least

si−1 gates are necessary for the computation of fi and at least
⌈
sik

−1
⌉−

1 of the functions computed at these gates are Boolean sums of more

than k summands. We only count these gates. By Definition 6.1 such

a gate is useful for at most h outputs. Hence the lower bound follows.

�

164

One might conjecture that ∧-gates are powerless for Boolean sums.

This has been disproved by Tarjan (78).

THEOREM 6.1 : Let f ∈ M11�14 be defined by

f1 = p ∨ y , f2 = q ∨ z , f3 = r ∨ y , f4 = s ∨ z ,

f5 = x1 ∨ y , f6 = x1 ∨ x2 ∨ y , f7 = x1 ∨ x2 ∨ x3 ∨ y ,

f8 = x1 ∨ z , f9 = x1 ∨ x2 ∨ z , f10 = x1 ∨ x2 ∨ x3 ∨ z ,

f11 = p ∨ u ∨ x1 ∨ x2 ∨ x3 ∨ y , f12 = q ∨ u ∨ x1 ∨ x2 ∨ x3 ∨ z ,

f13 = r ∨ w ∨ x1 ∨ x2 ∨ x3 ∨ y , f14 = s ∨ w ∨ x1 ∨ x2 ∨ x3 ∨ z .

Then Cm(f) ≤ 17 � 18 = C{∨}(f) .

Proof : At first we compute f1� � � � � f10 with 10 gates. Let

g = f7 ∧ f10 = x1 ∨ x2 ∨ x3 ∨ yz� (6.2)

Then

f11 = f1 ∨ (g ∨ u)� f12 = f2 ∨ (g ∨ u)� (6.3)

f13 = f3 ∨ (g ∨ w)� f14 = f4 ∨ (g ∨ w)�

One ∧-gate and 6 ∨-gates are sufficient for the computation of

f11� � � � � f14 if f1� � � � � f10 and the variables are given. Hence Cm(f) ≤ 17 .

Obviously C{∨}(f) ≤ 18 . For the lower bound it is sufficient to

prove that 8 ∨-gates are necessary for the computation of f11� � � � � f14 if

f1� � � � � f10 and the variables are given and if ∧-gates are not available.

This proof is left as an exercise. �

This function is (see Exercises) a further example where

C∧
m(f) + C∨

m(f) = 0 + 16 � 17 ≤ Cm(f)� (6.4)

Now we estimate the power of ∧-gates for Boolean sums.

THEOREM 6.2 : Let f ∈ Mn�n be an (h� k)-disjoint Boolean sum

where fi is a Boolean sum of si variables. Let h′ = max{1� h − 1} .

Then

165

(h h′)−1 ∑
1≤i≤n

(⌈
sik

−1⌉− 1
) ≤ Cm(f) ≤ C{∨}(f) ≤

∑
1≤i≤n

(si − 1)� (6.5)

Proof : We only have to prove the lower bound. We represent g ∈ Mn

as g1 ∨ g2 where g1 consists of the prime implicants of g of length 1 .

All prime implicants of the outputs fi are of length 1 . By our first

replacement rule (Theorem 5.1) we can replace g by g1 . If g1 is a

constant or a variable we save the gate for the computation of g .

If g1 is a Boolean sum of two variables we replace the gate for the

computation of g by a gate for the computation of g1 . If g1 is a sum

of more than two variables it might be expensive to compute g1 . For

such a situation Wegener (80) introduced the assumption that some

functions besides the variables are given for nothing. Here this is the

class of all Boolean sums of at most k variables. The set of functions

given for nothing is to be chosen carefully. If the set is too large, it

may be easy to compute f . It the set is too small, we cannot apply

the replacement rules in sufficiently many situations. Let C∗
m and C∗

{∨}
denote the complexity measures Cm and C{∨} if the Boolean sums of

at most k variables are given for nothing. By the same arguments as

before we prove the bounds of (6.1) also for C∗
{∨}(f) .

Let us consider an optimal monotone ∗-circuit for f . Let a and b

be the number of ∨- and ∧-gates resp. in this circuit. We prove that

we can replace each ∧-gate by at most h new ∨-gates. After such a

replacement we can even eliminate some other gate. At the end of this

procedure we obtain a ∗-circuit over the basis {∨} for f . Hence

C∗
{∨}(f) ≤ a + (h− 1)b ≤ h′(a + b) = h′C∗

m(f) ≤ h′ Cm(f)� (6.6)

Applying Lemma 6.1 in its generalized form, we obtain the lower

bound (6.5).

We always replace the last ∧-gate G where g is computed and s and

t are input functions. Again we represent g = g1 ∨ g2 . If the number

of prime implicants of g1 is at most k we replace g by g1 which is given

as input of the ∗-circuit. In this case we are done.

166

In the other case let w.l.o.g. f1� � � � � fl be the outputs which are

successors of G . Since the prime implicants of g1 have length 1 , and

since no ∧-gate is a successor of G , the outputs f1� � � � � fl have the

prime implicants of g1 in common. These are more than k variables.

l ≤ h , since f is (h� k)-disjoint. We replace gate G by the constant 0 .

Then fj (1 ≤ j ≤ l) is replaced by hj . We claim that

fj = s ∨ hj or fj = t ∨ hj for j ∈ {1� � � � � l}� (6.7)

By (6.7) we can replace G by at most l ≤ h ∨-gates. Since G is

replaced by 0 we can eliminate also the direct successors of G . If G

has no direct successor, hj = 0 and we need no new gate. Altogether

it is sufficient to prove (6.7).

fj ≤ s ∨ hj and fj ≤ t ∨ hj , since fj = g ∨ hj and g = s ∧ t . If (6.7)

does not hold, we can choose inputs a and b where fj(a) = fj(b) = 0

but (s∨hj)(a) = (t∨hj)(b) = 1 . Let input c be defined by ci = ai∨bi .

(s ∨ hj)(c) = (t ∨ hj)(c) = 1 , since c ≥ a and c ≥ b . Furthermore

fj(c) = (g ∨ hj)(c) = [(s ∧ t) ∨ hj](c) = 1� (6.8)

Hence xi ∈ PI(fj) and ci = 1 for some i . By definition of c either ai = 1

or bi = 1 in contradiction to the fact that fj(a) = fj(b) = 0 . For this

last argument it is essential that fj is a Boolean sum. �

COROLLARY 6.1 : Optimal monotone circuits for (1� 1)-disjoint

Boolean sums consist of ∨-gates only.

The explicit construction of (h� k)-disjoint Boolean sums which

maximize s1 + · · · + sn is equivalent to the explicit solution of

Zarankiewicz’s problem. A Boolean sum f ∈ Mn�n can be represented

by a bipartite graph G(f) on the vertices x1� � � � � xn and f1� � � � � fn . G(f)

contains the edge (fi� xj) iff xj ∈ PI(fi) . f is (h� k)-disjoint iff G(f) does

not contain any complete bipartite graph Kh+1�k+1 . Such a Kh+1�k+1

consists of h + 1 vertices of the first and k + 1 vertices of the second

class such that all edges between these vertices exist. Let z(n� j) be

167

the maximal number of edges in a bipartite graph G where G does

not contain any Kj�j and G consists of 2n vertices. It is known (see

Bollobás (78)) that

⌊(
1− (1

j!

)2)
n2−2�(j+1)⌋ ≤ z(n� j) � (j− 1)1�j n2−1�j +

t− 1

2
n� (6.9)

In general it is not known how to construct such graphs. Constructive

solutions are only known for j = 2 (Kovari, Sós and Turán (54)) and

j = 3 (Brown (66)).

COROLLARY 6.2 : We can define explicitly (1� 1)-disjoint and

(2� 2)-disjoint Boolean sums whose monotone complexity is Θ(n3�2)

and Θ(n5�3) resp.

We present only the construction of the most complex (1� 1)-disjoint

Boolean sums. Let n = p2 for some prime number p . The construc-

tion is based on the fact that straight lines in �p intersect in at most

one point (projective geometry). For later applications we present the

Boolean sum or the corresponding bipartite graph by an n×n-matrix

M with elements in {0� 1} . M(i� j) = 1 iff xj ∈ PI(fi) for 0 ≤ i� j � n .

Let i = a + bp and j = c + dp for 0 ≤ a� b� c� d � p . Then M(i� j) = 1

iff c ≡ a + bd mod p . This definition is illustrated by the submatrix

Mb�d of all elements with constant b and d . Then

Mb�d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 � � � 0
q
1 0 0 � � � 0

0 0 � � � 0 0 1 0 � � � 0

· ·
0 0 � � � 0 0 0 0 � � � 1

1 0 � � � 0 0 0 0 � � � 0

· ·
0 0 � � � 1 0 0 0 � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q ≡ b d mod p� (6.10)

The corresponding Boolean sums are (1� 1)-disjoint. Otherwise we

could find some ik = ak + bkp and jl = cl + dlp (1 ≤ k , l ≤ 2) such

that i1 �= i2� j1 �= j2 and M(ik� jl) = 1 .

168

By definition

cl ≡ ak + bkdl mod p for 1 ≤ k , l ≤ 2 and (6.11)

b1(d1 − d2) ≡ c1 − c2 ≡ b2(d1 − d2) mod p� (6.12)

Since p is prime either b1 = b2 or d1 = d2 . Either both rows or

both columns belong to the same submatrices. But by (6.10) these

submatrices do not have two ones in the same row or in the same

column. The Boolean sums are (1� 1)-disjoint and each fi is the sum

of p variables. By Theorem 6.2 Cm(f) is equal to n(p− 1) = n3�2 − n .

6.7 Boolean convolution

We repeat the definition of the Boolean convolution.

fk(x0� � � � � xn−1� y0� � � � � yn−1) =
∨

i+j=k
xi yj (0 ≤ k ≤ 2n− 2)� (7.1)

By (7.1) 2 n2− 2 n− 1 gates suffice. One conjectures that this number

of gates is also necessary in monotone circuits. Negations are powerful

for the Boolean convolution. By the results of Ch. 3 we compute the

Boolean convolution if we multiply the binary numbers

x′ =
∑

0≤i�n
xi 2

ki and y′ =
∑

0≤i�n
yi 2

ki

where k = �log n�+ 1 , i.e. we separate xi and xi+1 by �log n� zeros. x′

and y′ are binary numbers of length Θ(n log n) and can be multiplied

by the method of Schönhage and Strassen with O(n log2 n log log n)

gates.

For the monotone complexity of the Boolean convolution several

lower bounds have been proved, namely lower bounds of size n log n

(Pippenger and Valiant (76)), n4�3 (Blum (85)), and n3�2 (Weiß (83)),

see also Wegener (84 b) when comparing the methods. Weiß applies

the elimination method in conjunction with information flow argu-

169

ments. We investigate a larger class of functions since the subfunctions

of the Boolean convolution are not convolution functions.

DEFINITION 7.1 : A monotone function f : X ·∪ Y → {0� 1}m is

bilinear if each prime implicant of f consists of one x-variable and

one y-variable. f is even semi-disjoint if PI(fi) ∩ PI(fj) = � ◦ for i �= j

and each variable is contained in at most one prime implicant of each

output.

Obviously the Boolean convolution is a semi-disjoint bilinear form.

THEOREM 7.1 : Let f be a semi-disjoint bilinear form and let ri be

the number of outputs depending essentially on xi . Then

Cm(f) ≥ ∑
1≤i≤n

r
1�2
i � (7.2)

COROLLARY 7.1 : The monotone complexity of the Boolean convo-

lution is at least n3�2 while its circuit complexity is O(n log2 n log log n) .

Proof of Theorem 7.1 : If we replace x1 by 0 we obtain a subfunction

of f which is a semi-disjoint bilinear form with unchanged parameters

r2� � � � � rn . Therefore it is sufficient to prove that we can eliminate at

least r
1�2
1 gates if x1 = 0 . Let s1 be the number of outputs depending

essentially on x1 and consisting of only one prime implicant. If x1 = 0

we can eliminate those s1 ∧-gates where such outputs are computed.

In the following we eliminate at least (r1 − s1)
1�2 ∨-gates, altogether

at least r
1�2
1 gates.

We consider only outputs fk that depend essentially on x1 and have

more than one prime implicant. Let G0� � � � �Gm be a path from x1 to

fk . This path includes at least one ∨-gate Gl where xi yj for some i �= 1

and some j is an implicant of the computed function gl . Otherwise

each prime implicant of gl would include either x1 or two x-variables or

170

two y-variables. For x1 = 0 gl could be replaced by Theorem 5.1 by 0

and this would also hold for fk in contradiction to the assumptions.

Let G∗ be the set of all first ∨-gates on the paths from x1 to the

considered outputs fk where some xi yj for i �= 1 is implicant. By

our above-mentioned arguments one input of each gate in G∗ can be

replaced by 0 if x1 = 0 . Therefore all gates in G∗ can be eliminated

if x1 = 0 . The gates in G∗ form a bottleneck. We prove that this

bottleneck cannot be too tight.

Let G∗ = {G1� � � � �Gp} . We choose i(1)� � � � � i(p) �= 1 and

j(1)� � � � � j(p) such that xi(l) yj(l) ∈ I(gl) where gl is computed at Gl .

If xi(l) = yj(l) = 1 for 1 ≤ l ≤ p all gates in G∗ compute the con-

stant 1 . The output fk does not depend on x1 any longer. Let s be

chosen such that x1 ys ∈ PI(fk) . Since variables are only replaced by

ones, either fk is replaced by 1 or fk is replaced by a function f ′k where

ys ∈ PI(fk
′) . The second possibility would imply that xi(l) ys ∈ PI(fk)

for some l . This contradicts the definition of semi-disjoint bilinear

forms since i(l) �= 1 . Hence fk is replaced by 1 and xi(l) yj(m) ∈ PI(fk)

for some 1 ≤ l , m ≤ p . This conclusion holds for all r1 − s1 outputs

considered.

Due to the definition of semi-disjoint bilinear forms the prime im-

plicants are different for different outputs. Only p2 different prime

implicants can be constructed from the chosen p x-variables and p

y-variables. Hence p2 ≥ r1 − s1 and |G∗| = p ≥ (r1 − s1)
1�2 . �

6.8 Boolean matrix product

The Boolean (I� J�K)-matrix product fIJK of an I × K-matrix and

a K× J-matrix is defined by

171

zij =
∨

1≤k≤K
xik ykj (1 ≤ i ≤ I , 1 ≤ j ≤ J)� (8.1)

THEOREM 8.1 : C∨
m(fIJK) = I J (K − 1) , C∧

m(fIJK) = I J K and

Cm(fIJK) = 2 I J K− I J .

The upper bounds follow from definition. Pratt (75 a) proved the

necessity of IJK�2 ∧-gates, before Paterson (75) and Mehlhorn and

Galil (76) proved independently the exact bounds. The proof of the

lower bound for ∨-gates can be simplified by using the methods of

Weiß (83) (see § 7). Before we prove Theorem 8.1 we investigate the

Boolean matrix product fn of two n × n-matrices. By Theorem 8.1

Cm(fn) = 2 n3 − n2 and by the results of Ch. 3 C(fn) = O(nc) for some

constant c � 5�2 . Since fn is defined on 2 n2 variables and has n2

outputs we should express the bounds in dependence of N = n2 .

COROLLARY 8.1 : The monotone complexity of the Boolean matrix

product fn ∈ M2N�N is 2 N3�2 −N while its circuit complexity is O(Nc)

for some c � 5�4 .

Proof of Theorem 8.1 , ∨-gates : It is obvious that the Boolean

matrix product is a semi-disjoint bilinear form. But the lower bound

of Theorem 7.1 is not sharp enough for our purposes. We prove that

we can always eliminate at least J ∨-gates if we replace xik (1 ≤ i ≤ I ,

1 ≤ k ≤ K− 1) by 0 . There are J outputs zij (1 ≤ j ≤ J) that depend

essentially on xik and have at least two prime implicants. We prove

that the bottleneck G∗ of Theorem 7.1 has at least J gates.

Let G∗ = {G1� � � � �Gp} be the bottleneck for xik . Then we find

sets X∗ and Y∗ of p x-variables and p y-variables resp. such that the

replacement of these variables by ones forces all zij (1 ≤ j ≤ J) to com-

pute 1 . Hence Y∗ contains some yk(j)�j (1 ≤ j ≤ J) and |G∗| = p ≥ J.

�

172

For the lower bound on the number of ∧-gates we apply the second

replacement rule of Theorem 5.2.

DEFINITION 8.1 : The variables xik (1 ≤ i ≤ I) and ykj (1 ≤ j ≤ J)

are called variables of type k .

LEMMA 8.1 : Let g be computed in a monotone circuit for the

Boolean matrix product. If two different variables of type k are prime

implicants of g , g can be replaced by the constant 1 .

Proof : Let t1� t2 ∈ PI(g) be variables of type k . If t = 1 ,

t t1� t t2 ∈ PI(g). In order to apply Theorem 5.2 we only have to

establish (5.2). Let t∗ be a monom and zij be an output where

t∗ t t1� t∗ t t2 ∈ I(zij) . Hence for some k′ and k′′ t∗ t t1 is a length-

ening of xik′ yk′j and t∗ t t2 is a lengthening of xik′′yk′′j . If already t∗ t

is a lengthening of one of these monoms, t∗ t ∈ I(zij) , and we have

proved (5.2). Otherwise k′ = k = k′′ , since t1 and t2 are variables

of type k . t∗ t t1 and t∗ t t2 are lengthenings of xik ykj but t∗ t is not.

Since t1 �= t2 , t1 = xik and t2 = ykj or vice versa. To make xik ykj a

part of t∗ t t1 and t∗ t t2 , xik and ykj have to be members of t∗ t and

t∗ t ∈ I(zij) . �

Proof of Theorem 8.1 , ∧-gates : We replace all xi1 (1 ≤ i ≤ I)

by 1 and all y1j (1 ≤ j ≤ J) by 0 . Then the circuit computes an

(I� J�K − 1)-matrix product and we can proceed by induction. It is

sufficient to prove that we can eliminate at least I J ∧-gates by the

replacement considered.

Let Gij be the first gate where we compute a function gij such that

xi1 y1j ∈ PI(gij) . By definition of zij , Gij is well defined, and because

of the considerations of § 1 Gij is an ∧-gate (at ∨-gates no new prime

implicant is created). Let g1 and g2 be the inputs of Gij . By definition

173

of Gij and (1.5) w.l.o.g. t1 = xi1 ∈ PI(g1) and t2 = y1j ∈ PI(g2) . If

xi1 = 1 , g1 is replaced by 1 and Gij can be eliminated. It is sufficient

to prove that Gij �= Gi′j′ if (i� j) �= (i′� j′) . Otherwise each variable

xi1� xi′1� y1j and y1j′ of type 1 is a prime implicant of g1 or g2 . Since

i �= i′ or j �= j′ , either g1 or g2 has two different variables of type 1 as

prime implicant. This input can be replaced by 1 (see Lemma 8.1).

W.l.o.g. we assume that such replacements are done in advance. �

6.9 A generalized Boolean matrix product

Several new methods for the proof of lower bounds on the complex-

ity of monotone circuits have been developed during the investigation

of the following generalized Boolean matrix product (Wegener (79 a)

and (82 a)). Let Y be the Boolean matrix product of matrix X1 and

the transposed of matrix X2 . yij = 1 iff the i -th row of X1 and the

j -th row of X2 ˝have a common 1˝. This consideration of the Boolean

matrix product can be generalized to a ˝direct˝ matrix product of m

M × N-matrices X1� � � � �Xm . For each choice of one row of each ma-

trix the corresponding output computes 1 iff the chosen rows have a

common 1 .

DEFINITION 9.1 : The generalized Boolean matrix product fmMN is a

monotone function on m M N variables with Mm outputs (m�M ≥ 2).

The variables form m M × N-matrices. xi
hl is the element of the i -th

matrix at position (h� l) . xi
hl is a variable of type l .

For 1 ≤ h1� � � � � hm ≤ M let

yh1�����hm =
∨

1≤l≤N
x1
h1l

x2
h2l

� � � xm
hml � (9.1)

(h1� � � � � hm� l) = x1
h1l � � � x

m
hml is a prime implicant of type l .

174

THEOREM 9.1 : Cm(fmMN) ≤ N Mm (2 + (M− 1)−1) ≤ 3 N Mm .

Proof : N Mi ∧-gates are sufficient to compute all (h1� � � � � hi� l) if all

(1� � � � � hi−1� l) are already computed. Hence the number of ∧-gates

may be estimated by

N
∑

2≤i≤m
Mi ≤ N (Mm+1 − 1)(M− 1)−1 ≤ N Mm (1 + (M− 1)−1)�

(9.2)

Afterwards each output can be computed with N− 1 ∨-gates. �

It is possible to save a small amount of the ∧-gates. For the simple

Boolean matrix product we proved in § 8 that one ∧-gate is necessary

for each prime implicant, and that K − 1 ∨-gates are necessary for

outputs with K prime implicants. If we could generalize these ideas

to fmMN , we would obtain the following lower bounds: N Mm on the

number of ∧-gates and (N− 1) Mm on the number of ∨-gates. It was

proved (Wegener (79 a)) that the number of ∨-gates can be reduced

(for m constant and M large) approximately to N Mm (m − 1)−1 (see

Exercises). No good lower bound on the number of ∨-gates is known.

We can prove the necessity of (1�2) N Mm ∧-gates. At first we carry

out an analysis of the structure of optimal monotone circuits for fmMN .

Again we apply replacement rules.

Notation: xi
0l = 1 .

LEMMA 9.1 : Let g be computed in a monotone circuit for fmMN . Let

(i1� � � � � im� l) , (j1� � � � � jm� l) ∈ PI(g) for some l ∈ {1� � � � �N} and ik� jk ∈
{0� 1� � � � �M} . Let A = {k | ik = jk} , and let t be the conjunction of

all xk
ikl

where k ∈ A . Then g can be replaced by h = g ∨ t .

Proof : Let t1 =
∧

k �∈A
xk
ikl

and t2 =
∧

k �∈A
xk
jkl

. By definition of A , t1

and t2 have no common variable. According to Theorem 5.2 it is

sufficient to prove (5.1) and (5.2). (5.1) is fulfilled by assumption. If

175

(5.2) was not fulfilled, we would choose a monom t∗ and an output

(h1� � � � � hm) = yh1�����hm
such that t∗ t t1 and t∗ t t2 are implicants of

(h1� � � � � hm) but t∗ t is not. Then t∗ t t1 includes some (h1� � � � � hm� l
′)

but t∗ t does not include (h1� � � � � hm� l
′) . Hence l = l ′ . The same

holds for t∗ t t2 . That means (h1� � � � � hm� l) is a submonom of t∗ t t1

and t∗ t t2 but not of t∗ t . The variable that is not included in t∗ t is

a common variable of t1 and t2 in contradiction to the definition of t1

and t2 . �

We interpret this lemma. A monom is ˝useful˝ for some fmMN if it

is a (not necessarily proper) shortening of a prime implicant of fmMN .

If g includes several useful monoms of type l , we can replace g by

g ∨ t where t is the common part of all useful monoms of type l , i.e.

t is the monom consisting of all variables which are members of all

useful monoms of type l . The replacement of g by g ∨ t should not

cause any costs. Therefore we do not count ∨-gates and assume that

all monoms of less than m variables are given as inputs. The length

of a useful monom is bounded by m and the common part of different

useful monoms includes less than m variables.

Circuits in this model (only ∧-gates are counted, monoms of length

less than m are given as inputs) are called ∗-circuits, the appropriate

complexity measure is C∗
m . A ∗-circuit S for fmMN can now be trans-

formed into a ˝standard˝ ∗-circuit for fmMN of the same complexity. We

manipulate the gates of S according to their natural numbering. Let

g be computed at some gate. Let tl = 0 , if g includes at most one

useful monom of type l , and let tl be the common part of all useful

monoms of type l which are prime implicants of g , otherwise. We can

replace g by g ∨ t1 ∨ · · · ∨ tN without any costs. We obtain a ∗-circuit

S′ for fmMN . In S′ all inputs and outputs of ∧-gates have at most one

useful monom of type l as prime implicant. This standard form of

∗-circuits makes the following considerations much more easier. The

assumption that certain functions besides the variables and constants

are given as inputs has been applied for the first time in circuit theory

176

to the generalized matrix product (Wegener (79 a)).

In that paper a (2�m) N Mm lower bound has been proved using

the elimination method and the pigeon hole principle. Wegener (82 a)

improved that bound and proved a (1�2) N Mm lower bound which is

only by a small constant factor smaller than the known upper bounds.

More important than the new bound was the application of a new

method for proving lower bounds. The method is based on the defi-

nition of a suitable value function to estimate the value of each gate

for the computation of the outputs.

THEOREM 9.2 : Cm(fmMN) ≥ C∧
m(fmMN) ≥ C∗

m(fmMN) � (1�2) N Mm if

m ≥ 2 .

For m = 2 or m = 3 the (2�m) N Mm-bound is better than the

bound of Theorem 9.2.

COROLLARY 9.1 : For n ≥ 4 let m(n) = �log n� , M(n) = 2 ,

N(n) = �n�(2 log n)� and hn = f
m(n)
M(n)N(n) . hn is defined on at most n

variables and has at most n outputs. The monotone circuit complexity

of hn is of size n2� log n .

Proof of Theorem 9.2 : We only have to prove the last inequality.

Let S be an optimal ∗-circuit for fmMN . We assume that S is in stan-

dard form, i.e. the inputs and outputs of ∧-gates have at most one

prime implicant which is a useful monom of type l . We try to esti-

mate the value of each ∧-gate G for the computation of each prime

implicant (h1� � � � � hm� l) . A function vG : PI(fmMN) → [0� 1] is called

value function if

v(G) :=
∑

1≤h1� ���� hm≤M

∑
1≤l≤N

vG(h1� � � � � hm� l) ≤ 1� (9.3)

At each gate we can distribute at most the value 1 among the prime

implicants. This ensures that for an optimal ∗-circuit S

177

v(S) :=
∑

G ∧-gate in S
v(G) ≤ C∧

m(S) = C∗
m(fmMN) (9.4)

is a lower bound on C∗
m(fmMN) . Finally we prove the necessity of giving

value 1�2 to each prime implicant, i.e. we prove for all (h1� � � � � hm� l)

that

v(h1� � � � � hm� l) :=
∑

G ∧-gate in S
vG(h1� � � � � hm� l) � 1�2� (9.5)

Combining (9.3) – (9.5) we have proved that

C∗
m(fmMN) ≥ ∑

1≤h1� ���� hm≤M

∑
1≤l≤N

v(h1� � � � � hm� l) (9.6)

� (1�2) N Mm�

At first we define a value function. Then we discuss why we think

that such a value function works. Let G be an ∧-gate in an optimal

∗-circuit for fmMN . Let g′ and g′′ be the inputs of G and g = resG . We

define vG as the sum of v′G and v′′G . Let i1� � � � � iq′ ∈ {1� � � � �N} be the

types such that some tj ∈ PI(fmMN) of type ij is prime implicant of g

but not of g′ . Then

v′G(tj) = 1�(2q′) for 1 ≤ j ≤ q′ and (9.7)

v′G(t) = 0 for all other t ∈ PI(fmMN) .

Obviously

v′(G) :=
∑

1≤h1� ���� hm≤M

∑
1≤l≤N

v′G(h1� � � � � hm� l) ≤ 1�2� (9.8)

v′′G is defined in the same way but with respect to g′′ instead of g′ .
Then (9.3) is fulfilled. It remains to prove (9.5).

We discuss some arguments what makes the value function v a good

choice. v is relatively simple, the image of vG has at most 4 elements.

vG(t) is equal to

178

–
1

2q′
+

1

2q′′
if t ∈ PI(g) , t �∈ PI(g′)∪PI(g′′) , these prime implicants

are created at G ,

–
1

2q′
if t ∈ PI(g) ∩ PI(g′′) , t �∈ PI(g′) ,

–
1

2q′′
if t ∈ PI(g) ∩ PI(g′) , t �∈ PI(g′′) , these prime implicants are

preserved at G ,

– 0 if t �∈ PI(g) or t ∈ PI(g) ∩ PI(g′) ∩ PI(g′′) .

The prime implicants created at G get the highest score at G . This

is in accordance with our intuition. This score is quite small if q′ and

q′′ are quite large. What reasons are there for hoping that each of

these prime implicants t scores enough, i.e. v(t) � 1�2? If q′ and

q′′ are both large, then g has many prime implicants with variables

of different types. These ˝dirty˝ monoms cannot be lengthened to

prime implicants of fmMN . The only possibility to eliminate these dirty

monoms is that t scores sufficiently often.

Proof of (9.5) : We consider the prime implicant t = (h1� � � � � hm� l)

and the corresponding output yt := yh1�����hm
. Let S be an optimal

∗-circuit for fmMN in standard form, and let S(t) be the subcircuit con-

sisting of the following inputs and gates. A gate G of S belongs to

S(t) if some path in S leads from G to the output yt and if t is a

prime implicant of all functions computed on this path (including G).

Furthermore the inputs of the gates we just discussed belong to S(t) .

S(t) is a connected subcircuit with output yt . For each input g of

S(t) , t �∈ PI(g) , but t is a prime implicant of all functions computed

within the circuit.

If both direct predecessors of some gate G are inputs of S(t) , G is

an ∧-gate. Otherwise t �∈ PI(resG) . If an input of S(t) has an ∧-gate

as direct successor, some proper shortening of t is a prime implicant

of that input.

179

Let s1� � � � � sD be the inputs of S(t) leading directly into an ∧-gate.

Let G(i) be an ∧-gate with input si and let v∗G(i) = v′G(i) if si is the first

input of G(i) and v∗G(i) = v′′G(i) otherwise. In either case v∗G(i)(t) � 0 .

Instead of (9.5) we prove the stronger result

b1 + · · ·+ bD � 1�2 (9.9)

for bi = v∗G(i)(t) . W.l.o.g. b1 ≥ · · · ≥ bD . We choose some wi ∈ PI(si)

such that some proper lengthening w∗
i of wi is prime implicant of

resG(i) , v∗G(i)(w
∗
i) � 0 , and the type of w∗

i differs from the types of

w∗
1� � � � �w

∗
i−1 . We can always choose w∗

1 = t . If the choice of wi

according to our rules is impossible, v∗G(i) is positive for at most i− 1

prime implicants.

Hence bi ≥ (2(i− 1))−1 and, since b1 ≥ · · · ≥ bD ,

b1 + · · ·+ bD ≥ i bi � 1�2� (9.10)

In the following we assume that w1� � � � �wD are chosen according to

our rules. By construction wi ∈ PI(si) and

w1 � � �wD ≤ s1 � � � sD� (9.11)

We claim that

s1 � � � sD ≤ yt� (9.12)

Let a be an input where si(a) = 1 for 1 ≤ i ≤ D . S(t) is a circuit

where all inputs leading into ∧-gates are equal to 1 . Furthermore no

∨-gate of S(t) has two inputs of S(t) as direct predecessors. Now it is

easy to prove by induction that for input a all gates of S(t) compute 1 ,

in particular yt(a) = 1 . Because of (9.11) and (9.12)

w1 � � �wD ≤ yt� (9.13)

We consider that input a where all variables of w1 � � �wD are set to 1

and all other variables are set to 0 . By (9.13) yt(a) = 1 . All variables

of wi are of type li and l1� � � � � lD are different. Since wi is a proper

180

shortening of w∗
i and v∗G(i)(w

∗
i) � 0 , wi includes at most m−1 variables.

Hence a is an input where for each type at most m − 1 variables are

set to 1 . By definition of fmMN yt(a) = 0 . Because of this contradiction

it is impossible to choose w1� � � � �wD according to our rules. �

6.10 Razborov’s method

In § 3 – § 9 we heard about several methods for the proof of lower

bounds on the monotone complexity of Boolean functions. For func-

tions with one output we proved only linear bounds, and for functions

with n outputs the largest bound is of size Θ(n2 log−1 n) (see § 9).

Razborov (85 a) and (85 b) developed a method for the proof of expo-

nential lower bounds. The method itself can be described in a rather

simple way (like the elimination method or the method of value func-

tions). The ingenious part is the successful application to important

functions.

In monotone circuits we work in the lattice (Mn�∧�∨) . Instead

of f ∈ Mn we consider now f−1(1) . Let M∗
n be the set of all f−1(1)

where f ∈ Mn , i.e. the set of all up-sets. Then we work in the lat-

tice (M∗
n�∩�∪) . Razborov investigates computations in sublattices

of M∗ = M∗
n . We state formally the concepts before we discuss the

method.

DEFINITION 10.1 : (L����) is called a legitimate lattice if the

following conditions are fulfilled.

i) L ⊆ M∗ , x−1
1 (1)� � � � � x−1

n (1)� � ◦� {0� 1}n ∈ L .

ii) For M�N ∈ L the meet (the lattice theoretic intersection) M�N ∈
L is well defined and M �N ⊆ M ∩ N .

iii) For M�N ∈ L the join (the lattice theoretic union) M � N ∈ L is

well defined and M �N ⊇ M ∪ N .

181

The deviation of the operations � and � from ∩ and ∪ is measured

by δ�(M�N) = (M∩N)− (M�N) and δ�(M�N) = (M�N)− (M∪N) .

DEFINITION 10.2 : The complexity of f ∈ Mn (or f−1(1) ∈ M∗)
with respect to a legitimate lattice L is defined by

CL(f) = min{t | ∃ M�M1�N1� � � � �Mt�Nt ∈ L : (10.1)

M ⊆ f−1(1) ∪ ⋃
1≤i≤t

δ�(Mi�Ni) and

f−1(1) ⊆ M ∪ ⋃
1≤i≤t

δ�(Mi�Ni)}�

THEOREM 10.1 : CL(f) is a lower bound on Cm(f) for f ∈ Mn and

each legitimate lattice L .

Proof : Let S be an optimal monotone circuit for f . Let fi and gi

(1 ≤ i ≤ t = Cm(f)) be the inputs of the i -th gate of S . S∗ results

from S by the replacements xi → x−1
i (1) , 0 → �◦ , 1 → {0� 1}n , ∧ → � ,

∨ → � . S∗ is a computation in L . Let Mi and Ni be the inputs of

the i -th gate of S∗ , and let M be the output of S∗ . We prove by

induction on t that these sets fulfil the conditions described in (10.1).

The basis of the induction (t = 0) is obvious. For the induction step

we distinguish whether the t-th gate is an ∨-gate ((10.2) and (10.3)) or

an ∧-gate ((10.4) and (10.5)). By definition and induction hypothesis

M = Mt �Nt = Mt ∪Nt ∪ δ�(Mt�Nt) (10.2)

⊆ f−1
t (1) ∪ g−1

t (1) ∪ ⋃
1≤i≤t

δ�(Mi�Ni) = f−1(1) ∪ ⋃
1≤i≤t

δ�(Mi�Ni)�

182

f−1(1) = f−1
t (1) ∪ g−1

t (1) ⊆ Mt ∪ Nt ∪
⋃

1≤i≤t−1
δ�(Mi�Ni) (10.3)

⊆ Mt �Nt ∪
⋃

1≤i≤t
δ�(Mi�Ni) ⊆ M ∪ ⋃

1≤i≤t
δ�(Mi�Ni)�

M = Mt �Nt (10.4)

⊆ Mt ∩Nt ⊆ (f−1
t (1) ∩ g−1

t (1)) ∪ ⋃
1≤i≤t−1

δ�(Mi�Ni)

⊆ f−1(1) ∪ ⋃
1≤i≤t

δ�(Mi�Ni) and

f−1(1) = f−1
t (1) ∩ g−1

t (1) ⊆ (Mt ∩Nt) ∪
⋃

1≤i≤t−1
δ�(Mi�Ni) (10.5)

= Mt � Nt ∪
⋃

1≤i≤t
δ�(Mi�Ni) = M ∪ ⋃

1≤i≤t
δ�(Mi�Ni)�

�

A more careful analysis of (10.3) and (10.4) shows that we even

proved

M ⊆ f−1(1) ∪ ⋃
i|i-th gate is an ∧-gate

δ�(Mi�Ni) and (10.6)

f−1(1) ⊆ M ∪ ⋃
i|i-th gate is an ∨-gate

δ�(Mi�Ni)� (10.7)

We try to better understand computations in L . Exactly the func-

tions f where f−1(1) ∈ L have CL-complexity 0 . Again we have to

choose an appropriate class of functions which are given as inputs. If

f−1(1) �∈ L , then f−1(1) cannot be computed in an L-circuit. (10.1)

describes sufficiently good approximations M of f−1(1) . We do not

demand that the approximating sets M , Mi and Ni can be computed

in an L-circuit of size t .

How should we choose a lattice L where it can be proved that CL(f)

is large ? If L is too ˝dense˝, we can choose M in such a way that

f−1(1) − M and M − f−1(1) are small sets. Then these sets can be

183

covered with a small number of δ-sets. If L is too ˝coarse-grained˝,

i.e. has only few elements, δ-sets are large and again f−1(1)− M and

M− f−1(1) can be covered by a small number of δ-sets. In the extreme

case L consists only of x−1
i (1) for 1 ≤ i ≤ n , � ◦ and {0� 1}n and

M′ � N′ = � ◦ and M′ � N′ = {0� 1}n for M′�N′ ∈ L . Then CL(f) ≤ 1 ,

since we can choose M = {0� 1}n and M1 = N1 = � ◦ .

The lattice we choose should depend on the function f whose mono-

tone complexity we like to estimate. L should not contain a good ap-

proximation of f and δ-sets should be small. Razborov used lattices

where δ�-sets include only a small number of minimal elements of

f−1(1) (prime implicants) and δ�-sets include only a small number of

maximal elements of f−1(1) (prime clauses). Furthermore L includes

only sets M where f−1(1)−M or M− f−1(1) is large. In particular, we

prove a lower bound min on the minimal number of prime implicants

and prime clauses in (f−1(1)−M)∪ (M− f−1(1)) for M ∈ L . Then we

prove an upper bound max on the number of prime implicants in δ�-
sets and of prime clauses in δ�-sets. Then CL(f) ≥ min�max . By max

we estimate the maximal value of one computation step with respect

to L . The value necessary for the computation of f in an L-circuit is

at least min . Hence Razborov generalized the concepts that certain

functions besides the variables and constants are given as inputs and

that one should try to estimate the value of computation steps. His

estimations are much more rough than those in § 9. This might be

the key to the success of Razborov’s method.

These general considerations are useful for understanding

Razborov’s method. Nevertheless it is difficult to choose a good lat-

tice. So far, only one type of lattice has been applied successfully.

Razborov proved nΩ(log n)-bounds. Alon and Boppana (85) improved

these bounds to exponential bounds by a better analysis of Razborov’s

lattice.

184

6.11 An exponential lower bound for clique functions

DEFINITION 11.1 : The clique function cln�m ∈ MN where N =
(n

2

)
is defined on the variables xi�j (1 ≤ i � j ≤ n). cl n�m(x) = 1 iff

G(x) = (V = {1� � � � � n}� E(x) = {(i� j) | xi�j = 1}) includes an m-

clique, i.e. m vertices which are all directly connected by an edge.

The clique function is NP-complete if m = n�2 . Hence we suppose

that circuits for cl n�n�2 cannot have polynomial size. For monotone

circuits we can prove an exponential lower bound. At first we define a

legitimate lattice L = L(n� r� l) where the parameters l ≥ 2 and r ≥ 2

are fixed later.

DEFINITION 11.2 : Let W�W1� � � � �Wr be (not necessarily differ-

ent) sets and A a class of sets.

i) W1� � � � �Wr imply W (W1� � � � �Wr W) if |W| ≤ l , |Wi| ≤ l for

1 ≤ i ≤ r and Wi ∩Wj ⊆ W for all i �= j .

ii) A implies W (A W) if W1� � � � �Wr W for some W1� � � � �Wr ∈
A .

iii) A is closed if (A W) implies (W ∈ A) .

iv) A∗ is the intersection of all closed B ⊇ A .

LEMMA 11.1 : i) A∗ is closed.

ii) A ⊆ A∗ .

iii) (A∗)∗ = A∗ .

iv) A ⊆ B ⇒ A∗ ⊆ B∗ .

Proof : ii) and iv) follow by definition, and iii) follows from i). For

the proof of i) we assume that A∗ W . If B is closed and B ⊇ A , by

definition B ⊇ A∗ and hence B W . Since B is closed, W ∈ B for all

closed B ⊇ A . This implies W ∈ A∗ , and A∗ is closed. �

185

DEFINITION 11.3 : Let V = {1� � � � � n} and V(l) = {W ⊆ V |
|W| ≤ l} . For A ⊆ V(l) let �A� be the set of graphs on V containing

a clique on some W ∈ A . (L����) is defined by

L = L(n� r� l) = {�A� | A ⊆ V(l) is closed} ∪ {�◦}� (11.1)

�A� � �B� = �A ∩ B� and (11.2)

�A� � �B� = �(A ∪ B)∗� � (11.3)

LEMMA 11.2 : (L����) is a legitimate lattice.

Proof : The properties we have to establish are described in Defini-

tion 10.1.

i) L ⊆ M∗
N , since we identify graphs and vectors in {0� 1}N (see

Def. 11.1). � ◦ ∈ L by definition. �V(l)� = {0� 1}N ∈ L , since V(l)

is closed. Let Fij be the class of all W ∈ V(l) including i and j .

Fij is closed. Hence �Fij� = x−1
ij (1) ∈ L .

ii) Let A�B ⊆ V(l) be closed. Similar to the proof of Lemma 11.1

it follows that A ∩ B ⊆ V(l) is closed. Hence �A ∩ B� ∈ L . If

G ∈ �A���B� = �A ∩ B� , G contains a clique on some W ∈ A∩B .

Hence G ∈ �A� � �B� .

iii) By Lemma 11.1 (A ∪ B)∗ ⊆ V(l) is closed and �(A ∪ B)∗� ∈ L . If

G ∈ �A���B� , G contains a clique on some W ∈ A∪B ⊆ (A∪B)∗ .

Hence G ∈ �A� � �B� .

�

Before we estimate the L-complexity of clique functions, we inves-

tigate the structure of closed systems A . If B ∈ A , also all B′ ⊇ B

where |B′| ≤ l are elements of A . Obviously B� � � � �B B′ . This ob-

servation allows us to describe closed systems by their minimal sets,

namely sets B ∈ A where no proper subset of B is included in A . A

consists of its minimal sets, and all sets of at most l elements includ-

ing a minimal set. Later we shall establish relations between prime

186

implicants in δ-sets and minimal sets in closed systems. Therefore it

is important to prove that closed systems have not too many minimal

sets.

LEMMA 11.3 : In each closed system A the number of minimal sets

with at most k elements is bounded by (r− 1)k .

Proof : A system F of sets of at most k elements has the property

P(r� k) if there are no sets W�W1� � � � �Wr ∈ F and U � W such that

Wi∩Wj ⊆ U for all i �= j . The system of all minimal sets of A with at

most k elements has property P(r� k) . Otherwise, by definition of the

notion closed, U would be a set in A and W would not be minimal. We

prove by induction on r that systems F with property P(r� k) contain

at most (r− 1)k sets.

If F would contain different sets W1 and W2 for r = 2 , we could

choose U = W1 ∩W2 . Since W1 and W2 are both minimal sets, U is

a proper subset of W1 and W2 and for W = W1 we have proved that

F does not fulfil property P(2� k) .

For the induction step let F be a system with property P(r� k) . We

fix D ∈ F . For C ⊆ D let

FC = {W− C | W ∈ F� W ∩D = C}� (11.4)

FC has property P(r − 1� k − |C|) . Otherwise we choose

W′�W′
1� � � � �W

′
r−1 ∈ FC , U′ � W′ such that W′

i ∩ W′
j ⊆ U′ for i �= j .

Let W = W′ ∪ C ∈ F , U = U′ ∪ C � W , Wi = W′
i ∪ C ∈ F for

1 ≤ i ≤ r− 1 and Wr = D ∈ F . Since C ⊆ D , Wi ∩Wj ⊆ U for i �= j

in contradiction to the assumption that F has property P(r� k) . By

induction hypothesis |FC| ≤ (r− 2)k−|C| . Since D is fixed, the condi-

tion W∩D = C is fulfilled for only one set C . If W∩D = C = W′ ∩D

but W �= W′ , also W−C �= W′ −C . Finally we make use of the fact

that |D| ≤ k , since D ∈ F .

187

|F| =
∑

C⊆D
|FC| ≤

∑
0≤i≤|D|

(|D|
i

)
(r− 2)k−i (11.5)

≤ ∑
0≤i≤k

(k
i

)
(r− 2)k−i = (r− 1)k�

�

We provide some auxiliary means for the estimation of the size of

δ�-sets. These sets can be described as �C∗�−�C� for some appropriate

system C . How can C∗ be constructed out of C ?

Let C′ = {W �∈ C | C W} . By definition C∗ = C iff C′ = � ◦ .

If C′ �= � ◦ we improve C by choosing some minimal set W ∈ C′ and

adding W and all sets W′ ⊇ W where |W′| ≤ l to C . We obtain a

system B where C � B ⊆ C∗ and B∗ = C∗ . We continue with B in

the same way. The number of such improvement steps is bounded by

|V(l)| ≤ nl , since the improving set W ∈ V(l) . This upper bound

may be improved to l ! (r+1)l but this is not essential for our purposes.

(m − 1)-partite graphs correspond to inputs in cl−1
n�m(0) . Such a

graph G can be described by a coloring h : V → {1� � � � �m − 1} of

the vertices. The vertices i and j are connected by an edge in G(h)

iff h(i) �= h(j) . Later we have difficulties to choose the right (m− 1)-

partite graph. Therefore we investigate randomly chosen (m − 1)-

partite graphs or random colorings of graphs. For a coloring h the

graph G(h) contains a clique on the vertex set W ⊆ V iff the vertices

of W have different colors, i.e. W is colored. The uniform distribution

on all gn colorings of V with g colors yields a random coloring of V .

LEMMA 11.4 : Let g ≥ l , A ⊆ V(l) , W�W1� � � � �Wr ∈ A ,

W1� � � � �Wr W . Let E (or Ei) be the event that W (or Wi) is

colored. Let C Ei be the complementary event of Ei . Then

Pr(E ∩ C E1 ∩ · · · ∩ C Er) ≤
(

1− g(g− 1) · · · (g− l + 1)

gl

)r

(11.6)

Proof : Since Wi∩Wj ⊆ W , the events C E1� � � � �C Er are independent

if W is colored, i.e. if E happens. This follows since the sets Wi −W

188

are disjoint. Hence

Pr(E ∩ C E1 ∩ · · · ∩ C Er) ≤ Pr(C E1 ∩ · · · ∩ C Er | E) (11.7)

=
∏

1≤i≤r
Pr(C Ei | E) =

∏
1≤i≤r

(1− Pr(Ei | E))�

By (11.7) it suffices to prove that Pr(Ei | E) is at least

g · � � � · (g− l + 1)�gl . Let p(i) = |Wi ∩ W| and q(i) = |Wi − W| .
Then p(i) + q(i) = |Wi| ≤ l . The event E implies for the set Wi that

Wi∩W is colored with p(i) different colors. The probability that then

the q(i) elements of W −Wi get other and different colors is

∏
0≤j�q(i)

g − p(i)− j

g
≥ ∏

0≤j�l

g − j

g
=

g · � � � · (g − l + 1)

gl � (11.8)

�

LEMMA 11.5 : Let C ⊆ V(l) , g ≥ l and h be a random coloring

of V . Then

Pr(G(h) ∈ �C∗� − �C�) ≤ nl
(

1− g · � � � · (g− l + 1)

gl

)r

� (11.9)

Proof : We already described a construction of C∗ out of C in at most

nl steps. Let C0 = C�C1� � � � �Cp = C∗ be the steps of this construction

(0 ≤ p ≤ nl). It is sufficient to prove that

Pr(G(h) ∈ �Ci� − �Ci−1�) ≤
(

1− g · � � � · (g− l + 1)

gl

)r

� (11.10)

Let Wi be the chosen set for the construction of Ci out of Ci−1 . G(h)

contains a clique on D iff D is colored. G(h) is not in �Ci−1� iff all sets

in Ci−1 are not colored. G(h) is in �Ci� iff some set in Ci is colored.

By construction Wi has to be colored. Furthermore by construction

Ci−1 Wi , i.e. B1� � � � �Br Wi for sets Bj ∈ Ci−1 . Altogether the

event G(h) ∈ �Ci� − �Ci−1� implies that B1� � � � �Br are not colored

but Wi is colored. The probability of this event has been estimated in

Lemma 11.4.

189

Lemma 11.5 is a useful bound for the probability that a random

(m−1)-partite graph is in some δ�-set. Now we are prepared to prove

the lower bound.

THEOREM 11.1 : Let 4 ≤ m ≤ (1�4)(n� logn)2�3 , l =
⌈
m1�2

⌉
and

r =
⌈
4 m1�2 log n

⌉
. Then

Cm(cl n�m) ≥ CL(n�r�l)(cl n�m) (11.11)

≥ 1

8

(
n

m(r− 1)

)�(l+1)�2�
≥ 1

8

(
n

4m3�2 log n

)(m1�2+1)�2

�

In particular for m =
⌊
(1�4)(n� logn)2�3

⌋
Cm(cl n�m) = exp(Ω((n� log n)1�3))� (11.12)

Proof : The first inequality of (11.11) follows from Theorem 10.1. The

last inequalities of (11.11) and (11.12) follow from easy calculations.

The lower bound on CL(cl n�m) is still to be proved.

Let t = CL(cl n�m) and let M�M1�N1� � � � �Mt�Nt be sets fulfilling

the conditions of (10.1) , the definition of CL . By definition we can

choose closed systems A�A1�B1� � � � �At�Bt in V(l) where M = �A� ,

Mi = �Ai� and Ni = �Bi� .

Case 1 : M is not the set of all graphs.

We consider those
(n
m

)
graphs which contain exactly the edges of

an m-clique, i.e. the graphs corresponding to prime implicants. Each

of these graphs is by (10.1) contained in M or some δ�(Mi�Ni) . We

prove that M can include at most half of these graphs, and that each

δ�-set can include at most 4 (m(r− 1)�n)�(l+1)�2�(n
m

)
of these graphs.

In order to cover all m-cliques, it is necessary that

4

(
m(r− 1)

n

)�(l+1)�2� (
n

m

)
t +

1

2

(
n

m

)
≥
(

n

m

)
� (11.13)

(11.13) implies (11.11).

190

At first we estimate the quantity of m-cliques that can be included

in M . Each set W ∈ A has at least two elements, since each graph

contains each clique on one vertex and M is not the set of all graphs.

Let B be a set of m elements where the clique on B belongs to M .

Then we find some minimal set D ∈ A where D ⊆ B . By Lemma 11.3

A has at most (r − 1)k minimal sets D with k elements. D can be

responsible only for
(n−k
m−k

)
m-cliques, because this is the number of m-

element sets B ⊇ D . Hence the number of m-cliques in M is bounded

by ∑
2≤k≤l

(r− 1)k
(

n− k

m− k

)
� (11.14)

By elementary calculations
(n
m

)
�
(n−k
m−k

) ≥ (n�m)k and m(r − 1)�n ≤
1�2 . Hence

∑
2≤k≤l

(r− 1)k
(

n− k

m− k

)
≤

∑
2≤k≤l

(r− 1)k
(

n

m

)
(m�n)k (11.15)

≤
(

n

m

) ∑
2≤k≤l

(1�2)k ≤ (1�2)

(
n

m

)
�

By similar methods we investigate δ�(Mi�Ni) . By definition

δ�(Mi�Ni) = (Mi ∩Ni)− (Mi � Ni) (11.16)

= �Ai� ∩ �Bi� − �Ai ∩ Bi� �
If the m-clique on Z belongs to δ�(Mi�Ni) we can find some minimal

set U ⊆ Z in Ai and some minimal set W ⊆ Z in Bi , but no subset of

Z belongs to Ai ∩ Bi . Since Ai and Bi are closed, U ∪ W ⊆ Z will be

in Ai∩Bi if |U∪W| ≤ l . Hence |U∪W| � l , and one of the sets U or

W includes at least �(l + 1)�2� elements. If the m-clique on Z belongs

to δ�(Mi�Ni) , a minimal set of Ai or of Bi with at least �(l + 1)�2�
elements is included in Z . In the same way as before we can estimate

the number of m-cliques in δ�(Mi�Ni) by

191

∑
�(l+1)�2�≤k≤l

2(r− 1)k
(

n− k

m− k

)
≤ 2

(
n

m

)(
m(r− 1)

n

)�(l+1)�2� ∑
0≤i�∞

(
1

2

)i

(11.17)

= 4

(
n

m

)(
m(r− 1)

n

)�(l+1)�2�
�

Case 2 : M is the set of all graphs.

We consider the class of complete (m−1)-partite graphs, this class

includes only graphs in cl−1
n�m(0). By (10.1) each of these graphs is

contained in some δ�(Mi�Ni) . For Ci = Ai ∪ Bi

δ�(Mi�Ni) = (Mi �Ni)− (Mi ∪Ni) (11.18)

= �(Ai ∪ Bi)
∗� − �Ai ∪ Bi� = �C∗

i � − �Ci� �
Let h be a random (m − 1)-coloring of V , then G(h) is a complete

(m− 1)-partite graph. By Lemma 11.5 , the definitions of l and r and

an elementary calculation

Pr
(
G(h) ∈ �C∗

i � − �Ci�
)

(11.19)

≤ nl (1− (m− 1) · · · (m− l)�(m− 1)l
)r

≤ n
√

mn−2
√

m = n−
√

m and

Pr
(∃ 1 ≤ i ≤ t : G(h) ∈ �C∗

i � − �Ci�
) ≤ t n−

√
m� (11.20)

Since all complete (m−1)-partite graphs are in the union of all δ�-sets,
the left-hand probability of (11.20) is equal to 1 . Hence t ≥ n

√
m . The

claim follows since for m ≥ 4

n
√

m ≥ 1

8

(
n

m(r− 1)

)�(l+1)�2�
� (11.21)

�

192

6.12 Other applications of Razborov’s method

By similar methods Alon and Boppana (85) proved also the follow-

ing bounds.

DEFINITION 12.1 : cl n�p�q is the class of all monotone functions

f ∈ MN (where N =
(n

2

)
) such that f(x) = 0 if G(x) (see Def. 11.1)

contains no p-clique and f(x) = 1 if G(x) contains a q-clique.

THEOREM 12.1 : Let f ∈ cl n�p�q , 4 ≤ p ≤ q and p∗q ≤ n�(8 log n)

for p∗ = p1�2 . Then

Cm(f) ≥ 1

8

(
n

4p∗q log n

)(p∗+1)�2

≥ 1

8
2(p∗+1)�2� (12.1)

In particular, for p =
⌊
log4 n

⌋
and q =

⌊
n�(8 log3 n)

⌋
Cm(f) = nΩ(log n)� (12.2)

Hence it is even difficult to approximate clique functions.

THEOREM 12.2 : Cm(cl n�m) = Ω(nm� logm n) for constant m .

Theorem 12.2 improves an Ω(nm� log2m n)-bound of Razborov.

This bound is not far away from the obvious O(nm)-upper bound.

We show that negations are powerful for the computation of clique

functions.

THEOREM 12.3 : Let BMn be the Boolean matrix product of n×n-

matrices. For constant m and t =
(n
�m�3�

)
C(cl n�m) = O(C(BMt)) = o(n(5�2)�m�3�)� (12.3)

193

Proof : The second equality holds, since t ≤ n�m�3� and C(BMt) =

o(t5�2) (Coppersmith and Winograd (82), see Ch. 3, § 6). For the first

assertion we assume that 6 is a divisor of m . Otherwise we could

add up to 5 vertices to the graph which are all connected to all other

vertices.

How can we reduce the clique function to matrix multiplication ?

The rows and columns of the t × t-matrix correspond to the vertex

sets A ⊆ V of size m�3 . The matrix entry yA�B should be equal to 1 iff

A and B are disjoint and the graph G(x) implied by the input vector

x contains the clique on A ∪ B . Obviously G(x) includes an m-clique

iff for some sets A�B and C yA�B = yA�C = yB�C = 1 . We compute the

Boolean matrix product Z = Y2 . By definition zA�B = 1 iff for some

C yA�C = yC�B = 1 . Hence we can compute

cl n�m(x) =
∨
A�B

zA�B yA�B (12.4)

with O(t2) gates. Since BMt has t2 different outputs, C(BMt) ≥ t2 ,

and it is sufficient to prove that all yA�B can be computed with O(t2)

gates. Let yA = 1 iff G(x) includes the clique on A . All yA (|A| = m�3)

can be computed with O(t) gates, since m is constant. yA�B = 0 if A

and B are not disjoint. If A and B are disjoint, we partition A to A′

and A′′ and B to B′ and B′′ where the partition sets are of size m�6 .

Obviously

yA�B = yA′∪B′ ∧ yA′∪B′′ ∧ yA′′∪B′ ∧ yA′′∪B′′ ∧ yA ∧ yB� (12.5)

and all yA�B can be computed with O(t2) gates. �

We know now that C(f) = o(Cm(f)) for sorting, Boolean convolu-

tion, Boolean matrix product, and certain clique functions. The lower

bounds known on Cm(f)�C(f) are polynomial. Can this quotient be

superpolynomial or even exponential ? To answer this question we

consider perfect matchings.

DEFINITION 12.2 : PMn is defined on n2 variables xij (1 ≤ i� j ≤ n) .

194

PMn(x) =
∨

π∈Σn

x1�π(1) ∧ · · · ∧ xn�π(n)� (12.6)

PMn is called logical permanent (if ∨ is replaced by ⊕ we obtain the

determinant). PMn(x) = 1 iff the bipartite graph G(x) on V ∪ W =

{v1�w1� � � � � vn�wn} with edge set E(x) = {(vi�wj) | xij = 1} includes a

perfect matching, i.e. n vertex disjoint edges.

Hopcroft and Karp (73) designed a polynomial algorithm for the

decision whether or not a bipartite graph includes a perfect match-

ing. Therefore (see Ch. 9) we can design circuits of polynomial size

for PMn . Razborov (85 a) proved that the monotone complexity is

superpolynomial.

THEOREM 12.4 : Cm(PMn) = nΩ(log n) but C(PMn) = nO(1) . In

particular, Cm(PMn)�C(PMn) is superpolynomial.

It is still an open problem whether Cm(f)�C(f) can be exponential.

Finally we present the largest lower bound known on the monotone

complexity of explicitly defined Boolean functions. We should notice

that cl n�m is defined on Θ(n2) variables. The following bound has been

proved by Alon and Boppana (85) with Razborov’s method, the first

exponential bound for this function is due to Andreev (85).

DEFINITION 12.3 : Polyq�s is defined on n = q2 variables xij

(1 ≤ i� j ≤ q) where q is prime. Let G(x) be the bipartite graph spec-

ified by x (see Def. 12.2).

Polyq�s(x) = 1 iff a polynomial p over the field �q exists such that

degree(p) ≤ s− 1 and G(x) includes all edges (vi�wp(i)) .

THEOREM 12.5 : Cm(Polyq�s) = exp(Ω(n1�4 log1�2 n))

for s = (1�2)(q� log q)1�2 .

Superpolynomial and exponential lower bounds on the monotone

circuit complexity of other Boolean functions can be proved via mono-

195

tone projections (see § 1) or other monotone reductions (see Ch. 10,

§ 3).

6.13 Negation is powerless for slice functions

Because of Theorem 12.4 one might conjecture that lower bounds

on Cm(f) have no implications on C(f) . In the following we present

a fundamental class of functions where negation is almost powerless,

we prove that Cm(f) = O(C(f) + n log2 n) for slice functions. Lower

bounds on Cm(f) of size ω(n log2 n) imply lower bounds of the same

size on C(f) .

Our problem is the simulation of circuits by monotone circuits. At

first we switch to the complete basis {∧�∨�¬} , the number of gates

only needs to be increased by a constant factor (see Ch. 1, § 3). Then

we double all ∧-gates and ∨-gates, one output of a pair is negated, the

other one not. After that we can apply the deMorgan rules without

increasing the number of gates. Finally we obtain a so-called standard

circuit where only variables are negated. The most difficult problem

is the replacement of xi by a monotone function. Such a replacement

depends on the output of the circuit, since xi is not monotone. The

concept of pseudo complements is due to Berkowitz (82).

DEFINITION 13.1 : Let f ∈ Mn�m . A function hi ∈ Mn is a pseudo

complement for xi with respect to f if in each standard circuit for f xi

can be replaced by hi .

DEFINITION 13.2 : f ∈ Bn is called k-slice if f(x) = 0 for inputs x

with less than k ones and f(x) = 1 for inputs x with more than k ones.

f = (f1� � � � � fm) ∈ Bn�m is called k-slice if all fi ∈ Bn are k-slices.

196

Slice functions are monotone. The interesting inputs for a k-slice

are those with exactly k ones, the elements of the k -th slice of {0� 1}n .

THEOREM 13.1 : Let X = {x1� � � � � xn} and Xi = X−{xi} . Tn−1
k (Xi)

is a pseudo complement for xi with respect to k-slices f .

Proof : Let f ′ be that function computed by a standard circuit for

f after we have replaced xi by Tn−1
k (Xi) . We claim that f ′ = f . If

input a includes less than k ones, f(a) = 0 and Tn−1
k (Xi)(a) = 0 ≤ ai .

f ′(a) = 0 , since standard circuits are monotone below the inputs. If

input a includes more than k ones, f(a) = 1 , Tn−1
k (Xi)(a) = 1 ≥ ai and

f ′(a) = 1 by monotonicity. If input a includes exactly k ones

ai = 1 ⇔ ai = 0 ⇔ Tn−1
k (Xi)(a) = 1� (13.1)

f(a) = f ′(a) , since we do not have changed the circuit for these inputs.

Altogether f ′ = f . �

The following generalization of Dunne (84) is left as an exercise.

PROPOSITION 13.1 : hi ∈ Mn is a pseudo complement for xi with

respect to f ∈ Mn�m iff

∀ 1 ≤ j ≤ m : fj | xi=0 ≤ hi ≤ fj | xi=1� (13.2)

All f ∈ Mn have pseudo complements, but these pseudo comple-

ments may be hard to compute. Slice functions have pseudo comple-

ments which are easy to compute. Moreover, slice functions set up a

basis of all monotone functions (Wegener (85 a) and (86 b)).

DEFINITION 13.3 : The k -th slice fk of f ∈ Bn is defined by

fk = (f ∧ En
k) ∨ Tn

k+1 = (f ∧ Tn
k) ∨ Tn

k+1� (13.3)

THEOREM 13.2 : i) C(f) ≤ C(f0� � � � � fn) + O(n) .

197

ii) C(f0� � � � � fn) ≤ C(f) + O(n) .

iii) Cm(f0� � � � � fn) ≤ Cm(f) + O(n log n) if f monotone.

iv) Cm(fk) ≤ Cm(f) + O(n) if f monotone and k constant.

Proof : ii) , iii) , and iv) follow from (13.3) and the known upper

bounds on the complexity of threshold functions. i) follows from

f =
∨

0≤k≤n
(fk ∧ En

k)� (13.4)

�

Since C(f) = Θ(C(f0� � � � � fn)) , if C(f) = Ω(n) , we can investigate

(f0� � � � � fn) instead of f . (f0� � � � � fn) is called monotone representation

of f , since fk is monotone. Even for non monotone f ∈ Bn we can com-

pare C(f0� � � � � fn) with Cm(f0� � � � � fn) . Theorem 13.1 has the following

corollary.

COROLLARY 13.1 : i) Cm(fk) ≤ O(C(fk)) + Cm(k) where Cm(k) =

Cm(Tn−1
k (Xi) | 1 ≤ i ≤ n) .

ii) Cm(f0� � � � � fn) ≤ ∑
0≤k≤n

O(C(fk)) + Cm(0� � � � � n) where

Cm(0� � � � � n) = Cm(Tn−1
k (Xi) | 1 ≤ i ≤ n� 0 ≤ k ≤ n) .

Lower bounds on the monotone complexity of the k -th slice fk of

some explicitly defined f ∈ Bn of size ω(Cm(k)) imply a lower bound

of the same size on the circuit complexity of f . This fact offers a

strong motivation for the investigation of monotone circuits and slice

functions. We point out that we can use efficient circuits (over the

basis B2) for f ∈ Mn for the design of efficient monotone circuits for

(f0� � � � � fn) but not for the design of efficient monotone circuits for f .

(13.4) has no monotone analogue.

What is the monotone complexity of the pseudo complements for

slice functions ? The sets Xi are more or less alike. One might believe

198

that it is sufficient to sort X and to remove xi afterwards. But this last

step is impossible in monotone circuits. The best monotone circuits

for all Tn−1
k (Xi) (1 ≤ i ≤ n) have been designed by Paterson (pers.

comm.) , Valiant (86), and Wegener (85 a).

THEOREM 13.3 : Cm(k) = O(n min{k� n− k� log2 n}) .

Proof : The following circuit is suitable for small k . Obviously

Tn−1
k (Xi) =

∨
0≤p≤k

Ti−1
p (x1� � � � � xi−1) ∧ Tn−i

k−p(xi+1� � � � � xn) and (13.5)

Ti
p(x1� � � � � xi) = Ti−1

p (x1� � � � � xi−1) ∨
(
Ti−1

p−1(x1� � � � � xi−1) ∧ xi
)
� (13.6)

Because of (13.6) all Ti
p(x1� � � � � xi) (1 ≤ i ≤ n , 1 ≤ p ≤ k) can be com-

puted with at most 2 n k gates, the same holds for all Tn−i
k−p(xi+1� � � � � xn)

(0 ≤ i ≤ n − 1 , 0 ≤ p ≤ k− 1) . Because of (13.5) 2 n k further gates

suffice for the computation of all Tn−1
k (Xi) . Hence Cm(k) ≤ 6 n k and

by the duality principle also Cm(k) ≤ 6 n (n− k) .

For k not too small and not too large the following attack is promis-

ing. W.l.o.g. n = 2m . For each r ∈ {0� � � � �m} we partition X to 2m−r

blocks of successive variables of 2r variables. Let Xir be the 2r-block

that includes xi .

We use a Batcher sorting network to sort X with O(n log2 n) gates.

As mentioned in § 2 we sort simultaneously all Xir . Xi = X − {xi} is

the disjoint union of Zi�m−1� � � � �Zi�0 where Zir is some 2r-block. We can

sort Xi and compute Tn−1
k (Xi) by merging Zi�m−1� � � � �Zi�0 . If we merge

the small blocks at first, the intermediate results are of interest only

for Tn−1
k (Xi) . If we merge Zi�m−1 and Zi�m−2 , the result is of interest for

all those 2m−2 sets Xj where xj �∈ Zi�m−1 ∪ Zi�m−2 . Using this approach

we merge always a large set and a smaller one. Now we make the most

of the fact that we only compute Tn−1
k (Xi) and that we do not sort

Xi .

By Yir we denote the union of Zi�m−1� � � � �Zi�r , in particular Yi0 =

Xi . Since Yir = X − Xir , only 2m−r sets Yir are different. We are

199

interested in the element of rank k in Yi0 (the k -th largest element

of Yi0) . If we know the elements of rank k − 1 and k in Yi1 , we can

merge them with the 1-block Zi0 , and the middle element is equal to

Tn−1
k (Xi) . In general it suffices to know the elements of rank k−2r+1+

1� � � � � k in Yi�r+1 . Since Yir is the disjoint union of Yi�r+1 and Zir , the

elements of rank k − 2r + 1� � � � � k of Yir are the 2r middle elements

in the output of a merging network if we merge the elements of rank

k−2r+1+1� � � � � k in Yi�r+1 with the elements in Zi�r . All other elements

in Yi�r+1 cannot be elements of rank k− 2r + 1� � � � � k in Yir .

Thus we start with the sorted sets Yi�m−1 = Zi�m−1� � � � �Zi0 . For

r = m − 2� � � � � 0 we compute the elements of rank k − 2r + 1� � � � � k

in Yir by merging the elements of rank k − 2r+1 + 1� � � � � k in Yi�r+1

and the elements in Zir . The middle 2r elements are the elements we

are looking for. Using the Batcher merging network O((r + 1) 2r+1)

gates suffice. For fixed r we need 2m−r of these merging networks,

hence O((r + 1) 2m) = O((r + 1)n) gates. For all r together O(nm2) =

O(n log2 n) gates suffice. �

For practical purposes it is important to notice that the circuits

in the proof of Theorem 13.3 are not only asymptotically efficient but

also efficient for small n.

We do not know of a nonlinear lower bound on the monotone com-

plexity of some explicitly defined slice function f ∈ Mn . Razborov’s

method cannot be applied directly to slice functions. Till today this

is only a hypothesis many experts believe in, among them Razborov

(pers. comm.). One should try to formalize this hypothesis and to

prove the formal statement.

In § 14 we discuss central slices, i.e. n�2-slices, and argue why

they are more important than k-slices for constant k . For central

slices we have to prove ω(n log2 n) bounds on the monotone complexity

in order to obtain results for circuits over complete bases. Smaller

lower bounds can work only for functions which have more efficient

200

pseudo complements. Such classes of functions were introduced by

Wegener (86 b).

DEFINITION 13.4 : Fk
n ⊆ Mn is the class of all k-slices f for which

the set of variables can be partitioned in such a way into k disjoint sets

X1� � � � �Xk that each prime implicant of f of length k includes exactly

one variable of each class. (The disjunction of the prime implicants of

length k is a multilinear form.)

The j -th variable of Xi is denoted by xi
j (1 ≤ i ≤ k , 1 ≤ j ≤ n(i) =

|Xi|) . Let hi be the disjunction of all variables in Xi and let gi be

the conjunction of all hj (j �= i) . Obviously n − k gates suffice for

the computation of all hi . Then 3k − 6 gates suffice, if k ≥ 2 , for

the computation of all gi (Exercise 25, Ch. 3, generalized to monotone

circuits). If we estimate the number of gates by 3k−3 , the estimation

holds also for k = 1 . Let

yi
j = xi

j ∧ gi and zi
j =

∨
m�=j

yi
m� (13.7)

All yi
j can be computed with n gates, afterwards all zi

j for fixed i can

be computed with at most 3n(i)−3 gates. Altogether we can compute

all yi
j and zi

j with at most 5n−k−3 gates. yi
j and zi

j are almost pseudo

inputs and pseudo complements for xi
j with respect to functions in Fk

n .

THEOREM 13.4 : All yi
j and zi

j can be computed with O(n) gates. If

we replace in a standard circuit for f ∈ Fk
n xi

j by yi
j and xi

j by zi
j , then

f is replaced by some function f∗ where f = f∗ ∨ Tn
k+1 . Hence

Cm(f) = O(C(f)) + O(n) + Cm(Tn
k+1)� (13.8)

Proof : We only have to prove that f = f∗ ∨Tn
k+1 . If input a includes

either less than k ones or exactly k ones but not from k different

classes, f(a) = 0 and Tn
k+1(a) = 0 . Since yi

j(a) = 0 ≤ xi
j(a) and zi

j(a) =

201

0 ≤ xi
j(a)� f∗(a) = 0 by monotonicity. If input a includes exactly k ones

from different classes, Tn
k+1(a) = 0 . The set of prime implicants of yi

j

is the set of all monoms including exactly one variable of each class

among them xi
j . PI(zi

j) is the set of all monoms including exactly one

variable of each class but not xi
j . Hence xi

j(a) = yi
j(a) , xi

j(a) = zi
j(a)

and f(a) = f∗(a) . If a includes more than k ones, Tn
k+1(a) = 1 and

f(a) = 1 , since f is a k-slice. In this case the correcting term Tn
k+1 is

necessary. �

DEFINITION 13.5 : Gk
n ⊆ Mn is the class of all g = g∗∨T∗

2 for which

the set of variables can be partitioned in such a way into k disjoint

sets X1� � � � �Xk that each prime implicant of g∗ includes exactly one

variable of each class. T∗
2(X) is the disjunction of all T

n(i)
2 (Xi) .

THEOREM 13.5 : If we replace in a standard circuit for g ∈ Gk
n

xi
j by yi

j and xi
j by zi

j , then g is replaced by some function g′ where

g = g′ ∨ T∗
2 . Hence

Cm(g) = O(C(g)) + O(n)� (13.9)

Proof : The proof is similar to that of Theorem 13.4. Cm(T∗
2) = O(n) ,

since Cm(T
n(i)
2) = O(n(i)) . �

COROLLARY 13.2 : i) C(f) = Θ(Cm(f)) for f ∈ Fk
n if Cm(f) =

ω(n min{k� n− k� log n}) .

ii) C(g) = Θ(Cm(g)) for g ∈ Gk
n .

According to Corollary 13.2 already lower bounds of size n log n or

n log∗ n on the monotone complexity of certain functions imply similar

bounds for circuits over complete bases.

202

Dunne (84) applied the concept of slice functions and proved for

the most complex (n−k)-homogeneous functions f ∈ Hn−k
n (see Ch. 4,

§ 7) that C(f) = Θ(Cm(f)) . More precisely, Cm(f) = O(C(f))+O(nk−1)

for f ∈ Hn−k
n and constant k .

The monotone complexity of the set of all pseudo complements has

been determined by Wegener (86 b).

THEOREM 13.6 : Cm(0� � � � � n) = Θ(n2) .

Proof : The lower bound is obvious, since we consider n(n−1) different

outputs Tn−1
p (Xi) (1 ≤ p ≤ n− 1� 1 ≤ i ≤ n) .

For the upper bound we analyze Batcher’s merging network for

merging sorted lists of different size k = 2i and l = 2j , w.l.o.g. k ≥ l .

We only modify Step 1 of Algorithm 2.1.b. If l = 1 , k comparisons

suffice. Hence M(k� l) , the number of comparisons, fulfils the following

recursion equation.

M(k� l) = 2 M(k�2� l�2) + (k + l)�2− 1 and M(k� 1) = k�

(13.10)

Since the depth of recursion is only log l ,

M(k� l) = (k + l)(log l)�2 + k− l + 1� (13.11)

W.l.o.g. n = 2m . We apply a Batcher sorting network and sort X

and all n 2−r blocks of 2r successive variables. For this step O(n log2 n)

gates suffice. As in the proof of Theorem 13.3 Xi is the disjoint union

of Zi�m−1� � � � �Zi�0 where Zir is some 2r-block. Again Yir is the union

of Zi�m−1� � � � �Zir , hence Yi0 = Xi . We sort Yir by merging Yi�r+1 and

Zir . The size of Yi�r+1 is bounded by n , hence M(n� 2r) ≤ nr + n

comparisons suffice. For fixed r (0 ≤ r ≤ m− 2) we need 2m−r of these

merging networks, hence

2m−r(nr + n) = n2(r + 1) 2−r (13.12)

comparisons. Summing up for all r we can esimate the number of

gates by 6 n2 . �

203

This result implies that for all functions f ∈ Bn which cannot

be computed very efficiently, it is almost sufficient to investigate

the monotone complexity of the monotone representation (f0� � � � � fn)

of f . More precisely, C(f) = Ω(Cm(f0� � � � � fn)�n) and C(f) =

Θ(C(f0� � � � � fn)) .

6.14 Hard slices of NP-complete functions

According to Theorem 13.2 there is for each f ∈ Bn some k such

that C(fk) = Ω(C(f)�n) . Difficult functions have difficult slices, but

they also may have easy slices, e.g. for k = 0 or k = n . We like to know

which slice is hard, and we ask for relations between the complexity

of fk and fk+1 .

As examples for probably hard functions we consider NP-complete

functions, in particular the clique function cl n�m for m = n�2 (see

Def. 11.1). cl n�m has
(n
m

)
prime implicants, one for each vertex set A

of size m . All prime implicants tA are of length
(m

2

)
, tA is testing

whether all edges on A exist. The
(m

2

)
-slice of cl n�m has the same

prime implicants and additional prime implicants of length
(m

2

)
+ 1 .

This slice looks similar to cl n�m , but this slice is easy to compute

(Wegener (85 a)).

DEFINITION 14.1 : If f ∈ Mn has only prime implicants of length k ,

fk is called the canonical slice of f .

THEOREM 14.1 : The circuit complexity of the canonical slice

of cl n�m ∈ MN where N =
(n

2

)
is O(N) , its monotone complexity

O(N log N) , for constant m only O(N) .

204

Proof : The canonical slice is the M-slice for M =
(m

2

)
.

clMn�m = (cl n�m ∧ EN
M) ∨ TN

M+1 = (cl n�m ∧ TN
M) ∨ TN

M+1� (14.1)

In (14.1) we can replace cl n�m by any function g which equals cl n�m on

graphs with exactly M edges. TN
M and TN

M+1 have circuit complexity

O(N) .

A graph with exactly M edges includes an m-clique iff the M edges

set up an m-clique. This happens iff at least m vertices have degree at

least m− 1 . This condition can be expressed by threshold functions.

Let Xi = {x1i� � � � � xi−1�i , xi�i+1� � � � � xin}. Xi includes the variables de-

scribing the edges adjacent to vertex i . In (14.1) we can replace cl n�m
by Tn

m (Tn−1
m−1(X1)� � � � �T

n−1
m−1(Xn)) . All these n + 1 threshold functions

have circuit complexity O(n) , altogether O(n2) = O(N) . The results

for monotone circuits follow in the same way. �

DEFINITION 14.2 : f∗ = f�n�2� is the central slice of f ∈ Bn .

THEOREM 14.2 : For n even and l ≥ (n�2
2

)
Cm(cl ln�n�2) ≤ Cm(cl∗5n�5n�2)� (14.2)

If l �
(n�2

2

)
, cl ln�n�2 = TN

l+1 for N =
(n

2

)
.

This theorem due to Dunne (84) implies that the central slice of

cl n�n�2 has polynomial (monotone) circuits iff cl n�n�2 has polynomial

circuits. Furthermore cl∗n�n�2 is an NP-complete predicate, since the

reduction in the following proof can be computed in polynomial time.

Proof of Theorem 14.2 : It is sufficient to prove that cl ln�n�2 is a sub-

function of cl∗5n�5n�2 . We denote the vertices by v1� � � � � vn� w1� � � � �w4n

and replace all variables corresponding to edges which are adjacent

205

to some w-node by an appropriate constant. The vertices w1� � � � �w2n

form a 2n-clique, and these vertices are connected to all v-vertices.

The variables for the edges (wi�w2n+i) (1 ≤ i ≤ 2n) are replaced by 0 .

Altogether
(4n

2

)
+ 4n2 variables should be replaced by constants.

Until now we have decided that
(2n

2

)
+ 2n2 edges exist and that 2n

edges do not exist. We still have to decide about(
4n

2

)
+ 4n2 −

(
2n

2

)
− 2n2 − 2n = 8n2 − 3n (14.3)

edges. Let r =
⌈(5n

2

)
�2
⌉− l−((2n

2

)
+2n2

)
. Then 0 ≤ r ≤ 8n2−3n . We

decide that exactly r of the 8n2 − 3n variable edges exist. Altogether

the graph contains now
⌈(5n

2

)
�2
⌉− l edges.

It remains to be proved that the graph on V includes an n�2-clique

or more than l edges iff the graph on V ∪ W includes an 5n�2-clique

or more than
⌈(5n

2

)
�2
⌉

edges. Each n�2-clique on V can be extended

to a 5n�2-clique on V ∪ W by adding w1� � � � �w2n . If the graph on

W included a (2n + 1)-clique, this clique would include for some i the

vertices wi and w2n+i . This is impossible, since wi and w2n+i are not

connected. Hence a 5n�2-clique on V ∪ W implies an n�2-clique on

V . The assertion on the number of edges is obvious, since the graph

includes
⌈(5n

2

)
�2
⌉− l edges adjacent to some w-vertex. �

Results similar to those in Theorem 14.1 and 14.2 can also be

proved for other NP-complete predicates (see Exercises). In order to

obtain more results on the complexity of the slices of some function,

we compare the complexity of the k-slice with the complexity of the

(k + 1)-slice of some function f. Dunne (84) proved that fk+1 is not

much harder than fk , whereas Wegener (86 b) proved that fk+1 may

be much easier than fk .

THEOREM 14.3 : Let f ∈ Mn have prime implicants of length k

only. Then Cm(fk+l) = O(n Cm(fk+l−1)) for l ≥ 1 .

206

Proof : The key to the proof is the realization of fk+l by

fk+l(x) =
∨

1≤i≤n
fk+l−1(hi(x)) ∧ Tn

k+l(x) ∨ Tn
k+l+1(x) (14.4)

for hi(x) = y where yi = 0 and yj = xi xj for i �= j . (14.4) implies

the theorem, since Cm(fk+l−1) = Ω(n) , Cm(Tn
k+l �T

n
k+l+1) = O(n2) and

Cm(h1� � � � � hn) = O(n2) .

(14.4) is obvious for inputs with less or more than k + l ones. Let

a be an input with exactly k + l ones. W.l.o.g. ai = 1 iff i ≤ k + l . If

i � k + l , hi(a) = (0� � � � � 0) and fk+l−1(hi(a)) = 0 . If i ≤ k + l , hi(a)

differs from a only at position i , in particular hi(a) includes k + l − 1

ones.

If fk+l−1(hi(a)) = 1 , p(hi(a)) = 1 for some p ∈ PI(f) . Since

hi(a) ≤ a , p(a) = 1 and fk+l(a) = 1 .

If fk+l(a) = 1 , p(a) = 1 for some p ∈ PI(f) . By our assumption

p has length k . By definition of a the variables of p have indices

j ≤ k + l . Since l ≥ 1 , p(hi(a)) = 1 for some i such that xi is not in

p . Hence fk+l−1(hi(a)) = 1 . �

THEOREM 14.4 : Let c(k� n) =
(n−1

k−1

)(
log

(n−1
k−1

))−1
. There are

functions f ∈ Mn with prime implicants of length k only, such that

Cm(fk) = Ω(c(k� n)) and Cm(f l) = O(n log n) for l � k .

Proof : Let Fk�n be the set of all functions f such that all prime

implicants have length k and each monom of length k not including

x1 is a prime implicant of f . Then f ∈ Fk�n is defined by a subset

of all monoms of length k including x1 . Hence log |Fk�n| =
(n−1

k−1

)
.

By Shannon’s counting argument Cm(fk) = Ω(c(k� n)) for almost all

f ∈ Fk�n .

207

It suffices to prove that f l = Tn
l for f ∈ Fk�n and l � k . By

definition f l = (f ∧ Tn
l) ∨ Tn

l+1 . Obviously f l ≤ Tn
l . Let Tn

l (a) = 1 .

Then a includes l ones. Since l � k , input b , defined by b1 = 0 and

bi = ai for i �= 1 , includes at least k ones, and, by definition of Fk�n ,

f(b) = 1 . �

6.15 Set circuits - a new model for proving lower bounds

We are not able to prove non linear lower bounds on the circuit

complexity of explicitly defined Boolean functions. For monotone cir-

cuits we know several methods for the proof of lower bounds, and for

slice functions f lower bounds on Cm(f) imply lower bounds on C(f) .

Hence we should apply our lower bound methods to slice functions.

The reader should convince himself that our bounds (at least in their

pure form) do not work for slice functions. In this section we dis-

cuss some particularities of monotone circuits for slice functions f and

present some problems whose solution implies lower bounds on Cm(f)

and therefore also on C(f) (Wegener (85 a) and (86 b)).

Let PIk(g) be the set of prime implicants of g whose length is k .

Let Mk
n be the set of f ∈ Mn where PIl(f) = � ◦ for l � k . Mk

n includes

all k-slices.

LEMMA 15.1 : Let S be a monotone circuit for f ∈ Mk
n . If we replace

the inputs xi by yi = xi∧Tn
k , then the new circuit S′ also computes f .

The proof of this and the following lemmas is left to the reader.

For the computation of the pseudo inputs n + Cm(Tn
k) gates suffice.

All functions computed in S′ are in Mk
n . In the following sense slice

functions are the easiest functions in Mk
n .

208

LEMMA 15.2 : Let f� f ′ ∈ Mk
n and PIk(f) = PIk(f

′) . If f is a k-slice ,

f = f ′ ∨ Tn
k+1 and Cm(f) ≤ Cm(f ′) + Cm(Tn

k+1) + 1 .

Hence we consider prime implicants of length k only. If we do not

compute any shorter prime implicants, prime implicants of length k

will not be eliminated by the law of simplification.

LEMMA 15.3 : Let f� g ∈ Mk
n . Then

PIk(f ∨ g) = PIk(f) ∪ PIk(g) and (15.1)

PIk(f ∧ g) = PIk(f) ∩ PIk(g)� (15.2)

These lemmas motivate the so-called set circuits.

DEFINITION 15.1 : The inputs of a set circuit are for some k

the sets Yi = PI(xi ∧ Tk
n) and the operations are binary unions and

intersections. The set complexity of f ∈ Mk
n , denoted by SC(f) , is the

least number of gates in a set circuit for PIk(f) .

THEOREM 15.1 : Let f be a k-slice. Then

i) Cm(f) ≤ SC(f) + Cm(Tn
k�T

n
k+1) + n + 1 .

ii) SC(f) ≤ Cm(f) ≤ O(C(f)) + O(n min{k� n− k� log2 n}) .

Proof : We only combine the assertions of Lemma 15.1, 15.2, 15.3,

Theorem 13.1, Corollary 13.1, and Theorem 13.3. �

Set circuits form the principal item of monotone circuits and cir-

cuits for slice functions. So we obtain a set theoretical or combinatorial

representation of circuits.

For the classes of functions Fk
n and Gk

n (see Def. 13.4 and 13.5) we

can use the pseudo inputs yi
j and in set circuits the sets Yi

j = PI(yi
j) ,

the prime implicants in Yi
j all have exactly one variable of each class

209

Xi . This holds for all gates of a set circuit with inputs Yi
j . This leads

to both a geometrical and combinatorial representation of set circuits.

The set of monoms with exactly one variable of each class Xi

(1 ≤ i ≤ k) can be represented as the set theoretical product

Q = ×
1≤i≤n

{1� � � � � n(i)} where (r(1)� � � � � r(k)) ∈ Q corresponds to the

monom x1
r(1) � � �x

k
r(k) . Q is a k-dimensional, discrete cuboid. Input Yi

j

corresponds to the (k−1)-dimensional subcuboid of all (r(1)� � � � � r(k))

where r(i) = j . The set of prime implicants of f ∈ Fk
n or g ∈ Gk

n cor-

responding to vertices in Q forms a subset Q(f) or Q(g) of Q , called

pattern of f or g . Set circuits for f or g correspond to computations of

Q(f) or Q(g) by unions and intersections out of the (k−1)-dimensional

subcuboids of Q .

For n = 2 k and n(1) = · · · = n(k) = 2 we work on the k-dimen-

sional cube {0� 1}k (or {1� 2}k) . There is a one-to-one relation between

subsets Q′ of {0� 1}k and functions in Fk
n or Gk

n . If we could prove for

some explicitly defined set Q′ ⊆ {0� 1}k that ω(n) binary unions and

intersections are necessary for the computation of Q′ out of all (k−1)-

dimensional subcubes of {0� 1}k , then we would have proved a lower

bound of the same size on the circuit complexity of the corresponding

g ∈ Gk
n .

In order to illustrate our geometrical approach as well as for later

purposes, we prove that the canonical slice of the Boolean convolution

has linear complexity.

THEOREM 15.2 : The monotone complexity of the canonical slice

of the Boolean convolution is linear.

Proof : The canonical slice is the 2-slice, the Boolean convolu-

tion is a function in F2
2n�2n−1 . Hence the cuboid considered is

the square {1� � � � � n}2 . The i -th row corresponds to the set of

monoms Ai = {xi y1� � � � � xi yn} and the j -th column corresponds to

Bj = {x1 yj� � � � � xn yj} . These sets are inputs of the set circuit. We

210

have to compute the Boolean convolution , i.e. the diagonal sets

Tk = {xi yj|i + j = k} . It is sufficient to design a set circuit of linear

size for T2� � � � �T2n .

W.l.o.g. n = m2 . We partition the square to m2 subsquares of side

length m each (see Fig. 15.1).

1. Dl = A(l−1)m+1 ∪ · · · ∪ A(l−1)m+m (1 ≤ l ≤ m) (m2 −m gates).

2. El = B(l−1)m+1 ∪ · · · ∪ B(l−1)m+m (1 ≤ l ≤ m) (m2 −m gates).

3. Fij = Di ∩ Ej (1 ≤ i� j ≤ m) (m2 gates).

Fij are the subsquares of side length m .

4. Gij =
⋃

i+j=l
Fij (2 ≤ l ≤ 2m) (m2 − 2m + 1 gates).

Gl is the l -th diagonal consisting of subsquares.

5. Hl = Al ∪Am+l ∪ · · · ∪A(m−1)m+l (1 ≤ l ≤ m) (m2 −m gates).

6. Il = Bl ∪ Bm+l ∪ · · · ∪ B(m−1)m+l (1 ≤ l ≤ m) (m2 −m gates).

7. Jij = Hi ∩ Ij (1 ≤ i� j ≤ m) (m2 gates).

Jij includes of each subsquare the element at position (i� j) .

8. Kl =
⋃

i+j=l
Jij (2 ≤ l ≤ 2m) (m2 − 2m + 1 gates).

Kl consists of all l -th diagonals of subsquares.

Tk cuts at most two adjacent diagonals of subsquares, say Gh(k) and

perhaps Gh(k)+1 (see Fig. 15.1). The intersection of Tk and Gh(k) con-

sists of all d′(k)-th diagonals of the subsquares in Gh(k) . Let d′′(k) be

the corresponding parameter for the intersection of Gh(k)+1 and Tk .

Hence

9. Tk = (Gh(k) ∩Kd′(k)) ∪ (Gh(k)+1 ∩Kd′′(k)) if k− 1 is not a multiple

of m and m + 2 ≤ k ≤ m2 −m , and

Tk = Gh(k) ∩Kd′(k) otherwise.

Here 2 ≤ k ≤ 2n and 6n− 8m + 3 gates suffice.

Altogether the set circuit consists of 14n− 16m + 5 gates. �

211

x

x

x

x
x

x

x
x

x

x
x

Fig. 15.1

n = 16 , m = 4 , k = 12 , h(k) = 3 ,

T12 = (G3 ∩K8) ∪ (G4 ∩K4)

d1(k) = 8 , d2(k) = 4 ,

At the end of this section we discuss relations between functions

of n outputs and their corresponding one output function. These

considerations result in another combinatorial problem whose solution

would probably imply lower bounds for slice functions.

Let x = (x1� � � � � xn) and y = (y1� � � � � yn) . For f1� � � � � fn ∈ Mn we

define g� g1� � � � � gn ∈ Mn by

gi(x� y) = yi ∧ fi(x) and g(x� y) =
∨

1≤i≤n
gi(x� y)� (15.3)

LEMMA 15.4 : i) Cm(g1� � � � � gn) = Cm(f1� � � � � fn) + n .

ii) Cm(g) ≤ Cm(g1� � � � � gn) + n− 1 .

Proof : The upper bounds follow from the definition and the lower

bound can be proved by the elimination method. �

For many functions, in particular those functions we have investi-

gated in § 4 – § 9 , we suppose that equality holds in Lemma 15.4 ii.

Let us consider k-slices F1� � � � �Fn ∈ Mn . Then Fi = Fi
′ ∨ Tn

k+1 where

PI(Fi
′) = PIk(Fi) . Since yi ∧ Fi is in general no slice, we define the

(k + 1)-slices G�G1� � � � �Gn by

212

Gi(x� y) = G′
i(x� y) ∨ T2n

k+2(x� y) where (15.4)

G′
i(x� y) = yi ∧ Fi

′(x)� and G(x� y) =
∨

1≤i≤n
Gi(x� y)� (15.5)

Since yi∧Tn
k+1(x) ≤ T2n

k+2(x� y) , we can replace in (15.4) F′
i by Fi . By

definition we obtain the following upper bounds.

LEMMA 15.5 : i) Cm(G1� � � � �Gn) ≤ Cm(F1� � � � �Fn)+Cm(T2n
k+2)+2n .

ii) Cm(G) ≤ Cm(G1� � � � �Gn) + n− 1 .

Even a partial converse of Lemma 15.5 ii can be proved.

LEMMA 15.6 : CΩ(G1� � � � �Gn) ≤ CΩ(G) + CΩ(T2n
k+2) + 2n for Ω ∈

{B2�Ωm} .

Proof : The assertion follows from the following representation of Gi .

G(x� y) ∧ yi ∨ T2n
k+2(x� y) (15.6)

=
∨

1≤j≤n

(
yj ∧ Fj

′(x) ∨ T2n
k+2(x� y)

) ∧ yi ∨ T2n
k+2(x� y)

= (F′
i(x) ∧ yi) ∨

(∨
j�=i

F′
j(x) ∧ yj ∧ yi

) ∨ (T2n
k+2(x� y) ∧ yi) ∨ T2n

k+2(x� y)

= (Fi
′(x) ∧ yi) ∨ T2n

k+2(x� y) = Gi(x� y)�

�

What about a partial converse of Lemma 15.5 i ? In opposition

to Lemma 15.4 i we cannot apply the elimination method. If we set

y1 = · · · = yn = 1 and if k ≤ n − 2 , T2n
k+2(x� y) = 1 and Gi(x� y) =

1 . We even suppose that Cm(F1� � � � �Fn) can be much larger than

Cm(G1� � � � �Gn) . To underpin this supposition, let F1� � � � �Fn ∈ Fk
n ,

i.e. our geometrical view works for F1� � � � �Fn . Then G1� � � � �Gn ∈
Fk+1

n , the (k + 1)-st dimension concerns the y-variables. The patterns

F1� � � � �Fn are defined on the same k-dimensional cuboid Q . Gi has

to be constructed on a (k+1)-dimensional cuboid Q′ . More precisely,

213

the pattern of Gi equals the pattern of Fi and has to be constructed

on that k-dimensional subcuboid Qi of Q′ where the last dimension is

fixed to i. G1� � � � �Gn can be constructed ˝in parallel˝ on the disjoint

subcuboids Qi of Q′ , but F1� � � � �Fn have to be constructed on the

same cuboid Q . Obviously Q and Qi are isomorphic. We illustrate

these considerations in an example.

Let f1� � � � � fn be the Nechiporuk Boolean sums (see § 6). Then

Cm(f1� � � � � fn) = Θ(n3�2) . Let F1� � � � �Fn be the canonical slices, i.e.

the 1-slices, of f1� � � � � fn , and let G�G1� � � � �Gn be defined by (15.4)

and (15.5). We consider the pattern of G , which is a subset of the

square {1� � � � � n}2 . The pattern of G consists of the subpatterns Mb�d

of (6.10) , so G is composed of small diagonals.

Similarly to Theorem 15.2 we can prove

LEMMA 15.7 : Cm(G) = O(n) .

By Lemma 15.6 also Cm(G1� � � � �Gn) = O(n) . Lemma 15.6 can now

be made clear. G is a pattern in the square {1� � � � � n}2 , Gi the subpat-

tern in the i -th row. Let us consider again the algorithm for the proof

of Theorem 15.2. We compute ˝in parallel˝ different useful patterns

in different rows. This approach cannot be used for the computation

of F1� � � � �Fn . In that case we work on the cuboid {1� � � � � n}1 , i.e.

the set {1� � � � � n} , and we cannot work ˝in parallel˝. We suppose

that SC(f1� � � � � fn) , Cm(F1� � � � �Fn) and therefore also C(F1� � � � �Fn)

are nonlinear. We reformulate in a pure set theoretical setting the

problem of computing SC(f1� � � � � fn) . Nonlinear lower bounds for this

problem imply lower bounds of the same size on the circuit complexity

of the explicitly defined Boolean sums f1� � � � � fn .

Inputs : {1}� � � � � {n} .

Operations : ∩ , ∪ (binary).

Outputs : H1� � � � �Hn where Hi = {j | xj ∈ PI(fi)} .

Problem : SC(H1� � � � �Hn) = ? (=
∑

1≤i≤n
(|Hi| − 1) ?) .

214

EXERCISES :

1. Let f ∈ Mn be in MDNF. If we replace ∧ by ∗ and ∨ by + ,

we obtain the polynomial p(f) . Then Cm(f) ≤ C{+�∗}(p(f)) , but

equality does not hold in general.

2. If a sorting network sorts all 0-1-sequences, it also sorts all se-

quences of real numbers.

3. C∧
m(Tn

2) = �log n� .

4. C∧
m(f) = 2 n for f(x1� � � � � x3n) =

∨
1≤i≤n

T3
2(x3i−2� x3i−1� x3i) .

5. C∧
m(Sn) = C∨

m(Sn) = Ω(n log n) .

6. Each monotone circuit for Sn includes a permutation network, i.e.

for π ∈ Σn there are disjoint paths from xi to the output Tn
π(i) .

7. The minimal external path length of binary trees with n leaves is

n �log n� − 2�log n� + n .

8. Let f be a semi-disjoint bilinear form.

Then Cm(f) ≥ min{|X|� |Y|}−1(t(1) + · · · + t(m)) where t(j) is

defined in (4.2).

9. Formulate the replacement rules dual to Theorem 5.1 and 5.2 and

discuss applications.

10. The replacement rules of Theorem 5.1 and 5.2 are powerless for

slice functions.

11. Let g be computed in a monotone circuit for the Boolean convo-

lution. Let t� t′ ∈ PI1(g). Can g be replaced by the constant 1 ?

215

12. Let g be computed in a monotone circuit for f .

a) g can be replaced by 0 ⇔ ∀ t ∈ PI(g) ∀ t′ monom : t t′ �∈ PI(f) .

b) g can be replaced by 1 ⇔ (g h ≤ f ⇒ h ≤ f) .

13. Let f be the Boolean sum of Theorem 6.1. Then Cm(f) = 17 and

C{∨}(f) = 18 .

14. Which is the largest lower bound that can be proved using (6.9)

and Theorem 6.2 ?

15. Apply the methods of the proof of Theorem 7.1 to (1� 1)-disjoint

Boolean sums.

16. For a semi-disjoint bilinear form f let G(f) be the bipartite graph

including the edge (r� s) iff xr ys ∈ PI(fk) for some k . Let V(r� s)

be the connected component including the edge (r� s) . f is called

a disjoint bilinear form iff V(r� s) and PI(fk) have at most one edge

(or prime implicant) in common.

a) The Boolean matrix product is a disjoint bilinear form.

b) The Boolean convolution is not a disjoint bilinear form.

17. If f ∈ Mn�n is a disjoint bilinear form, |PI(f)| = O(n3�2) .

18. If f ∈ Mn�m is a disjoint bilinear form, C∧
m(f) =

∑
1≤k≤m

|PI(fk)| .

19. The monograph Savage (76) contains a proof that

C∨
m(f) =

∑
1≤k≤m

(|PI(fk)| − 1) for disjoint bilinear forms.

a) The proof is incorrect. Find the error.

216

b) Barth (80) presented the following counterexample.

g is defined on xi� yi (0 ≤ i � 2n2). The output gk (k =

(k0� � � � � k3) ∈ {0� � � � � n − 1}4) has the prime implicants xa(k)yb(k)

and xc(k)yd(k) where a(k) = k3n + k0 , b(k) = k2n + k1 , c(k) =

n2 + k1n + k0 , d(k) = n2 + k3n + k2 . Hint: Consider the MCNF

of g .

20. Optimal monotone circuits for the Boolean matrix product are

unique up to associativity and commutativity.

21. Maximize N Mm for m M N ≤ n and Mm ≤ n .

22. Apply the elimination method to the generalized matrix product

fmMN .

23. Let P(n) be the circuit complexity of the Boolean matrix product.

Prove upper bounds on C(fmMN) depending on n and P(n) .

24. Investigate the MCNF of fmMN . How many ∨-gates are sufficient

for the computation of fmMN ?

25. Design ∗-circuits for fmMN with N Mm ∧-gates where

v(h1� � � � � hm� l) =
i + 1

2i
for all prime implicants (i fixed, m

large).

a) For almost all gates v(G) =
1

2
.

b) For almost half of the gates v(G) = 0 , for the other gates

v(G) = 1 .

26. B ⊆ PI(f) is called isolated if r = s or r = t for r ∈ PI(f) . Compute

the size of the largest isolated set for

a) the Boolean convolution b) the clique function.

27. Schnorr (76 c) conjectured by analogy with his results on arith-

metic circuits that C∨
m(f) ≥ |B| for isolated sets B . Wegener (79 b)

217

presented the following counterexample. Let yhh′h′′ be the outputs

of f3M2 and let g be defined on M3 + 6M2 variables by

g(xi
jl � zhh′h′′) =

∨
1≤h�h′�h′′≤M

yhh′h′′ zhh′h′′ �

PI(g) is isolated but C∨
m(g) ≤ M3 +6M2 +3M− 1 (use the MCNF

for f3M2) .

28. Cm(f) = Θ(2nn−3�2) for almost all slices f ∈ Mn .

29. If C(f) = Ω(2nn−1) , f has Ω(n1�2) slices of complexity Ω(2nn−2) .

30. Prove Proposition 13.1.

31. The canonical slice of the Boolean matrix product has complexity

O(n2) .

32. Design efficient circuits for the canonical slices of the following

functions :

a) Perfect matching PMn (see Def. 12.2).

b) UHCn (and DHCn) . UHCn(x) = 1 iff the undirected graph

G(x) on n vertices specified by the variables x includes a Hamilto-

nian circuit, i.e. a circuit of length n . DHC is the same function

for directed graphs.

33. Cm(DHCl
n) ≤ Cm(DHC∗

7n) if n ≤ l ≤ n(n− 1) .

34. Prove Lemma 15.1, 15.2, 15.3, and 15.7.

218

7. RELATIONS BETWEEN CIRCUIT SIZE, FORMULA SIZE

AND DEPTH

We investigate the relations between the complexity measures cir-

cuit size C , formula size L and depth D . A more intensive study of

formulas (in Ch. 8) is motivated by the result that D(f) = Θ(log L(f)) .

For practical purposes circuits of small size and depth are preferred. It

is an open problem, whether functions of small circuit size and small

depth always have circuits of small size and depth. Trade-offs can be

proved only for formula size and depth.

7.1 Formula size vs. depth

The relations between formula size and depth have been in-

vestigated also for arithmetic computations (Brent, Kuck and

Murayama (73), Muller and Preparata (76), and Preparata and

Muller (76)). The results are similar to those for Boolean formulas,

D(f) = Θ(log L(f)) , hence formula size is also a complexity measure

for parallel time.

DEFINITION 1.1 : The selection function sel ∈ B3 is defined by

sel(x� y� z) = xy ∨ xz� (1.1)

For a basis Ω

k(Ω) =
DΩ(sel) + 1

log 3− 1
� (1.2)

The variable x decides which of the variables y or z we se-

lect. If sel is computable over Ω , k(Ω) is small. In particular,

k(B2) = 3�(log 3− 1) ≈ 5�13 . Obviously sel is not monotone. Let

sel′(x� y� z) = y ∨ xz . Then sel′ = sel for all inputs where y ≤ z .

219

Since Dm(sel′) = 2 , we define k(Ωm) = 3�(log 3 − 1) . The following

theorem has been proved for complete bases by Spira (71 a) and for

the monotone basis by Wegener (83). Krapchenko (81) improved the

constant factor of the upper bound for several bases.

THEOREM 1.1 : Let f ∈ Bn and Ω ⊆ B2 complete, or f ∈ Mn and

Ω = Ωm . Then

log(LΩ(f) + 1) ≤ DΩ(f) ≤ k(Ω) log(LΩ(f) + 1)� (1.3)

Proof : The first inequality is rather easy. Let S be a depth optimal

circuit and let d = DΩ(f) . We find a formula F for f of depth d (see

Ch. 1). F is a binary tree of depth d , hence the number of gates

(inner nodes) of F is bounded by 2d − 1 . Hence LΩ(f) ≤ 2d − 1 .

The second inequality is proved by induction on l = LΩ(f) . The

assertion is obvious for l ≤ 2 , since k(Ω) � 2 . Let l ≥ 3 and let F

be an optimal formula for f . If the depth of F is too large, we shall

rebuild F such that the depth decreases. During this procedure the

size can increase exponentially. F is a binary tree. Let F1 and F2 be

the right and left subtree of F computing f1 and f2 resp. The size of

F1 or F2 is denoted by l 1 or l 2 resp. W.l.o.g. l 1 ≤ l 2 . Then

l 1 + l 2 = l − 1� 0 ≤ l 1 ≤ (l − 1)�2� 1 ≤ (l − 1)�2 ≤ l 2 ≤ l − 1� (1.4)

We apply the induction hypothesis to F1 , since this subtree is small

enough. For F2 we have to work harder. Let F0 be the smallest subtree

of F2 with at least �l 2�3� gates. Both the right and the left subtree of

F0 have at most �l 2�3� − 1 gates. Hence we can estimate l 0 , the size

of F0 , by

1 ≤ �l 2�3� ≤ l 0 ≤ 2(�l 2�3� − 1) + 1 ≤ (2l 2 + 1)�3� (1.5)

F0 is a subtree of F2 of medium size. Let f0 be the function computed

by F0 , and let f2�i for i ∈ {0� 1} be the function computed by F2 if we

replace the subformula F0 by the constant i . By definition

f2 = sel(f0� f2�0� f2�1)� (1.6)

220

If F2 is a monotone formula, f2�0 ≤ f2�1 and

f2 = sel′(f0� f2�0� f2�1)� (1.7)

We compute f0� f2�0 and f2�1 in parallel and f2 by (1.6) or (1.7). In the

following we identify sel and sel′ . Then

DΩ(f2) ≤ DΩ(sel) + max{DΩ(f0)�DΩ(f2�0)�DΩ(f2�1)} and (1.8)

DΩ(f) ≤ 1 + max{DΩ(f1)�DΩ(f2)}� (1.9)

We apply the induction hypothesis to f0� f1� f2�0 and f2�1 . Because of

(1.4), (1.5) and the definition of f2�0 and f2�1

LΩ(f0) ≤ (2l 2 + 1)�3 ≤ (2l − 1)�3 and (1.10)

LΩ(f2�i) ≤ l 2 − l 0 ≤ 2l 2�3 ≤ (2l − 1)�3� (1.11)

Hence

DΩ(f2) ≤ DΩ(sel) + k(Ω) log((2l − 1)�3 + 1)� (1.12)

Since LΩ(f1) = l 1 ≤ (l − 1)�2 , we obtain by induction hypothesis for

DΩ(f1) a smaller upper bound than for DΩ(f2) in (1.12). Hence by

definition of k(Ω)

DΩ(f) ≤ 1 + DΩ(sel) + k(Ω) log(2�3) + k(Ω) log(l + 1) (1.13)

= k(Ω) log(l + 1)�

�

The lower bound is optimal, since D(f) = �log n� and L(f) = n − 1

for f(x) = x1 ∧ · · · ∧ xn . We know that DΩ(f) ≤ c DΩ′(f) for complete

bases Ω and Ω′ and some constant c = c(Ω�Ω′) . In connection with

Theorem 1.1 we obtain

COROLLARY 1.1 : Let Ω�Ω′ ∈ B2 be complete bases. Then

LΩ(f) ≤ (LΩ′(f) + 1)c k(Ω′) − 1 for some constant c . (1.14)

For complete bases Ω and Ω′ the complexity measures LΩ and

LΩ′ are polynomially connected. Pratt (75 b) investigated more pre-

221

cisely the effect of a change of basis for complete bases Ω ⊆ B2 .

The exponent c k(Ω′) in (1.14) can be replaced by log3 10 ≈ 2�096 .

This result is almost optimal, since L(x1 ⊕ · · · ⊕ xn) = n − 1 and

L{∧�∨�¬}(x1 ⊕ · · · ⊕ xn) = Θ(n2) (see Ch. 8).

7.2 Circuit size vs. formula size and depth

We know hardly anything about the dependence of circuit size on

depth. The best result is due to Paterson and Valiant (76).

THEOREM 2.1 : log(C(f) + 1) ≤ D(f) = O(C(f) log−1 C(f)) .

The first inequality is obvious, since C(f) ≤ L(f) , and optimal,

since C(x1 ∧ · · · ∧ xn) = n− 1 . The upper bound is not much better

than the trivial bound D(f) ≤ C(f) . The largest known lower bound

on the formula size (over a complete basis) of an explicitly defined

function is of size n2 (see Ch. 8). According to Theorem 1.1 we do not

know any ω(log n) bound on the depth of explicitly defined functions.

In particular, we cannot prove D(f) = ω(log C(f)) for some function f .

Proof of Theorem 2.1 : The idea of the proof can be described

rather easily. Its realization is technically involved. We partition a size
optimal circuit for f into two parts of nearly the same size such that

no path leads from the second part to the first one. If this partition
cuts many edges, the circuit has large width, and it is sufficient to

reduce the depth of both parts. If this partition cuts only a small
number of m edges, the output f depends on the first part only via the

functions g1� � � � � gm computed on these edges. Let fc(x) be the output
if (g1(x)� � � � � gm(x)) = c ∈ {0� 1}m .

f(x) =
∨

c∈{0�1}m

g1(x)c(1) ∧ · · · ∧ gm(x)c(m) ∧ fc(x) (2.1)

222

is the ˝disjunctive normal form of f with respect to the inputs
g1� � � � � gm ˝ . We compute g1� � � � � gm and all fc in parallel with small

depth and compute f by (2.1). Since in this case m is small, we hope
to obtain a circuit of small depth.

We measure the size of a circuit S by the number E(S) of its edges

starting in gates. Obviously E(S) ≤ 2 C(S) and E(f) ≤ 2 C(f) for the
proper complexity measure E . Let

D(z) = max{D(f) | E(f) ≤ z} (2.2)

be the maximum depth of a function f whose size is bounded by z .

We look for an upper bound on D . Let

A(d) = max{z | D(z) ≤ d}� (2.3)

Hence, by definition,

D(A(d)) ≤ d� (2.4)

and A is almost the inverse of D . D is an increasing function, which
can only increase slowly. Let D(f) = D(z) and let S be a circuit for f

where E(S) ≤ z . If we replace the first gate of S by a new variable,
we obtain a circuit S′ for f ′ where E(S′) ≤ z− 1 . Hence

D(z− 1) ≤ D(z) = D(f) ≤ D(f ′) + 1 ≤ D(z− 1) + 1� (2.5)

After these definitions we explain in detail our ideas discussed
above. We choose some function f where E(f) = A(r) + 1 and

D(f) � r . Let S be a circuit for f where z := E(S) = E(f) and let
G1� � � � �Gc be the gates of S . As indicated, we partition S into two

parts X = {G1� � � � �Gi} and Y = {Gi+1� � � � �Gc} . What is a good
choice for i ? Let M ⊆ X be the set of gates having a direct successor
in Y . Let m = |M| and let x and y be the number of edges between

gates in X and Y resp. Then

x + y + m ≤ z� (2.6)

since at least m edges connect a gate in X with a gate in Y . We

investigate 2x+m−z in dependence of i . If i = c , then x = z , m = 0 ,
and 2x+m−z = z . If i = 0 , then x = m = 0 and 2x+m−z = −z . If

we decrease i by 1 , one gate G switches from X to Y , x decreases at
most by 2 (the edges for the inputs of G) , m decreases at most by 1
(the gate G) . Hence 2x + m− z decreases at most by 5 , and we can

223

choose some i such that

|2x + m− z| ≤ 2� (2.7)

We claim that

2w + m ≤ z + 2 for w = max{x� y}� (2.8)

(2.8) follows from (2.7) if w = x . By (2.6) and (2.7)

x + y + m ≤ z ≤ 2x + m + 2� hence y ≤ x + 2� (2.9)

If w = y , 2w + m ≤ y + (x + 2) + m ≤ z + 2 , and (2.8) holds.

On the one hand we can compute the functions computed at gates

G ∈ M in depth D(x) and then f in depth D(y) . Hence

D(f) ≤ D(x) + D(y) ≤ 2D(w) and (2.10)

D(w) ≥ D(f)�2 � �r�2� �
On the other hand we can apply the representation of f in (2.1). All
gi can be computed in parallel in depth D(x) , their conjunction can

be computed in depth �log m� . Parallel to this we can compute all
fc in parallel in depth D(y) . Afterwards f can be computed in depth

1 + m . Hence by (2.8)

D(f) ≤ max{D(x) + �log m� �D(y)}+ 1 + m (2.11)

≤ D(w) + �log m�+ 1 + m ≤ D(w)− 2w + z + 3 + �log m� �
The rest of the proof is a tedious computation. By (2.10) and the

definition of A

A(�r�2�) � w� (2.12)

The function w → D(w)− 2w is strictly decreasing, since by (2.5)

D(w)− 2w ≤ D(w − 1) + 1− 2w � D(w − 1)− 2(w− 1)� (2.13)

We use (2.11) and estimate w by (2.12) and m by z (see (2.9)). Hence

by the definition of f , (2.11), (2.4) and (2.5)

r � D(f) ≤ D(A(�r�2�) + 1)− 2 (A(�r�2�) + 1) + z + 3 + �log z�
(2.14)

≤ �r�2�+ 1− 2 A(�r�2�) + z + 1 + �log z� �
By definition z = A(r) + 1 . Hence by (2.14)

224

2A(�r�2�) + �r�2� − 2 � z + �log z� = A(r) + 1 + �log(A(r) + 1)� �
(2.15)

For a constant k ≥ 1 we define

H(r) = (r�2) log r + 2 log r− kr� (2.16)

By elementary transformations it can be shown that for sufficiently
large R , all k ≥ 1 and r � R

2 H(�r�2�) + �r�2� − 2 � H(r) + 1 + �log(H(r) + 1)� � (2.17)

We claim that A(r) ≥ H(r) for some appropriate k and all r . Parame-
ter k is chosen such that A(r) ≥ H(r) for r ≤ R . If r � R by (2.15) ,

the induction hypothesis and (2.17)

A(r) + 1 + �log(A(r) + 1)� � 2 A(�r�2�) + �r�2� − 2 (2.18)

≥ 2 H(�r�2�) + �r�2� − 2 � H(r) + 1 + �log(H(r) + 1)� �
hence A(r) ≥ H(r) .

We summarize our results.

2 C(f) ≥ E(f) � A(r) ≥ H(r) ≥ (r�2) log r− kr and (2.19)

D(f) = D(z) ≤ D(z− 1) + 1 = D(A(r)) + 1 ≤ r + 1� (2.20)

For sufficiently large r the function (r�2) log r−kr is increasing. Hence

for some appropriate constant k′ � 0

C(f) ≥ (1�4)(D(f)− 1) log(D(f)− 1)− (k�2) (D(f)− 1) (2.21)

≥ k′ D(f) log D(f)�

This implies D(f) = O(C(f) log−1 C(f)) . �

We add some remarks on the relations between circuit size and

formula size. Obviously C(f) ≤ L(f) , and this bound is optimal for

x1 ∧ · · · ∧ xn . By Theorem 1.1 and 2.1 we conclude that

log L(f) = O(C(f) log−1 C(f))� (2.22)

The largest differences known between L(f) and C(f) are proved in

Ch. 8. For a storage access function f for indirect addresses C(f) =

Θ(n) but L(f) = Ω(n2 log−1 n) and for the parity function g and Ω =

{∧�∨�¬} CΩ(g) = Θ(n) but LΩ(f) = Θ(n2) .

225

7.3 Joint minimization of depth and circuit size, trade-offs

A circuit is efficient if size and depth are small. For the existence of

efficient circuits for f it is not sufficient that C(f) and D(f) are small.

It might be possible that all circuits of small depth have large size

and vice versa. In Ch. 3 we have designed circuits of small depth and

size, the only exception is division. We do not know whether there

is a division circuit of size O(n log2 n log log n) and depth O(log n) .

For the joint minimization of depth and circuit size we define a new

complexity measure PCD (P = product).

DEFINITION 3.1 : For f ∈ Bn and a basis Ω

PCDΩ(f) = min{C(S) D(S) | S is an Ω-circuit for f} and (3.1)

PLDΩ(f) = min{L(S) D(S) | S is an Ω-formula for f}� (3.2)

Obviously CΩ(f) DΩ(f) ≤ PCDΩ(f) . For many functions we have

proved that C(f) D(f) = Θ(PCD(f)) , e.g. for addition both are

of size n log n . Are there functions where PCD(f) is asymptoti-

cally larger than C(f) D(f)? What is the smallest upper bound on

PCD(f)�C(f) D(f)? All these problems are unsolved. We know that

C(f) D(f) = Ω(n log n) for all f ∈ Bn depending essentially on n vari-

ables. But we cannot prove for any explicitly defined function f ∈ Bn

that all circuits of logarithmic depth have nonlinear size. In § 4 we

present a function f where L(f) D(f) = o(PLD(f)) . This result is called

a trade-off result. In general, trade-offs are results of the following

type. We have two types of resources c1 and c2 for some problem P

which we like to minimize simultaneously. But for each solution S

where c1(S) is small c2(S) is not small and vice versa. Results of this

type have been proved for several problems. We refer to Carlson and

Savage (83) for the problem of optimal representations of trees and

graphs and to Paterson and Hewitt (80) for the investigation of peb-

ble games which are models for time - place trade-offs for sequential

226

computations. For VLSI chips (see also Ch. 12, § 2) one tries to min-

imize the area A of the chip and simultaneously the cycle length T .

It has turned out that AT2 is a suitable joint complexity measure.

By information flow arguments one can prove for many problems,

among them the multiplication of binary numbers, that AT2 = Ω(n2) .

Since for multiplication A = Ω(n) and T = Ω(log n) chips where

AT2 = O(n2) may exist only for Ω(log n) = T = O(n1�2) . Mehlhorn

and Preparata (83) designed for this range of T VLSI chips optimal

with respect to AT2 . The user himself can decide whether A or T

is more important to him. We are far away from similar results for

circuit size and depth.

7.4 A trade-off result

Since no trade-off between circuit size and depth is known, we

present a trade-off between formula size and depth. Although DΩ(f) =

Θ(log LΩ(f)) for all f ∈ Bn , this result does not imply that PLDΩ(f) =

Θ(LΩ(f)DΩ(f)) . On the contrary we present an example f where

LΩ(f)DΩ(f) = o(PLDΩ(f)) for Ω = Ωm and Ω = {∧�∨�¬} . Fur-

thermore we get to know methods for such trade-offs.

DEFINITION 4.1 : The carry function fn ∈ B2n is defined by

fn(x1� � � � � xn� y1� � � � � yn) =
∨

1≤i≤n
xi yi · · · yn� (4.1)

This function is important for the addition of binary numbers a

and b . Let xi = ai ∧ bi and yi = ai ⊕ bi . Then fn(x� y) is the fore-

most carry (see Ch. 3, (1.8)). Hence by the results of Ch. 3, § 1

CΩ(fn) = Θ(n) , DΩ(fn) = Θ(log n) and PCDΩ(fn) = Θ(n log n) for

Ω ∈ {B2� {∧�∨�¬}�Ωm} , and there is no trade-off. But here we inves-

tigate formula size and depth.

227

THEOREM 4.1 : i) There is a monotone formula for fn of size O(n)

and depth O(n) .

ii) There is a monotone formula for fn of size O(n log n) and depth

O(log n) .

iii) PLDΩ(fn) = O(n log2 n) for Ω ∈ {Ωm� {∧�∨�¬}�B2} .

iv) LΩ(fn) = Θ(n) for Ω ∈ {Ωm� {∧�∨�¬}�B2} .

v) DΩ(fn) = Θ(log n) for Ω ∈ {Ωm� {∧�∨�¬}�B2} .

Proof : iii) , iv) and v) follow from i) and ii). i) follows from the

Horner scheme

fn(x� y) = yn ∧ (xn ∨ (yn−1 ∧ · · · (y1 ∧ x1) · · ·))� (4.2)

The second assertion can be proved by a recursive approach. Here and

in the rest of this chapter we do not count the gates of a formula but

the leaves of the proper binary tree which is by 1 larger than the real

formula size. W.l.o.g. n = 2k . We divide x = (x′� x′′) and y = (y′� y′′)
in two parts of the same length. Then

fn(x� y) = (fn�2(x
′� y′) ∧ yn�2+1 ∧ · · · ∧ yn) ∨ fn�2(x

′′� y′′)� (4.3)

For this formula Fn

L(Fn) = 2 L(Fn�2) + n�2� L(F1) = 2� hence (4.4)

L(Fn) = (1�2) n log n + 2 n�

D(Fn) = max{D(Fn�2)� log(n�2)}+ 2� D(F1) = 1� (4.5)

hence

D(Fn) = 2 log n + 1�

�

The following trade-offs have been proved by Commentz-Wal-

ter (79) for the monotone basis and by Commentz-Walter and Satt-

ler (80) for the basis {∧�∨�¬} .

THEOREM 4.2 : PLDm(fn) ≥ 1

128
n log2 n .

228

THEOREM 4.3 : PLD{∧�∨�¬}(fn) ≥ 1

8
n log n log logn(log log log logn)−1

Actually these are only asymptotic results. Obviously, for both

bases Ω = Ωm and Ω = {∧�∨�¬} , LΩ(fn) ≥ 2 n and DΩ(fn) ≥ log(2n) ,

hence PLDΩ(fn) ≥ 2 n log(2n) . The lower bound of Theorem 4.2 is

not better than this simple bound if n ≤ 2256 , and the bound of

Theorem 4.3 does not beat the simple bound if n ≤ 2238
.

Before we discuss the essential ideas of the proof of Theorem 4.2 we

anticipate some technical lemmas. The proof of Theorem 4.3 is based

on the same ideas but is technically even more involved and therefore

omitted.

LEMMA 4.1 : If we replace for j �∈ J ⊆ {1� � � � � n} xj by 0 and yj by 1

we obtain the subfunction fm , where m = |J| , on the set of variables

{xj� yj | j ∈ J} .

Proof : Obvious. �

LEMMA 4.2 : If we replace x1 and yn by 1 we obtain

fdn−1(y1� � � � � yn−1� x2� � � � � xn) where fdn−1 is the dual function of fn−1 .

Proof : We apply the rules of deMorgan and the law of distributivity.

fdn−1(y1� � � � � yn−1� x2� � � � � xn) = ¬fn−1(y1� � � � � yn−1� x2� � � � � xn) (4.6)

= ¬ ∨
1≤i≤n−1

yi xi+1 · · · xn = ¬(¬ ∧
1≤i≤n−1

(yi ∨ xi+1 · · · ∨ xn)
)

= xn ∨ xn−1 yn−1 ∨ xn−2 yn−2 yn−1 ∨ · · · ∨ x2 y2 · · · yn−1 ∨ y1 · · · yn−1

= fn(1� x2� � � � � xn� y1� � � � � yn−1� 1)�

�

LEMMA 4.3 :
(d−1+s−1

d−1

)
+
(d−1+s

d−1

) ≤ (d+s
d

)
if s ≥ 1 .

Proof : Elementary. �

229

LEMMA 4.4 : Let m(p) = max{(d+s
d

) | ds ≤ p} . Then

log m(p) ≤ 2 p1�2 .

Proof : By Stirling’s formula we can approximate n! by

(2π)1�2 nn+1�2 e−n , more precisely, the quotient of n! and its approxi-

mation is in the interval [1� e1�(11n)] . Hence

log

(
d + s

d

)
≤ 1

11(d + s)
log e− 1

2
log(2π) +

1

2
log

(
d + s

ds

)
(4.7)

+ (d + s) log(d + s)− d log d− s log s

≤ d log(d + s)− d log d + s log(d + s)− s log s

= (d + s)

(
− d

d + s
log

d

d + s
− s

d + s
log

s

d + s

)

= (d + s) H

(
d

d + s
�

s

d + s

)

where

H(x� 1− x) = −x log x− (1− x) log(1− x) (4.8)

is the entropy function. W.l.o.g. d ≤ s . Since

H(x� 1− x) ≤ −2x log x for x ≤ 1�2� (4.9)

log

(
d + s

d

)
≤ 2 d log

(
d + s

d

)
= 2 d log

(
1 +

s

d

)
� (4.10)

We only investigate numbers d and s where ds ≤ p and d ≤ s , hence

d2 ≤ p and α := p�d2 ≥ 1 . Furthermore d = (p�α)1�2 and s�d =

sd�d2 ≤ p�d2 = α . Hence

log m(p) ≤ max{2
(p

α

)1�2
log(1 + α) | α ≥ 1}� (4.11)

Let g(α) = α−1�2 log(1 + α) . Then g(1) = 1 and g is decreasing for

α ≥ 1 . Hence the maximum in (4.11) is 2 p1�2 . �

230

Now we begin with the proof of Theorem 4.2. Instead of designing a

formula for fn of minimal complexity with respect to PLDm we choose

another way. For given d and s we look for the maximal n =: t(d� s)

such that there is a monotone formula Fn for fn where D(Fn) ≤ d

and L(Fn)�n ≤ s . Upper bounds on t(d� s) imply lower bounds on

PLDm(fn) . The main result is the following lemma.

LEMMA 4.5 : ∀ d � 0� s � 1 : log t(d� s) ≤ 8 (d s)1�2 .

We prove at first, how this lemma implies the theorem.

Proof of Theorem 4.2 : Let Fn be an optimal formula for fn with

respect to PLDm . Let d = D(Fn) and s be chosen such that s − 1 �

L(Fn)�n ≤ s . Obviously s ≥ 2 . By definition n ≤ t(d� s) and by

Lemma 4.5

PLDm(fn) = L(Fn)D(Fn) ≥ n(s− 1)d ≥ 1

2
n s d (4.12)

≥ 1

128
n log2 t(d� s) ≥ 1

128
n log2 n�

�

It is easier to work with t(d� s) than with PLDm . The main reason

is that depth and formula size are both bounded independently. s is a

bound for the average number of leaves of the formula labelled by xi or

yi . It would be more convenient to have bounds on the number of xi-

and yj-leaves (for fixed i and j) and not only on the average number.

Let t′(d� s) be the maximal n such that there is a monotone formula

Fn for fn such that D(Fn) ≤ d and for i� j ∈ {1� � � � � n} the number of

xi- and yj-leaves is bounded by s . Obviously t′(d� s) ≤ t(d� s) . We

prove an upper bound on t(d� s) depending on t′(d� s) , and afterwards

we estimate the more manageable measure t′(d� s) .

LEMMA 4.6 : t(d� s) ≤ 3 t′(d� 6s) .

231

Proof : Let Fn be a monotone formula for fn where n = t(d� s) ,

D(Fn) ≤ d and L(Fn) ≤ s n . Let I be the set of all i such that

the number of xi-leaves in Fn is bounded by 3 s . Since L(Fn) ≤ s n ,

|I| ≥ (2�3) n . Let J be the corresponding set for the y-variables. Then

|J| ≥ (2�3) n and |H| ≥ (1�3) n for H = I ∩ J . For i �∈ H we replace xi

by 0 and yi by 1 . By Lemma 4.1 we obtain a formula F′ for f|H| where

D(F′) ≤ d , and each variable is the label of at most 3 s leaves. Hence

t(d� s) = n ≤ 3 |H| ≤ 3 t′(d� 6s)� (4.13)

�

LEMMA 4.7 : t′(d� s) ≤ (d+s
d

)− 1 .

This lemma is the main step of the proof. Again we first show that

this lemma implies the theorem.

Proof of Lemma 4.5 : By Lemma 4.7 t′(d� s) is bounded by m(ds)

for the function m of Lemma 4.4. Hence

log t(d� s) ≤ log t′(d� 6s) + log 3 ≤ 2 (6 ds)1�2 + log 3 (4.14)

≤ 8 (ds)1�2�

�

For the proof of Lemma 4.7 we investigate the last gate of monotone

formulas for fn . If this gate is an ∧-gate we apply Lemma 4.2 and

investigate the corresponding dual formula whose last gate is an ∨-

gate. If fn = g1∨g2 , we find by the following lemma large subfunctions

of fn in g1 and g2 .

LEMMA 4.8 : If fn = g1 ∨ g2 , there is a partition of {1� � � � � n} to I

and J such that we may replace the variables xi and yi for i �∈ I (i �∈ J)

by constants in order to obtain the subfunction f|I| (f|J|). Furthermore

g1 or g2 depends essentially on all y-variables.

232

Proof : Since x1 y1 · · · yn ∈ PI(fn) ⊆ PI(g1) ∪ PI(g2) , x1 y1 · · · yn is

a prime implicant of gj for j = 1 or j = 2 , in particular gj depends

essentially on all y-variables.

pi = xi yi � � �yn (1 ≤ i ≤ n) are the prime implicants of fn . Let I

be the set of all i where pi ∈ PI(g1) and J = {1� � � � � n} − I . Then

pj ∈ PI(g2) for j ∈ J . We set xk = 0 and yk = 1 for k �∈ I . Each prime

implicant of g1 equals some pi (i ∈ I) or is a lengthening of some pk

(k �∈ I). These pk are replaced by 0 , since xk = 0 . In pi (i ∈ I) the

y-variables yk (k �∈ I) are replaced by 1 . Altogether g1 is replaced by

f|I| . The same arguments work for g2 . �

Finally we finish the proof of Theorem 4.2 by the proof of

Lemma 4.7.

Proof of Lemma 4.7 : Induction on d . The assertion is trivial if d = 0

or s ≤ 1 , since t′(d� s) = 0 . Let d � 0 and s � 1 and let us assume

that the assertion holds for all d′ � d . Let F be a monotone formula

for fn where n = t′(d� s) , D(F) ≤ d , and for all i� j ∈ {1� � � � � n} the

number of xi- and yj-leaves is bounded by s .

Case 1 : The last gate of F is an ∨-gate.

Let g1 and g2 be the inputs of the last gate, hence fn = g1∨ g2 . By

Lemma 4.8 we assume w.l.o.g. that g1 depends essentially on all y-

variables. Let I and J form the partition of {1� � � � � n} whose existence

also has been proved in Lemma 4.8. The depth of the formulas for

g1 and g2 is bounded by d − 1 . For all i� j ∈ {1� � � � � n} the number

of xi- and yj-leaves in the formula for g2 is bounded by s − 1 , since

the formula for g1 includes at least one yj-leaf. Hence |I| + |J| = n ,

|I| ≤ t′(d− 1� s) and |J| ≤ t′(d− 1� s− 1) and by Lemma 4.3 and the

induction hypothesis

t′(d� s) = n ≤ |I|+ |J|+ 1 ≤ t′(d− 1� s) + t′(d− 1� s− 1) + 1

(4.15)

233

≤
(

d− 1 + s

d− 1

)
− 1 +

(
d− 1 + s− 1

d− 1

)
− 1 + 1 ≤

(
d + s

d

)
− 1�

Case 2 : The last gate of F is an ∧-gate.

Let x1 = 1 and yn = 1 . Then fn is replaced by fdn−1 . If we replace

∧-gates by ∨-gates and vice versa, we obtain a monotone formula for

fn−1 whose last gate is an ∨-gate. Similarly to Case 1 we can prove

that |I| ≤ t′(d− 1� s) and |J| ≤ t′(d− 1� s− 1) for some partition I and

J of {1� � � � � n − 1} . Here |I| + |J| = n − 1 . (4.15) works also in this

situation. �

As already acknowledged we do not know much about trade-offs

between formula size or circuit size and depth.

EXERCISES

1. Generalize Spira’s theorem to complete bases Ω ⊆ Br .

2. Compute CΩ(sel) and DΩ(sel) for different bases Ω ⊆ B2 , in par-

ticular Ω = {NAND} and Ω = {⊕�∧} .

3. Let F be a formula of size l and let F′ be the equivalent formula

constructed in the proof of Spira’s theorem. Estimate the size of

F′ .

4. Which functions are candidates for the relation D(f) =

ω(log C(f)) ?

5. Let n = 2m and let f be the Boolean matrix product of n × n-

matrices. What is the minimal size of a monotone circuit for f

whose depth is bounded by m + 1 ?

234

6. Generalize the result of Exercise 5 to B2-circuits.

7. Let f = (f0� � � � � f2n−2) be the Boolean convolution and n = 2m .

Let gi = fi ∨ fi+n for 0 ≤ i ≤ n − 2 and gn−1 = fn−1 . Solve the

problems of Exercise 5 and 6 for g0� � � � � gn−1 .

235

8. FORMULA SIZE

The depth of a circuit corresponds to the parallel computation

time. Since D(f) = Θ(log L(f)) (Theorem of Spira, see Ch. 7, § 1) ,

the study of the formula size of Boolean functions is well motivated.

The formula size of f is equal to the minimal number of gates in a

formula for f . The number of gates or inner nodes of a binary tree is

by 1 less than the number of leaves of the tree. Often it is easier to

deal with the number of leaves, e.g. the number of leaves of a binary

tree is equal to the sum of the number of leaves in the left subtree

and the number of leaves in the right subtree. Hence we denote the

formula size of f by L∗(f) and we define L(f) = L∗(f) + 1 . It causes no

problems to call L also formula size.

Because of their central role, we investigate threshold functions in

§ 1 – § 3 and symmetric functions in § 4. In § 5 – § 8 we present and

apply some methods for the proof of lower bounds on the formula size

of explicitly defined functions.

8.1 Threshold - 2

We know that the (monotone) circuit complexity of Tn
k is linear for

fixed k (see Ch. 6, § 2). The monotone formula size is superlinear, it

is of size n log n .

THEOREM 1.1 : Lm(Tn
2) = O(n log n) . If n = 2k , Lm(Tn

2) ≤ n log n .

Proof : W.l.o.g. n = 2k . Otherwise we add some 0-inputs. Let

x = (x′� x′′) where x′ and x′′ consist of n�2 variables each. Obviously

Tn
2(x) =

(
T

n�2
1 (x′) ∧ T

n�2
1 (x′′)

) ∨ T
n�2
2 (x′) ∨ T

n�2
2 (x′′)� (1.1)

236

Since Lm(Tn
1) = n , we conclude that

Lm(Tn
2) ≤ n + 2 Lm(T

n�2
2) and Lm(T2

2) = 2� (1.2)

Hence Lm(Tn
2) ≤ n log n . �

This simple approach is optimal if n = 2k . We prove this claim for

the monotone basis (Hansel (64)). For the complete basis {∧�∨�¬}
we refer to Krichevskii (64). We investigate the structure of monotone

formulas for Tn
2 and prove the existence of an optimal monotone single-

level formula.

DEFINITION 1.1 : A monotone formula or circuit is a single-level

formula or circuit if no directed path combines ∧-gates.

It is reasonable to conjecture that all quadratic functions (all prime

implicants are monotone and have length 2) have optimal single-level

formulas and circuits. This claim is open for circuits and has been

disproved for formulas (see Exercises).

LEMMA 1.1 : There is an optimal monotone formula for Tn
2 which

is a single-level formula.

Proof : Let F be an optimal monotone formula for Tn
2 . We reconstruct

F until we obtain a single-level formula F′ for Tn
2 of the same size as F .

If F is not a single-level formula, let G be the first ∧-gate of F which

has some ∧-gate as (not necessarily direct) predecessor. Let g = resG

and let g1 and g2 be the inputs of G . Then g1 and g2 are computed

by single-level formulas. Hence g1 = t1 ∨ u1 ∨ · · · ∨ up where t1 is a

Boolean sum and all uj are computed at ∧-gates Hj . Let uj1 and uj2

be the inputs of Hj . Then uj = uj1 ∧ uj2 and uj1 and uj2 are Boolean

sums. If uj1 and uj2 contain the same variable xi , the subformula for

uj is not optimal. We may replace xi in uj1 and in uj2 by 0 . Then uj is

replaced by u′j where uj = u′j ∨ xi . Instead of two xi-leaves one xi-leaf

237

suffices. Hence uj1 and uj2 have no common variable and all prime

implicants have length 2 . Similarly g2 = t2 ∨ w1 ∨ · · · ∨ wq .

We rearrange the ∨-gates in the formulas for g1 and g2 , such that

t1� t2� u = u1 ∨ · · · ∨ up , and w = w1 ∨ · · · ∨ wq are computed. Then

g1 = t1 ∨ u , g2 = t2 ∨ w and

g = g1 g2 = t1 t2 ∨ t1w ∨ t2u ∨ u w� (1.3)

We replace the subformula for g by a subformula for

g′ = t1 t2 ∨ u ∨ w (1.4)

of the same size. Let f be the function computed by the new formula.

Tn
2 ≤ f ′ , since g ≤ g′ . Let us assume, that Tn

2(a) = 0 but f ′(a) = 1

for some input a . Then g(a) = 0 and g′(a) = 1 . This is only possible

if u(a) = 1 or w(a) = 1 . But u and w have only prime implicants of

length 2 , hence Tn
2(a) = 1 in contradiction to the assumption. The

new formula is an optimal monotone formula for Tn
2 . We continue in

the same way until we obtain a single-level formula. �

THEOREM 1.2 : Lm(Tn
2) ≥ n log n .

Proof : We investigate an optimal monotone formula F for Tn
2 .

W.l.o.g. (see Lemma 1.1) we assume that F is a single-level formula.

Let G1� � � � �Gp be the ∧-gates where ui = ui1∧ui2 (1 ≤ i ≤ p) are com-

puted. ui1 and ui2 are disjoint Boolean sums. For (j(1)� � � � � j(p)) ∈
{1� 2}p we replace all variables in u1�j(1)� � � � � up�j(p) by 0 . Since the

output of F is 0 we have replaced at least n − 1 variables by 0 . If xi

is not replaced by 0 , (j(1)� � � � � j(p)) is an element of Mi . If all vari-

ables are replaced by 0 , (j(1)� � � � � j(p)) is an element of M0 . Hence

M0�M1� � � � �Mn build a partition of {1� 2}p .

Let (j(1)� � � � � j(p)) ∈ Mm and m ≥ 1 . If xm is a summand of ui�1

(or ui�2) , then j(i) = 2 (or j(i) = 1). If xm is neither a summand of ui�1

nor of ui�2 , j(i) may be 1 or 2 . Let p(m) be the number of indices i

such that ui does not depend on xm . Then |Mm| = 2p(m) and p−p(m)

is the number of xm-leaves. Hence

238

Lm(Tn
2) =

∑
1≤m≤n

(p− p(m)) = n p− ∑
1≤m≤n

log |Mm| (1.5)

= n p− n log
(∏
1≤m≤n

|Mm|1�n
)
�

We apply the well-known inequality between the arithmetic and the

geometric mean :

(1�n)
∑

1≤i≤n
ai ≥

(∏
1≤i≤n

ai
)1�n

� (1.6)

Since the sets M1� � � � �Mn are disjoint, |M1|+ · · ·+ |Mn| ≤ 2p . Hence

Lm(Tn
2) ≥ n p− n log

(
(1�n)

∑
1≤m≤n

|Mm|
)

(1.7)

≥ n p− n log(1�n)− n log 2p = n log n�

�

COROLLARY 1.1 : Lm(Tn
k) = Ω(n log n) if 1 � k � n .

Proof : For k ≤ �n�2� we use the fact that Tn−k+2
2 is a subfunction

of Tn
k . For k � �n�2� we apply the duality principle, which implies

Lm(Tn
k) = Lm(Tn

n+1−k) . �

In § 2 we prove that this bound is asymptotically optimal if k or

n − k is constant. For k = n�2 we prove better lower bounds in § 8

(for the basis {∧�∨�¬}).

239

8.2 Design of efficient formulas for threshold - k

It is quite easy to design an optimal monotone formula for Tn
2 but it

is much harder to design optimal formulas for Tn
k , if k � 2 is constant.

The reader is asked to design a formula of size o(n log2 n) for Tn
3 . The

methods of § 1 lead to the recursive approach

Tn
k(x) =

∨
0≤p≤k

Tn�2
p (x′) ∧ T

n�2
k−p(x

′′)� (2.1)

These formulas for Tn
k have size O(n(log n)k−1) (Korobkov (56)

and Exercises). Khasin (69) constructed formulas of size

O(n(log n)k−1�(log log n)k−2) , Kleiman and Pippenger (78) improved

the upper bound to O(
(k
2

)log∗ n
n log n) and Friedman (84) designed

asymptotically optimal formulas of size O(n log n) . All these bounds

are proved constructively, i.e. there is an algorithm which constructs

for given n formulas of the announced size for Tn
k and the running time

of the algorithm is a polynomial p(n) .

Much earlier Khasin (70) proved that Lm(Tn
k) = O(n log n) , but his

proof is not constructive. We only discuss the main ideas of Khasin’s

paper. Tn
k is the disjunction of all monotone monoms of length k . It

is easy to compute many of these prime implicants by a small formula.

W.l.o.g. n = mk . Let A(1)� � � � �A(k) be a partition of {1� � � � � n} into

k blocks of size m each. Then for each permutation π ∈ Σn

fπ(x) =
∧

1≤j≤k

∨
i∈A(j)

xπ(i) (2.2)

is a formula of size n and fπ is the disjunction of many, exactly mk ,

prime implicants of length k each. We hope that Tn
k is the disjunction

of a small number of functions fπ . Which permutations should be

chosen ? Since Khasin could not solve this problem, he computed the

mean number of missing prime implicants if one chooses randomly

O(log n) permutations π . This number is O(n log n) . So there is a

good choice of O(log n) permutations π such that Tn
k is the disjunction

of O(log n) formulas fπ of size n each and O(n log n) prime implicants

240

of length k each. Hence the size of the formula for Tn
k is O(n log n) .

We present the constructive solution due to Friedman (84). We

obtain a formula of size c n log n for a quite large c . It is possible

to reduce c by more complicated considerations. We again consider

functions f as described in (2.2). If A(1)� � � � �A(k) is an arbitrary

partition of {1� � � � � n} , f has formula size n and f ≤ Tn
k . xi(1) � � � xi(k) ∈

PI(f) iff the variables xi(1)� � � � � xi(k) are in different sets of the partition.

Hence we are looking for sets Am�j (1 ≤ m ≤ k , 1 ≤ j ≤ r) with the

following properties

– A1�j� � � � �Ak�j are disjoint subsets of {1� � � � � n} for each j ,

– for different i(1)� � � � � i(k) ∈ {1� � � � � n} we find some j such that

each Am�j contains exactly one of the elements i(1)� � � � � i(k) .

Then

Tn
k = F1 ∨ · · · ∨ Fr where Fj =

∧
1≤m≤k

∨
i∈Am�j

xi� (2.3)

The first property ensures that all prime implicants have length k .

The second property ensures that each monom of length k is a prime

implicant of some Fj . A class of sets Am�j with these properties is called

an (n� k)-scheme of size r . The size of the corresponding formula is

r n .

We explain the new ideas for k = 2 . W.l.o.g. n = 2r . Let posj(l)

be the j -th bit of the binary representation of l ∈ {1� � � � � 2r} where

1 ≤ j ≤ r . The sets

Am�j = {l | posj(l) = m} for 0 ≤ m ≤ 1 and 1 ≤ j ≤ r (2.4)

build an (n� 2)-scheme of size r = log n . This simple construction

is successful since for different l � l ′ ∈ {1� � � � � 2r} we find a position j

where posj(l) �= posj(l
′) .

If k = 3 , we could try to work with the ternary representation of

numbers. In general we cannot find for different numbers l � l ′� l ′′ ∈
{1� � � � � n} a position j such that posj(l) , posj(l

′) and posj(l
′′) (ternary

241

representation) are different. For example : 1 → (0� 1) , 2 → (0� 2) ,

4 → (1� 1) . Instead of that we work with b-ary numbers for some large

but constant b . We look for a large set S ⊆ {1� � � � � b}r such that two

vectors in S agree at less than (1�3) m positions. Let l � l ′� l ′′ ∈ S be

different. We label all positions where at least two of these vectors

agree. Altogether we label less than 3 (1�3) m = m positions, since

there are 3 =
(3
2

)
different pairs of vectors. The vectors l � l ′� l ′′ differ

at all positions which are not labelled. Let

Am� (j� t(1)� t(2)� t(3)) = {s ∈ S | posj(s) = t(m)} (2.5)

for 1 ≤ m ≤ 3 , 1 ≤ j ≤ r , 1 ≤ t(1) � t(2) � t(3) ≤ b .

If we fix T = (j� t(1)� t(2)� t(3)) , the sets A1�T�A2�T and A3�T are

disjoint. Let s1� s2� s3 ∈ S be different. Then there is some j , an

unlabelled position, such that posj(s1)� posj(s2) and posj(s3) are dif-

ferent. Let t(1) � t(2) � t(3) be the ordered sequence of posj(si)

(1 ≤ i ≤ 3). Then s1� s2� s3 are in different sets A1�T�A2�T and A3�T for

T = (j� t(1)� t(2)� t(3)) . Hence we have constructed a (|S|� 3)-scheme

of size r
(b

3

)
. Since b is constant, r should be of size O(log |S|) .

The same idea works for arbitrary k . For some constant b we look

for a large set S ⊆ {1� � � � � b}r such that two vectors in S agree at less

than r �
(k
2

)
positions. Let s1� � � � � sk be different elements of S . For

each of the
(k

2

)
pairs of vectors there are less than r�

(k
2

)
positions where

these vectors agree. Hence there is some position j = j(s1� � � � � sk)

where all vectors differ. By

Am� (j� t(1)� ���� t(k)) = {s ∈ S | posj(s) = t(m)} (2.6)

for 1 ≤ m ≤ k , 1 ≤ j ≤ r , 1 ≤ t(1) � · · · � t(k) ≤ b

we obtain a (|S|� k)-scheme of size r
(b
k

)
. If it is possible to choose

S in such a way that r = O(log |S|) we are done. We then choose

r large enough that |S| ≥ n . Afterwards we identify 1� � � � � n with

different elements of S . By (2.3) we obtain a formula for Tn
k of size

r
(b
k

)
n = O(n log n) .

242

For the construction we apply a greedy algorithm.

LEMMA 2.1 : Let l =
(k

2

)
, b = 22l , c = 2 l and r = c r′ for some r′ .

Then there is an algorithm which constructs some set S ⊆ {1� � � � � b}r

of size br′ such that two vectors in S agree at less than r �
(k
2

)
positions.

The running time of the algorithm is a polynomial p(br′) .

Before we prove this lemma we show that it implies the main result

of this section.

THEOREM 2.1 : For constant k monotone formulas for Tn
k of size

O(n log n) can be constructed in polynomial time.

Proof : We apply the algorithm of Lemma 2.1 for the smallest r′

such that br′ ≥ n and obtain an (n� k)-scheme of size r
(b
k

)
n . Since

r′ = O(log n) , also r = O(log n) and the formula has size O(n log n) .

�

Proof of Lemma 2.1 : We consider an r-dimensional array for the

elements of {1� � � � � b}r . If we choose some vector s as an element of S ,

all vectors which differ from s in at most R = (1−(1�l)) r positions are

forbidden as further vectors in S . The number of forbidden vectors

is at most
(r
R

)
bR . We use the rough estimate

(r
R

)
� 2r . Hence the

number of forbidden vectors is bounded by

br logb 2+R where (2.7)

r logb 2 + R = r (logb 2 + 1− (1�l)) = r (1− (1�2l))

= r (1− (1�c)) = r− r′�
(2.8)

Here we used the fact that logb 2 = 1�(2l) . The greedy algorithm

works as follows. Choose s1 ∈ {1� � � � � b}r arbitrary. Label all forbid-

den vectors. If s1� � � � � si−1 are chosen, choose si ∈ {1� � � � � b}r as an

243

arbitrary non-forbidden vector and label all vectors forbidden by si .

If i ≤ br′ , the number of vectors forbidden by s1� � � � � si−1 is bounded

by (i− 1)br−r′ � br and si can be chosen. Hence the algorithm works.

The running time is bounded by a polynomial p(br) and hence by a

polynomial q(br′) . �

8.3 Efficient formulas for all threshold functions

It is a hard struggle to design asymptotically optimal (monotone)

formulas for Tn
k and constant k . The design of a polynomial formula

is easy, since we can take the MDNF which consists of
(n

k

)
prime

implicants. In general
(n

k

)
is not polynomially bounded. Since Tn

k is a

subfunction of T2n
n , we consider only the majority function Tn

m where

n = 2m .

Since some time {∧�∨�¬}-formulas of size O(n3�37) are known. We

are more interested in the monotone formula size of the threshold

functions. Polynomial monotone formulas for all threshold functions

imply (see Ch. 6, § 13 – § 15) that the monotone formula size of slice

functions is only by polynomial factors larger than the formula size

over the basis {∧�∨�¬} and also over all complete bases (see Ch. 7,

§ 1). By Theorem 1.1 in Ch. 7 the monotone depth of slice functions

is then of the same size as the depth of these functions.

The sorting network of Ajtai et al. (83) has depth O(log n) . Hence

the monotone formula size of all threshold functions is polynomially

bounded. The degree of this polynomial is very large (see Ch. 6, § 2).

We prove non constructively the existence of monotone formulas for

the majority function of size O(n5�3) (Valiant (84)).

We consider random formulas of different levels. For some p chosen

later a random formula of level 0 equals xj (1 ≤ j ≤ n) with probabil-

ity p and equals 0 with probability 1− np . A random formula Fi of

level i equals

244

Fi = (G1 ∨G2) ∧ (G3 ∨G4) (3.1)

where G1� � � � �G4 are independently chosen random formulas of level

i − 1 . The size of Fi is bounded by 4i = 22i . If the probability that

Fi = Tn
m is positive, then there is some monotone formula of size 22i for

Tn
m . Why do we hope that Fi sometimes equals Tn

m ? In G1 ∨G2 and

G3 ∨ G4 prime implicants are shortened but are lengthened again by

the following conjunction. Furthermore the experiment is symmetric

with respect to all variables.

It is sufficient to prove that for all a ∈ {0� 1}n

Prob
(
Fi(a) �= Tn

m(a)
)
� 2−n−1� (3.2)

This implies

Prob
(
Fi �≡ Tn

m

) ≤ ∑
a∈{0�1}n

Prob
(
Fi(a) �= Tn

m(a)
) ≤ (3.3)

≤ 2n 2−n−1 = 1�2�

Hence

Lm(Tn
m) ≤ 22i� (3.4)

Let

fi = max
{
Prob(Fi(a) = 1) | Tn

m(a) = 0
}

and (3.5)

hi = max
{
Prob(Fi(a) = 0) | Tn

m(a) = 1
}
�

LEMMA 3.1 : fi = f4i−1 − 4f3i−1 + 4f2i−1 and hi = −h4
i−1 + 2h2

i−1 .

Proof : Because of the monotonicity of Fi and its symmetry with

respect to all variables Fi has its worst behavior on inputs with exactly

m − 1 or m ones. Let a be an input with m − 1 ones. The event

Gj(a) = 1 has probability fi−1 by definition. The event (G1∨G2)(a) = 1

has probability 1−(1−fi−1)
2 as has the event (G3∨G4)(a) = 1 . Hence

the event that Fi(a) = 1 has probability (1− (1− fi−1)
2)2 = fi .

245

Let b be an input with m ones. The event Gj(b) = 0 has probability

hi−1 by definition. The event (G1 ∨G2)(b) = 0 has probability h2
i−1 as

has the event (G3 ∨ G4)(b) = 0 . Hence the event that Fi(b) = 0 has

probability 1− (1− h2
i−1)

2 = hi . �

What is the behavior of the sequence f0� f1� � � � for some given f0 ?

By elementary calculations

fi = fi−1 ⇔ fi−1 ∈ {0�α� 1� (3 +
√

5)�2} (3.6)

for α = (3−√
5)�2 and

hi = hi−1 ⇔ hi−1 ∈ {−(1 +
√

5)�2� 0� 1− α� 1}� (3.7)

The only fix points in the interval (0� 1) are fi−1 = α and hi−1 = 1−α .

Considering the representation of fi and hi in Lemma 3.1 we note that

fi � fi−1 iff fi−1 � α and that hi � hi−1 iff hi−1 � 1− α . If f0 � α and

h0 � 1 − α , then fi and hi are decreasing sequences converging to 0 .

To us it is important that fl � hl � 2−n−1 for some l = O(log n) (see

(3.2) – (3.4)).

It turned out that p = 2α�(2m− 1) is a good choice. Let a be an

input with m− 1 ones. Then

f0 = Prob(F0(a) = 1) = (m− 1)p = α− α�(n− 1) (3.8)

= α− Ω(n−1)�

Let b be an input with m ones. Then

h0 = Prob(F0(a) = 0) = 1− Prob(F0(b) = 1) = 1−mp (3.9)

= 1− α− α�(n− 1) = 1− α− Ω(n−1)�

We shall see that α− f0 and 1− α − h0 are large enough such that fi
and hi decrease fast enough.

The function fi − fi−1 is continuous (in fi−1) . Hence fi − fi−1 is

bounded below by a positive constant if fi−1 ∈ [ε′�α−ε] for some fixed

ε� ε′ � 0 . If fi � α− ε , fj � ε′ for some j = i + O(1) . But for which i

it holds that fi � α− ε if f0 = α− Ω(n−1) ? For which l fl � 2−n−1 if

246

fj � ε′ ?

By Lemma 3.1 fi � 4 f2i−1 and hi � 4 h2
i−1 for fi−1� hi−1 ∈ (0� 1] . Let

ε′ = 1�16 and fj� hj � ε′ . For l � j and k = 2l−j

fl � 4 f2l−1 � 43 f4l−2 � · · · � 4k−1 fkj � (1�4)k = 2−2k (3.10)

and also hl � 2−2k . If l = j + �log n� , k ≥ n and

fl � hl � 2−2k ≤ 2−2n ≤ 2−n−1� (3.11)

If fi � α − ε and hi � 1 − α − ε , then fl � hl � 2−n−1 for

l = i + �log n�+ O(1) .

It is easy to check that for δ � 0

fi−1 = α− δ ⇒ fi = α− 4αδ + O(δ2) and (3.12)

hi−1 = 1− α− δ ⇒ hi = 1− α− 4αδ + O(δ2)� (3.13)

Hence

∀ γ � 4α ∃ ε � 0 ∀ 0 � δ � ε : fi = α− δ ⇒ fi � α− γδ and

hi−1 = 1− α− δ ⇒ hi � 1− α− γδ�

(3.14)

We know that f0 ≤ α − c n−1 for some c � 0 . Hence by (3.14) fi ≤
α − γ i c n−1 if γ i−1 c n−1 � ε . If we choose i = (log n)�(log γ) + c′

for some appropriate c′ , then fi � α − ε and (by similar arguments)

hi � 1−α−ε . Altogether Prob(Fl = Tn
m) ≥ 1�2 for all γ � 4 α , some

appropriate c′′ depending on γ and

l = (log n)(1 + log−1 γ) + c′′� (3.15)

The size of Fl is bounded by

22l = O(nβ) where β = 2(1 + log−1 γ)� γ � 4α = 2(3−
√

5)� (3.16)

Choosing γ = 4α− η for some small η we obtain a monotone formula

for Tn
m of size O(n5�271) .

THEOREM 3.1 : The monotone formula size of each threshold func-

tion Tn
k is bounded by O(n5�271) .

247

The best lower bounds on the formula size of the majority function

(over the monotone basis and over {∧�∨�¬}) are of size Ω(n2) . Hence

the investigation of the (monotone) formula size of threshold functions

is not yet complete.

8.4 The depth of symmetric functions

We are not able to prove ω(log n) lower bounds on the depth of

explicitly defined Boolean functions. For functions depending es-

sentially on n variables a �log n� lower bound is obvious. Most of

the lower bounds of size c log n for some c � 1 follow from Ω(nc)

bounds on the formula size. There are only few exceptions where

lower bounds on the depth are proved directly. McColl (78 c) proved

such bounds for symmetric functions and the complete bases {NAND}
and {NAND�→} . Since the methods are similar, we concentrate us

on the basis {NAND} . Further results for special functions are proved

by McColl (76).

We know already (see Theorem 4.1 , Ch. 3) that the depth of all

symmetric functions is Θ(log n) . For the proof of lower bounds over

the basis {NAND} we make the most of the cognition that NAND-

circuits of small depth compute only functions of short prime impli-

cants.

LEMMA 4.1 : If f can be computed by a NAND-circuit of depth

2 d + 1 , the length of each prime implicant of f is bounded by 2d .

Proof : Induction on d . If d = 0 , the depth is bounded by 1 . The only

functions which are computable in depth 1 are xi , xi = NAND(xi� xi)

and xi ∨ xj = NAND(xi� xj) . All prime implicants have length 2d = 1 .

Let us now assume that the lemma holds for all functions of depth

d′ ≤ 2d+1 . Let f be a function of depth 2d+2 or 2d+3 , and let S be

248

a depth optimal circuit for f . At least one of the direct predecessors

of the output gate is also a gate. Hence

f = NAND
(
NAND(h1� h2)�NAND(h3� h4)

)
= (h1 ∧ h2) ∨ (h3 ∧ h4)

(4.1)

or f = NAND
(
NAND(h1� h2)� xi

)
= (h1 ∧ h2) ∨ xi

for functions h1� � � � � h4 whose prime implicants have by induction hy-

pothesis lengths bounded by 2d . Thus the length of the prime impli-

cants of f is bounded by 2d+1 . �

LEMMA 4.2 : Let t be an implicant of f ∈ Sn of length s . Then the

value vector v(f) of f contains a substring of length n− s+1 consisting

of ones only.

Proof : We replace s variables by constants in such a way that t

and hence also f are replaced by 1 . The substring of v(f) for this

subfunction has length n− s + 1 and consists of ones only. �

THEOREM 4.1 : If f ∈ Sn is not constant,

D{NAND}(f) ≥ 2 log n− (2 log 3− 1)� (4.2)

Proof : Since ¬f = NAND(f� f) , f and ¬f have almost the same depth.

If the depth is small, the prime implicants of f and ¬f are short and

v(f) and v(¬f) have long substrings consisting of ones only. Hence v(f)

has a long substring of ones only and a long substring of zeros only.

The length of the shorter substring is bounded by (n + 1)�2 .

Case 1 : 2k ≤ n � 3 · 2k−1 .

We choose d so that D{NAND}(f) ∈ {2d − 1� 2d} . Then

D{NAND}(¬f) ≤ 2d + 1 . By Lemma 4.1 the lengths of the prime im-

plicants of f and ¬f are bounded by 2d . v(f) contains a 0-sequence

whose length is at least n + 1 − 2d and a 1-sequence whose length is

249

at least n + 1− 2d . The length of v(f) is n + 1 . Hence

n + 1 ≥ 2(n + 1− 2d) and 2d+1 ≥ n + 1 ≥ 2k + 1� (4.3)

Since d and k are natural numbers

D{NAND}(f) ≥ 2 d− 1 ≥ 2 k− 1 = 2 (k− 1) + 1 (4.4)

� 2 log(n�3) + 1 = 2 log n− (2 log 3− 1)�

Case 2 : 3 · 2k−1 ≤ n � 2k+1 .

We use similar arguments. Let D{NAND}(f) ∈ {2d� 2d + 1} , hence

D{NAND}(¬f) ≤ 2d+2 . v(f) contains a 1-sequence (0-sequence) whose

length is at least n + 1− 2d (n + 1− 2d+1) . Hence

n + 1 ≥ n + 1− 2d + n + 1− 2d+1 ⇒ 3 · 2d ≥ n + 1 ≥ 3 · 2k−1 + 1

(4.5)

⇒ D{NAND}(f) ≥ 2 d ≥ 2 k ≥ 2 (log n− 1) ≥ 2 log n− (2 log 3− 1)�

�

8.5 The Hodes and Specker method

After intensive studies on the depth and formula size of symmetric

functions and above all threshold functions we switch over to general

methods for the proof of lower bounds on the formula size of Boolean

functions. Many applications on the Hodes and Specker method are

presented by Hodes (70). Hodes and Specker (68) stated only that

their method yields nonlinear bounds. Vilfan (72) proved that the

bounds actually are of size n log∗ n . Pudlák (84 a) combined the re-

sults of Hodes and Specker and the Ramsey theory (see e.g. Graham,

Rothschild and Spencer (80)) and proved the following theorem.

THEOREM 5.1 : For each binary basis Ω there is some εΩ � 0 such

250

that the following statement holds for all r ≥ 3 and all f ∈ Bn whose

formula size with respect to Ω is bounded above by εΩn(log logn− r) .

There is a set of n − r variables such that the subfunction f ′ ∈ Br of

f where we have replaced these n− r variables by zeros is symmetric,

and its value vector v(f ′) = (v0� � � � � vr) has the following form: v1 =

v3 = v5 = · · · and v2 = v4 = v6 = · · · . Hence f ′ is uniquely defined

by v0� v1 and v2 .

The proof is based on the fundamental principle of the Ramsey

theory. Simple objects, here formulas of small size, are locally simple,

i.e. have very simple symmetric functions on not too few variables as

subfunctions. We leave out the proof here. A direct application of the

Ramsey theory to lower bounds on the formula size has been worked

out by Pudlák (83). Since the Ramsey numbers are increasing very

fast, such lower bounds have to be of small size.

Here we explain only one simple application of this method, more

applications are posed as exercises.

THEOREM 5.2 : L(Tn
2) = Ω(n log log n) .

Proof : Let r = 3 . If we replace n−3 variables by zeros, Tn
2 is replaced

by T3
2 . For the value vector of T3

2 v1 �= v3 . �

This is the largest known lower bound on L(Tn
2) .

251

8.6 The Fischer, Meyer and Paterson method

Also the method due to Fischer, Meyer and Paterson (82) is based

on the fact that simple functions have very simple subfunctions. This

method yields larger lower bounds than the Hodes and Specker method

but for a smaller class of functions. The class of very simple functions

is the class of affine functions x1⊕· · ·⊕xm⊕ c for c ∈ {0� 1} . The size

of an affine function is the number of variables on which it depends

essentially. A subfunction f ′ of f is called a central restriction of f if

n1 − n0 ∈ {0,1} for the number of variables replaced by ones (n1) and

zeros (n0) .

THEOREM 6.1 : Let a(f) be the maximal size of an affine sub-

function of f when considering only central restrictions. Then for all

Boolean functions f ∈ Bn (n ∈ �)

L(f) ≥ ε n (log n− log a(f)) for some constant ε � 0 . (6.1)

We also omit the tedious proof of this theorem. The following result

states a rather general criterion for an application of this method.

Afterwards we present a function for which the bound of Theorem 6.1

is tight.

THEOREM 6.2 : If f(a) = c for all inputs with exactly k ones and

f(a) = c for all inputs with exactly k + 2 ones, then

L(f) ≥ ε′ n log
(
min{k� n− k}) for some constant ε′ � 0 . (6.2)

Proof : W.l.o.g. k ≤ �n�2� . At first we prove the assertion for

k = �n�2� . It is sufficient to prove that a(f) ≤ 2 . Let us consider

a central restriction f ′ ∈ B3 of f . Then �(n− 3)�2� variables have

been replaced by ones and �(n− 3)�2� variables have been replaced

252

by zeros. Since k− �(n− 3)�2� = 1 , f ′(1� 0� 0) = c but f ′(1� 1� 1) = c .

Hence f ′ is not affine.

If k � �n�2� , we consider an optimal formula F for f . Let bi be

the number of leaves of F labelled by xi . Then we replace those n−2k

variables by zeros which have the largest b-values. The formula size

of the subfunction f ′ ∈ B2k is at least ε′ (2 k) log k as we have proved

in the last paragraph. Hence there is some variable xi such that at

least ε′ log k leaves of the subformula F′ of F are labelled by xi . By

definition, bj ≥ ε′ log k for all xj which we have replaced by zeros.

Hence

L(f) = L(F) ≥ (n− 2k) ε′ log k + ε′ (2 k) log k = ε′ n log k� (6.3)

�

THEOREM 6.3 : L(Cn
0�4) = Θ(n log n) for the counting function Cn

0�4 .

Proof : Cn
0�4(a) = 1 iff a1 + · · · + an ≡ 0 mod 4 (see Def. 4.1, Ch. 3).

The lower bound follows from Theorem 6.2 , since each substring of

v(Cn
0�4) of length 4 contains exactly one 1 . Hence we may choose k

such that n�2− 2 ≤ k ≤ n�2 + 2 .

For the upper bound we assume w.l.o.g. that n = 2m . Let

Dn
1(x) and Dn

0(x) be the last two bits of x1 + · · · + xn . Then

Cn
0�4(x) = NOR

(
Dn

1(x)�Dn
0(x)

)
. Obviously L(Dn

0(x)) = n , since

Dn
0(x) = x1 ⊕ · · · ⊕ xn . Let x = (x′� x′′) where x′ and x′′ contain n�2

variables each. Then

Dn
1(x) = D

n�2
1 (x′)⊕ D

n�2
1 (x′′)⊕ (

D
n�2
0 (x′) ∧D

n�2
0 (x′′)

)
� (6.4)

L(Dn
1) ≤ 2 L(D

n�2
1) + n and L(D2

1) = 2� (6.5)

Hence L(Dn
1) ≤ n log n and L(Cn

0�4) ≤ n(1 + log n) . �

253

8.7 The Nechiporuk method

The lower bound due to Nechiporuk (66) is based on the observa-

tion that there cannot be a small formula for a function with many

different subfunctions. There have to be different subformulas for dif-

ferent subfunctions.

DEFINITION 7.1 : Let S ⊆ X be a set of variables. All subfunctions

f ′ of f , defined on S , are called S-subfunctions.

THEOREM 7.1 : Let f ∈ Bn depend essentially on all its variables,

let S1� � � � � Sk ⊆ X be disjoint sets of variables, and let si be the number

of Si-subfunctions of f . Then

L(f) ≥ N(S1� � � � � Sk) := (1�4)
∑

1≤i≤k
log si� (7.1)

Proof : Let F be an optimal formula for f and let ai be the number

of leaves labelled by variables xj ∈ Si . It is sufficient to prove that

ai ≥ (1�4) log si . Let Ti be that subtree of F consisting of all leaves

labelled by some xj ∈ Si and consisting of all paths from these leaves

to the output of F . The indegree of the nodes of Ti is 0 , 1 or 2 .

Let Wi be the set of nodes of indegree 2 . Since it is obvious that

|Wi| = ai − 1 , it is sufficient to prove that

|Wi| ≥ (1�4) log si − 1� (7.2)

Let Pi be the set of paths in Ti starting from a leaf or a node in Wi ,

ending in a node in Wi or at the root of Ti and containing no node in

Wi as inner node. There are at most |Wi| + 1 different end-points of

paths in Pi . Because of the definition of Pi there are at most two Pi-

paths ending in some gate G . These paths can be found by starting in

G and going backwards until a node in Wi or a leaf is reached. Hence

254

|Pi| ≤ 2 (|Wi|+ 1)� (7.3)

The different replacements of the variables xj �∈ Si lead to si dif-

ferent subformulas. We measure the local influence of different re-

placements. Let p be a path in Pi and let us fix a replacement of all

variables xj �∈ Si . If h is computed at the first gate of p , then the func-

tion computed on the last edge of p is 0 , 1 , h or h , since no variable

xk ∈ Si has any influence on this path. Since Ti can be partitioned

into the paths p ∈ Pi , the number of Si-subfunctions is bounded by

4|Pi| . Hence

si ≤ 4|Pi| (7.4)

and (7.2) follows from (7.3) and (7.4). �

What is the largest possible size of the Nechiporuk bound

N(S1� � � � � Sk) ?

THEOREM 7.2 : If f ∈ Bn , the Nechiporuk bound N(S1� � � � � Sk) is

not larger than 2 n2 log−1 n .

Proof : Let t(i) = |Si| . There are 2n−t(i) possibilities of replacing

the variables xj �∈ Si by constants, and there are not more than 22t(i)

functions on Si . Hence

log si ≤ min{n− t(i)� 2t(i)}� (7.5)

W.l.o.g. t(i) � log n iff i ≤ q . Since the sets Si are disjoint, q �

n log−1 n and∑
1≤i≤q

log si ≤
∑

1≤i≤q
(n− t(i)) ≤ n2 log−1 n� (7.6)

Furthermore∑
q�i≤k

log si ≤
∑

q�i≤k
2t(i)� (7.7)

255

Since the function x → 2x is convex, the right-hand side of (7.7) is

maximal if as many t(i) as possible are equal to log n , the upper

bound for these t(i) . Hence also (7.7) is bounded by n2 log−1 n . �

Indeed it is possible to prove by Nechiporuk’s method bounds of

size n2 log−1 n . The Nechiporuk function is dealt with in the Exercises.

We prove a bound of this size for a storage access function for indirect

addressing (Paul (77)).

DEFINITION 7.2 : The storage access function (for indirect address-

ing) ISAn ∈ Bn where n = 2p + k for some p = 22l
and k = log p −

log logp is defined on the variables x = (x1� � � � � xp) , y = (y0� � � � � yp−1)

and a = (a0� � � � � ak−1) .

Let d = (x|a| log p+1� � � � � x(|a|+1) logp) where |a| is the binary number rep-

resented by a . Then ISAn(x� y� a) = y|d| .

THEOREM 7.3 : L(ISAn) = Ω(n2 log−1 n) and C(ISAn) ≤ 2n+o(n) .

Proof : Let Si = {xi log p+1� � � � � x(i+1) log p} for 0 ≤ i ≤ p log−1 p−1 . For

fixed i we replace the a-variables by constants so that |a| = i . Then

y is the value table of the Si-subfunction. All 2p different value tables

lead to different Si-subfunctions. Hence si ≥ 2p and by the Nechiporuk

method

L(ISAn) ≥ (1�4) p2 log−1 p = Ω(n2 log−1 n)� (7.8)

By Theorem 5.1, Ch. 3 , the circuit complexity of SAn , the stor-

age access function for direct addressing, is bounded by 2n + o(n) .

Hence each x|a| log p+j (1 ≤ j ≤ log p) can be computed by 2 p log−1 p +

o(p log−1 p) gates. The whole vector d can be computed with 2p+o(p)

gates. Afterwards ISAn can be computed with 2p + o(p) gates. Alto-

gether 4p + o(p) = 2n + o(n) gates are sufficient for the computation

of ISAn . �

256

Nechiporuk’s method has been applied to many functions. We re-

fer to Harper and Savage (72) for the marriage problem and to Pater-

son (73) for the recognition of context free languages. We investigate

the determinant (Kloss (66)) and the clique functions (Schürfeld (84)).

The determinant detn ∈ BN where N = n2 is defined by

det
n

(x11� � � � � xnn) =
⊕

π∈Σn

x1�π(1) � � �xn�π(n)� (7.9)

THEOREM 7.4 : L(detn) ≥ (1�8) (n3 − n2) .

Proof : Let Si = {xj�(i+j)modn | 1 ≤ j ≤ n} contain the variables of

some secondary diagonal. Since the determinant does not change if

we interchange rows or columns, we conclude that s1 = · · · = sn . We

only consider Sn , the variables of the main diagonal, and prove the

existence of 2(n2−n)�2Sn-subfunctions. Then the theorem follows by the

Nechiporuk method.

Let yj = xjj . We replace the variables below the main diagonal by

fixed constants in the following way.

gc(y1� � � � � yn) = det
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 c12 c13 ���� c1�n−2 c1�n−1 c1n

1 y2 c23 ���� c2�n−2 c2�n−1 c2n

0 1 y3 ���� c3�n−2 c3�n−1 c3n

�� �� �� ���� �� �� ��

0 0 0 ���� 1 yn−1 cn−1�n

0 0 0 ���� 0 1 yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (7.10)

Since there are (n2 − n)�2 matrix elements cij (i � j) above the main

diagonal, it is sufficient to prove that gc and gc′ are different functions

for different c and c′ .
For n = 2 gc(y1� y2) = y1 y2 ⊕ c12 and the assertion is obvious. The

case n = 3 is left as an exercise.

257

For n � 3 we apply matrix operations which do not change the

determinant. We multiply the second row by y1 and add the result to

the first row. The new first row equals

(0� y1 y2 ⊕ c12� y1 c23 ⊕ c13� � � � � y1 c2n ⊕ c1n)� (7.11)

The first column has a one in the second row and zeros in all other

rows. Hence we can erase the first column and the second row of the

matrix. For y1 = 1 we obtain an (n − 1) × (n − 1)-matrix of type

(7.10). By induction hypothesis we conclude that gc and gc′ differ if

cij �= c′ij for some i ≥ 3 or c1k ⊕ c2k �= c′1k ⊕ c′2k for some k ≥ 3 .

By similar arguments for the last two columns (instead of the first

two rows) we conclude that gc and gc′ differ if cij �= c′ij for some

j ≤ n − 2 or ck�n−1 ⊕ ckn �= c′k�n−1 ⊕ c′kn for some k ≤ n − 2 . Alto-

gether we have to consider only the situation where cij = c′ij for all

(i� j) �∈ {(1� n− 1)� (1� n)� (2� n− 1)� (2� n)} and c1k⊕ c2k = c′1k⊕ c′2k for

k ∈ {n − 1� n} . Let y1 = 0 . Then we can erase the first column and

the second row of the matrix. We obtain (n − 1) × (n − 1)-matrices

M and M′ which agree at all positions except perhaps the last two

positions of the first row. Since c �= c′ and c1k ⊕ c2k = c′1k ⊕ c′2k for

k ∈ {n− 1� n} , c1�n−1 �= c1�n−1
′ or c1n �= c1n

′ or both. By an expansion

according to the first row we compute the determinants of M and M′ .
The summands for the first n−3 positions are equal for both matrices.

The (n − 2)-th summand is yn if c1�n−1 = 1 (c′1�n−1 = 1 resp.) and 0

else, and the last summand is 1 if c1n = 1 (c′1n = 1 resp.) and 0 else.

Hence gc(y)⊕gc′(y) is equal to yn or 1 or yn⊕1 according to the three

cases above. This ensures that gc �= gc′ if c �= c′ . �

The clique function cln�m ∈ MN where N =
(n

2

)
(see Def. 11.1, Ch. 6)

checks whether the graph G(x) contains an m-clique.

THEOREM 7.5 : L(cln�m) ≥ (1�48)(n−m)3 − o((n−m)3) if m ≥ 3 .

258

Proof : It is sufficient to prove the claim for m = 3 , since cln−(m−3)�3

is a subfunction of cln�m . We only have to replace all edges adjacent

to the nodes n−m + 4� � � � � n by ones.

Let Si = {xi�i+1� � � � � xin} for 1 ≤ i ≤ n−1 . In order to estimate the

number of Si-subfunctions, we replace all edges adjacent to the nodes

1� � � � � i− 1 by zeros. These nodes are isolated and cannot belong to a

3-clique. We replace the variables xkl (i+1 ≤ k � l ≤ n) in such a way

by constants, that the graph on the nodes i+1� � � � � n does not contain

a 3-clique. Different replacements lead to different Si-subfunctions. If

akl = 1 for one replacement and a′kl = 0 for another replacement, let

xik = xil = 1 and xij = 0 for all other j . The first graph contains

the 3-clique on {i� k� l} , but the second graph does not contain any

3-clique at all.

Hence the number of Si-subfunctions is not smaller than the num-

ber of graphs on n − i vertices without any 3-clique. We partition

the set of vertices into two sets M1 and M2 of size �(n− i)�2� and

�(n− i)�2� resp. No bipartite graph contains a 3-clique. Hence

the number of Si-subfunctions is at least 2�(n−i)�2��(n−i)�2� . By the

Nechiporuk method

L(cln�3) ≥ (1�4)
∑

1≤i≤n−1
�(n− i)�2� �(n− i)�2� (7.12)

= (1�16)
∑

1≤i≤n−1
(n− i)2 − o(n3) = (1�48) n3 − o(n3)�

�

8.8 The Krapchenko method

The lower bound methods of § 5 – § 7 work for all (binary) bases.

Then the parity function f(x) = x1⊕ · · ·⊕ xn is a simple function. For

an input a ∈ f−1(c) all neighbors, i.e. all inputs b which differ from

a at exactly one position, are elements of f−1(c) . For the functions

259

g(x) = xi computed at the inputs each vector a ∈ g−1(c) has exactly

one neighbor in g−1(c) . Using only gates of type-∧ , i.e. using the basis

U = B2 − {⊕�≡} , the number of pairs of neighbors (a� b) , such that

h(a) �= h(b) for the computed function h , is increasing only slowly.

This observation is the principal item of the Krapchenko method.

Hence this method works only for the basis U .

We assume that the leaves of a formula can be labelled by any

literal (xi or xi) . Then we can apply the rules of deMorgan, and all

inner nodes are labelled by ∧ or ∨ . We do not present the proof due

to Krapchenko (71, 72 b) but a simpler proof due to Paterson (pers.

comm.).

DEFINITION 8.1 : A formal complexity measure FC is a function

FC : Bn → � such that

i) FC(xi) = 1 for 1 ≤ i ≤ n ,

ii) FC(f) = FC(¬f) for f ∈ Bn and

iii) FC(f ∨ g) ≤ FC(f) + FC(g) for f� g ∈ Bn .

By this definition and the rules of deMorgan also FC(f ∧ g) ≤
FC(f) + FC(g) . LU is a formal complexity measure. Moreover LU is

the largest formal complexity measure.

LEMMA 8.1 : LU(f) ≥ FC(f) for any f ∈ Bn and any formal com-

plexity measure FC .

Proof : By induction on l = LU(f) . If l = 1 , f = xi or f = xi , and

FC(f) = 1 . Let l = LU(f) � 1 and let F be an optimal U-formula for

f . W.l.o.g. the last gate of F is an ∨-gate whose input functions are

g and h . Hence f = g ∨ h . The subformulas for g and h are optimal,

too. By the induction hypothesis

LU(f) = LU(g) + LU(h) ≥ FC(g) + FC(h) ≥ FC(f)� (8.1)

�

260

We look for a formal complexity measure FC such that for many

difficult functions f FC(f) is large and can be estimated easily.

DEFINITION 8.2 : Let H(A�B) be the set of neighbors (a� b) ∈
A× B . Let

KAB = |H(A�B)|2 |A|−1 |B|−1 and (8.2)

K(f) = max{KAB | A ⊆ f−1(1)�B ⊆ f−1(0)}� (8.3)

THEOREM 8.1 : LU(f) ≥ K(f) for all Boolean functions f .

Proof : It is sufficient to prove that the Krapchenko measure K is a

formal complexity measure.

i) Claim : K(xi) = 1 .

˝ ≥ ˝ : Let B be the set containing only the zero vector, and let A be

the set containing only the i -th unit vector.

˝ ≤ ˝ : Each vector in x−1
i (0) has only one neighbor in x−1

i (1) and vice

versa.

ii) K(f) = K(¬f) by definition, since the definition of K(f) is symmetric

with respect to f−1(0) and f−1(1).

iii) Claim : K(f ∨ g) ≤ K(f) + K(g) .

We choose A ⊆ (f ∨ g)−1(1) and B ⊆ (f ∨ g)−1(0) in such a way that

K(f∨g) = KAB . Then B ⊆ f−1(0) and B ⊆ g−1(0). We partition A into

disjoint sets Af ⊆ f−1(1) and Ag ⊆ g−1(1). Then H(A�B) is the disjoint

union of H(Af�B) and H(Ag�B) . Let ag = |Ag| , hf = |H(Af�B)| and

so on. Then

K(f ∨ g) = h2a−1b−1 and (8.4)

K(f) + K(g) ≥ h2
f a

−1
f b−1 + h2

ga
−1
g b−1�

It is sufficient to prove that

h2 a−1 b−1 ≤ h2
f a−1

f b−1 + h2
g a−1

g b−1� (8.5)

We make use of the facts that h = hf + hg and a = af + ag . Hence

(8�5) ⇔ (hf + hg)
2 af ag ≤ h2

f ag (af + ag) + h2
g af (af + ag) (8.6)

261

⇔ 0 ≤ h2
f a2

g − 2 hf hg af ag + h2
g a2

f = (hf ag − hg af)
2�

�

LEMMA 8.2 : K(f) ≤ n2 for all f ∈ Bn .

Proof : |H(A�B)| ≤ min{n|A|� n|B|} , since each vector has only

n neighbors. �

THEOREM 8.2 : For the parity function fn(x) = x1 ⊕ · · · ⊕ xn

L(fn) = n and LU(fn) ≥ n2 . If n = 2k , LU(fn) = n2 .

Proof : Obviously L(fn) = n . If A = f−1
n (1) and B = f−1

n (0) , |A| =

|B| = 2n−1 . Each neighbor of a ∈ A lies in B and vice versa, i.e.

|H(A�B)| = n 2n−1 . Hence LU(fn) ≥ n2 by Theorem 8.1.

We still have to prove an upper bound on LU(fn) for n = 2k .

Let x = (x′� x′′) where x′ and x′′ have length n�2 each.

fn(x) =
(
fn�2(x

′) ∧ (¬fn�2(x
′′))
) ∨ ((¬fn�2(x

′)) ∧ fn�2(x
′′)
)
� (8.7)

Hence

LU(fn) ≤ 4 LU(fn�2)� LU(f1) = 1� and LU(fn) ≤ n2� (8.8)

�

This difference between the bases B2 and U has been proved by

Krapchenko (72 a). The Krapchenko method yields good lower bounds

for several symmetric functions (see Theorem 8.2 and Exercises). It

is easy to prove that the Nechiporuk bound is linear for all symmet-

ric functions. The Nechiporuk method is sometimes useful also for

functions with short prime implicants (cln�3 in Theorem 7.5). For such

functions no nonlinear lower bound can be proved by the Krapchenko

bound (Schürfeld (84)).

THEOREM 8.3 : Let lPI(f) be the smallest number such that some

polynomial for f contains only prime implicants of length l ≤ lPI(f) .

262

Let lPC(f) be defined in a similar way for prime clauses. Then K(f) ≤
lPI(f) lPC(f) .

Proof : Let A ⊆ f−1(1) and B ⊆ f−1(0) . For a ∈ A we find some prime

implicant t of f such that t(a) = 1 and the length of t is bounded by

lPI(f). If a′ ∈ f−1(0) is a neighbor of a , t(a′) = 0 . Hence a and a′

differ in a position i where xi or xi is a literal of t .

This implies |H(A�B)| ≤ lPI(f)|A| . Similarly |H(A�B)| ≤ lPC(f)|B| .
Altogether KA�B ≤ lPI(f)lPC(f) . �

As a further example we apply the Krapchenko method to the

determinant.

THEOREM 8.4 : LU(detn) ≥ (1�12) n4 .

Proof : Let A = det−1
n (1) and B = det−1

n (0) . |A| is the number of

regular n×n-matrices over the field �2 = ({0� 1}�⊕�∧) . The first row

of such a matrix has to be different from the zero vector, we have 2n−1

possibilites for the choice of this row. If we have chosen i− 1 linearly

independent vectors, these vectors are spanning a vector space of 2i−1

vectors. For the choice of the i -th row we have therefore 2n − 2i−1

possibilities. Hence

|A| = ∏
1≤i≤n

(
2n − 2i−1) = αn 2n2

where αn =
∏

1≤i≤n

(
1− 2−i) . (8.9)

Since (1− a)(1− b) ≥ 1− a− b for a� b ≥ 0 ,

αn = (1�2)
∏

2≤i≤n

(
1− 2−i) ≥ (1�2)

(
1− ∑

2≤i≤n
2−i) ≥ (1�4)� (8.10)

Furthermore αn�(1− αn) ≥ 1�3 and αn−1 ≥ αn .

Let M be a given n × n-matrix and M′ a neighbor of M . W.l.o.g.

M and M′ differ exactly at position (1� 1) . We compute detn M and

detn M′ by an expansion of the first row. Then detn M �= detn M′ iff

the (n − 1) × (n − 1)-matrix M∗ consisting of the last n − 1 rows

and columns of M (or M′) is regular. We have n2 possibilities for the

263

choice of the position where M and M′ differ, αn−1 2(n−1)2 possibilities

for the choice of M∗ and 22(n−1) possibilities for the choice of the other

members of the i -th row and the j -th column if M and M′ differ at

position (i� j) . Hence

|H(A�B)| = n2 22(n−1) αn−1 2(n−1)2 = (1�2) αn−1 n2 2n2
� (8.11)

Altogether

K(det
n

) ≥ (1�4) α2
n−1 n4 22n2

αn 2n2
(1− αn) 2n2 =

1

4

αn−1

αn

αn−1

1− αn
n4 ≥ 1

12
n4� (8.12)

�

EXERCISES

1. L(f ∨g) = L(f)+L(g) if f and g depend essentially on disjoint sets

of variables.

2. (Bublitz (86)) Let

f(x1� � � � � x6) = x1 x4 ∨ x1 x6 ∨ x2 x4 ∨ x2 x6 ∨ x3 x6 ∨ x4 x5 ∨ x4 x6�

a) There is a single-level circuit of size 7 for f .

b) Cm(f) = 7 .

c) L∗m(f) = 7 .

d) All single-level formulas for f have at least 8 gates.

3. Let L∧m(f) and L∨m(f) be the minimal number of ∧-gates and ∨-

gates resp. in monotone formulas for f .

a) L∧m(f) + L∨m(f) ≤ L∗m(f) .

b) L∗m(T4
2) = 7 .

c) L∧m(T4
2) = 2 .

264

d) L∨m(T4
2) = 4 .

4. Prove that the Korobkov formulas for Tn
k (see (2.1)) have size

O(n(log n)k−1) .

5. The Fibonacci numbers are defined by a0 = a1 = 1 and

an = an−1 + an−2 . It is well-known that

an =
(
Φn+1 − (Φ−

√
5)n+1)�√5 for Φ = (1�2)(1 +

√
5) .

Let Ω = {NAND�→} where (x → y) = x ∨ y and DΩ(f) ≤ d .

Then f is a disjunction of monoms whose length is bounded by ad .

6. We use the notation of Exercise 5. If f ∈ Sn is not constant,

DΩ(f) ≥ logΦ(
√

5n)− 3 .

7. Let 1 � k � n − 3 , f ∈ Bn , f(a) = 0 for inputs a with exactly

k ones and f(a) = 1 for inputs a with exactly k + 2 ones. Then

L(f) = Ω(n log log n) .

8. Let f� f ′ ∈ Sn , v(f) = (v0� � � � � vn) and v(f ′) = (vn� � � � � v0) . Esti-

mate L(f)− L(f ′) .

9. There are 16 symmetric functions fn ∈ Sn with linear formula size.

For all other fn ∈ Sn L(fn) = Ω(n log logn) .

10. Design efficient formulas for Cn
0�8 and for Cn

0�3 .

11. Apply the Meyer, Fischer and Paterson method and the Hodes

and Specker method to threshold functions.

12. How large is the fraction of f ∈ Sn with L(f) = o(n log n) ?

13. Apply the Nechiporuk method to circuits over Br .

265

14. The Nechiporuk method yields only linear bounds for symmetric

functions.

15. (Nechiporuk (66)) Let m and n be powers of 2 , m = O(log n) ,

m and n large enough that there are different yij ∈ {0� 1}m ,

1 ≤ i ≤ l = n�m , 1 ≤ j ≤ m , having at least two ones each. Let

xij be variables, and let gi�j�k(x) be the disjunction of all xkl such

that yij has a 1 at position l . Let

f(x) =
⊕

1≤i≤l � 1≤j≤m
xij ∧

(⊕
1≤k≤l � k �=i

gi�j�k(x)
)
�

Then L(f) = Ω(n2 log−1 n) .

16. (Schürfeld (84), just as 17. and 18.) Let f ∈ MN . Let k be

the maximal length of a prime implicant of f . Then f has at most

2 |Si|k−1 Si-subfunctions. The Nechiporuk bound is not larger than

N2−(1�k) .

17. Let f(x� y� z) =
∨

1≤i�j�k≤n
zij xik ykj be the one-output function corre-

sponding to the Boolean matrix product (see § 15, Ch. 6). Then

L(f) = Θ(n3) .

18. We generalize the definition of f in Exercise 17. Let k ≥ 3 and

let X1� � � � �Xk−1�Z be (k− 1)-dimensional n× · · · × n-matrices of

Boolean variables. For N = k nk−1 let f ∈ MN be the disjunction

of all

zi(1)���i(k−1) x1
r(1)���r(k−2)i(1) · · · xk−1

r(1)���r(k−2)i(k−1)

(1 ≤ i(j) , r(j) ≤ n). Then L(f) = Ω(N2−1�(k−1)) .

19. Describe all f ∈ Bn where K(f) = n2 for the Krapchenko mea-

sure K .

266

20. Let f ∈ Bn . Let f(a) = c for all inputs a with exactly k ones and

f(a) = c for all inputs a with exactly k + 1 ones. Estimate K(f) .

21. �2 log n� ≤ DU(x1 ⊕ · · · ⊕ xn) ≤ 2 �log n� .

267

9. CIRCUITS AND OTHER NON UNIFORM COMPUTATION

MODELS VS. TURING MACHINES AND OTHER UNIFORM

COMPUTATION MODELS

9.1 Introduction

Circuits represent a hardware model for the computation of

Boolean functions. For a given sequence fn ∈ Bn we look for circuits

Sn computing fn with small size (cost of the circuit, computation time

for sequential computations) and small depth (computation time for

parallel computations). Moreover we prefer circuits where n → Sn can

be computed by an efficient algorithm. It is easy to check that most

of the circuits we have designed can be constructed efficiently. An

exception is the monotone formula for the majority function (Ch. 8,

§ 3) , and also the O(log n)-depth division circuit (Ch. 3, § 3) cannot

be computed very efficiently. A circuit has to be designed only once

and can be applied afterwards for many computations. So the time for

the construction of a circuit is not so important as the computation

time of the circuit.

How do circuits differ from software models ? A circuit works only

for inputs of a definite length, whereas a reasonable program works for

inputs of arbitrary length. A hardware problem is a Boolean function

fn ∈ Bn . Obviously each fn is computable. A software problem is a

language L ⊆ {0� 1}∗ , i.e. a subset of the set of all finite 0-1-sequences.

It is well-known that many languages are not computable. So we look

for conditions implying that there is an efficient uniform algorithm for

L if there is a sequence Sn of efficient non uniform circuits for fn where

f−1
n (1) = L ∩ {0� 1}n . And we ask whether we can design efficient

circuits Sn for fn if we know an efficient algorithm for L , the union of

all f−1
n (1) (n ∈ �) .

Efficient simulations are known between the different uniform com-

putation models (models for the software of computers). So we con-

268

sider Turing machines as a representative of uniform computation

models. In § 2 and § 3 we present efficient simulations of Turing

machines by circuits. Since there are non computable (non recursive)

languages, we cannot simulate in general sequences of circuits by Tur-

ing machines. In § 4 we simulate efficiently circuits by non uniform

Turing machines.

Are there languages L ⊆ {0� 1}∗ for which we do not know any

polynomial Turing program but for which we can design efficient cir-

cuits, more precisely, efficient circuits Sn for fn defined by f−1
n (1) =

L ∩ {0� 1}n ? In § 5 we characterize languages with polynomial cir-

cuits, and in § 6 we simulate efficiently probabilistic Turing machines

by circuits. Nevertheless it is not believed that NP-complete languages

can have polynomial circuits. In § 7 we discuss some consequences if

certain NP-complete languages would have polynomial circuits.

We prefer efficient circuits Sn for fn ∈ Bn , which can be constructed

efficiently. In § 8 we compare some definitions for such circuits called

uniform circuits. We close this introduction with a short survey of

some concepts of the complexity theory.

A (deterministic) Turing machine works on one on both sides un-

limited working tape. Each register i ∈ � of the tape contains a letter

of a finite alphabet Σ . At the beginning the input (x1� � � � � xn) is

contained in the registers 0� � � � � n − 1 , all other registers are empty

(contain the letter B = blank). The central unit of the machine is at

each point of time in one state q ∈ Q where Q is finite. The state at

the beginning of the computation is defined by q0 . The machine has

a head which can read one register and which can move from register i

to register i− 1 or i + 1 . The head starts at register 0 . The program

is given by a transition function δ : Q × Σ → Q × Σ × {R,L,N} . If

the machine is in state q and reads a and if δ(q� a) = (q′� a′� d) , then

the machine replaces the contents of the considered register by a′ ,
the new state of the machine is q′ , and the head moves one step in

direction d (R = right , L = left , N = no move) . The computation

stops in some definite state q∗ . The result of the computation can be

269

read consecutively in the registers starting at register 0 until the first

register contains the letter B . Turing machines may have more than

one tape. Then there is one head for each of the k tapes (k ∈ �) , and

the action of the machine depends on all letters which are read by the

k heads.

For input x let t(x) be the number of steps until the machine stops

and let s(x) be the number of different registers which are scanned by

the head of the machine. The computation time t and the space s of

the Turing machine are defined by

t(n) = max{t(x) | |x| = n} (1.1)

where |x| is the length of x and

s(n) = max{s(x) | |x| = n}� (1.2)

For S�T : � → � we denote by DTIME(T) and DSPACE(S) the set

of languages which can be decided by deterministic Turing machines

in time O(T(n)) or space O(S(n)) resp. A machine decides L if it

computes 1 if x ∈ L and 0 if x �∈ L .

DEFINITION 1.1 : P is the class of languages which can be decided

by deterministic Turing machines in polynomial time.

In order to classify languages according to their complexity, one

considers non deterministic Turing machines. Then δ(q� a) is a subset

of Q × Σ × {R�L�N} . There is a number of admissible computation

steps. A non deterministic Turing machine accepts L if there is some

admissible computation on x with output 1 iff x ∈ L . For x ∈ L

the computation time tndet(x) is the length of a shortest accepting

computation path. Moreover

tndet(n) = max({tndet(x) | |x| = n� x ∈ L} ∪ {1})� (1.3)

DEFINITION 1.2 : NP is the class of languages which can be decided

by non deterministic Turing machines in polynomial time.

270

The subclass of NP-complete languages contains the most diffi-

cult problems in NP in the following sense. Either P = NP or no

NP-complete language is in P (see Cook (71), Karp (72), Specker

and Strassen (76), and Garey and Johnson (79)). The majority of

the experts believes that NP �= P . Then all NP-complete languages

(one knows of more than 1000 ones) have no polynomial algorithm.

We mention only two NP-complete languages, the set of all n-vertex

graphs (n arbitrary) with an n�2-clique and the class of all sets of

Boolean clauses (disjunctions of literals) which can be satisfied simul-

taneously (SAT = satisfiability problem).

In order to describe the complexity of a language L relative to

another language A , one considers Turing machines with oracle A .

These machines have an extra tape called oracle tape. If the machine

reaches the oracle state, it can decide in one step whether the word y

written on the oracle tape is an element of A . If one can design an

efficient Turing machine with oracle A for L the following holds. An

efficient algorithm for A implies an efficient algorithm for L , because

we can use the algorithm for A as a subroutine replacing the oracle

queries of the Turing machines with oracle A .

DEFINITION 1.3 : Let A be a language. P(A) or NP(A) is the class

of languages which can be decided by a polynomial deterministic or

non deterministic resp. Turing machine with oracle A . For a class C

of languages P(C) is the union of all P(A) where A ∈ C , NP(C) is

defined similarly.

DEFINITION 1.4 : The following hierarchy of languages is called

the Stockmeyer hierarchy (Stockmeyer (76)). Σ0 = Π0 = Δ0 = P .

Σn = NP(Σn−1) , in particular Σ1 = NP . Πn consists of all L whose

complement is contained in Σn and Δn = P(Σn−1) .

Obviously Σn−1 ⊆ Σn . It is an open problem whether this hier-

archy is proper. If Σn = Σn+1 , also Σn = Σn+k for all k ≥ 0 . In

order to prove NP �= P , it is sufficient to prove that Σn �= P for some

271

n ≥ 1 . Kannan (82) proved by diagonalization the existence of lan-

guages Lk ∈ Σ3 ∩Π3 such that |Lk ∩ {0� 1}n| is polynomially bounded

and Lk has no circuits of size O(nk) . At the end of this survey we

state a characterization of the classes Σn and Πn (Stockmeyer (76)).

THEOREM 1.1 : L ∈ Σn (L ∈ Πn) iff the predicate ˝x ∈ L˝ can be

expressed by a quantified formula

(Q1 x1) · · · (Qn xn) T(x� x1� � � � � xn) (1.4)

where x1� � � � � xn are vectors of variables of polynomial length, T is

a predicate which can be decided in polynomial time and where

Q1� � � � �Qn is an alternating sequence of quantifiers ∃ and ∀ and Q1 = ∃
(Q1 = ∀) .

The problem whether Σn = Σn+1 is the problem whether we can

eliminate efficiently quantifiers.

9.2 The simulation of Turing machines by circuits: time and size

We like to simulate efficiently Turing machines by circuits. Let

M be a deterministic Turing machine deciding L ⊆ {0� 1}∗ in time

t(n) . We look for circuits Sn for fn defined by f−1
n (1) = L ∩ {0� 1}n

whose size is small with respect to t(n) . The easiest solution is a

step-by-step simulation. The difficulty is the simulation of the head

(if-tests). After t steps the position of the head l(t) can take any

value in {−t� � � � � 0� � � � � t} depending on the input. For this reason

we simulate Turing machines at first by special Turing machines with

simple head moves. These Turing machines can be simulated easily

by circuits.

DEFINITION 2.1 : A Turing machine is called oblivious if the

sequence of head moves is the same for all inputs of the same length.

272

For oblivious Turing machines pos(t� n) , the position of the head

on inputs of length n after t ≤ t(n) steps, is well defined. The t-

th configuration of an oblivious Turing machine M on an input x of

length n is described uniquely by its state q(t� x) and the contents

b(t� x� j) of register j where −t(n) ≤ j ≤ t(n) . We use an arbitrary

encoding of Q and Σ by 0-1-sequences of length �log |Q|� and �log |Σ|�
resp. The 0 -th configuration is known, since q(0� x) = q0 , b(0� x� j) =

xj+1 if 0 ≤ j ≤ n − 1 and b(0� x� j) = B otherwise. The output is

b(t(n),x,0). Let δ1 and δ2 be the first two projections of the transition

function δ . Then

q(t + 1� x) = δ1(q(t� x)� b(t� x� pos(t� n)))� (2.1)

b(t + 1� x� j) = b(t� x� j) if j �= pos(t� n)� and (2.2)

b(t + 1� x� pos(t� n)) = δ2(q(t� x)� b(t� x� pos(t� n)))� (2.3)

Since δ is a finite function, there is a circuit of size O(1) for δ . Since

pos(t� n) is known in advance, we can simulate M by t(n) copies of the

circuit for δ .

THEOREM 2.1 : If L can be decided by an oblivious Turing machine

in time t(n) , fn ∈ Bn defined by f−1
n (1) = L∩{0� 1}n can be computed

by a circuit of size O(t(n)) .

This theorem holds also for oblivious Turing machines with k tapes.

The problem is the simulation of Turing machines M by oblivious ones:

At first we describe a simple simulation which will be improved later.

The simulation works step-by-step. We use markers # (a new letter

not contained in the alphabet of M) and the alphabet (Σ ∪ {#})2 .

Then there is space for two letters in each register. After the simula-

tion of the t-th step of M the registers−t−1 and t+n of M′ contain the

mark (#�#) . The first letter in register j ∈ {−t� � � � � t+n− 1} equals

the contents of this register after the t-th step of M . The second letter

is equal to # for that register read by the head of M , all other second

letters equal B . The head of M′ is at the left mark (#�#) .

273

In O(n) steps the ˝0 -th step˝ can be simulated. For the simulation

of the t-th step M′ has to know the state q of M . The left mark

is shifted by one position to the left, then the head of M′ turns to

the right until it finds the marked register (a�#) . M′ evaluates in

its central unit δ(q� a) = (q′� a′� d) , it bears in mind q′ instead of q ,

replaces the contents of the register by (a′�B) , if d = R , and by

(a′�#) , if d = L or d = N . If d = R , the next register to the right

with contents (b�B) is marked by (b�#) in the next step. One goes

right to the right mark (#�#) which is shifted one position to the

right. The head turns back to the left. If d = L , (a′�#) is replaced

by (a′�B) , and the register to the left containing (a′′�B) is marked by

(a′′�#) . The simulation stops when the left mark (#�#) is reached.

M′ is oblivious, and the t-th computation step is simulated in O(t+n)

steps. Altogether t′(n) = O(t(n)2) for the running time of M′ . A more

efficient simulation is due to Fischer and Pippenger ((73) and (79))

(see also Schnorr (76 a)).

THEOREM 2.2 : A deterministic Turing machine M with time com-

plexity t(n) can be simulated by an oblivious Turing machine M′ with

time complexity O(t(n) log t(n)) .

Proof : Again we use a step-by-step simulation. We shift the in-

formation of the tape in such a way that each step is ˝simulated in

register 0 ˝. A move of the head to the right (left) is simulated by a

shift of the information to the left (right). This idea again leads to

an O((t(n)2) algorithm. To improve the running time we divide the

information into blocks such that a few small blocks have to be shifted

often, but large blocks have to be shifted rarely.

We like to shift a block of length l = 2m in time O(l) l positions

to the right or left. This can be done by an oblivious Turing machine

with 3 tapes. One extra tape is used for adding always 1 until the sum

equals l which is stored on a second track of the tape. The second

extra tape is used to copy the information.

274

On the working tape we use 3 tracks, namely the alphabet

(Σ ∪ {#})3 for a new letter # . If a register with contents a ∈ Σ

is scanned for the first time, this contents is identified with (a�#�#) .

Each track j ∈ {1� 2� 3} is divided into blocks Bj
i (i ∈ �) where Bj

0 con-

tains position 0 of track j and Bj
i for i �= 0 contains the 2|i|−1 positions

2i−1� � � � � 2i − 1 if i � 0 or −(2|i| − 1)� � � � �−2|i|−1 if i � 0 of track j . A

block is called empty when it contains only #’s and is called full when

it contains no # . The segment Si consists of the blocks B1
i �B

2
i and

B3
i . A segment is called clean if the number of full blocks is 1 or 2 . At

the beginning all blocks are either full or empty, and all segments are

clean. Clean segments contain some information and provide space

for further informations. They serve as a buffer.

The program sim(k) simulates 2k steps of M . We demand that the

following statements hold after each simulation step.

(1) Each block is either full or empty.

(2) The contents of the tape of M after t computation steps can be

read after t simulation steps by reading the full blocks Bj
i according

to the lexicographical order on the pairs (i� j) .

(3) The head of M′ scans register 0 , segment S0 . In the first track of

this register is the information that M reads at that time.

(4) During the simulation of 2m steps the head only visits the segments

S−(m+1)� � � � � Sm+1 . At the end of the simulation S−m� � � � � Sm are

clean, and the number of full blocks of S−(m+1) (or Sm+1) is at most

by 1 larger or smaller than at the beginning.

At the beginning of the simulation (1) – (4) are fulfilled. sim(0) is a

simple program which easily can be performed obliviously. M′ knows

the state q of the simulated machine M and reads in the first track of

S0 the same information a as M does. Let δ(q� a) = (q′� a′� d) . M′ bears

q′ in mind instead of q . It replaces in the first track a by a′ . If d = L ,

the letter in the last full block of S−1 is transmitted to the first block

of S0 , all informations in S0 are transmitted from Bj
0 to Bj+1

0 (j ≤ 2) .

If now B3
0 is full, its information is transmitted to B1

1 , the information

275

of Bj
1 is transmitted to Bj+1

1 (j ≤ 2) . If d = R , the contents of B1
0

is transmitted to the last empty block of S−1 , the information of Bj
0

(j ≥ 2) is transmitted to Bj−1
0 . If B1

0 is empty now, the information of

B1
1 is transmitted to B1

0 , the information of Bj
1 (j ≥ 2) is transmitted

to Bj−1
1 . At the end the head is at position 0 . All these transmissions

are possible, since S−1� S0 and S1 are clean at the beginning. Hence

S0 is clean at the end of sim(0) . Altogether sim(0) is an oblivious

program of constant time complexity fulfilling (1) – (4).

sim(k) is defined for k � 0 recursively by

sim(k) : sim(k− 1); clean(k); sim(k− 1); clean(k)� (2.4)

The program clean(k) should clean up S−k and Sk . We have seen

that after the application of sim(0) S−1 and S1 can be unclean. Let

us investigate sim(k) as a non recursive procedure. sim(k) consists

of 2k simulation steps sim(0) where the t-th step is followed by

clean(1)� � � � � clean(l) for l = max{m | 2m−1 divides t} . By counting

the number of simulation steps, it is easy to see which clean-procedures

have to be performed.

We explain how clean(k) cleans up Sk (a similar program cleans

S−k) . The head turns to the right until it scans the first register of

Sk . This can be done easily by counting the number of steps on an

extra tape. We distinguish three cases. In order to have the program

oblivious, the head simulates all three cases, but the actions are per-

formed only for the right case. If Sk is clean, there is nothing to be

done. If all blocks of Sk are empty, the first block of Sk+1 is broken

into two pieces and transmitted to the first two blocks of Sk . The

contents of Bj
k+1 (j ≥ 2) is transmitted to Bj−1

k+1 . If all blocks of Sk are

full, the last two blocks are concatenated and transmitted to the first

block of Sk+1 . The contents of Bj
k+1 (j ≤ 2) is transmitted to Bj+1

k+1 .

We prove by induction on k that sim(k) fulfils (1) – (4). This has

been proved already for k = 0 . We investigate sim(k) for k � 0 . By

induction hypothesis sim(k − 1) fulfils (1) – (4). By (4) S−(k+1) and

Sk+1 are clean, since they are not visited during sim(k − 1) . Hence

276

clean(k) works. Afterwards S−k� � � � � Sk are clean, and by induction

hypothesis sim(k − 1) works correctly. Afterwards clean(k) is called

for the second time. This call for clean(k) would cause problems only

if Sk is empty and Sk was empty before the first call of clean(k) or Sk

is full in both situations. In the first case Sk+1 may be empty now,

in the second case Sk+1 may be full now. But such situations do not

occur. If Sk was empty before the first call of clean(k) , we have filled

it up with two full blocks. Because of (4) the number of full blocks is

decreased by the second call of sim(k−1) at most by 1 , and Sk cannot

be empty again. If Sk was full before the first call of clean(k) , we have

cleared out two blocks. Because of (4) the number of full blocks is

increased by the second call of sim(k−1) at most by 1 , and Sk cannot

be full again. Hence clean(k) works. Altogether sim(k) works and

fulfils (1) – (4).

By our considerations sim(�log t(n)�) is an oblivious Turing ma-

chine M′ simulating M . The running time is O(t(n)) for all calls of

sim(0) and O(2k) for each call of clean(k) . Since clean(k) is called

only once for 2k simulation steps, the whole time spent for clean(k)

is O(t(n)) . If k � �log t(n)� , sim(�log t(n)�) does not call clean(k) at

all. Hence the running time of M′ is t′(n) = O(t(n) log t(n)) . �

If we want to simulate the Turing machine M by circuits, we can

assume that s(n) is known to the circuit designer. We use markers ##

in the registers −s(n) and s(n) which do not change M since M never

reaches these registers. The simulating oblivious Turing machine can

omit all calls of clean(k) for k � �log s(n)� . Information from S−(k+1)

or Sk+1 will never be used in register 0 . Then the running time of

the oblivious Turing machine is only O(t(n) log s(n)) . From these

considerations, Theorem 2.1 and Theorem 2.2 we obtain the main

result of this chapter.

THEOREM 2.3 : If L can be decided by a deterministic Turing

machine in time t(n) and space s(n) , fn ∈ Bn defined by f−1
n (1) =

277

L ∩ {0� 1}n can be computed by a circuit of size O(t(n) log s(n)) .

9.3 The simulation of Turing machines by circuits: space and depth

The circuit we have constructed in § 2 has large depth

O(t(n) log s(n)) , since we have simulated the sequential computation

of the given Turing machine step-by-step. Here we design circuits of

small depth with respect to the space complexity of the Turing ma-

chine.

If fn ∈ Bn depends essentially on all n variables, the space complex-

ity of each Turing machine for the union of all f−1
n (1) fulfils s(n) ≥ n .

The Turing machine has to read all inputs, but the space is not used

for work. Therefore we assume that the input is given on a read-only

input tape. The space complexity s(x) for input x is the number of

different registers that the Turing machine scans on the working tape,

if x is the input. Now it is possible that Turing machines need only

sublinear space s(n) = o(n) .

For example the language of all sequences consisting of ones only

can now be decided with 1 register (for the output) on the working

tape. The corresponding Boolean functions fn(x) = x1 ∧ · · · ∧ xn have

circuit depth �log n� . All functions depending essentially on n vari-

ables have depth Ω(log n) . Hence it is not astonishing that the depth

of our circuit depends on

l(n) = max{s(n)� �log n�} (3.1)

and not only on s(n) . Before we formulate the main result of this sec-

tion (Borodin (77)), we prove a simple connection between the time

complexity and the space complexity of Turing machines. If a Tur-

ing machine runs too long on a short working tape, it reaches some

configuration for the second time. This computation cycle is repeated

infinitely often, and the machine never stops. Let the registers of

278

the working tape be numbered by 1� � � � � s(n) when the input x has

length n . Then a configuration is a vector

(q� i� a1� � � � � as(n)� j) (3.2)

where q ∈ Q is the current state, i ∈ {1� � � � � n} is the position of the

head on the input tape, j ∈ {1� � � � � s(n)} is the position of the head

on the working tape, and ak ∈ Σ is the contents of register k . Hence

k(n) , the number of different configurations, fulfils

log k(n) ≤ log |Q|+ log n + s(n) log |Σ|+ log s(n)� (3.3)

If t(n) � k(n) , the Turing machine runs for some input in a cycle and

does not stop at all on this input. Hence by (3.3)

log t(n) ≤ log k(n) = O(l(n))� (3.4)

THEOREM 3.1 : If L can be decided by a deterministic Turing

machine in time t(n) and space s(n) , then

D(fn) = O(l(n) log t(n)) = O(l(n)2) for f−1
n (1) = L ∩ {0� 1}n� (3.5)

Proof : We assume that the Turing machine does not stop in q∗ , but

that it remains in q∗ and does not change the contents of the registers

of the working tape. Then the computation on x can be described by

the sequence of configurations k0(x)� � � � � kt(n)(x) and x ∈ L iff regis-

ter 1 of the working tape contains a 1 in kt(n)(x) .

For each configuration k(x) the direct successor k′(x) is unique.

k′(x) does not depend on the whole input vector but only on that bit

xi which is read by the Turing machine in configuration k(x) . Let

A = A(x) be the k(n) × k(n)-matrix where ak�k′ = 1 (k , k′ confi-

gurations) iff k′ is the direct successor of k on input x . Since ak�k′

depends only on one bit of x , A can be computed in depth 1 . Let

Ai = (ai
k�k′) be the i -th power of A with respect to Boolean matrix

multiplications. Since

ai
k�k′ =

∨
k′′

ai−1
k� k′′ ∧ ak′′�k′� (3.6)

279

ai
k�k′ = 1 iff on input x and starting in configuration k we reach con-

figuration k′ after t steps. We compute by �log t(n)� Boolean matrix

multiplications AT for T = 2�log t(n)� . The depth of each matrix mul-

tiplication is �log k(n)�+ 1 . Finally

fn(x) =
∨

k∈Ka

aT
k0� k (3.7)

for the starting configuration k0 and the set of accepting con-

figurations Ka . Altogether fn(x) can be computed in depth

1 + �log t(n)� (�log k(n)�+ 1) + �log k(n)� . The theorem follows

from (3.4). �

9.4 The simulation of circuits by Turing machines with oracles

Each Boolean function fn ∈ Bn can be computed by a Turing ma-

chine in n steps without working tape. The machine bears in mind the

whole input x and accepts iff x ∈ f−1
n (1) . But the number of states of

the machine is of size 2n and grows with n . We like to design a Tur-

ing machine which decides L , the union of all f−1
n (1) where fn ∈ Bn .

But L can be non recursive even if C(fn) is bounded by a polynomial.

A simulation of circuits by Turing machines is possible if we provide

the Turing machine with some extra information depending on the

length of the input but not on the input itself (Pippenger (77 b),(79),

Cook (80)).

DEFINITION 4.1 : A non uniform Turing machine M is a Turing

machine provided with an extra read-only tape (oracle tape) contain-

ing for inputs x of length n an oracle an . The computation time t(x)

is defined in the usual way, the space s(x) is the sum of the num-

ber of different registers on the working tape scanned on input x and

�log |an|� .

280

The summand �log |an|� for the space complexity is necessary

for the generalization of the results of § 3. We have to add m ∈
{1� � � � � |an|} , the position of the head on the oracle tape, to a config-

uration vector k = (q� i� a1� � � � � as(n)� j) (see (3.2)). If the space com-

plexity is defined as done in Definition 4.1, the estimation (3.4) holds

also for non uniform Turing machines. Hence the results of § 2 and

§ 3 hold also for non uniform Turing machines.

THEOREM 4.1 : If cn = C(fn) = Ω(n) , L , the union of all f−1
n (1) ,

can be decided by a non uniform Turing machine where t(n) = O(c2
n)

and s(n) = O(cn) .

Proof : The oracle an is an encoding of an optimal circuit Sn for

fn ∈ Bn . We number the inputs and gates of Sn by 1� � � � � n + cn .

A gate is encoded by its number, its type and the numbers of its

direct predecessors. The encoding of a gate has length O(log cn) , the

encoding an of Sn has length O(cn log cn) , hence log |an| = O(log cn) .

The Turing machine can now simulate the circuit given in the oracle

step-by-step. After the simulation of i − 1 gates, the results of these

gates are written on the working tape. The i -th gate is simulated by

looking for the inputs of the gate (on the input tape or on the working

tape), by applying the appropriate ω ∈ B2 to these inputs and by

writing the result on the working tape. It is easy to see that each gate

can be simulated in time O(cn) and we obviously need cn registers on

one working tape for the results of the gates and O(log cn) registers

on another working tape for counting. �

THEOREM 4.2 : If dn = D(fn) = Ω(log n) , L , the union of all

f−1
n (1) , can be decided by a non uniform Turing machine where t(n) =

O(n 2dn) and s(n) = O(dn) .

Proof : The oracle an is an encoding of a depth optimal formula Fn

for fn . Formulas can be simulated with very little working tape, since

281

the result of each gate is used only once. We number the gates of a

formula of depth dn in postorder. The postorder of a binary tree T

with left subtree Tl and right subtree Tr is defined by

postorder(T) = postorder(Tl) postorder(Tr) root(T)� (4.1)

A gate is encoded by its type and numbers il � ir ∈ {0� � � � � n} . If

il = 0 , the left direct predecessor is another gate and, if il = j ∈
{1� � � � � n} , the left direct predecessor is the variable xj . In the same

way ir is an encoding of the right predecessor. Each gate is encoded

by O(log n) bits. Since formulas of depth d contain at most 2d − 1

gates, log |an| = O(dn) .

The Turing machine simulates the formula given in the oracle step-

by-step. If we consider the definition of the postorder, we conclude

that gate G has to be simulated immediately after we have simulated

the left and the right subtree of the tree rooted at G . If we erase all

results that we have already used, only the results of the roots of the

two subtrees are not erased. Hence the inputs of G can be found in

the following way. The value of variables is looked up on the input

tape, the result of the j ∈ {0� 1� 2} inputs which are other gates are

the last j bits on the working tape. These j bits are read and erased,

and the result of G is added at the right end of the working tape.

Since each gate can be simulated in time O(n) the claim on the

computation time of the Turing machine follows. It is easy to prove

by induction on the depth of the formula that we never store more

than dn results on that working tape where we store the results of

the gates. We use O(log n) registers on a further working tape for

counting. Hence the space complexity s(n) of the Turing machine is

bounded by O(dn) . �

DEFINITION 4.2 : Let T� S : �→ � .

i) SIZE(T) or DEPTH(S) is the class of sequences fn ∈ Bn which can

be computed by circuits of size O(T(n)) or depth O(S(n)) resp.

282

ii) NUTIME(T) or NUSPACE(S) is the class of languages L ⊆ {0� 1}∗
which can be decided by non uniform Turing machines in

time O(T(n)) or space O(S(n)) resp.

In § 2 and Theorem 4.1 we compared the size of circuits with the

time of Turing machines. In § 3 and Theorem 4.2 we have found a

tight relation between the depth of circuits and the space of Turing

machines. We collect these results in the following theorem, again

identifying languages and sequences of Boolean functions.

THEOREM 4.3 : i) SIZE(TO(1)) = NUTIME(TO(1)) if T(n) = Ω(n) .

ii) DEPTH(SO(1)) = NUSPACE(SO(1)) if S(n) = Ω(log n) .

Savage (72) considered another type of non uniform Turing ma-

chines. These Turing machines compute only a single Boolean function

fn ∈ Bn . The complexity C(n) of the Turing machine is measured by

‖p‖ t(n) log s(n) where ‖p‖ is the number of bits in the Turing machine

program. Such a Turing machine can be simulated by a circuit of size

O(C(n)) , the proof makes use of the ideas in the proof of Theorem 2.3.

9.5 A characterization of languages with polynomial circuits

Based on the knowledge gained in § 2 – § 4 we prove a general

characterization of languages with polynomial circuits (Karp and Lip-

ton (80)). This characterization is used later for a simulation of prob-

abilistic Turing machines by circuits.

DEFINITION 5.1 : Let F be a class of functions h : �→ Σ∗ . Poly

is the class of all h where |h(n)| is bounded by a polynomial. Let C

be a class of languages L ⊆ {0� 1}∗ and let 〈 · � · 〉 : ({0� 1}∗)2 → {0� 1}∗

283

be an injective encoding where |〈x� y〉| = O(|x|+ |y|) and (x� y) can be

computed in time O(|x|+ |y|) from 〈x� y〉 . Then

C�F = {L ⊆ {0� 1}∗ | ∃B ∈ C � h ∈ F : L = {x | 〈x� h(|x|)〉 ∈ B}}
(5.1)

is the class of languages L which are relative to some oracle function

h ∈ F in the class C .

For P �Poly (see Def. 1.1 for the definition of P) the oracle word

of polynomial length can be the encoding of a circuit of polynomial

size. Hence the following theorem (Pippenger (79)) is not surprising.

THEOREM 5.1 : L ∈ P �Poly iff fn defined by f−1
n (1) = L ∩ {0� 1}n

has polynomial circuit size.

Proof : If L ∈ P �Poly , then

L = {x | 〈x� h(|x|)〉 ∈ B} (5.2)

for some B ∈ P and h ∈ Poly . Hence there is some non uniform

polynomially time bounded Turing machine with oracle h(n) deciding

whether 〈x� h(|x|)〉 ∈ B . This Turing machine M decides L by (5.2).

By Theorem 2.3 M can be simulated by circuits of polynomial size.

If C(fn) ≤ p(n) for some polynomial p , let h(n) be the standard

encoding of a circuit Sn for fn of size p(n) . Let B be the set of all

〈x� y〉 where y is an encoding of a circuit on |x| inputs computing 1

on input x . It is an easy exercise to prove that B ∈ P . By definition

L = {x | 〈x� h(|x|)〉 ∈ B} and hence L ∈ P �Poly . �

It is interesting that also NP �Poly can be described by properties

of circuits.

DEFINITION 5.2 : The language L ⊆ {0� 1}∗ has polynomial gen-

erating circuits Sn (n ∈ �) if k(n) , the number of inputs of Sn , and

284

g(n) , the number of gates of Sn , are bounded by a polynomial and if

for some selected gates or inputs G(0� n)� � � � �G(n� n) of Sn

L ∩ {0� 1}n =
{
(resG(1�n)(a)� � � � � resG(n�n)(a)) | a ∈ {0� 1}k(n)� (5.3)

resG(0�n)(a) = 1
}
�

We explain this definition by the following considerations. Let L

have polynomial circuits, i.e. there are circuits Sn of polynomial size for

fn where f−1
n (1) = L∩{0� 1}n . Then these circuits are also generating.

We choose the inputs x1� � � � � xn as G(1� n)� � � � �G(n� n) and the output

gate as G(0� n) . Then (5.3) is fulfilled by definition of fn . This result

is also a corollary of the following theorem (Schöning (84), Yap (83)),

since P �Poly ⊆ NP �Poly .

THEOREM 5.2 : L ∈ NP �Poly iff L has polynomial generating

circuits.

Proof : If L ∈ NP �Poly , then

L = {x | 〈x� h(|x|)〉 ∈ B} (5.4)

for some B ∈ NP and h ∈ Poly . Since NP = Σ1 , there is by Theo-

rem 1.1 some L′ ∈ P and some polynomial p such that

L = {x | ∃y ∈ {0� 1}p(|x|) : 〈x� h(|x|)� y〉 ∈ L′}� (5.5)

Since L′ ∈ P , we find circuits Sn of polynomial size q(n) working on

n + p(n) input variables (x� y) and the oracle h(n) as constant input

and computing 1 iff 〈x� h(n)� y〉 ∈ L′ . Sn are generating circuits for L′ .
We define G(1� n)� � � � �G(n� n) as the inputs x1� � � � � xn and G(0� n) as

the output gate of Sn .

If Sn is a sequence of polynomial generating circuits for L , we define

h(n) as the encoding of Sn , G(0� n)� � � � �G(n� n) and k(n) . Then h ∈
Poly . Let B be the set of all 〈x� y〉 where for n = |x| y is the encoding

of a circuit on k(n) inputs and of n+1 gates G(0� n)� � � � �G(n� n) and of

k(n) such that there is an input a ∈ {0� 1}k(n) for which resG(0�n)(a) = 1

285

and resG(i�n)(a) = xi for 1 ≤ i ≤ n . B ∈ NP , since a non deterministic

Turing machine guesses a correctly. Moreover

L = {x | 〈x� h(|x|)〉 ∈ B} (5.6)

and hence L ∈ NP �Poly . �

It is an open problem whether P �Poly �= NP �Poly .

9.6 Circuits and probabilistic Turing machines

DEFINITION 6.1 : For probabilistic Turing machines the set of

states Q contains three selected states qa , qr and q? . If one of these

states is reached, the machine stops. If the stopping state is qa , the

input is accepted (output 1) , if it is qr , the input is rejected (output

0) , if it is q? , the machine does not decide about the input (no output).

If q �∈ {qa� qr� q?} , δ(q� a) ∈ (Q × Σ × {R,L,N})2 . Each of the two

admissible computation steps is performed with probability 1�2 .

Probabilistic Turing machines can simulate deterministic computa-

tion steps. Then both triples in δ(q� a) are the same. The output M(x)

of a probabilistic Turing machine M on input x is a random variable.

The running time t(n) is the length of the longest computation path

on inputs of length n .

DEFINITION 6.2 : Let χL(x) = 1 iff x ∈ L .

i) PP (probabilistic polynomial) is the class of languages L ⊆ {0� 1}∗ ,

such that there is some ppTm (polynomially time bounded prob-

abilistic Turing machine) M where for all x

Prob(M(x) = χL(x)) � 1�2 (Monte Carlo algorithms). (6.1)

286

ii) BPP (probabilistic polynomial with bounded error) is the class of

languages L ⊆ {0� 1}∗ such that there is some ppTm M and some

ε � 0 where for all x

Prob(M(x) = χL(x)) � 1�2 + ε� (6.2)

iii) R (random) is the class of languages L ⊆ {0� 1}∗ such that there

is some ppTm M where

Prob(M(x) = 1) � 1�2 for x ∈ L and (6.3)

Prob(M(x) = 0) = 1 for x �∈ L�

iv) ZPP (probabilistic polynomial with zero error) is the class of lan-

guages L ⊆ {0� 1}∗ such that there is some ppTm M where

Prob(M(x) = 0) = 0 and Prob(M(x) = 1) � 1�2 for x ∈ L

and (6.4)

Prob(M(x) = 1) = 0 and Prob(M(x) = 0) � 1�2 for x �∈ L

(Las Vegas algorithms).

We do not like to discuss the quality of different casinos, but we

state that Las Vegas algorithms never tell lies, whereas Monte Carlo

algorithms may compute wrong results on nearly half of the compu-

tation paths. It is easy to prove (see Exercises) that

P ⊆ ZPP ⊆ R ⊆ BPP ⊆ PP and R ⊆ NP � (6.5)

The error probability of BPP algorithms can be decreased by inde-

pendent repetitions of the algorithm.

LEMMA 6.1 : Let M be a ppTm for L ∈ BPP fulfilling (6.2). Let

Mt (t odd) be that probabilistic Turing machine which simulates M

for t times independently and which accepts (rejects) x if more than

t�2 simulations accept (reject) x and which otherwise does not decide

about x . Then

Prob(Mt(x) = χL(x)) � 1− 2−m if (6.6)

287

t ≥ − 2

log
(
1− 4ε2

) (m− 1)� (6.7)

Proof : Let E be an event whose probability p is larger than 1�2 + ε .

Then

pi(1− p)i � (1�2 + ε)i(1�2− ε)i = (1�4− ε2)i� (6.8)

Let ai for i ≤ t�2 be the probability that E happens exactly i times in

t independent repetitions of the experiment. Then

ai =

(
t

i

)
pi(1− p)t−i �

(
t

i

)
(1�4− ε2)t�2� (6.9)

Hence

Prob(Mt(x) = χL(x)) � 1− (1�4− ε2)t�2
∑

0≤i≤�t�2�

(
t

i

)
(6.10)

= 1− (1�4− ε2)t�2 2t−1 = 1− (1�2)(1− 4ε2)t�2�

Choosing t according to (6.7) , (6.6) follows from (6.10). �

If the number of repetitions is bounded by a polynomial, Mt is

polynomially time bounded. Adleman (78) proved that languages L ∈
R have polynomial circuits. Bennett and Gill (84) could generalize

this result.

THEOREM 6.1 : If L ∈ BPP , fn defined by f−1
n (1) = L∩ {0� 1}n has

polynomial circuit size.

Proof : We look for a computation path which is correct for all inputs

of the same length. Such a computation path will be used as an oracle.

We apply Lemma 6.1. This ensures the existence of a ppTm M for

L whose error probability is bounded by 2−2|x| . W.l.o.g. M stops for

all inputs x of length n after exactly p(n) computation steps where

p is a polynomial. A computation path is described by a vector

a ∈ {0� 1}p(n) . In step t the (at + 1)-th possible computation step

288

is performed. There are 2n+p(n) pairs (x� a) of inputs of length n and

computation paths a of length p(n) . For fixed x the number of com-

putation paths leading to wrong results is bounded by 2p(n)−2n . Hence

the number of pairs (x� a) where a is a wrong computation path for

input x is bounded by 2p(n)−n . Since 2p(n) − 2p(n)−n ≥ 1 , there is at

least one computation path h(n) ∈ {0� 1}p(n) which is correct for all

inputs of length n. By definition h ∈ Poly . Let

B = {〈x� y〉 | y ∈ {0� 1}p(|x|), M(x) = 1 on computation path y}�
(6.11)

Then B ∈ P , since a deterministic Turing machine can simulate di-

rectly a probabilistic Turing machine on a given computation path.

Hence

L = {x | 〈x� h(|x|)〉 ∈ B} ∈ P �Poly (6.12)

and, by Theorem 5.1 , fn defined by f−1
n (1) = L∩{0� 1}n has polynomial

circuit size. �

BPP and R contain languages which are not known to be contained

in P .

9.7 May NP-complete problems have polynomial circuits ?

If NP = P , all NP-complete problems have polynomial circuits.

But let us assume like most of the experts do that NP �= P . Never-

theless there is the possibility that NP-complete languages have poly-

nomial circuits. This would imply for problems in NP that non uni-

form circuits are much more powerful than uniform Turing machines.

Again, hardly anyone expects such a result. We corroborate this ex-

pectation in this section. If, for example, SAT (see § 1) has polyno-

mial circuits, then Stockmeyer’s hierarchy collapses at an early stage.

289

Again, the experts do not expect that. But beware of experts. The

experts also believed that non uniform algebraic decision trees cannot

solve NP-complete problems in polynomial time. However Meyer auf

der Heide (84) proved that the knapsack problem can be solved by

algebraic decision trees in polynomial time.

DEFINITION 7.1 : A language L is called polynomially self-reducible

if it can be decided by a polynomially time bounded Turing machine

with oracle L which asks its oracle for inputs of length n only for words

of length m � n .

LEMMA 7.1 : SAT is polynomially self-reducible.

Proof : Let the input be a set of clauses where at least one clause

includes x1 or x1 . Then we replace at first x1 by 1 and ask the oracle

whether the new set of clauses can be satisfied. Afterwards we repeat

this procedure for x1 = 0 . We accept iff one of the oracle questions is

answered positively. �

For a language L we denote by L≤n the union of all Lm = L∩{0� 1}m

for m ≤ n . Let L(M) or L(M�B) be the language decided by the

Turing machine M or the Turing machine M with oracle B resp.

LEMMA 7.2 : Let A be polynomially self-reducible, and let M be

a polynomially time bounded Turing machine according to Defini-

tion 7.1. If L(M�B)≤n = B≤n , then A≤n = B≤n .

Proof : By induction on n . If n = 0 , M is not allowed to ask the

oracle. Hence it does the same for all oracles.

A≤0 = L(M�A)≤0 = L(M�B)≤0 = B≤0� (7.1)

If L(M�B)≤n+1 = B≤n+1 , also L(M�B)≤n = B≤n and by the induction

hypothesis A≤n = B≤n . Since M asks on inputs x , where |x| ≤ n + 1 ,

290

the oracle only for words y , where |y| ≤ n ,

A≤n+1 = L(M�A)≤n+1 = L(M�A≤n)≤n+1 = L(M�B≤n)≤n+1 (7.2)

= L(M�B)≤n+1 = B≤n+1�

�

This lemma serves as technical tool for the proof of the following

theorem (Balcazár, Book and Schöning (84)). The complexity classes

Σk and Σk(A) are defined in § 1.

THEOREM 7.1 : Let A ∈ Σk�Poly be polynomially self-reducible.

Then Σ2(A) ⊆ Σk+2 .

Before we prove this theorem, we use it to prove the announced

result due to Karp and Lipton (80).

THEOREM 7.2 : If SAT has polynomial circuits, then Σ3 = Σ2 and

the Stockmeyer hierarchy collapses at the third stage.

Proof : If SAT has polynomial circuits, then SAT ∈ P �Poly =

Σ0�Poly (Theorem 5.1). Hence Σ2(SAT) ⊆ Σ2 ⊆ Σ3 (Theorem 7.1

and Lemma 7.1). Since SAT is NP-complete, Σ3 = NP(NP(NP)) =

Σ2(SAT) . Hence Σ2 = Σ3 . �

Proof of Theorem 7.1 : Let M be a Turing machine deciding A and

fulfilling the properties of Definition 7.1. Since A ∈ Σk�Poly , there

are some language B ∈ Σk and some h ∈ Poly such that

A≤n = {x | 〈x� h(n)〉 ∈ B}≤n� (7.3)

Also Bw = {x | 〈x�w〉 ∈ B} ∈ Σk . Let L′ ∈ Σ2(A) . We have to prove

L′ ∈ Σk+2 . By Theorem 1.1 there is a polynomially time bounded

Turing machine M′ with oracle A such that

291

L′ = {x | (∃ y)q(∀ z)q : 〈x� y� z〉 ∈ L(M′�A)}� (7.4)

Here q is a polynomial where q(|x|) is a bound for |y| and |z| . Since

M′ is working in polynomial time r(|x|) , also the length of each oracle

word is bounded by r(|x|) . Let p′ be the polynomial p ◦ r . We want

to prove that

L′ = {x | (∃w)p′ : ((∀ u)r R(u�w) ∧ (∃ y)q (∀ z)q S(w� x� y� z))} (7.5)

where R(u�w) holds iff
(
u ∈ Bw ⇔ u ∈ L(M�Bw)

)
and

S(w� x� y� z) holds iff 〈x� y〉 ∈ L(M′�Bw) .

R� S ∈ P(Σk) since Bw ∈ Σk . (7.5) implies

L′ = {x | (∃w)p′ (∃ y)q (∀ u)r (∀z)q : R(u�w) ∧ S(w� x� y� z)}� (7.6)

Hence L′ ∈ Σk+2 by Theorem 1.1. We still have to prove (7.5).

We claim that the predicate ˝ (∀ u)rR(u�w) ˝ is equivalent to

A≤r(n) = (Bw)≤r(n) . Since |u| ≤ r(n) , the given predicate is equiv-

alent to (Bw)≤r(n) = L(M�Bw)≤r(n) . This implies A≤r(n) = (Bw)≤r(n) by

Lemma 7.2. The other part follows from the definition of M .

By (7.3) there is always some w where |w| ≤ p′(|x|) and

˝ (∀ u)r R(u�w) ˝ holds. Only for such words we have to consider the

second predicate. Then we can replace the oracle Bw by A . By (7.4)

x ∈ L′ iff ˝ (∃ y)q (∀ z)q S(w� x� y� z) ˝ holds. This proves (7.5). �

Schöning (83) introduced two hierarchies between P and NP . Ko

and Schöning (85) proved for the so-called ˝low-hierarchy˝ (see Ex-

ercises), that languages A ∈ NP with polynomial circuits are already

contained in the third level of this hierarchy.

292

9.8 Uniform circuits

We have simulated deterministic non uniform Turing machines and

also probabilistic Turing machines efficiently by circuits. Circuits can

be simulated efficiently only by non uniform Turing machines. Instead

of considering the more powerful non uniform Turing machines, we ask

for restricted circuits such that these so-called uniform circuits can be

simulated efficiently by (uniform) Turing machines. We only give a

brief introduction (without proofs) to this subject.

The standard encoding SCn of a circuit Sn is the encoding of its

gates by the type of the gate and the numbers of the direct predecessors

(see § 4). If n → SCn can be computed efficiently with respect to n ,

then the circuits Sn can be simulated efficiently (again see § 4). There

are a lot of possibilities how we can define what ˝efficient computation

of n → SCn ˝ means.

DEFINITION 8.1 : A sequence of circuits Sn of size cn and depth dn

is called UB-uniform or UBC-uniform, if n → SCn can be computed by

a Turing machine whose space is bounded by O(dn) or O(log cn) resp.

Here B stands for Borodin (77) and C for Cook (79). Cook also

introduced the classes NC and NCk (NC = Nick’s Class celebrating

the paper of Pippenger (79)). These classes (with the modification

of unbounded fan-in ∧- and ∨-gates) are important also as complex-

ity classes for parallel computers. Since Ruzzo (81) characterized the

classes NCk by alternating Turing machines (see Chandra, Kozen and

Stockmeyer (81)), this type of Turing machines describes parallel com-

puters.

DEFINITION 8.2 : NC = UBC - SIZE,DEPTH(nO(1)� logO(1) n) is the

class of languages L such that fn defined by f−1
n (1) = L ∩ {0� 1}n can

be computed by UBC-uniform circuits of polynomial size and polylog

293

depth (the depth is a polynomial with respect to log n) .

NCk = UBC - SIZE,DEPTH(nO(1)� logk n) .

THEOREM 8.1 : If k ≥ 2 , NCk = A - SPACE,TIME(log n� logk n) is

the class of languages which can be decided by an alternating Turing

machine of space O(log n) and time O(logk n) .

Further definitions of uniform circuits (Ruzzo (81)) refer to the

complexity of the structure of the circuits (Goldschlager (78)). For a

gate G and p = (p1� � � � � pm) ∈ {L,R}∗ let G(p) be the gate Gm where

G0 = G and Gi is the pi-predecessor (L = left , R = right) of Gi−1 .

G(ε) = G for the empty word ε .

DEFINITION 8.3 : The direct connection language DCL of a se-

quence of circuits Sn is the set of all 〈n� g� p� y〉 where g is the number

of some input or gate G in Sn , p ∈ {ε�L�R} and y is the type of G if

p = ε or y is the number of G(p) if p �= ε . The extended connection

language ECL of Sn (n ∈ �) is defined in the same way but p ∈ {L�R}∗
and |p| ≤ log cn .

DEFINITION 8.4 : Let Sn be a sequence of circuits of size cn and

depth dn .

i) Sn is called UD-uniform if DCL can be decided by Turing machines

in time O(log cn) .

ii) Sn is called UE-uniform if ECL can be decided by Turing machines

in time O(log cn) .

iii) Sn is called UE∗-uniform if ECL can be decided by alternating

Turing machines in time O(dn) and space O(log cn) .

THEOREM 8.2 : Let Sn be a sequence of circuits of size cn and

depth dn .

294

i) Sn UE-uniform ⇒ Sn UD-uniform ⇒ Sn UBC-uniform ⇒
Sn UB-uniform .

ii) Sn UE-uniform ⇒ Sn UE∗-uniform ⇒ Sn UB-uniform .

iii) Sn UBC-uniform ⇒ Sn UE∗-uniform if dn ≥ log2 cn .

These properties are easy to prove. More results have been proved

by Ruzzo (81). They are summarized in the following theorem.

THEOREM 8.3 : Let X ∈ D�E�E∗ .

i) NC = UX - SIZE,DEPTH(nO(1)� logO(1) n) .

ii) If k ≥ 2 , NCk = UX - SIZE,DEPTH(nO(1)� logk n) .

Hence the proposed definitions are rather robust. Only the notion

of UB-uniformity seems to be too weak. Most of the circuits we have

designed are uniform, many fundamental functions are in NCk for

small k .

EXERCISES

1. An oblivious t(n) time bounded Turing machine with k tapes can

be simulated by circuits of size O(t(n)) .

2. A t(n) time bounded Turing machine with k tapes can be simu-

lated by an O(t(n)2) time bounded Turing machine with one tape.

3. Specify an oblivious Turing machine for sim(0) .

295

4. Estimate the size of the circuits designed in § 3.

5. Prove (6.5).

6. Let ACP (almost correct polynomial) be the class of languages L

such that L is almost decided by a polynomial Turing machine,

i.e. the number of errors on inputs of length n is bounded by a

polynomial q(n) . If L ∈ ACP , L has polynomial circuits.

7. Let APT (almost polynomial time) be the class of languages L

which can be decided by a Turing machine whose running time

is for some polynomial p for at least 2n − p(n) inputs of length n

bounded by p(n). If L ∈ APT , L has polynomial circuits.

8. Let Lk = {A ∈ NP | Σk(A) ⊆ Σk} (low hierarchy)

and Hk = {A ∈ NP | Σk+1 ⊆ Σk(A)} (high hierarchy). Let PH be

the union of all Σk . If PH �= Σk , then Lk ∩ Hk = � ◦ .

9. If PH = Σk , then Lk = Hk = NP .

10. Let Sn be a sequence of circuits of size cn and let s(n) = Ω(log cn) .

Then the following statements are equivalent :

a) (n → SCn) ∈ DSPACE(s(n)) .

b) ECL ∈ DSPACE(s(n)) .

c) DCL ∈ DSPACE(s(n)) .

11. Prove Theorem 8.2. Hint: DSPACE(t) ⊆ A-SPACE,TIME(t� t2) .

12. Which of the circuits designed in Ch. 3 and Ch. 6 are uniform ?

Which of the functions investigated in Ch. 3 and Ch. 6 are in NC

or in NCk ?

296

10. HIERARCHIES, MASS PRODUCTION AND REDUCTIONS

10.1 Hierarchies

How large are the ˝gaps˝ in the complexity hierarchies for Boolean

functions with respect to circuit size, formula size and depth ? A gap

is a non-empty interval of integers none of which is the complexity

of any Boolean function. Other hierarchies are investigated in Ch. 11

and Ch. 14.

Let B∗
n denote the set of all Boolean functions depending essentially

on n variables, n is fixed for the rest of this section. For any complexity

measure M , let M(r) be the set of all f ∈ B∗
n where M(f) ≤ r . The

gap problem is to find for each r the smallest increment r′ = m(r) such

that M(r) is a proper subset of M(r + r′) .

We are interested in cΩ(j) , lΩ(j) and dΩ(j) for binary bases Ω .

Tiekenheinrich (83) generalized the depth results to arbitrary bases.

Obviously cΩ(j) is only interesting for those j where CΩ(j + 1) �= � ◦
and CΩ(j) �= B∗

n . For any complexity measure M , let M(B∗
n) be the

complexity of the hardest function in B∗
n with respect to M . It has

been conjectured that

dΩ(j) = cΩ(j) = lΩ(j) = 1 for all Ω and all interesting j . (1.1)

It is easy to prove that dΩ(j) ≤ 2 and cΩ(j)� lΩ(j) ≤ j + 1 (Mc-

Coll (78 a)). The best results are summarized in the following theorem

(Wegener (81) and Paterson and Wegener (86)).

THEOREM 1.1 :

dΩ(j) = 1 for all Ω ⊆ B2 and �log n� − 1 ≤ j � DΩ(B∗
n) . (1.2)

Let Ω ∈ {B2�U2�Ωm} . Then

297

cΩ(j) = 1 if n− 2 ≤ j ≤ CΩ(B∗
n−1)� (1.3)

cΩ(j) ≤ n if CΩ(B∗
n−1) � j � CΩ(B∗

n) and (1.4)

lΩ(j) ≤ n if n− 2 ≤ j � LΩ(B∗
n)� (1.5)

For any complete basis Ω ⊆ B2 there is a constant k(Ω) such that

cΩ(j) ≤ k(Ω) if n− 2 ≤ j ≤ CΩ(B∗
n−1) and (1.6)

cΩ(j) ≤ k(Ω)n if CΩ(B∗
n−1) � j � CΩ(B∗

n)� (1.7)

The proof of the general claim (1.2) is technically involved. (1.5)–

(1.7) can be proved by the same methods as (1.3) and (1.4). Hence

we shall present the proof of (1.2)-(1.4) for the bases B2�U2 and Ωm .

Before doing so we state some counterexamples.

(1.1) is false for some bases and small n , and we even know an example

where cΩ(j) � n . We note that B∗
2 = U∗

2 ∪ {⊕�≡} .

Ω = U2 : CΩ(U2) = 1 but CΩ(⊕) = CΩ(≡) = 3 (Theorem 3.1, Ch. 5).

Therefore cΩ(1) = 2 . Similarly lΩ(1) = 2 .

Ω = {∧� ∨� ¬} : CΩ(U2) = 2 but CΩ(⊕) = CΩ(≡) = 4

(Red’kin (73)). Therefore cΩ(2) = 2 . Similarly lΩ(2) = 2 .

Ω = {∧� ¬} : CΩ(U2) = 4 but CΩ(⊕) = CΩ(≡) = 7 (Red’kin (73)).

Therefore cΩ(5) = 2 and cΩ(4) = 3 � 2 = n . Similarly lΩ(4) = 3 .

Proof of Theorem 1.1 : The idea of the proof is to take some function

f in B∗
n of maximal complexity and construct a chain of functions

from the constant function 0 up to f such that the circuit size cannot

increase by much at any step in the chain. We then conclude that

there can be no large gaps.

Let f ∈ B∗
n be a function of maximal circuit size with respect to Ω .

Let f−1(1) = {a1� � � � � ar} . For the case Ω = Ωm we shall assume that

298

the a’s are ordered in some way, so that for s � t , at does not contain

more ones than as . Let f0 ≡ 0 , f1� � � � � fr = f where

f−1
k (1) = {a1� � � � � ak} for 0 ≤ k ≤ r� (1.8)

Obviously DΩ(f1) = �log n� , CΩ(f1) = n− 1 and f1 ∈ B∗
n . For the case

Ω = Ωm each fk is monotone. If fk(a) = 1 and b ≥ a , also f(b) = 1

and i ≤ j for ai = b and aj = a . Hence fk(b) = 1 .

For any ak = (e(1)� � � � � e(n)) define the minterm

mk(x) = x
e(1)
1 ∧ · · · ∧ xe(n)

n (1.9)

and the monom

tk(x) =
∧

i | e(i)=1
xi� (1.10)

Then for 0 � k ≤ r we have fk = fk−1∨mk while in the monotone case

we have also fk = fk−1 ∨ tk . This follows, since mk(x) = 1 iff x = ak

and tk(x) = 1 iff x ≥ ak . In all cases we see that

DΩ(fk) ≤ max{DΩ(fk−1)� �log n�}+ 1 and (1.11)

CΩ(fk) ≤ Ck(fk−1) + n� (1.12)

It is possible that fk �∈ B∗
n . If fk depends essentially only on m vari-

ables, we assume w.l.o.g. that these variables are x1� � � � � xm . In

fk = fk−1∨mk or fk = fk−1∨ tk we replace xm+1� � � � � xn by 0 . Therefore

(1.12) is improved to

CΩ(fk) ≤ CΩ(fk−1) + m� (1.13)

Let p(x) = xm+1 ∧ · · · ∧ xn . Then f∗k = fk ∨ p ∈ B∗
n . Let m′

k and t′k be

the subfunctions of mk and tk resp. for xm+1 = · · · = xn = 0 . Then

the depth of m′
k ∨ p and t′k ∨ p is bounded by �log n� + 1 , and the

circuit size of these functions is bounded by n − 1 . Obviously fk is a

subfunction of f∗k . Hence

DΩ(fk) ≤ DΩ(f∗k) ≤ max{DΩ(fk−1)� �log n�+ 1}+ 1 (1.14)

299

≤ max{DΩ(f∗k−1)� �log n�+ 1}+ 1 and

CΩ(fk) ≤ CΩ(f∗k) ≤ CΩ(fk−1) + n ≤ CΩ(f∗k−1) + n� (1.15)

DΩ(f∗1) = �log n� and for any �log n� + 2 ≤ j ≤ DΩ(B∗
n) we find

some i(j) such that DΩ(f∗i(j)) = j . It is an exercise to prove the existence

of some g ∈ B∗
n such that DΩ(g) = �log n�+ 1 . We have proved (1.2)

and by (1.15) also (1.4).

To prove our optimal result (1.3) for the lower range of circuit size

we need to go up from fk−1 to fk in smaller steps. We will explain this

construction only for the complete bases, since for the monotone case

it is similar. Let V(h) be the set of variables on which h is depending

essentially. We shall construct a sequence h0� � � � � hm ∈ Bn with the

following properties.

CΩ(hi) ≤ CΩ(hi−1) + 1 (1.16)

CΩ(h0) = 0�CΩ(hm) = CΩ(B∗
n−1) + 1 (1.17)

V(hi−1) ⊆ V(hi)� (1.18)

Let gi ∈ B∗
n be the disjunction of hi and all variables not in V(hi) .

Then CΩ(g0) = n− 1 , CΩ(gm) = CΩ(B∗
n−1) + 1 and

CΩ(gi) = CΩ(hi) + n− |V(hi)| ≤ CΩ(hi−1) + 1 + n− |V(hi−1)| (1.19)

= CΩ(gi−1) + 1�

For any n − 1 ≤ j ≤ CΩ(B∗
n−1) + 1 we find some i(j) such that

CΩ(gi(j)) = j . This proves (1.3).

We construct h0� � � � � hm . Let f ∈ B∗
n−1 be of maximal circuit size.

Let fr = f and r = |f−1(1)| . We construct fk−1 as before by removing

a (minimal) element of f−1
k (1) , but now regarding fk as a member

of B∗
s(k) where s(k) = |V(fk)| . The effect of this is to ensure that

300

V(fk−1) ⊆ V(fk) . Then fk = fk−1 ∨ mk where mk is a minterm on the

variables in V(fk) . The procedure stops after r− r′ steps with fr′ ≡ 0 .

We note that no function fk depends essentially on xn . This variable

is used as a pointer in an interpolating sequence. Let mk(x) be the

conjunction of all x
e(i)
i (1 ≤ i ≤ s(k)) . Let

fk−1�i = fk−1 ∨ (xn ∧ x
e(1)
1 ∧ · · · ∧ x

e(i)
i) for 0 ≤ i ≤ s(k)� (1.20)

Then the sequence h0� � � � � hm is defined as the sequence

fr′�0� � � � � fr′�s(r′+1)� � � � � fr−1�0� � � � � fr−1�s(r)� fr�0�

(1.17) is fulfilled, since fr′�0 = xn , fr�0 = fr ∨ xn , fr ∈ B∗
n−1 and

CΩ(fr) = CΩ(B∗
n−1) .

We prove (1.16). In an optimal circuit for fk−1�i we replace xn by

z = xn∧x
e(i+1)
i+1 . The new circuit has CΩ(fk−1�i)+1 gates. We interpret

z as a new ˝variable˝ and conclude that the new circuit computes

fk−1 ∨ z ∧ x
e(1)
1 ∧ · · · ∧ x

e(i)
i = fk−1�i+1� (1.21)

In an optimal circuit for fk−1�s(k) we replace xn by 1 . Then we com-

pute fk (see (1.20)). Since fk�0 = fk ∨ xn , also CΩ(fk�0) ≤ CΩ(fk−1�s(k)) .

We prove (1.18). Let s = s(k) . V(fk−1�i) is a subset of

{x1� � � � � xs� xn} . We regard fk−1�i as a member of Bs+1 . fk−1�i depends

essentially on xn . Let ak be that vector which has been removed

from f−1
k (1) for the construction of f−1

k−1(1) . Then ak ∈ {0� 1}s and

fk−1�i(ak� 0) = 0 but fk−1�i(ak� 1) = 1 . If xn = 0 , fk−1�i = fk−1 and

fk−1�i depends essentially on all variables in V(fk−1) = {x1� � � � � xs′}
where s′ = s(k− 1) . Moreover fk−1�i depends essentially on x1� � � � � xi .

If fk−1�i was not depending essentially on xj (j ≤ i) we could use

the procedure for the proof of (1.16) and would obtain a circuit

for fk not depending on xj . This would be a contradiction to the

fact that fk depends essentially on x1� � � � � xs . For s′′ = max{s′� i} ,

V(fk−1�i) = {x1� � � � � xs′′� xn} . Therefore V(fk−1�i) ⊆ V(fk−1�i+1) and

V(fk−1�s) = {x1� � � � � xs� xn} = V(fk�0) . �

301

The counterexamples show that Theorem 1.1 is at least almost opti-

mal. The general proof of (1.2) (Wegener (81)) is based on the assump-

tion that the constants 0 and 1 are inputs of the circuit. Strangely

enough, this assumption is necessary at least for small n . Let Ω be

the complete basis {1�∧�⊕} (Ring-Sum-Expansion) and let 1 be not

an input of the circuit. B∗
1 = {x1� x1} , DΩ(x1) = 0 but DΩ(x1) = 2 .

Therefore dΩ(0) = 2 .

10.2 Mass Production

Test sequences for the purpose of medical research, experiments

in physical sciences or inquiries in social sciences often require large

sample size. It is impossible to analyze directly all data. In some pre-

processing phase one performs a data reduction, i.e. the same function

is applied to the data of each single test.

DEFINITION 2.1 : The direct product f × g ∈ Bn+m�k+l of f ∈ Bn�k

and g ∈ Bm�l is defined by

(f × g)(x� y) = (f(x)� g(y))� (2.1)

Similarly f1×· · ·×fr is defined and r×f is the direct product of r copies

of f .

It is possible to compute r× f by r copies of an optimal circuit for

f . We ask whether one can save gates for the mass production of f .

Obviously this is not possible for simple functions like x1 ∧ · · · ∧ xn .

Moreover one might believe that it makes no sense to compute func-

tions depending on variables of different copies of f . But we have

already seen that the encoding of independent information in a com-

mon bit string is useful for certain applications, see e.g. the application

of the Chinese Remainder Theorem in Ch. 3.

302

Let us consider medical tests. If x is the data of some person,

f(x) = 1 iff this person is infected by some definite pathogenic agent.

If r×f has large complexity and if it is known that only a small number

of people may be infected, it is useful to compute at first whether at

all any person is infected.

DEFINITION 2.2 : The direct disjunction ∨(f×g) ∈ Bn+m of f ∈ Bn

and g ∈ Bm is defined by

∨(f × g)(x� y) = f(x) ∨ g(y)� (2.2)

Similarly ∨(f1 × · · · × fr) and ∨(r× f) are defined.

If ∨(r × f) can be computed more efficiently than r × f , we use

the following strategy. We compute ∨(r × f) . If the output is 0 , no

person is infected and we stop. Otherwise we compute ∨(s × f) for

some s � r and some subset of persons and so on. Some remarks

on how to choose good strategies are included in the monograph of

Ahlswede and Wegener (86). Here we investigate the complexity of

r×f and ∨(r×f) . The following table shows in which situation savings

are possible for mass production.

C Cm L

f × f Yes No No

∨(f × f) Yes Open problem No

Tab. 2.1

It is easy to prove the results on formula size.

THEOREM 2.1 : i) LΩ(f × g) = LΩ(f) + LΩ(g) for all f , g and Ω .

ii) LΩ(∨(f × g)) = LΩ(f) + LΩ(g) + 1 if ∨ ∈ Ω and f and g are not

constant.

303

Proof : i) Because of the fan-out restriction of formulas we need dis-

joint formulas for f and g .

ii) The upper bound is obvious since ∨ ∈ Ω . Let a ∈ f−1(0). By

definition ∨(f × g)(a� y) = g(y) . Therefore each formula for ∨(f × g)

has at least LΩ(g) + 1 leaves labelled by y-variables. The existence of

LΩ(f) + 1 x-leaves is proved in the same way. Altogether each formula

for ∨(f × g) has at least LΩ(f) + LΩ(g) + 2 leaves. This implies the

lower bound. �

The result on monotone circuits has been proved by Galbiati and

Fischer (81).

THEOREM 2.2 : Cm(f × g) = Cm(f) + Cm(g) .

Proof : We assume that an optimal monotone circuit S for f × g

contains less than Cm(f) + Cm(g) gates. Then there are gates in S

having x- and y-variables as (not necessarily direct) predecessors. Let

H be the first of these gates computing h(x,y) out of the inputs h1(x)

and h2(y). W.l.o.g. H is an ∧-gate, ∨-gates are handled in the dual

way. Let f ′ and g′ be the functions computed instead of f and g resp.

if we replace H by the constant 0 . By monotonicity f ′ ≤ f and g′ ≤ g .

If f ′ �= f , there are a and b where f ′(a� b) = 0 and f(a� b) = 1 . Also

f ′(a� 0) = 0 , since the circuit is monotone (here 0 is also the vector

consisting of zeros only). f(a� 0) = 1 , since f does not depend on

the y-variables. Therefore f ′(a� 0) �= f(a� 0) implying h(a� 0) = 1 and

h2(0) = 1 . Again by monotonicity h2 ≡ 1 in contradiction to the

optimality of S . Similar arguments prove g′ = g . Hence f ′ = f and

g′ = g in contradiction to the optimality of S . �

We have proved that optimal monotone circuits for f× g consist of

disjoint optimal monotone circuits for f and g . It does not help to join

x- and y-variables. Uhlig ((74) and (84)) proved that the situation is

totally different for circuits over complete bases.

304

THEOREM 2.3 : C(r × f) ≤ 2n n−1 + o(2n n−1) if f ∈ Bn and

log r = o(n log−1 n) .

For hard functions mass production leads to extreme savings of

resources. If C(f) = Ω(2n n−1) (as for almost all f ∈ Bn , see Ch. 4) ,

ε � 0 and n sufficiently large, the complexity of 2o(n� log n) copies of f

is at most by a factor 1 + ε larger than the complexity of f . For all

practical purposes this result is not of large value, since most of the

interesting functions have circuit complexity bounded by O(2αn) for

some α � 1 .

Theorem 2.3 holds also for ∨(r × f) which can be computed from

r× f by r−1 additional gates. The use of mass production for ∨(r× f)

has also been proved by Paul (76). His methods differ from those

of Uhlig. Paul considered Turing machines for the computation of

∨(r × f) and applied the efficient simulation of Turing machines by

circuits (see Ch. 9, § 2). These results disprove the conjecture that

Ashenhurst decompositions (Ashenhurst (57)) lead to optimal circuits.

DEFINITION 2.3 : An Ashenhurst decomposition of f ∈ Bn is given

by

f(x) = g(xπ(1)� � � � � xπ(m)� h(xπ(m+1)� � � � � xπ(n))) (2.3)

for some m ∈ {1� � � � � n− 2} , g ∈ Bm+1 and permutation π .

The general proof of Theorem 2.3 is technically involved. Therefore

we consider only the case r = 2 . This is sufficient for the ˝Yes˝-entries

in Tab. 2.1.

Proof of Theorem 2.3 for r = 2 : We design a circuit for (f(x)� f(y)) .

For some k specified later let x′ = (x1� � � � � xk) and x′′ = (xk+1� � � � � xn) .

Similarly y′ and y′′ . For 0 ≤ l � 2k let fl be the subfunction of f

where we replace the first k inputs of f by the binary representation

(of length k) of l . By i and j we denote the numbers whose binary

representations are x′ and y′ resp. Then we have to compute fi(x
′′)

305

and fj(y
′′) . Let g0 = f0 , gl = fl−1 ⊕ fl for 1 ≤ l ≤ 2k − 1 and gl = fl−1

for l = L := 2k . Then

fl = g0 ⊕ · · · ⊕ gl = gl+1 ⊕ · · · ⊕ gL� (2.4)

Let us assume for the moment that i ≤ j . Then it is sufficient to

compute g0(x
′′)� � � � � gi(x

′′) and gj+1(y
′′)� � � � � gL(y

′′) .

We compute zl = x′′ if 0 ≤ l ≤ i and zl = y′′ if i + 1 ≤ l ≤ L . O(k)

gates are sufficient for each l to compute τ l = 1 iff l ≤ i . Afterwards

O(1) gates are sufficient to select each of the n−k bits of zl . Altogether

we need O(n 2k) gates for the computation of all zl . For all l we

compute gl(z
l) . Since gl depends only on n − k variables, we need

altogether (see Ch. 4, § 2) only

(2k + 1)(2n−k (n− k)−1 + o(2n−k (n− k)−1)) (2.5)

gates. Afterwards we compute al = gl(z
l) if l ≤ i and al = 0 else

and also bl = gl(z
l) if l ≥ j + 1 and bl = 0 else. This again can be

done by O(n 2k) gates. Now f(x) = fi(x
′′) is the ⊕-sum of all al and

f(y) = fj(y
′′) is the ⊕-sum of all bl .

The total number of gates is O(n 2k) plus the number in (2.5). If

k = ω(1) and k = o(n) the number of gates is bounded by 2n n−1 +

o(2n n−1) .

In general we do not know whether i ≤ j . O(n) gates are suffi-

cient to compute τ = 0 iff i ≤ j . We interchange x and y iff τ = 1

(O(n) gates). Then we use the circuit described above and compute

(f(x)� f(y)) if τ = 0 and (f(y)� f(x)) if τ = 1 . By O(1) additional gates

we compute (f(x)� f(y)) in all cases. �

The fundamental idea is the encoding of x′′ and y′′ by the z-vectors

in such a way that only 2k + 1 and not 2k+1 functions on n − k vari-

ables have to be computed. The idea is the same for larger r but the

encoding is more difficult. For monotone functions we improve Theo-

rem 2.3 using the asymptotic results of Ch. 4, § 5 , and the fact that

subfunctions of monotone functions are monotone and the methods of

Uhlig.

306

COROLLARY 2.1 : C(r × f) = O(2n n−3�2) if f ∈ Mn and log r =

o(n log−1 n) .

10.3 Reductions

Reducibility is a key concept in the complexity theory. Polynomial-

time reducibility is central to the concept of NP-completeness (see

Garey and Johnson (79)). Reducibility can be used to show that the

complexities of different problems are related. This can be possible

even though we do not know the complexity of some problem. Re-

ducibility permits one to establish lower and upper bounds on the

complexity of problem A relative to problem B or vice versa. If A is

reducible to B , this means that A is not much harder than B . Lower

bounds on the complexity of A translate to similar lower bounds on the

complexity of B . An efficient algorithm for B translates to a similarly

efficient algorithm for A . This requires that the necessary resources

for the reducibility function are negligible compared to the complexity

of A and B .

The monograph of Garey and Johnson (79) is an excellent guide to

reducibility concepts based on Turing machine complexity. Because of

the efficient simulations of Turing machines by circuits (Ch. 9, § 2–3)

all these results can be translated to results on circuit complexity.

We discuss three reducibility concepts that were defined with view

on the complexity of Boolean functions. The three concepts are NC1-

reducibility, projection reducibility and constant depth reducibility.

NC1-reducibility is defined via circuits with oracles (Cook (83),

Wilson (83)). We remember that NCk is the class of all se-

quences fn ∈ Bn having UBC-uniform circuits Sn of polynomial size and

O(logk n) depth (see Ch. 9, § 8).

307

DEFINITION 3.1 : For gn ∈ Bn�m(n) a circuit with oracle g = (gn)

consists of B2-gates and oracle gates computing some gn . The size of

a gn-oracle gate is n + m(n) and its depth is �log n� .

DEFINITION 3.2 : The sequence f = (fn) is NC1-reducible to

g = (gn) if fn can be computed by UBC-uniform circuits Sn with or-

acle g and logarithmic depth.

Notation : f ≤1 g .

NC1-reducibility is reflexive (f ≤1 f) and transitive (f ≤1 g ≤1 h ⇒
f ≤1 h) . The proof of these properties is left as an exercise. It is

intuitively evident that f is not harder than g if f ≤1 g . This intuition

is made precise in the following theorem.

THEOREM 3.1 : f ∈ NCk if f ≤1 g and g ∈ NCk .

Proof : Since f ≤1 g , there are UBC-uniform circuits Sn with oracle g

and O(log n) depth computing fn . The size of Sn is polynomially

bounded as for all circuits of logarithmic depth. Since g ∈ NCk , there

are UBC-uniform circuits Tn of polynomial size and O(logk n) depth

computing gn . Let Un be those circuits where we have replaced gr-

gates in Sn by copies of Tr . The circuits Un are UBC-uniform. They

have polynomial size, since we have replaced polynomially many gates

by circuits of polynomial size.

We estimate the length of a path p in Un . Let p′ be the correspond-

ing path in Sn . Gates of depth 1 on p′ have not been lengthened. Gates

of depth �log r� on p′ have been replaced by paths of length O(logk r) .

Hence the length of p is bounded by O(log n) plus the sum of some

O(logk ri) such that the sum of all O(log ri) is bounded by O(log n) .

Since the function x → xk is convex, the length of p is bounded by

O(logk n) . This establishes the bound on the depth of Un . �

308

We often have used (see Ch. 3) implicitly the notion of NC1-

reducibility, although we have not discussed the uniformity of the

circuits. In order to practise the use of this reducibility concept,

we present some NC1-reducibility results on arithmetic functions

(Alt (84), Beame, Cook and Hoover (84)). Let MUL (more precisely

MULn) be the multiplication of two n-bit integers, SQU the squaring

of an n-bit integer, POW the powering of an n-bit number, i.e. the

computation of x� x2� � � � � xn and DIV the computation of the n most

significant bits of x−1 .

THEOREM 3.2 : MUL =1 SQU ≤1 POW =1 DIV .

Proof : MUL =1 SQU , since both problems are in NC1 . For this

claim we use the circuits designed in Ch. 3. Nevertheless we state

explicit reductions. SQU ≤1 MUL , since SQU(x) = MUL(x� x) .

MUL ≤1 SQU , since

x y = (1�2) ((x + y)2 − x2 − y2) (3.1)

and there are UBC-uniform circuits of logarithmic depth for addition,

subtraction, and division by 2 .

SQU ≤1 POW , since SQU is a subproblem of POW.

SQU ≤1 DIV by transitivity and POW ≤1 DIV . An explicit

reduction is given by

x2 =
1

1
x − 1

x+1

− x� (3.2)

DIV ≤1 POW , since the most significant bits of x−1 can be

computed by some approximation

x−1 ≈ 1 + (1− x) + (1− x)2 + · · ·+ (1− x)k (3.3)

(see Ch. 3, § 3).

309

POW ≤1 DIV . Let

y := 22 n3 1

1− 2−2 n2 x
= 22 n3 ∑

0≤i�∞
2−i 2 n2

xi (3.4)

=
∑

0≤i�∞
22 n2 (n−i) xi�

xn has at most n2 significant bits. After computing enough (but poly-

nomially many) bits of y we can read off x� x2� � � � � xn in the binary

representation of y . �

We have proved SQU ≤1 MUL by the relation SQU(x) =

MUL(x� x) . The oracle circuit for SQU consists of a single oracle

gate. Such reductions are called projections (see Ch. 6, § 1) by Skyum

and Valiant (85).

DEFINITION 3.3 : The sequence f = (fn) is projection reducible to

g = (gn) if

fn(x1� � � � � xn) = gp(n)(σn(y1)� � � � � σn(yp(n))) (3.5)

for some polynomially bounded p(n) and some σn : {y1� � � � � yp(n)} →
{x1� x1� � � � � xn� xn� 0� 1} .

Notation : f ≤proj g .

Projection reducibility is reflexive and transitive. There is a whole

theory on projection reducibility which we only touch slightly. We

summarize some results of Chandra, Stockmeyer and Vishkin (84).

DEFINITION 3.4 : Input UG (DG) means that the input is the

adjacency matrix of an m-vertex undirected (directed) graph.

EUL CYC : Input: UG. Output 1 ⇔ G contains a cycle traversing

every edge exactly once.

UCYC : Input: UG. Output 1 ⇔ G contains a cycle.

CON : Input: UG. Output 1 ⇔ G is connected.

310

STR CON : Input: DG. Output 1 ⇔ G is strongly connected.

UST CON : Input: UG. Output 1 ⇔ G contains a path v1 → vm .

DST CON : Input: DG. Output 1 ⇔ G contains a directed path

v1 → vm .

NET FLOW : Input: m-bit unary numbers c(i� j) for 1 ≤ i� j ≤ m and

an m2-bit unary number f . The m-bit unary representation of k is

0m−k 1k . Output 1 ⇔ The network with capacity c(i� j) on edge (i� j)

allows an integral flow of size at least f from v1 to vm . A flow is a

function ϕ : E → �0 where ϕ(i� j) ≤ c(i� j) , ϕ(i� 1) = 0 , ϕ(m� j) = 0

and
∑
i
ϕ(i� j) =

∑
k

ϕ(j� k) for j �= 1 and j �= m .

BIP MATCH : Input: the adjacency matrix of a bipartite graph G on

2 m vertices and an m-bit unary number k . Output 1 ⇔ G contains

a matching of size k , i.e. k vertex-disjoint edges.

BIP PERF MATCH : BIP MATCH for k = m .

CIRC VAL : Input: The (standard) encoding of a circuit S and the

specification of an input a . Output 1 ⇔ S computes 1 on a .

THEOREM 3.3 : EUL CYC =proj UCYC =proj CON =proj

UST CON ≤proj STR CON =proj DST CON ≤proj NET FLOW =proj

BIP MATCH =proj BIP PERF MATCH ≤proj CIRCVAL .

Proof : We only prove some of the assertions in order to present some

methods.

CON ≤proj EUL CYC : Given an undirected graph G , we describe

an undirected graph G′ such that G is connected iff G′ has an Eulerian

cycle. Let V = {v1� � � � � vm} be the vertex set of G . Then G′ has 3 m+(m
2

)
vertices denoted by vi� yi� zi (1 ≤ i ≤ m) and uij (1 ≤ i � j ≤ m) .

We declare that the edges {vi� yi} , {vi� zi} and {yi� zi} exist, i.e. the ap-

propriate variables are replaced by the constant 1 . The edges {vi� uij} ,

{vj� uij} and {vi� vj} exist in G′ iff {vi� vj} exists in G , i.e. these vari-

ables are replaced by xij . All other edges do not exist, these variables

are set to 0 .

311

We use the well-known fact that a graph contains an Eulerian cycle

iff it is connected except for isolated vertices and the degree of all

vertices is even. By construction the degree of all vertices in G′ is

always even. If G is connected, uij is either isolated or connected to

vi , so are zi and yi . Since all v-vertices are connected also in G′ , all

non-isolated vertices in G′ are connected. If G′ is connected except for

isolated vertices, vi and vj have to be connected by a path p without

cycles in G′ . If p uses the edges {vk� ukl} and {ukl � vl} (the only

possibility of reaching ukl) we may use instead of these two edges the

edge {vk� vl} and obtain a path from vi to vj in G .

DST CON ≤proj NET FLOW : Let c(i� j) = 1 if (vi� vj) ∈ E and

c(i� j) = 0 else. Let f = 1 . There is a flow of size 1 or larger from v1

to vm iff there is a directed path from v1 to vm in the given graph G .

BIP PERF MATCH ≤proj BIP MATCH : This is obvious, since

BIP PERF MATCH is BIP MATCH for k = m .

BIP MATCH ≤proj NET FLOW : Let G be the given bipartite graph

on u1� � � � � um and v1� � � � � vm . For the flow problem we add two vertices

s and t and look for a flow from s to t . The capacities are 1 for (s� ui)

and (vi� t) for 1 ≤ i ≤ m and all edges (ui� vj) in G . All other capacities

are 0 . Obviously there is a flow of size f from s to t iff G contains a

matching of size f .

BIP PERF MATCH ≤proj CIRC VAL : There is a polynomial al-

gorithm for BIP PERF MATCH due to Hopcroft and Karp (73) (see

also Ch. 6, § 12). By the simulations of Ch. 9, § 2 there are also

polynomial circuits Sn for this problem. We consider CIRC VAL for

circuits of size c(Sn) and n2 inputs. The variables for the encoding of

a circuit are replaced by the constants describing the encoding of Sn ,

and the variables for the inputs are replaced by the variables for the

edges in the bipartite graph. �

312

f ≤proj g iff fn is a special case of some gm where m is not too large

with respect to n . This happens if f is really a special case of g (as

for BIP PERF MATCH ≤proj BIP PERF MATCH) or if g is a general

model (as CIRC VAL) and also for problems which at the first glance

have nothing in common (as for CON ≤proj EUL CYC) . Much more

complicated projection reductions than those presented are known. If

f ≤proj g , (fn) is not much harder than (gn) .

Often weaker reducibility concepts are sufficient for the conclusion

that (fn) is not much harder than (gn) . Let us compare parity PAR

where PARn(x1� � � � � xn) = x1 ⊕ · · · ⊕ xn and majority MAJ where

MAJn(x) = Tn
�n�2�(x) . MAJ ≤| proj PAR , since each subfunction of a

parity function is a parity function or a negated parity function. Also

PAR ≤| proj MAJ . Projections of MAJm are functions of the following

type, the output is 1 iff
∑

1≤i≤m
αixi ≥ k for some k and αi ∈ � . This is

not equal to PARn . Nevertheless PAR is not much harder than MAJ

by the following reduction :

PARn(x) =
∨

k odd
Tn

k(x) ∧ (¬Tn
k+1(x))� (3.6)

All Tn
k are subfunctions of MAJ2n .

This leads to another reducibility concept, the so-called constant

depth reducibility. It refers to bounded-depth circuits which we in-

vestigate in detail in the next chapter. For these circuits all literals

xi� xi (1 ≤ i ≤ n) are inputs, and all gates are ∧-gates and ∨-gates of

unbounded fan-in. Polynomials refer to depth 2 circuits.

DEFINITION 3.5 : SIZE - DEPTH(S(n)�D(n)) is the class of all se-

quences fn ∈ Bn which can be computed by unbounded fan-in circuits

of size at most S(n) and depth at most D(n) simultaneously.

SIZE - DEPTH(poly� const) is the union of all SIZE - DEPTH(cnk� d) .

DEFINITION 3.6 : The sequence f = (fn) is constant depth reducible

to g = (gn) if there is a polynomial p(n) and a constant c such that

each fn is computed by an unbounded fan-in circuit of depth at most

313

c and size p(n) containing oracle gates for gj or gj with j ≤ p(n) - the

size and the depth of the oracle gates is 1 - and on each path is at

most one oracle gate.

Notation : f ≤cd g .

THEOREM 3.4 : i) ≤cd is reflexive and transitive.

ii) f ≤proj g ⇒ f ≤cd g .

iii) f ≤cd g , g ∈ SIZE - DEPTH(S(n)�D(n)) , S and D monotone ⇒
f ∈ SIZE - DEPTH(p(n) S(p(n))� c D(p(n))) for some polynomial p

and constant c . In particular g ∈ SIZE - DEPTH(poly� const) ⇒
f ∈ SIZE - DEPTH(poly� const) .

The easy proof of this theorem is left as an exercise. By Theo-

rem 3.4 ii the results of Theorem 3.3 hold also for constant depth re-

ducibility. For ˝simple˝ problems like PAR and MAJ nothing can be

proved with projection reducibility, but a lot is known about constant

depth reducibility. Some of the following results have been proved by

Furst, Saxe and Sipser (84) but most of them are due to Chandra,

Stockmeyer and Vishkin (84).

DEFINITION 3.7 :

PAR : Input: x1� � � � � xn . Output x1 ⊕ · · · ⊕ xn .

ZMc (zero mod 2c) : Input: x1 � � � � � xn . Output 1 ⇔
x1 + · · ·+ xn ≡ 0 mod 2c .

MUL : Multiplication of two m-bit numbers, n = 2m .

SOR : The sorting problem for m m-bit numbers, n = m2 .

MADD (multiple addition) : The addition of m m-bit numbers, n =

m2 .

THR : Input: x1� � � � � xm and an m-bit unary number k. Output

Tm
k (x) , n = 2m .

MAJ : Input: x1� � � � � xn . Output Tn
�n�2�(x).

314

BCOUNT : Input: x1� � � � � xn . Output: the binary representation of

x1 + · · ·+ xn .

UCOUNT : Input: x1� � � � � xn . Output: the n-bit unary representation

of x1 + · · · + xn .

THEOREM 3.5 : PAR =cd ZMc ≤cd MUL =cd SOR =cd MADD =cd

THR =cd MAJ =cd BCOUNT =cd UCOUNT ≤cd UST CON .

By Theorem 3.4 ii we can combine the results of Theorem 3.3

and Theorem 3.5. The lower bound for parity (which we prove in

Ch. 11) translates to lower bounds for all problems in Theorem 3.3

and Theorem 3.5. Again reducibility is a powerful tool.

We do not prove that MUL� � � � �UCOUNT ≤cd UST CON , only

the weaker claim PAR�ZMc ≤cd UST CON . This claim is sufficient

for the translation of the lower bound on parity to the other problems.

Proof of Theorem 3.5 :

PAR ≤cd ZMc : We use 2c−1 copies of each xi and an oracle gate for

¬ZMc on these n2c−1 inputs.

ZMc ≤cd PAR : Obviously PAR = ¬ZMc for c = 1 . Because of

transitivity it is sufficient to prove ZMc ≤cd ZM(c-1) if c ≥ 2 . Let

x1� � � � � xn be the inputs and let us compute yij = xixj for 1 ≤ i � j ≤ n .

It is sufficient to prove that

ZMc(x1� � � � � xn) = ZM(c-1)(x1� � � � � xn) ∧ (3.7)

ZM(c-1)(y12� � � � � yn−1�n)�

Let s be the sum of all xi and t the sum of all yij . Then

t =
∑

1≤i�j≤n
yij = (1�2)

∑
i�=j

xi xj (3.8)

= (1�2)

((∑
1≤i≤n

xi
)2 − ∑

1≤i≤n
x2

i

)
= (1�2) (s2 − s)�

315

If s ≡ 0 mod 2c , s ≡ (s�2) ≡ 0 mod 2c−1 and t ≡ 0 mod 2c−1 , since

t = (s�2)(s− 1) . This proves ≤ in (3.7). If s ≡ t ≡ 0 mod 2c−1 but

s �≡ 0 mod 2c , s = j 2c−1 for some odd j . Since c ≥ 2 , also s − 1 is

odd. Hence (s− 1) j is odd. Moreover

t = (s�2) (s− 1) = (s− 1) j 2c−2 (3.9)

in contradiction to t ≡ 0 mod 2c−1 . This proves ≥ in (3.7).

PAR ≤cd UCOUNT : Because of transitivity this implies that the

first group (PAR , ZMc) is constant depth reducible to the second

group (MUL� � � � �UCOUNT) of problems.

UCOUNT(x) equals (Tn
n(x)� � � � �Tn

1(x)) . We compute

UCOUNT(x) and ¬UCOUNT(x) . Then we compute PAR(x)

by (3.6).

For the proof that the second group of problems contains equiv-

alent problems with respect to constant depth reducibility it is (by

transitivity) sufficient to prove that MAJ ≤cd MUL ≤cd MADD ≤cd

BCOUNT ≤cd SOR ≤cd UCOUNT ≤cd THR ≤cd MAJ .

MAJ ≤cd MUL : If we are able to compute the binary representation

cn of x1 + · · ·+xn , we are done. MAJ(x) = 1 iff x1 + · · ·+xn ≥ �n�2� .

This comparison can be performed in depth 2 and polynomial size by

the disjunctive normal form, since the length of cn is k = �log(n + 1)� .

For the computation of cn we use a padding trick already used in Ch. 3,

§ 2. Let a be the binary number of length n k with xi at position k(i−1)

and zeros elsewhere. Then a is the sum of all xi 2
k(i−1) . Let b be the

binary number of length n k with ones at the positions k(i − 1) for

1 ≤ i ≤ n and zeros elsewhere. Then b is the sum of all 2k(i−1) . We

compute (at an oracle gate) c , the product of a and b . Then c is the

sum of all ci 2
k(i−1) with k-bit numbers ci contained in c . It is easy to

see that cn = x1 + · · ·+ xn .

MUL ≤cd MADD : Obvious by the school method for multiplication.

MADD ≤cd BCOUNT : Let ai = (ai�m−1� � � � � ai�0) for 1 ≤ i ≤ m be

the m numbers we have to sum up. We use in parallel oracle gates to

compute the l = �log(m + 1)�-bit numbers bj = a1�j + · · ·+am�j . Then

316

s = a1 + · · · + am is also the sum of all bj 2
j . Since the length of all

b’s is l , we add bj 2
j and bj+l 2

j+l without any gate by concatenating

the strings for bj and bj+l . In this way we obtain l numbers of length

m + l each whose sum equals s .

Again we add the bits at the same position. But we have (by

Definition 3.6) no more oracle gates. Since l is already small, the dis-

junctive normal form has polynomial size with respect to n = m2 . We

continue in the same way until we obtain two numbers x and y whose

sum is s . At step 0 we have l(0) = m summands. If l(i − 1) is the

number of summands at step i − 1 , l(i) = �log(l(i− 1) + 1)� . The

number of necessary steps is not bounded by a constant. Therefore we

use this procedure only for two steps and compute l(2) = O(log log m)

summands whose sum is s . We estimate the number of bits in these

summands on which xi or yi depends essentially. Each bit of the sum-

mands in step 3 depends on l(2) bits of the summands in step 2 . If the

number of necessary steps is k , xi or yi depends on l(2)l(3) · · · l(k−1)

bits. Since l(j) = O(log l(j − 1)) , l(j)l(j + 1)2 = o(l(j)2) and by in-

duction l(j) · · · l(k − 1) = o(l(j)2) . Therefore xi and yi depend on

o(l(2)2) = o(log m) bits of the summands computed in step 2 . So we

compute xi and yi by their disjunctive normal forms from the sum-

mands in step 2 . Finally we add x and y by a circuit of polynomial

size and constant depth. The existence of such a circuit is proved in

Ch. 11, § 2. The proof is easy by the methods of Ch. 3, § 1.

BCOUNT ≤cd SOR : Let s = (sk−1� � � � � s0) where k = �log(n + 1)� be

the binary representation of x1 + · · ·+ xn . By sorting x1� � � � � xn with

an oracle gate we obtain the unary representation y = (yn� � � � � y1)

of s . Let y0 = 1 , yn+1 = 0 and zi = yi ∧ yi+1 for 0 ≤ i ≤ n . Then

zi = 1 iff i = s . Let bi = (bi�k−1� � � � � bi�0) be the binary representation

of i . Then sj is the disjunction of all zi ∧ bij .

SOR ≤cd UCOUNT : It is proved in Ch. 11, § 2 (or easy to see)

that there are polynomial comparator circuits of constant depth. The

output is 1 iff x � y (or for another circuit x ≤ y) . Let a1� � � � � am

be the m-bit numbers that have to be sorted. We compute cij = 1

317

iff ai � aj or ai = aj and i ≤ j . Then we compute in parallel by

oracle gates dj , the sum of all cij . dj is the unary representation of

the position of aj in the sorted list of a1� � � � � am . By similar methods

as in the last reduction ˝BCOUNT ≤cd SOR˝ we compute the sorted

list of a1� � � � � am .

UCOUNT ≤cd THR : We compute in parallel by oracle gates yi =

THR(x1� � � � � xn� i) . Then UCOUNT(x1� � � � � xn) = (yn� � � � � y1) .

THR ≤cd MAJ : The input consists of x1� � � � � xm and k =

(km� � � � � k1) , a number in unary representation. We compute by an

oracle gate z = MAJ(x1� � � � � xm� k1� � � � � km� 1) .

z = 1 iff x1 + · · ·+ xm + k1 + · · ·+ km + 1 ≥ m + 1 . There are l ones

in k if k represents l . Then k1 + · · · + km = m − l . Hence z = 1 iff

x1 + · · ·+ xm ≥ l iff THR(x� k) = 1 .

In order to relate the complexity of PAR and ZMc to all prob-

lems considered in Theorem 3.3 we prove PAR ≤cd UST CON . We

compute the adjacency matrix A of an undirected graph G on the

vertices v0� � � � � vn+1 . Let x1� � � � � xn be the inputs of PAR and let

x0 = xn+1 = 1 . Let aii = 0 and let

aij = xi ∧ xi+1 ∧ · · · ∧ xj−1 ∧ xj for i � j� (3.10)

G contains exactly one path from v0 to vn+1 , this path passes through

all vi with xi = 1 . The length of this path is even iff x1 ⊕ · · · ⊕ xn =

1 . We square in polynomial size and constant depth the Boolean

matrix A . The result is B , the adjacency matrix of the graph G′

where vi and vj are connected by an edge iff they are connected in G

by a path of length 2 . i.e. v0 and vn+1 are connected by a path iff

x1⊕· · ·⊕xn = 1 . Therefore one oracle gate for UST CON is sufficient

for the computation of x1 ⊕ · · · ⊕ xn . �

Often it is easier to prove lower bounds by reduction than to prove

lower bounds directly. The number of reducibility results is large.

318

EXERCISES

1. Let N∗
n be the class of all f ∈ M∗

n whose prime implicants all have

length �n�2� . Then there is for each �log n� ≤ j ≤ D(N∗
n) (or

Dm(N∗
n)) a function gj ∈ N∗

n where D(gj) = j (or Dm(gj) = j) .

2. Prove (1.2) for the bases {∧�⊕} and {NAND} .

3. Prove dΩ(j) ≤ 2 for all binary bases and all interesting j .

4. Prove (1.5).

5. Prove (1.3) and (1.4) for further bases.

6. cΩ(j) = 1 for n = 2 , 0 ≤ j � CΩ(B∗
2) and Ω = {∧�⊕} or Ω =

{NAND} .

7. Almost all f ∈ Bn have no Ashenhurst decomposition.

8. Assume that Cm(∨(f× g)) ≥ Cm(f)+Cm(g) for arbitrary Boolean

functions f and g . Prove by this assumption asymptotically op-

timal bounds on the monotone circuit size of the Boolean matrix

product and the generalized Boolean matrix product (see Ch. 6,

§ 9).

9. Prove Theorem 2.2 using the replacement rule of Theorem 5.1,

Ch. 6 , and its dual version.

10. (Fischer and Galbiati (81) just as Exercise 11). Let f ∈ Mn+1

depend on x1� � � � � xn� z and g ∈ Mm+1 depend on y1� � � � � ym� z .

Then Cm(f� g) = Cm(f) + Cm(g) . Hint: A gate G is called mixed,

if G has not only x-variables but also y-variables as predecessors.

319

Let H be the first mixed gate of a monotone circuit for (f� g) ,

w.l.o.g. an ∧-gate. Let h(x� y� z) = resH and let h1(x� z) and

h2(y,z) be the inputs of H .

a) H can be replaced by 0 if h1(0� 1) = h2(0� 1) = 0 .

b) If h1(0� 1) = 1 and H is not superfluous, h1(0� 0) = h2(0� 0) = 0 ,

z∧h2(0� z) = h1(x� z)∧h2(0� z) and z∧h2(y� z) = h1(0� z)∧h2(y� z) .

c) Either H can be replaced by 0 or h1 or h2 can be replaced by z .

11. Let h ∈ Bn , x = (x1� � � � � xn) , y = (y1� � � � � yn) , f(x� z1� z2) =

z1∧ (z2∨h(x)) and g(y� z1� z2) = z2∧ (z1∨h(y)) . Then Cm(f� g) ≤
Cm(h) + 3n + 4 .

Hint: Compute h(u1� � � � � un) with ui = xiz1 ∨ yiz2 .

12. ≤1 is reflexive and transitive.

13. ≤proj is reflexive and transitive.

14. Prove Theorem 3.4.

15. Prove directly PAR ≤cd MUL .

16. Try to prove directly more of the assertions of Theorem 3.5.

320

11. BOUNDED - DEPTH CIRCUITS

11.1 Introduction

A polynomial p for the Boolean function f is a disjunction of

monoms computing f (see Ch. 2). Polynomials are circuits of two

logical levels. All literals x1� x1� � � � � xn� xn are inputs. The monoms

are computed on the first level, an ∧-level. On the second level, an

∨-level, these monoms are combined by a disjunction. In this chapter

we investigate circuits of k logical levels.

DEFINITION 1.1 : A Σk-circuit (Πk-circuit) is a circuit consisting

of k logical levels. All inputs of gates on level l are outputs of gates on

level l − 1 . On level 0 we have the inputs x1� x1� � � � � xn� xn . ∧- and ∨-

gates of unbounded fan-in are available. The levels k� k− 2� k− 4� � � �

consist of ∨-gates (∧-gates) and the other levels consist of ∧-gates

(∨-gates).

This model is robust. Negations inside the circuit are powerless.

We copy all gates and negate one of the copies of each gate. No

additional gate is necessary for the application of the deMorgan rules

(bottom-up). At the end of this procedure only inputs are negated.

If an input of an ∧-gate G is the output of an ∧-gate G′ , we replace

the edge from G′ to G by edges from all direct predecessors of G′ to

G . Also the synchronization of Σk- and Πk-circuits is no essential

restriction. An edge from a gate G on level l to a gate G′ on level

l ′ � l + 1 may be simulated by l ′ − (l + 1) new gates on the levels

l + 1� � � � � l ′ − 1 computing resG . The size of the circuit is at most

multiplied by the number of logical levels which should be small.

Hardware designers prefer circuits with a small number of logical

levels. Hence it is a fundamental problem to decide whether sequences

of functions fn ∈ Bn are in SIZE - DEPTH(poly� const) (see Def. 3.5,

321

Ch. 10). In § 3 we prove that polynomial circuits for the parity func-

tion have depth Ω((log n)�(log log n)) . Applying the reducibility re-

sults of Ch. 10, § 3 , we conclude that many fundamental functions

with polynomial circuit size are not in SIZE - DEPTH(poly� const) .

Therefore we should use circuits where the number of logical levels is

increasing with the input length.

In § 2 we prove for some fundamental functions that they are in

SIZE - DEPTH(poly� const) and design almost optimal circuits for the

parity function. The announced lower bound for the parity function

is proved in § 3. In § 4 we describe which symmetric functions are

contained in SIZE - DEPTH(poly� const) . In § 5 we discuss hierarchy

problems.

We finish this introduction with two concluding remarks. Bounded-

depth circuits also represent an elegant model for PLAs (pro-

grammable logic arrays). Furthermore results on bounded-depth cir-

cuits are related to results on parallel computers (see Ch. 13).

11.2 The design of bounded-depth circuits

Let fn ∈ Bn . If the number of prime implicants (or prime clauses)

of fn is bounded by a polynomial, then the sequence fn (n ∈ �)

has polynomial Σ2-circuits (Π2-circuits). Hence this sequence is in

SIZE - DEPTH(poly� const) . We mention two examples, the thresh-

old functions Tn
k and the clique functions cln�k (see Def. 11.1 , Ch. 6)

for constant k . Furthermore all functions depending essentially on

only O(log n) input bits are in SIZE - DEPTH(poly� const) . An ex-

ample is the transformation of the binary representation (x1� � � � � xk)

(n = 2k) of some number x ∈ {0� � � � � n− 1} into its unary representa-

tion (y1� � � � � yn) .

Chandra, Stockmeyer and Vishkin (84) proved that the following

fundamental functions are in SIZE - DEPTH(poly� const) .

322

DEFINITION 2.1 :

ADD : Addition of two m-bit numbers, n = 2m .

COM : The comparison problem for two m-bit numbers x =

(xm−1� � � � � x0) and y = (ym−1� � � � � y0) . Output 1 ⇔ |x| � |y| .
n = 2 m .

MAX : The computation of the maximum of m m-bit numbers, n =

m2 .

MER : The merging problem for two sorted lists of m m-bit numbers,

n = 2 m2 .

U → B : Input: an n-bit unary number k . Output: the binary

representation of k .

THEOREM 2.1 : ADD , COM, MAX , MER and U → B are in

SIZE - DEPTH(poly� const) .

Proof : ADD : We implement the carry look-ahead method (see Ch. 3,

§ 1). We compute uj = xjyj and vj = xj⊕yj (0 ≤ j ≤ m−1) in depth 2 .

The carry bit cj is the disjunction of all uivi+1 � � � vj (0 ≤ i ≤ j) (see

Ch. 3, (1.8)). The sum bits sj are computed by s0 = v0 , sn = cn−1 and

sj = vj ⊕ cj−1 (1 ≤ j ≤ n − 1) . The size of the circuit is O(n2) (the

number of wires is O(n3)) and the depth is 4 if vj and sj are computed

by Π2-circuits for a⊕ b .

COM : |x| � |y| if there is an i such that yi = 0� xi = 1 and yj = xj for

all j � i . This can be computed by

∨
0≤i≤m−1

(
xi ∧ yi ∧

∧
i�j≤m−1

[
(xj ∧ yj) ∨ (xj ∧ yj)

])
� (2.1)

The circuit size is O(m2) = O(n2) and the depth is 4 .

MAX : Let a1� � � � � am be m m-bit numbers. We compute in depth 4

with O(m4) gates cij = 1 iff ai ≥ aj (1 ≤ i� j ≤ m) . Let di be the

conjunction of all cij . Then di = 1 iff ai is the maximum. The j -th bit

of the output is computed as the disjunction of all aijdi . The size of

the circuit is O(m4) = O(n2) , and the depth is 6 .

323

MER : Let a1 ≤ · · · ≤ am and b1 ≤ · · · ≤ bm be sorted lists. We

compute cij = 1 iff bi � aj . For each j , cmj · · · c1j is the unary repre-

sentation of the number of b’s less than aj . Let cj = 0m−j cmj · · · c1j 1
j .

Then cj is the unary representation of aj’s position in the merged list.

In parallel we compute dij = 1 iff ai ≤ bj and dj = 0m−j dmj · · · d1j 1
j ,

the unary representation of bj’s position in the merged list. For

z = z2m · · · z1 , z2m+1 = 0 and 0 ≤ k ≤ 2m , EQk(z) = zk ∧ zk+1

tests whether z is the unary representation of k . Finally the i -th bit

of the k -th number in the merged list is∨
1≤j≤m

(EQk(cj) ∧ aji) ∨
∨

1≤j≤m
(EQk(dj) ∧ bji)� (2.2)

The size of the circuit is O(m4) = O(n2) , and the depth is 6 .

U → B : Let (xn� � � � � x1) be the input, x0 = 1 and xn+1 = 0 .

Let di = xixi+1 . Then di = 1 iff x is the unary representation of i ,

0 ≤ i ≤ n . The j -th bit of the output is the disjunction of all di such

that the j -th bit of i is 1 . The number of gates is O(n) , the number

of wires is O(n log n) , and the depth is 2 . �

THEOREM 2.2 : If k(n) = O(logr n) for some fixed r , Tn
k(n) is in

SIZE - DEPTH(poly� const) .

The proof of this theorem is postponed to Ch. 12, § 3. The proof

is not constructive. We shall design efficient probabilistic circuits for

Tn
k(n) and shall show how such circuits are simulated by deterministic

circuits.

There are only few papers on lower bounds for functions in

SIZE - DEPTH(poly� const) . We refer to Chandra, Fortune and Lip-

ton (83) and (85) and Hromkovic (85). It is more important to decide

which functions belong to SIZE - DEPTH(poly� const) , the class of

efficiently computable functions.

In the next section we prove that the parity function PARn does not

belong to this class. Here we design almost optimal circuits for PARn .

PARn consists of 2n−1 prime implicants and 2n−1 prime clauses, all of

324

them are necessary in Σ2- and Π2-circuits resp. Hence the complexity

of PARn in depth 2 circuits is 2n−1 + 1 . In the following we allow

negations which we eliminate afterwards as described in § 1.

For k-level circuits we compute PARn in k − 1 steps. W.l.o.g.

n = rk−1 . In Step 1 we compute PARr on rk−2 blocks of r variables

each. In Step 2 we compute PARr on rk−3 blocks of r outputs of Step 1

each. Hence we compute the parity of r2 bits at each output of Step 2.

We continue in the same way. After Step i we have computed the

parity of rk−1−i blocks of ri variables each, in particular, we compute

PARn in Step k − 1 . We use an alternating sequence of Σ2- and

Π2-circuits for Step 1� � � � � k − 1 . Then it is possible to combine the

second level of the Σ2-circuits (Π2-circuits) on Step i and the first level

of the Π2-circuits (Σ2-circuits) on Step i + 1 . Altogether we obtain

Σk-circuits and Πk-circuits for PARn . The number of subcircuits for

PARr is rk−2 + rk−3 + · · · + 1 ≤ rk−1 = n , each of these subcircuits

contains 2r−1 + 1 gates.

THEOREM 2.3 : i) PAR has Σk- and Πk-circuits of size O(n 2n1�(k−1)
) .

ii) PAR has Σk(n)- and Πk(n)-circuits of size O(n2 log−1 n) if k(n) =

�(log n)� log logn�+ 1 .

Proof : i) has already been proved for n = rk−1 . The general case is

left as an exercise.

ii) In Step i we combine the outputs of Step i−1 to the least number of

blocks whose size is bounded by �log n�+ 1 . The number of blocks in

Step i is bounded by max{1� ⌊n� logi n
⌋} . k(n)− 1 steps are sufficient

in order to obtain one block, since (log n)k(n)−1 ≥ n . Altogether we

require less than 2 �n� log n� Σ2- and Π2-parity circuits working on at

most �log n�+ 1 inputs. �

325

11.3 An exponential lower bound for the parity function

The number of papers on Σ2- and Π2-circuits is immense, but there

are almost no results on Σk- and Πk-circuits for k ≥ 3 which were

proved before 1980. Then exponential lower bounds on the monotone

Σ3-complexity have been proved by Tkachev (80), Kuznetsov (83 a),

Valiant (83) (for clique functions) and Yao (83) (for the majority func-

tion). Yao proved exponential lower bounds even on the monotone

Σ4-complexity of some clique functions.

The decisive break-through was the paper of Furst,

Saxe and Sipser (84). They proved that parity is not in

SIZE - DEPTH(poly� const) . Their non polynomial lower bound

for Σk-circuits was improved by an exp(Ω(log2 n))-lower bound of

Ajtai (83). The first exponential lower bound for arbitrary constant

depth was proved by Boppana (84), but only for the monotone

Σk-complexity of the majority function. Another break-through was

the proof of exponential lower bounds for depth k parity circuits. The

original bound and methods due to Yao (85) have been improved by

H̊astad (86).

THEOREM 3.1 : For some constant n0 and n ≥ nk
0 Σk- and Πk-

circuits for the parity function x1⊕· · ·⊕xn have more than 2c(k)n1�(k−1)

gates , c(k) = (1�10)k�(k−1) ≈ 1�10 .

COROLLARY 3.1 : PAR is not in SIZE - DEPTH(poly� const) .

COROLLARY 3.2 : Polynomial size parity circuits must have depth

of at least
log n

c + log log n
for some constant c .

The corollaries follow easily from Theorem 3.1. Because of our

upper bounds in Theorem 2.3 , these results are nearly optimal.

326

We give an outline of the proof of Theorem 3.1. The proof is by

induction on k . The induction basis k = 2 is easy. For the induction

step we try to convert depth k circuits to not very large depth k− 1

circuits. If the second level is an ∧-level, each function on level 2 is

computed by a Π2-circuit. It is possible to replace these Π2-circuits

by Σ2-circuits for the same functions. Then the second and the third

level of the circuit are ∨-levels which we combine in order to obtain

depth k− 1 circuits. The problem is that the Σ2-complexity of g may

be exponential even if the Π2-complexity is small, say polynomial.

In the following way the problem can be avoided. We replace sev-

eral variables in such a way by constants that all functions on level 2

have small Σ2-circuits and that the number of remaining variables is

yet large enough. Nobody knows how to construct such a replace-

ment. Again we use probabilistic methods. We hope that many re-

placements serve our purposes. In order to prove the existence of a

good replacement, it is sufficient to prove that the probability of a

good replacement is positive.

DEFINITION 3.1 : A restriction is a function ρ : {x1� � � � � xn} →
{0� 1� ∗} . Then gρ is the projection of g where we replace xi by ρ(xi)

if ρ(xi) ∈ {0� 1} . For a random restriction ρ ∈ Rp (0 ≤ p ≤ 1) the

random variables ρ(xi) (1 ≤ i ≤ n) are independent and ρ(xi) = 0

with probability (1 − p)�2 , ρ(xi) = 1 with probability (1− p)�2 and

ρ(xi) = ∗ with probability p . For ρ ∈ Rp , gρ is a random function.

The following main lemma tells us that if we apply a random re-

striction, we can with high probability convert Π2-circuits to equiva-

lent Σ2-circuits of small size. We need the notion of the 1-fan-in of a

circuit. This is the maximal fan-in of all gates on the first level. The

proof of the first technical lemma is left to the reader.

327

LEMMA 3.1 : The equation(
1 +

4 p

(1 + p) α

)t
=
(
1 +

2 p

(1 + p) α

)t
+ 1 (3.1)

has a unique positive root. If p = o(1) , α ≈ (2 p) ln−1 ϕ � 5 p t , where

ϕ is the golden ratio, i.e. the root of ϕ2 = ϕ + 1 .

MAIN LEMMA 3.2 : Let S be a Π2-circuit of 1-fan-in t computing

g ∈ Bn and let ρ ∈ Rp . The probability that gρ can be computed by

a Σ2-circuit of 1-fan-in s is at least 1− αs .

The Main Lemma is equivalent to its dual version. We prove a

more general version of the Main Lemma . Let lPI(f) denote the

maximal length of a prime implicant of f . We use the convention

that a conditional probability is 0 if the probability of the condition

in question is 0 .

LEMMA 3.3 : Let g1� � � � � gm be sums of at most t literals each. Let

g = g1 ∧ · · · ∧ gm and f ∈ Bn . For ρ ∈ Rp we have

Pr(lPI(g ρ) ≥ s | fρ ≡ 1) ≤ αs� (3.2)

Lemma 3.3 implies the Main Lemma 3.2 by choosing f ≡ 1 .

Proof of Lemma 3.3 : We prove this lemma by induction on m . If

m = 0 , the lemma is obvious since g ≡ 1 .

Let m � 0 . Since Pr(A) ≤ max{Pr(A | B)�Pr(A | B)} , also

Pr(lPI(g ρ) ≥ s | fρ ≡ 1) ≤ (3.3)

max{Pr(lPI(g ρ) ≥ s | fρ ≡ 1� g1ρ ≡ 1)�Pr(lPI(g ρ) ≥ s | fρ ≡ 1� g1ρ �≡ 1}�
The estimation of the first term is easy by the induction hypothesis.

We choose f ∧ g1 instead of f and g′ = g2 ∧ · · · ∧ gm instead of g . If

the condition (f ∧ g1)ρ ≡ 1 holds, g ρ = g′ρ . Therefore the first term is

bounded by αs .

328

The estimation of the second term is more difficult. W.l.o.g. g1

is the sum of all xi ∈ T and |T| ≤ t . Otherwise we interchange

the roles of some xi and xi . Let ρ′ or ρ˝ be that part of ρ which

concerns the variables in T or not in T resp. Notation: ρ = ρ′ ρ′′ .
The condition g1ρ �≡ 1 is equivalent to the condition that ρ′(xi) �= 1

for all xi ∈ T . Hence each prime implicant of g ρ contains - if g1ρ �≡ 1

- some xi ∈ T . For Y ⊆ T let PI Y(g ρ) be the set of prime implicants

of g ρ containing, for xi ∈ T , xi or xi iff xi ∈ Y . Let lPIY(g ρ) be the

length of a longest prime implicant in PI Y(g ρ) and let ρ′(Y) ≡ ∗ be

the event that ρ′(xi) = ∗ for all xi ∈ Y . Then

Pr (lPI(g ρ) ≥ s | fρ ≡ 1� g1ρ′ �≡ 1) (3.4)

≤ ∑
Y⊆T�Y �= �◦Pr(lPIY(g ρ) ≥ s | fρ ≡ 1� g1ρ′ �≡ 1)

=
∑

Y⊆T�Y �= �◦Pr(ρ′(Y) ≡ ∗ | fρ ≡ 1� g1ρ′ �≡ 1) ·

· Pr(lPIY(g ρ) ≥ s | fρ ≡ 1� g1ρ′ �≡ 1� ρ′(Y) ≡ ∗)�

since Pr(lPIY(g ρ) ≥ s | ρ′(Y) �≡ ∗) = 0 . We claim that

Pr (ρ′(Y) ≡ ∗ | fρ ≡ 1� g1ρ′(Y) �≡ 1) ≤ (2p

1 + p

)|Y|
and (3.5)

Pr (lPIY(g ρ) ≥ s | fρ ≡ 1� g1ρ′ �≡ 1� ρ′(Y) ≡ ∗) ≤ (2|Y| − 1) αs−|Y| (3.6)

hold. By (3.4) – (3.6) it is easy to estimate the second term in (3.3).

We add in (3.4) the term for Y = � ◦ which is estimated in (3.5) and

(3.6) by 0 . Hence, by the definition of α

Pr (lPI(g ρ) ≥ s | fρ ≡ 1� g1ρ′ �≡ 1) (3.7)

≤
∑
Y⊆T

(
2p

1 + p

)|Y|
(2|Y| − 1) αs−|Y|

≤ αs
∑

0≤i≤|T|

(|T|
i

) (
2p

1 + p

)i

(2i − 1) α−i

329

≤ αs
∑
0≤i≤t

(
t

i

)[(
4p

(1 + p)α

)i

−
(

2 p

(1 + p)α

)i
]

= αs

[(
1 +

4 p

(1 + p)α

)t

−
(

1 +
2 p

(1 + p)α

)t
]

= αs�

Proof of (3.5) : The condition g1ρ′ �≡ 1 is equivalent to the condition

that ρ(xi) ∈ {0� ∗} for xi ∈ T . Then ρ(xi) takes the values 0 and ∗
with probability (1 − p)�(1 + p) and 2p�(1 + p) resp. Since all ρ(xi)

are independent

Pr(ρ′(Y) ≡ ∗ | g1ρ′ �≡ 1) =
(2p

1 + p

)|Y|
� (3.8)

The additional condition fρ ≡ 1 implies a tendency that more variables

are replaced by constants. Therefore the event ρ′(Y) ≡ ∗ should have

smaller probability. For a definite proof we use the equivalence of the

inequalities Pr(A|B) ≤ Pr(A) and Pr(B|A) ≤ Pr(B) . For the proof of

(3.5) it is by (3.8) and this equivalence sufficient to prove

Pr(fρ ≡ 1 | ρ′(Y) ≡ ∗� g1ρ′ �≡ 1) ≤ Pr(fρ ≡ 1 | g1ρ′ �≡ 1)� (3.9)

Two restrictions are called equivalent if they agree on all xi �∈ Y . It is

sufficient to prove (3.9) for all equivalence classes. Each equivalence

class contains exactly one restriction ρ where ρ′(Y) ≡ ∗ . If fρ �≡ 1 or

g1ρ′ ≡ 1 for this restriction, the left-hand side of (3.9) equals 0 for this

equivalence class and (3.9) holds. Otherwise fρ ≡ 1 for all ρ equivalent

to ρ , since the additional replacement of variables does not influence

a constant.

Proof of (3.6) : We like to exclude g1 from our considerations. Then it

is possible to apply the induction hypothesis. The condition ˝g1ρ′ �≡ 1

and ρ′(Y) ≡ ∗˝ is satisfied iff ρ′(xi) ∈ {0� ∗} for xi ∈ T and ρ′(xi) = ∗
for xi ∈ Y . Here two restrictions are called equivalent if they agree

on all xi ∈ T . It is sufficient to prove for a fixed equivalence class

Pr(lPIY(g ρ) ≥ s | fρ ≡ 1) ≤ (2|Y| − 1) αs−|Y|� (3.10)

330

Each prime implicant t ∈ PIY(g ρ) is of the form t = t′ t′′ for some

monom t′ on all variables in Y and some monom t′′ on some variables

xi �∈ T . If we replace the variables in Y such that t′ is replaced by 1 ,

we obtain a subfunction g ρ σ(t) of g ρ where t′′ ∈ Π(g ρ σ(t)) . Since

g1 is the sum of all xi ∈ T , t′ contains at least one xi ∈ T . Hence

lPIY(g ρ) ≥ s only if there is some σ : Y → {0� 1} , σ �≡ 0 , such that the

length of a longest prime implicant of g ρ σ (a monom on the variables

xi �∈ T) is at least s− |Y| , notation l∗PI(g ρ σ) ≥ s− |Y| . We conclude

Pr (lPIY(g ρ) ≥ s | fρ ≡ 1) ≤ (3.11)

≤ ∑
σ:Y→{0�1}�σ �≡0

Pr (l∗PI(g ρ σ) ≥ s− |Y| | fρ ≡ 1) �

The right-hand side of (3.11) consists of 2|Y| − 1 terms. It is sufficient

to estimate each of these terms by αs−|Y| .

We fix some σ : Y → {0� 1} , σ �≡ 0 . We have fixed ρ′ σ but

ρ′′ ∈ Rp is still a random restriction on the variables xi �∈ T . In order

to apply the induction hypothesis we want to consider functions on

the variables xi �∈ T . Let f∗ be the conjunction of all functions which

we obtain from fρ′ by replacing the variables in (ρ′)−1(∗) by constants.

Then f∗ is defined on the variables xi �∈ T . f∗ρ′′ ≡ 1 iff fρ ≡ 1 . Similarly

let g∗ be the conjunction of all functions which we obtain from g ρ′ σ by

replacing the variables in (ρ′)−1(∗)∩ (T−Y) by constants. Then g∗ is

defined on the variables xi �∈ T . The prime implicants of g∗ are exactly

those prime implicants of g ρ′ σ containing only variables xi �∈ T . Let

g∗j be defined in a similar way. Then g∗ = g∗1 ∧ · · · ∧ g∗m . Since g1 is

the sum of all xi ∈ Y , g∗1 ≡ 1 . For all legitimate replacements (gj) ρ′ σ

is replaced by a constant or by some definite function g′j . Hence, if

j ≥ 2 , g∗j is a sum of at most t literals and g∗ is the conjunction of

m−1 of those g∗j . Since we have also shown that f∗ and g∗ are defined

on the variables xi �∈ T and that ρ′′ ∈ Rp is a random restriction, it is

331

possible to apply the induction hypothesis. We conclude

Pr(l∗PI(g ρ σ) ≥ s− |Y| | fρ ≡ 1) = (3.12)

= Pr(lPI(g
∗
ρ′′) ≥ s− |Y| | f∗ρ′′ ≡ 1) ≤ αs−|Y|�

�

The Main Lemma has many applications. The most appropri-

ate function is the parity function, as all prime implicants and prime

clauses of the parity function have length n , and all subfunctions are

parity functions or negated parity functions.

LEMMA 3.4 : For some constant n0 , n ≥ nk−1
0 and k ≥ 2 the parity

function on n variables cannot be computed by a Σk- or Πk-circuit

which for s = t = (1�10) n1�(k−1) simultaneously has 1-fan-in bounded

by t and at most 2s gates on the levels 2� � � � � k .

Proof : Induction on k . The claim is obvious for k = 2 since Σ2- and

Π2-circuits for the parity function have 1-fan-in n .

We assume that the assertion holds for k− 1 but not for k . Let Sn

be depth k circuits for x1 ⊕ · · · ⊕ xn such that the 1-fan-in is bounded

by t , and the number of gates on the levels 2� � � � � k is bounded by

2s . W.l.o.g. the second level is an ∧-level. The gates of this level are

outputs of Π2-circuits with 1-fan-in t . We apply the Main Lemma for

p = n−1�(k−1) . The expected number of remaining variables is m =

n p = n(k−2)�(k−1) . For large n , the probability that at least m variables

are left is larger than 1�3 . For each Π2-circuit the probability of the

circuit being converted to an equivalent Σ2-circuit of 1-fan-in s is at

least 1 − αs . For large n , α � 5 pt = 1�2 . Hence the probability of

less than m variables being left or some Π2-circuit cannot be converted

in the described way is bounded by (2�3) + (2α)s . Since 2α � 1 ,

this probability is less than 1 for large n . Then there is a partial

332

replacement of variables such that the circuit computes the parity

of m = n(k−2)�(k−1) variables, and all Π2-circuits can be converted to

equivalent Σ2-circuits of 1-fan-in s = (1�10) n1�(k−1) = (1�10) m1�(k−2) .

Afterwards the second and the third level are ∨-levels, and by merging

them the depth of the circuit will decrease to k − 1 . The number of

gates on the levels 2� � � � � k−1 has not increased and is bounded by 2s .

Since n ≥ nk−1
0 , also m ≥ nk−2

0 . It is easy to prove that all conclusions

hold for n ≥ nk−1
0 . The depth k−2 circuit for the parity of m variables

contradicts the induction hypothesis. �

Now it is easy to prove Theorem 3.1.

Proof of Theorem 3.1 : If the theorem is false, there is a depth k

circuit for the parity of n ≥ nk
0 variables with at most 2s gates, s =

(1�10)k�(k−1)n1�(k−1) . This circuit can be understood as a depth k + 1

circuit of 1-fan-in 1 . Let p = 1�10 and ρ ∈ Rp . If p = 1�10 and

t = 1 , then α = 2�11 . If n0 is chosen in the right way, there is a

restriction such that the circuit computes the parity on m = n�10

variables, and all (w.l.o.g.) Π2-circuits on level 2 can be converted to

equivalent Σ2-circuits of 1-fan-in s . If n0 ≥ 10 , m = n�10 ≥ nk−1
0 .

Furthermore s = (1�10)m1�(k−1) . The new depth k circuit for the

parity on m variables contradicts Lemma 3.4 , since the number of

gates on the levels 2� � � � � k is bounded by 2s . �

11.4 The complexity of symmetric functions

Upper and lower bounds on the depth k complexity of the parity

function almost agree, the upper bound is based on a simple design.

For all symmetric and almost all Boolean functions we decide in this

333

section whether they belong to SIZE - DEPTH(poly� const) (Brust-

mann and Wegener (86)). Our results are based on the lower bound

techniques due to H̊astad (86). Weaker results based on the lower

bound technique due to Furst, Saxe and Sipser (84) have been ob-

tained by Fagin, Klawe, Pippenger and Stockmeyer (85) and Denen-

berg, Gurevich and Shelah (83). It is fundamental to know a lower

bound for the majority function.

THEOREM 4.1 : For some constant n0 and all n ≥ nk
0 Σk- and Πk-

circuits for the majority function have more than 2c(k) n1�(k−1)
gates ,

c(k) = (1�10)k�(k−1) ≈ 1�10 .

Proof : This theorem has been proved by H̊astad (86) in a way similar

to his bound for the parity function. The analysis of the probabilities

is harder, since we have to ensure that the restriction gives out the

same number of ones and zeros.

We are satisfied with the proof of a weaker bound based on the

reducibility of parity to majority. Let Ck(MAJn) be the Σk-complexity

of the majority function. By duality the Πk-complexity is the same.

With less than n Ck(MAJn) gates we compute in Πk-circuits E
�n�2�
l =

T
�n�2�
l ∧ (¬T

�n�2�
l+1) for all odd l ∈ {1� � � � � �n�2�} . PAR�n�2� is the

disjunction of these E
�n�2�
l . Hence

Ck+1(PAR�n�2�) ≤ n Ck(MAJn) (4.1)

and by Theorem 3.1

Ck(MAJn) ≥ n−1 2c(k+1) (n�2)1�k for n ≥ nk+1
0 � (4.2)

�

From now on we denote by Ck(f) the depth k complexity of f . We

require some results on the structure of symmetric functions.

DEFINITION 4.1 : Let v(f) = (v0� � � � � vn) be the value vector of

a symmetric function f ∈ Sn . By vmax(f) we denote the length of a

334

longest constant substring of v(f) . For f ∈ Bn let lmin(f) be the length

of a shortest prime implicant or prime clause.

LEMMA 4.1 : lmin(f) = n + 1− vmax(f) for f ∈ Sn .

Proof : A prime implicant t of length k with l variables and k − l

negated variables implies vl = · · · = vn−k+l = 1 and therefore the

existence of a constant substring of v(f) of length n + 1 − k . Fur-

thermore, we obtain a maximal constant substring. If vl−1 = 1 or

vn−k+l+1 = 1 , we could shorten t by a variable or negated variable

resp. If vl = · · · = vn−k+l = 1 is a maximal constant substring of

v(f) , then the monom x1 · · · xl xl+1 · · · xk is a prime implicant of f of

length k . Dual arguments hold for prime clauses and substrings of

v(f) consisting of zeros. �

THEOREM 4.2 : For c(k) = (1�10)k�(k−1) we denote by H(n,k)

H̊astad’s lower bound function 2c(k)n1�(k−1)

.

i) If fn ∈ Sn and l = lmin(fn) = O(logr n) for some constant r , then

f = (fn) ∈ SIZE - DEPTH(poly� const) .

ii) If fn ∈ Sn and l = lmin(fn) ≤ (n + 1)�2 , then for l ≥ nk+1
0

Ck(fn) ≥ H(l � k + 1)�l � (4.3)

iii) If fn ∈ Sn and l = lmin(fn) � (n + 1)�2 , then for w = vmax(fn) and

w ≥ nk+1
0

Ck(fn) ≥ H(w� k + 1)�w ≥ H(n + 1− l � k + 1)�l � (4.4)

iv) If fn ∈ Bn (not necessarily symmetric) and lmin(fn) ≥ n−O(logr n)

for some constant r , then for constant k and large n

Ck(fn) ≥ H(n� k)� (4.5)

Proof : We identify the vector (v0� � � � � vn) with the string v0 · · · vn .

By duality we assume that there is always a maximal constant sub-

string consisting of zeros. For w = vmax(fn) , v(f) = s 0w s′ . W.l.o.g.

(otherwise we negate the variables) s is not longer than s′ .

335

i) vi = 1 only for some i ≤ l − 1 and some i ≥ n − l + 1 . fn is the

disjunction of all Tn
i ∧ (¬Tn

i+1) where vi = 1 . By Theorem 2.2 and by

duality all these functions are in SIZE - DEPTH(poly� const) .

ii) By our assumptions s′ = 1 t , and the length of s′ is at least �l�2� .

Since w ≥ l , v(f) contains the substring 0l 1 t where the length of t is

at least �l�2� − 1 . For �l�2� ≤ m ≤ l let gm ∈ Sl be that symmetric

function whose value vector is a substring of 0l 1 t starting with 0m1 .

All these value vectors start with �l�2� zeros, and gm computes 1 for

inputs with exactly m ones. Hence the disjunction of all gm is the

majority function on l variables. Since all gm are subfunctions of fn

Ck+1(MAJl) ≤ (�l�2�+ 1) Ck(fn) + 1� (4.6)

The lower bound (4.3) follows from Theorem 4.1.

iii) By Lemma 4.1 w ≤ (n + 1)�2 . Hence v(f) contains a substring

0w1t where the length of t is at least �w�2� − 1 . The lower bound

(4.4) follows from similar arguments as (4.3).

iv) It is sufficient to prove that we can copy H̊astad’s proof for these

functions. The Main Lemma works for all fn ∈ Bn . In the proof

of Lemma 3.4 and Theorem 3.1 only a few properties of the parity

functions are used, namely the facts that lmin(PARn) = n � n�10 and

that each subfunction of a parity function is a function of the same

type.

lmin(f) is the minimum number of variables which have to be re-

placed by constants in order to obtain a constant subfunction. Hence

lmin(g) ≥ lmin(f)− (n−m) if g ∈ Bm is a subfunction of f ∈ Bn . In his

lower bound proof for depth k circuits H̊astad constructed subfunc-

tions on n(k−2)�(k−1)� n(k−3)�(k−1)� � � � � n1�(k−1)� (1�10)n1�(k−1) variables.

For these functions g ∈ Bm we have lmin(g) ≥ m − O(logr n) =

m − O(logr m) . All these functions belong to the class of functions

with large lmin-value. Since lmin(g) is a lower bound on the 1-fan-in of

depth 2 circuits for g , the lower bound (4.5) can be proved by H̊astad’s

proof, if n is large enough so that lmin(g) � m�10 . �

336

COROLLARY 4.1 : Let f = (fn) where fn ∈ Sn .

Then f ∈ SIZE - DEPTH(poly� const) iff lmin(fn) = O(logr n) for some

constant r .

Proof : The if-part is Theorem 4.2 i. The only if-part follows from

the definition of H̊astad’s function and the lower bounds in Theo-

rem 4.2 ii – iv. �

COROLLARY 4.2 : Ck(f) ≥ H(n� k) for almost all f ∈ Bn .

Proof : Bublitz, Schürfeld, Voigt and Wegener (86) investigated prop-

erties of lmin and proved the following assertion (see Theorem 7.8 ,

Ch. 13). lmin(f) ∈ In for almost all f ∈ Bn and intervals In where

n − �log n� ∈ In and the length of In is smaller than 2 . Hence the

corollary follows from Theorem 4.2 iv. �

The bounds we have proved depend only on lmin(f). Is it reasonable

to conjecture that Ck(f) depends for all f ∈ Bn essentially only on

lmin(f) ? The answer is negative. Let n = m2 and let the set of

variables be partitioned to m blocks of size m each. Let hn compute 1

iff at least one block contains ones only. Then lmin(hn) = m = n1�2

but hn has linear depth 2 circuits.

For symmetric functions lmin(f) describes rather precisely the size

and the structure of the set of all prime implicants and prime clauses

and therefore the complexity of f . If lmin(f) is not too small, a random

subfunction of f is with large probability not a simple function. The

same holds for arbitrary Boolean functions only if lmin(f) is very large.

For hn defined above, lmin(hn) is quite large. It is highly probable that

a random subfunction of hn is a constant.

337

11.5 Hierarchy results

We have proved that the parity function has large complexity with

respect to depth k circuits. This lower bound implies many others by

the reducibility results of Ch. 10, § 3. What happens if unbounded

fan-in parity gates are added to the set of admissible gates ? Then

ZMc is easy to compute, since ZMc ≤cd PAR . Razborov (86) proved

that the complexity of the majority function in depth k {∧�∨�⊕}-
circuits of unbounded fan-in is exponential. This holds also for all

functions f with MAJ ≤cd f . It is an open problem to decide which

functions are difficult in depth k circuits consisting of threshold gates

of unbounded fan-in.

Razborov’s new and striking result belongs to the class of hierarchy

results, since we increase the power of the basis in order to be able to

solve more problems with polynomial circuits. We turn our thoughts

to another type of hierarchy results.

DEFINITION 5.1 : Let Σk(P) and Πk(P) be the class of all sequences

f = (fn) of functions fn ∈ Bn which can be computed by polynomial

Σk-circuits and Πk-circuits resp. Σm
k (P) and Πm

k (P) are defined in a

similar way with respect to monotone depth k circuits.

Obviously for all k

Σk(P) ⊆ Σk+1(P) ⊆ SIZE - DEPTH(poly� const)� (5.1)

Πk(P) ⊆ Πk+1(P) ⊆ SIZE - DEPTH(poly� const)� (5.2)

Σk(P) ⊆ Πk+1(P)�Πk(P) ⊆ Σk+1(P) and (5.3)

Σm
k (P) ⊆ Σk(P) ∩ {f = (fn) | fn ∈ Mn}� (5.4)

The problem is whether these inclusions are proper. The answer is

always positive. This has been proved by Okol’nischkova (82) for (5.4)

and by Sipser (83) for (5.1) – (5.3). Sipser’s proof is non constructive.

One is interested in explicitly defined functions which separate the

338

complexity classes. This was first done by Klawe, Paul, Pippenger and

Yannakakis (84) for monotone depth k circuits and then by Yao (85)

in the general case.

DEFINITION 5.2 : Let n = mk . Let us denote the variables by

xi(1)� ��� �i(k) (1 ≤ i(j) ≤ m) . Let Q = ∃ , if k is odd, and Q = ∀ , if k is

even. Then Fk�n(x) = 1 iff the predicate

∃ i(1) ∀ i(2) ∃ i(3) � � � Q i(k) : xi(1)� ��� �i(k) = 1 (5.5)

is satisfied.

In the preceding section we discussed already F2�n = hn .

THEOREM 5.1 : Let Fk = (Fk�n) . Then Fk ∈ Σm
k (P) , but all depth

k− 1 circuits for Fk have exponential size.

Again H̊astad (86) proved similar results with simpler proofs. We

do not present the proofs which are based on the lower bound method

for the parity function.

Such hierarchy results have further implications. Furst, Saxe and

Sipser (84) have shown tight relations to classical complexity problems.

The results of this chapter imply that the complexity classes Σk and

Σk+1 (see Def. 1.4, Ch. 9) as well as the complexity classes Σk and

PSPACE can be separated by oracles.

EXERCISES

1. If a Σk-formula is defined on n variables and consists of b gates,

then the number of wires can be bounded by b (n + b) and the

number of leaves can be bounded by b n .

339

2. Let f be computed by a Σk-circuit of size c . Estimate the Σk-

formula size of f .

3. (Chandra, Stockmeyer and Vishkin (84)). Let fn ∈ Bn be com-

puted by circuits of cn binary gates and depth dn . For ε � 0 ,

fn can be computed in depth O(dn�(ε log logn)) circuits with

O(2(log n)ε cn) gates of unbounded fan-in.

4. Prove upper bounds on the depth k complexity of the majority

function. Hint: Exercise 3.

5. (Chandra, Fortune and Lipton (83)). There is a constant k such

that all x1 ∨ · · · ∨ xi (1 ≤ i ≤ n) can be computed by a Σk-circuit

with O(n) wires.

6. Design good Σk-circuits for Fk�n .

7. Prove Theorem 2.3 i for all n .

8. Prove Lemma 3.1.

9. Define lmax and vmin in the dual way to lmin and vmax . Then

lmax(f) + vmin(f) = n + 1 for f ∈ Sn .

10. Ck(f) ≥ H(n� k) for almost all f ∈ Sn .

11. Let p(f) be the number of prime implicants and prime clauses of

f . Prove for f ∈ Sn upper and lower bounds on p(f) depending on

lmin(f).

340

12. SYNCHRONOUS, PLANAR AND PROBABILISTIC

CIRCUITS

In this chapter we investigate some more circuit models. Circuits

should be synchronized and it should be possible to embed the cir-

cuits on chips of small area. In the last section we discuss efficient

simulations of probabilistic circuits by deterministic circuits.

12.1 Synchronous circuits

DEFINITION 1.1 : A synchronous circuit is a circuit with the ad-

ditional property that all paths from the inputs to some gate G have

the same length.

In Ch. 11 we have considered only synchronous bounded-depth

circuits, since this restriction does not change essentially the model of

bounded-depth circuits. Let Cs and Ds be the complexity measures

for synchronous circuits with binary gates. We remember that PCD(f)

is the product complexity (see Def. 3.1, Ch. 7) , namely the minimal

C(S) D(S) for all circuits S computing f .

THEOREM 1.1 : i) Ds(f) = D(f) for all f ∈ Bn .

ii) Cs(f) ≤ PCD(f) ≤ C(f)2 for all f ∈ Bn .

Proof : i) and the second inequality of ii) are obvious. Let S be a

circuit for f where C(S) D(S) = PCD(f) . For each gate G , let d(G)

be the length of the longest path to G . Let G1 and G2 be the direct

predecessors of G , w.l.o.g. d(G1) ≥ d(G2) . Then d(G1) = d(G)− 1 .

We add a path of d(G)−d(G2)− 1 identity gates to the edge from G2

341

to G . The resulting circuit S′ is synchronous, for each G in S we have

added at most D(S)− 1 gates. Hence Cs(f) ≤ C(S′) ≤ C(S) D(S) . �

If we had proved ω(n log n) lower bounds on the synchronous circuit

size of explicitely defined Boolean functions, we would obtain for the

first time similar bounds for the product complexity. The best we can

prove are lower bounds of size n log n .

THEOREM 1.2 : The synchronous circuit size of the addition of two

n-bit numbers is Θ(n log n) .

Proof : The upper bound is left as an exercise. Let s = (sn� � � � � s0) be

the sum of a = (an−1� � � � � a0) and b = (bn−1� � � � � b0) . si depends essen-

tially on ai� bi� � � � � a0� b0 . Hence the depth of sn� � � � � s�n�2� is at least

�log n� . The vector (sn� � � � � s�n�2�) can take all 2m values in {0� 1}m

where m = �n�2� + 1 . Let G1� � � � �Gr be those gates whose depth

equals d ≤ �log n� . These gates build a bottleneck for the informa-

tion flow from the inputs to the outputs sn� � � � � s�n�2� . If r � m , we

could not distinguish between 2m situations. Hence r ≥ m ≥ n�2 , and

the circuit contains at least (1�2) n logn gates. �

This result implies that the size of each synchronous adder is con-

siderably larger than the size of an optimal asynchronous adder. For

functions f with one output no example in which C(f) = o(Cs(f)) is

known. One might think that the carry function cn , the disjunction

of all ui vi+1 · · · vn (0 ≤ i ≤ n) , is a candidate for such a gap (see also

Ch. 7, § 4). But Cs(cn) is linear (Wippersteg (82)). Harper (77) and

Harper and Savage (79) generalized the bottleneck argument of The-

orem 1.2 to functions with one output. The gates on level l ≤ D(f)

contain all necessary information on f and all subfunctions of f . There-

fore the number of gates on level l cannot be small if f has many

subfunctions.

DEFINITION 1.2 : For f ∈ Bn let N(f�A) be the number of sub-

functions g of f on the set of variables A ⊆ X = {x1� � � � � xn} . Let

342

N′(f� a) =

(
n

a

)−1 ∑
A⊆X� |A|=a

log N(f�A) (1.1)

be the average of all log N(f� a) for |A| = a .

If N′(f� a) is large, f has many subfunctions. If also D(f) is large,

the number of gates on many levels cannot be very small. Hence Cs(f)

cannot be very small either.

LEMMA 1.1 : Let f ∈ Bn depend essentially on the b variables in

B . If r = 2 a b (n− a− b + 1)−1 � 1 , then

N′(f� a) ≤
(

n

a

)−1∑
0≤k≤b

(
b

k

)(
n− b

a− k

)
2k ≤ (1− r)−1� (1.2)

Proof : The number of sets A ⊆ X of size a where |A ∩ B| = k equals(b
k

)(n−b
a−k

)
. The subfunctions of f on these sets A depend essentially at

most on the variables in A ∩ B . Hence log N(f�A) ≤ 2k implying the

first inequality.

Let s(k) =
(b

k

)(n−b
a−k

)
2k . Then

q(k) :=
s(k + 1)

s(k)
= 2

b− k

k + 1

a− k

n− a− b + 1 + k
(1.3)

≤ 2
ab

n− a− b + 1
= q(0)�

Since q(0) = r � 1 , we estimate the sum by a geometric series.(
n

a

)−1∑
0≤k≤b

s(k) ≤
(

n

a

)−1(
n− b

a

)∑
0≤k≤b

rk ≤ (1− r)−1� (1.4)

�

THEOREM 1.3 : If f ∈ Bn and

D(f) ≥ d := �log(δ(n− a + 1)�(2a + δ))� (1.5)

for some 0 � δ � 1 and a ∈ {1� � � � � n} , then

343

Cs(f) ≥ (1− δ) d N′(f� a)� (1.6)

Proof : It is sufficient to prove that each synchronous circuit for f

contains on level l ∈ {1� � � � � d} at least (1 − δ) N′(f� a) gates. Let

G1� � � � �Gm be the gates on level l and let g1� � � � � gm be the func-

tions computed at these gates. Since f(x) is determined by g(x) =

(g1(x)� � � � � gm(x)) ,

N(f�A) ≤ N(g�A) ≤ ∏
1≤i≤m

N(gi�A) (1.7)

and by taking the logarithm and computing the average

N′(f� a) ≤ ∑
1≤i≤m

N′(gi� a)� (1.8)

Since D(gi) ≤ l ≤ d , gi depends essentially on at most 2d ≤
δ(n−a+1)�(2a+δ) =: b variables. For this choice of b , the parameter r

defined in Lemma 1.1 equals δ . Hence r � 1 and by Lemma 1.1

N′(gi� a) ≤ (1− δ)−1� (1.9)

By (1.8) and (1.9)

N′(f� a) ≤ m (1− δ)−1 (1.10)

and the number of gates on each level l ∈ {1� � � � � d} is at least

(1− δ) N′(f� a) . �

Obviously the lower bound of Theorem 1.3 cannot be larger than

O(n log n) . Harper and Savage (79) proved by this theorem an

Ω(n log n) lower bound on the synchronous circuit size of the determi-

nant (see Def. 7.1, Ch. 3).

344

12.2 Planar and VLSI - circuits

The theory of VLSI-circuits is too extensive to be presented in a

short section. For the technological aspects we refer to the monograph

of Mead and Conway (80) and for the aspects of the complexity theory

to Ullman (84). We discuss only the fundamental model of VLSI-

circuits (Brent and Kung (80), Thompson (79) and (80)), some lower

bound techniques and some relations to planar circuits.

DEFINITION 2.1 : A graph is planar if it can be embedded in the

plane in such a way that no edges cross each other. A circuit is planar

if its underlying graph is planar. C∗
p(f) is the planar circuit size of f if

the inputs can be copied. Cp(f) is the planar circuit size of f ∈ Bn�m if

the inputs and outputs of the circuit occur once on an outer circle in

the order x1� � � � � xn� fm(x)� � � � � f1(x) .

We talk about planar ∗-circuits and planar circuits shortly. Formu-

las can be simulated directly by planar ∗-circuits. For planar circuits

we need planar circuits for crossings.

LEMMA 2.1 : Let f(y� z) = (z� y) . Then Cp(f) = 3 .

Proof :
y z

z y

Fig. 2.1

�

THEOREM 2.1 : C(f) ≤ C∗
p(f) ≤ Cp(f) ≤ 6 C(f)2 for all f ∈ Bn .

345

Proof : The first two inequalities follow from the definition. For the

last inequality we consider an optimal circuit S for f . Let c = C(f) .

We embed input xi at (i� 0) and gate Gj at (0�−j) . An edge e from

xi or Gi to Gj is embedded by a continuous function αe = (αe�1�αe�2)

where αe�k : [0� 1] → � for k ∈{1,2} , αe(0) = (i� 0) or αe(0) = (0�−i)

resp. and αe(1) = (0�−j) . We define all embeddings such that αe�2 is

decreasing. If the edges leading to G1� � � � �Gi−1 are embedded, then

we embed the two edges leading to Gi in such a way that all previous

edges are crossed once at most. Since the circuit contains 2 c edges,

the number of crossings is bounded by
(2 c

2

)
= c (2 c− 1) . We replace

each crossing by the planar circuit of Lemma 2.1. In addition to the

c gates of S we obtain at most 3 c (2 c− 1) new gates. �

The same ideas work for functions f ∈ Bn�m with many outputs. If

we ensure that the outputs are computed at the last gates, they can

be embedded on an outer circle of the planar circuit. For this purpose

it is sufficient to add at first m− 1 new output gates.

The following claim is used implicitly in many papers.

CLAIM : If f is computed in a circuit with c gates and d crossings of

edges, then Cp(f) ≤ c + 3d .

The Claim seems to be obvious. We only have to replace each

crossing by the planar circuit of Lemma 2.1. As was pointed out by

McColl (pers. comm.) this is no proof of the Claim. It is not for sure

that the produced circuit is cycle-free. Let us consider a circuit, like

the sorting circuit in Ch. 3, § 4 , whose width is linear at the top and

at the bottom, but only logarithmic in the middle (see Fig. 2.2). Let

G be the leftmost gate, and let G′ be the rightmost gate at the bottom

of the circuit. Let us assume that we like to compute at G′′ , a new

leftmost output, the conjunction of resG and resG′ . We minimize the

number of crossings, if we embed the edge from G′ to G′′ as described

in Fig. 2.2. The edges e′ = (v�w) and e′′ = (G′�G′′) lying on the same

path cross.

346

x1 xn

.

Fig. 2.2

� � � � � � � � �

G′

G

If we replace this crossing by the planar circuit of Lemma 2.1 , we ob-

tain a cycle starting at w leading via G′ to the z-input of the ˝crossing-

circuit˝, then leading to the y-output of the ˝crossing-circuit˝ and

back to w .

This problem does not occur for our embedding in the proof of

Theorem 2.1. All edges are embedded top-down. If some edges e and

e′ lie on the same path, their embeddings do not cross.

Theorem 2.1 implies an upper bound of O(22n n−2) on the planar

circuit complexity of all f ∈ Bn . Savage (81) improved this simple

bound.

THEOREM 2.2 : i) C∗
p(f) ≤ (2 + o(1)) 2n log−1 n for all f ∈ Bn .

ii) Cp(f) ≤ 5 · 2n for all f ∈ Bn .

Proof : i) follows from Theorem 3.2, Ch. 4 , and the fact that C∗
p(f) ≤

L(f) . For the proof of ii) we compute all minterms on x1� � � � � xn . If all

2i−1 minterms on x1� � � � � xi−1 are computed, we take a wire starting at

xi . This wire runs at the right hand side of the circuit to its bottom

347

and crosses all 2i−1 wires for the monoms m on x1� � � � � xi−1 . Then we

compute all m xi and m xi . We have used 2i gates for the computation

of the minterms and 3 · 2i−1 gates for the crossings, i.e. 5 · 2i−1 gates

in Step i . For all steps the number of gates is bounded by 5 · 2n . f or

¬f is the disjunction of at most 2n−1 minterms. If we do not compute

unnecessary minterms in Step n , f or ¬f can be computed with 5 · 2n

gates. The Claim is proved, as Cp(f) = Cp(¬f) . �

The upper bound on Cp(f) has been improved by McColl and Pa-

terson (84) to (61�48) 2n . McColl (85 b) proved that for almost all

f ∈ Bn the planar circuit complexity is larger than (1�8) 2n − (1�4) n .

This implies that C∗
p(f) = o(Cp(f)) for almost all f ∈ Bn .

With information flow arguments and the Planar Separator Theo-

rem due to Lipton and Tarjan ((79) and (80)), Savage (81) proved

Ω(n2)-bounds on the planar circuit complexity of several n-output

functions. Larger lower bounds imply (due to Theorem 2.1) nonlinear

bounds on the circuit complexity of the same functions.

The investigation of planar circuits is motivated by the realization

of circuits on chips. Today, chips consist of h levels, where h � 1 is

a small constant. We introduce the fundamental VLSI-circuit model.

For some constant λ � 0 , gates occupy an area of λ2 , and the min-

imum distance between two wires is λ . A VLSI-circuit of h levels

on a rectangular chip of length l λ and width w λ consists of a three-

dimensional array of cells of area λ2 . Each cell can contain a gate, a

wire or a wire branching. Wires ˝cross˝ each other at different levels

of the circuit. A crossing of wires occupies a constant amount of area.

The area occupied by a wire depends on the embedding of the circuit.

VLSI-circuits are synchronized sequential machines. The output of

gate G at the point of time t may be the input of gate G at the point

of time t + 1 , i.e. the circuits are in general not cycle-free. For each

input there is a definite input port, a cell at the border of the chip,

348

where and a definite point of time when it is read. In particular, no

input is copied. For each output there is a definite output port where

and a definite point of time when it is produced.

The following complexity measures are of interest. A = l w , the

area of the chip, T , the number of clock cycles from the first reading

of an input to the production of the last output, and P , the period.

VLSI-circuits may be pipelined, i.e. we may start the computation on

the next input before the last computation is finished if this causes

no problem. P is the minimum number of clock cycles between the

starting of two independent computations. D := n�P is called the

data rate of the circuit.

We consider the addition of a = (an−1� � � � � a0) and b =

(bn−1� � � � � b0) . At first we use only one synchronized fulladder of

depth d . At the point of time d t + 1 , at� bt and the carry bit ct−1

are the inputs of the fulladder. Hence A = Θ(1) , T = dn and

P = T − d + 1 . If we connect n fulladders in series and input at� bt

and ct−1 to the (t + 1)-st fulladder at the point of time d t + 1 , then

A = Θ(n) , T = d n and P = 1 . It turned out that A T2 is the

appropriate complexity measure (see Ullman (84)).

Relations between (planar) circuits and VLSI-circuits have been

studied by Savage ((81) and (82)). For each clock cycle a VLSI-circuit

is a circuit with at most h A gates. We simulate the T clock cycles by

T copies of the circuit for one clock cycle. This implies the following

theorem.

THEOREM 2.3 : If f ∈ Bn�m is computed by a VLSI-circuit of area A

in time T , then C(f) ≤ h A T .

The T copies of the VLSI-circuits can be embedded in the plane

in such a way that we obtain at most O(A T min(A�T)) = O(A T2)

crossings of wires.

What is the VLSI-complexity of almost all Boolean functions ? The

planar circuit in the proof of Theorem 2.2 has some very long wires.

349

Therefore a divide-and-conquer approach for the computation of all

minterms is used. Using the H-pattern due to Mead and Rem (79),

Kramer and van Leeuwen (82) designed VLSI-circuits for each f ∈ Bn

where A = O(2n) , T = O(n) and P = O(1) . This is optimal for

almost all f ∈ Bn . The result on P is obviously optimal. The result

on T cannot be improved, since D(f) is a lower bound on the number

of clock cycles of a VLSI-circuit. Finally there is only a finite number

of types of cells. Hence the number of different circuits on a chip of

area A is O(cA) for some constant c . In order to compute all f ∈ Bn ,

A = Ω(2n) for almost all f ∈ Bn .

There is a large number of design methods for VLSI-circuits. So

we make no attempt to present these methods. Most of the lower

bounds are proved by information flow arguments. We present the

method due to Vuillemin (83) leading to Ω(n2)-bounds on AT2 for

several fundamental functions.

DEFINITION 2.2 : Let Σn be the symmetric group of all permu-

tations on 1� � � � � n . A subgroup G of Σn is called transitive if for all

i� j ∈ {1� � � � � n} there is some π ∈ G where π(i) = j .

DEFINITION 2.3 : f ∈ Bn+m�n is called transitive of degree n if there

is some transitive subgroup G of Σn such that for each π ∈ G there is

some yπ = (yπ
1 � � � � � y

π
m) where

f(x1� � � � � xn� y
π
1 � � � � � y

π
m) = (xπ(1)� � � � � xπ(n))� (2.1)

If f is transitive of degree n , it must be possible to transport the

i -th input bit (1 ≤ i ≤ n) to the j -th output port. This data flow

is possible in a short time only on a large area. Hence we hope to

prove nontrivial lower bounds on A T2 for functions f transitive of

high degree. At first we present examples of transitive functions of

high degree.

DEFINITION 2.4 : CYCSH : cyclic shifts. Input: x0� � � � � xn−1 ,

350

y1� � � � � ym where m = �log n� . Let y be the binary number represented

by (y1� � � � � ym) . Output: z0� � � � � zn−1 where zi = x(i+y)modn .

MUL : Input: n-bit numbers x� y�M . Output: the n-bit number

z ≡ xy mod M .

CYCCON : Cyclic convolution. Input: 2 n k-bit numbers

x0� y0� � � � � xn−1� yn−1 . Output: n k-bit numbers z0� � � � � zn−1 where

zl ≡ ∑
i+j≡ l modn

xi yj mod M for M = 2k − 1� (2.2)

MVP : matrix-vector-product. Input: n k-bit numbers x1� � � � � xn and

an n×n-matrix Y = (yij) where yij ∈ {0� 1} . Output: n k-bit numbers

z1� � � � � zn where

zl ≡ ∑
1≤i≤n

yl ixi mod M for M = 2k − 1� (2.3)

3-MATMUL : multiplication (modM for M = 2k − 1) of three n× n-

matrices of k-bit numbers.

LEMMA 2.2 : CYCSH and MUL are transitive of degree n ,

CYCCON and MVP are transitive of degree n k , and 3-MATMUL

is transitive of degree n2 k .

Proof : CYCSH : Let G be the transitive group of all cyclic shifts

πj where πj(i) ≡ (i + j) mod n . CYCSH computes this group by defi-

nition.

MUL : We fix M = 2n − 1 and y = 2s for some s ∈ {0� � � � � n − 1} .

Then 2n ≡ 1 mod M and

z ≡ x y =
∑

0≤i≤n−1
xi 2

i+s (2.4)

≡ ∑
0≤i≤n−s−1

xi 2
i+s +

∑
n−s≤i≤n−1

xi 2
i+s−n mod M�

The binary representation of z is (xn−s� � � � � xn−1� x0� � � � � xn−s−1) and

the cyclic shift πn−s is computed. Hence MUL computes the transitive

group of cyclic shifts.

351

CYCCON : Let G be the group of all permutations πi�j (0 ≤ i � n ,

0 ≤ j � k) . For πi�j the cyclic shift πi is applied to the vector

(x0� � � � � xn−1) and then the cyclic shift πj is applied to each vector

xm (0 ≤ m ≤ n− 1) . Obviously this group is transitive of degree n k .

The permutation πi�j is computed if we set yi = 2j and ym = 0 for

m �= i . Then zl ≡ xl−i yi mod M , if l ≥ i , and zl ≡ xn+l−i yi mod M ,

if l � i . In the same way as in the proof for MUL , it follows that

zl is equal to xl−i or xn+l−i shifted by j positions. Furthermore the

x-vectors have been shifted by i positions.

MVP and 3-MATMUL : These examples are left as exercises. �

THEOREM 2.4 : If f is transitive of degree n , then A T2 = Ω(n2)

for each VLSI-circuit computing f .

Proof : It is sufficient to prove A = Ω(D2) . Since T ≥ P = n D−1 , it

follows then that

A T2 = Ω(D2(n D−1)2) = Ω(n2)� (2.5)

The claim is trivial if D = O(1) . Otherwise let h be the number of

levels, l λ the length and w λ the width of a VLSI-circuit for f . W.l.o.g.

w ≥ l . By a longitudinal cut we partition the chip into a right part

R and a left part L . If this cut is shifted one cell, then the number

of output ports in each part is increased or decreased by a constant

summand. At most P outputs may leave the same output port. Since

P = n D−1 and D = ω(1) , P = o(n) . Hence it is possible to cut the

circuit in such a way that for Rout and Lout , the number of outputs

leaving the circuit in the right part and left part resp.,

Lout ≥ Rout = Ω(n)� (2.6)

Since the cut is longitudinal, we have cut c = O(l) wires. Since

A = lw ≥ l2 = Ω(c2)� (2.7)

it is sufficient to prove c = Ω(D).

Let G be the transitive group computed by f and let π ∈ G . If

the control variables are fixed in such a way that we compute π , then

352

xi has to cross the cut if the input port for xi is in another part of

the circuit than the output port for the π−1(i)-th output. In this case

k(i� π) := 1 , otherwise k(i� π) := 0 .

Let Gij be the set of all π ∈ G where π(i) = j . It follows from

elementary group theory (see e.g. Huppert (67)) that all Gij are of

the same size. Hence π−1(j) = i for |G| n−1 permutations π ∈ G . It

follows that∑
π∈G

k(i� π) = |G| n−1 Lout� (2.8)

if the input port for xi lies in R , and∑
π∈G

k(i� π) = |G| n−1 Rout� (2.9)

if the input port for xi lies in L . Therefore∑
π∈G

∑
1≤i≤n

k(i� π) ≥ n |G| n−1 min{Lout�Rout} = |G|Rout� (2.10)

In particular, there is some π ∈ G such that for the computation of π

at least Rout inputs have to cross the cut. Since only c wires connect

the two parts of the circuit, P cannot be very small. If P � Rout c−1 ,

the data queue at the cut would be increasing. Hence, by (2.6),

n D−1 = P ≥ Rout c−1 = Ω(n c−1) (2.11)

and c = Ω(D). �

12.3 Probabilistic circuits

In Ch. 9, § 6 , we have simulated probabilistic Turing machines effi-

ciently by circuits. This approach leads e.g. to polynomial circuits for

primality testing. Here we go the same way for probabilistic circuits.

DEFINITION 3.1 : The inputs of a probabilistic circuit S are

the inputs x1� � � � � xn of a Boolean function and some further inputs

353

y1� � � � � ym which take the values 0 and 1 independently with probabil-

ity 1�2 . According to this probability distribution the output S(x) of

S on input x is a random variable.

DEFINITION 3.2 : Let A�B ⊆ {0� 1}n and 0 ≤ q � p ≤ 1 . The

probabilistic circuit S separates A and B with respect to (p� q) if

∀ x ∈ A : Pr(S(x)) = 1) ≥ p and (3.1)

∀x ∈ B : Pr(S(x)) = 1) ≤ q� (3.2)

Notation: (S�A�B� p� q) .

S is an ε-computation of f , if (S� f−1(1)� f−1(0)� (1�2)+ ε� 1�2) is satis-

fied.

The following considerations can be generalized to circuits with

binary gates or formulas. But we concentrate our view upon bounded-

depth circuits with gates of unbounded fan-in (see Ch. 11). We shall

prove Theorem 2.2, Ch. 11 , by designing probabilistic circuits for

threshold functions.

At first, we present simple transformations and show how prob-

abilistic circuits of very small error probability lead to determinis-

tic circuits. Afterwards we investigate how we can reduce the error

probability. On the one hand, we improve log−r n-computations to

log−r+1 n-computations, if r ≥ 2 , and on the other hand, we improve

log−1 n-computations to computations of very small error probability.

All results are due to Ajtai and Ben-Or (84).

LEMMA 3.1 : Let (S�A�B� p� q) be satisfied for A�B ⊆ {0� 1}n and

0 ≤ q � p ≤ 1 .

i) If p ≥ p′ � q′ ≥ q , (S�A�B� p′� q′) is satisfied.

ii) There is a probabilistic circuit S′ such that C(S′) = C(S) , D(S′) =

D(S) and (S′�B�A� 1− q� 1− p) are satisfied.

iii) For each positive integer l there is a probabilistic circuit Sl such

that C(Sl) ≤ l C(S)+1 , D(Sl) ≤ D(S)+1 and (Sl �A�B� pl � ql) are

354

satisfied.

iv) If q � 2−n and p � 1 − 2−n , there is a deterministic circuit Sd

such that C(Sd) ≤ C(S) , D(Sd) ≤ D(S) and (Sd �A�B� 1� 0) are

satisfied.

Proof : i) Obvious by definition.

ii) We negate the output of S and apply the deMorgan rules bottom-

up.

iii) We use l copies of S with independent random inputs and combine

the outputs by an ∧-gate. Sl(x) = 1 iff all copies of S compute 1 .

The assertion follows since the copies of S have independent random

inputs.

iv) Since q � p , A and B are disjoint. Let f be defined by f−1(1) =

A . For x ∈ A ∪ B , the error probability, i.e. the probability that

S(x) �= f(x) , is smaller than 2−n . Let I(x) be the random variable

where I(x) = 1 iff S(x) �= f(x) and I(x) = 0 otherwise. Then E(I(x)) =

Pr(S(x) �= f(x)) . Hence

E
(∑
x∈A∪B

I(x)
)

=
∑

x∈A∪B
E(I(x)) � 1� (3.3)

For fixed y1� � � � � ym , I , the sum of all I(x) , is the number of errors

on the inputs x ∈ A ∪ B . I is always a nonnegative integer. By (3.3)

E(I) � 1 . Therefore there is a vector (y∗1� � � � � y
∗
m) ∈ {0� 1}m which

leads to zero error. Sd is constructed by replacing the random inputs

y1� � � � � ym by the constants y∗1� � � � � y
∗
m . �

No efficient algorithm for the computation of y∗1� � � � � y
∗
m is known.

In general, the methods of this section lead only to non uniform cir-

cuits even if the given probabilistic circuits are uniform. The step in

Lemma 3.1 iv is the only non uniform step.

LEMMA 3.2 : If (S�A�B� (1 + log−r n)�2� 1�2) is satisfied for some

r ≥ 2 , then there is a probabilistic circuit S′ such that C(S′) =

355

O(n2(log n)C(S)) , D(S′) ≤ D(S)+2 and (S′�A�B� (1+log−r+1 n)�2� 1�2)

are satisfied.

Proof : W.l.o.g. n = 2k . Then

(S�A�B� (1 + log−r n)�2� 1�2) → L. 3.1 i & iii

l = 2 logn

(S1�A�B� n−2(1 + 2 log−r+1 n)� n−2) → L. 3.1 ii

(S2�B�A� 1− n−2� 1− n−2(1 + 2 log−r+1 n)) → L. 3.1 i & iii

l =
⌊
(n2 − 1) ln 2

⌋
(S3�B�A� 1�2� (1− log−r+1 n)�2) → L. 3.1 ii

(S4�A�B� (1 + log−r+1 n)�2� 1�2)�

Let S′ = S4 . The assertions on C(S′) and D(S′) follow directly from

Lemma 3.1. The only crucial part is the computation of pl and ql if

we apply L. 3.1 iii. This is easy for the first application of L. 3.1 iii ,

since

(1�2)l = n−2 and (3.5)

(1 + log−r n)2 log n � 1 + (2 log n) (log−r n) = 1 + 2 log−r+1 n� (3.6)

For the second application we assume that n is large. For small n we

use the DNF for f defined by f−1(1) = B . We set exp{x} = ex and

apply the well-known estimations

1 + x ≤ ex and
(
1− x

n

)n−1 ≥ e−x� (3.7)

Now l =
⌊
(n2 − 1) ln 2

⌋ ≤ (n2 − 1) ln 2 and n2 ln 2− l � 3 ln 2 . Hence

(1− n−2)l ≥ (1− n−2)(n2−1) ln 2 ≥ e− ln 2 = 1�2 (3.8)

for the first term. For the second term(
1− n−2(1 + 2 log−r+1 n)

)l
(3.9)

� exp{−n−2 (n2 − 3) (ln 2) (1 + 2 log−r+1 n)}
= (1�2)n−2(n2−3) exp

{−n−2 (n2 − 3) (ln 2) 2 log−r+1 n
}
�

356

We estimate the first factor by

(1�2)n−2(n2−3) = (1�2) 8n−2

= (1�2) exp
{
(ln 8)n−2} (3.10)

= (1�2) (1 + O(n−2))�

For the second factor 2 n−2 (n2 − 3) (ln 2) � 1�3 for large n . If x ≥ 0

exp{−x} =
∑

0≤i�∞

(−x)i

i!
≤ 1− x

(
1− x

2
− x3

4!
− x5

6!
− � � �

)
� (3.11)

Hence for large n

exp
{−n−2(n2 − 3) (ln 2) 2 log−r+1 n

}
� 1− 1�2 log−r+1 n� (3.12)

By (3.9) , (3.10) and (3.12)(
1− n−2(1 + 2 log−r+1 n)

)l
� (1�2) (1 + O(n−2)) (1− 1�2 log−r+1 n)

(3.13)
� (1�2) (1− log−r+1 n) for large n .

�

LEMMA 3.3 : If (S�A�B� (1 + log−1 n)�2� 1�2) is satisfied, then there

is a deterministic circuit S′ such that C(S′) = O(n6(log2 n)C(S)) ,

D(S′) ≤ D(S) + 4 and (S′�A�B� 1� 0) are satisfied.

Proof : We leave the details to the reader and present only a sketch

of the proof.

(S�A�B� (1 + log−1 n)�2� 1�2) → L. 3.1 i & iii l = 2 log n (3.14)

(S1�A�B� 2 n−2� n−2) → L. 3.1 ii

(S2�B�A� 1− n−2� 1− 2 n−2) → L. 3.1 i & iii l = 2 n2 ln n

(S3�B�A� n−2� n−4) → L. 3.1 ii

(S4�A�B� 1− n−4� 1− n−2) → L. 3.1 i & iii l = n3

(S5�A�B� 1− 2 n−1� e−n) → L. 3.1 ii

(S6�B�A� 1− e−n� 2 n−1) → L. 3.1 i & iii l = n

(S7�B�A� 1− 2ne−n� (2 n−1)n) → L. 3.1 ii

(S8�A�B� 1− (2 n−1)n� 2ne−n) → L. 3.1 iv

(S′�A�B� 1� 0)
�

357

We combine Lemma 3.2 with Lemma 3.3.

THEOREM 3.1 : If Sn is for some r � 0 a sequence

of log−r n-computations of fn ∈ Bn , if C(Sn) is bounded by

a polynomial and if D(Sn) is bounded by a constant, then

f = (fn) ∈ SIZE - DEPTH(poly� const) .

We are now ready to prove Theorem 2.2, Ch. 11.

THEOREM 3.2 : If k(n) = O(logr n) for some fixed r , then

f = (Tn
k(n)) ∈ SIZE - DEPTH(poly� const) .

Proof : W.l.o.g. k = k(n) ≤ logr n and n = 2l . We design a proba-

bilistic circuit S of size n �n�k�+ 1 and depth 2 . We use �n�k� blocks

of random inputs, the block size is l = log n . There exist n minterms

mj
1� � � � �m

j
n on the j -th block of random inputs. We compute xi ∧ mj

i

for all 1 ≤ i ≤ n and 1 ≤ j ≤ �n�k� . The disjunction of all xi ∧ mj
i

for fixed j is a random xr (according to the uniform distribution). We

compute the disjunction of all xi∧mj
i , the disjunction of �n�k� random

x-inputs.

Let pk(s) be the probability that S(x) = 1 if the input contains s

ones. Since 1 − s
n is the probability that a random x-input equals 0 ,

we conclude

pk(s) = 1− (
1− s

n

)�n�k� ≈ 1− e−s�k� (3.15)

Obviously s → pk(s) is increasing. Thus the circuit S satisfies

(S� (Tn
k)
−1(1) , (Tn

k)
−1(0) , pk(k)� pk(k − 1)) . For small k or n we use

the DNF for Tn
k . Otherwise it is easy to prove that

pk(k) ≥ pk(k− 1)(1 + k−2) and 0�5 ≤ pk(k− 1) ≤ 0�9� (3.16)

If pk(k− 1) = 0�5 , we could apply directly Theorem 3.1 , since k−2 ≥
log−2r n . One possible way to deal with pk(k − 1) � 0�5 is described

in Exercise 13. �

358

We have seen that log−r n-computations can be simulated efficiently

by deterministic computations. What about n−ε-computations for

some ε � 0? If they had been simulated efficiently, we would ob-

tain by the construction in Theorem 3.2 and Theorem 3.1 circuits of

polynomial size and constant depth for Tn
k(n) and k(n) = nε . This

would be a contradiction to Corollary 4.1, Ch. 11. Hence the simula-

tion of Ajtai and Ben-Or is optimal if we allow a polynomial increase

of the circuit size and a constant number of additional logical levels.

Although the majority function is not in

SIZE - DEPTH(poly� const) , it can be proved by the above methods

that some approximation of the majority function is contained in this

class (Stockmeyer (83), Ajtai and Ben-Or (84)).

THEOREM 3.3 : There is for constant r a sequence of circuits Sn of

polynomial size and constant depth which compute functions fn ∈ Bn

such that

fn(x) = 1 if x1 + · · · + xn ≥ (n�2) (1 + log−r n) and (3.17)

fn(x) = 0 if x1 + · · · + xn � n�2� (3.18)

We have pointed out that the last step in our simulation of

probabilistic circuits by deterministic circuits, the application of

Lemma 3.1 iv , is non uniform. Hence it is possible that functions

fn ∈ Bn can be computed by uniform probabilistic circuits of poly-

nomial size and small error probability, but cannot be computed by

uniform deterministic circuits of polynomial size. This leads to the

definition of the complexity classes RNC and RNCk (Cook (83), for

the definition of NC and NCk see Def. 8.2, Ch. 9). Here we consider

circuits with binary gates.

359

DEFINITION 3.3 : RNC (RNCk) is the class of languages L such

that for fn defined by f−1
n (1) = L∩{0� 1}n there are UBC-uniform proba-

bilistic circuits of polynomial size and polylog depth (depth O(logk n))

satisfying

Pr(Sn(x) = fn(x) | x ∈ f−1
n (a)) ≥ 3�4 for a ∈ {0� 1} . (3.19)

We are content with this definition and the remark that many

RNCk algorithms are known.

EXERCISES

1. Prove the upper bound in Theorem 1.2.

2. Each synchronous circuit for the addition of an n-bit number and

a 1-bit number has size Ω(n log n) .

3. Estimate Cs(f) for all f ∈ Bn by synchronizing Lupanov’s circuit

(Ch. 4, § 2).

4. Each synchronous circuit for the computation of the pseudo com-

plements of a k-slice (Ch. 6, § 13) contains at least �log(n− 1)�⌈
log(

(n
k

)
+ 2)

⌉
gates.

5. The complete graph Km is planar iff m ≤ 4 .

6. The complete bipartite graph K3�3 is not planar.

7. (McColl (81)). The following functions are not computable in

monotone, planar circuits.

a) f1(x� y) = (y� x) .

360

b) f2(x� y) = (xy� x) .

c) f3(x� y) = (xy� x ∨ y) .

8. (McColl (85 a)). T5
3 (and also Tn

k for 2 � k � n − 1) is not

computable in a monotone, planar circuit.

9. (McColl (85 a)). Tn
2 is computable in monotone, planar circuits.

10. Complete the proof of Lemma 2.2 for MVP and 3-MATMUL .

11. Prove results similar to Lemma 3.1 – 3.3 and Theorem 3.1 for

probabilistic circuits with binary gates.

12. Let 0 ≤ qi � pi ≤ 1 and let (Si�A�B� pi� qi) be satisfied for 1 ≤ i ≤
m . In S∨ and S∧ we combine the outputs of all Si by an ∨-gate and

∧-gate resp. Compute p∨� q∨� p∧� q∧ such that (S∨�A�B� p∨� q∨)
and (S∧�A�B� p∧� q∧) are satisfied.

13. Let (S�A�B� p� q) be satisfied and r ∈ {0� � � � � 2k − 1}. Then there

is a circuit S′ such that C(S′) ≤ C(S)+O(2k) , D(S′) ≤ D(S)+O(1)

and (S′�A�B� (r + p) 2−k� (r + q) 2−k) are satisfied.

14. Compare the construction of bounded-depth circuits for the

threshold functions with the construction of monotone formulas

for the majority function in Ch. 8, § 3.

361

13. PRAMs AND WRAMs: PARALLEL RANDOM ACCESS MA-

CHINES

13.1 Introduction

Circuits represent a hardware model of parallel computations but

not a model of parallel computers. A parallel computer consists of

many computers (so-called processors) which work together. Since

several years vector computers are used, these are based on the SIMD

concept (single-instruction-multiple-data-stream). At each single time

step one can apply a definite type of operation (e.g. addition) to vec-

tors and not only to numbers. This concept is appropriate for numer-

ical applications (simulations in physics and geological explorations,

meteorological computations for an improved weather-forecast, etc.),

but for several combinatorial algorithms it is too restrictive.

Nowadays, one is designing MIMD computers (multiple-instruct-

ion-multiple-data-stream) that consist of up to 1024 processors. Each

processor has its own program. The processors may work together by

communicating with each other. If each pair of processors was con-

nected by a communication channel, we would have
(1024

2

)
= 523 776

connections. Hence this approach is impractical. The communica-

tion graph (vertices are processors, edges are communication channels)

should be a graph of small degree. There are communication graphs

like for instance the cube-connected-cycle and the shuffle-exchange-

network which have constant degree (for an arbitrary number of pro-

cessors) and which allow fast communication between arbitrary pro-

cessors.

It is difficult to design algorithms for these realistic parallel com-

puters, since one always has to pay attention to the ˝distance˝ of

processors which like to communicate. Hence one considers parallel

computers of a simpler communication structure. Processors are not

connected via communication channels, instead of that all processors

362

have random access to a shared memory. Processor j obtains informa-

tion from processor i by reading an information written by processor i .

These parallel random access machines represent no realistic model,

but on the one hand it is convenient to design algorithms in this model,

and, on the other hand, efficient algorithms are known for the simula-

tion of these algorithms on those realistic parallel computers discussed

above (see e.g. Mehlhorn and Vishkin (84) or Alt, Hagerup, Mehlhorn

and Preparata (86)). Hence we investigate only parallel random ac-

cess machines, nowadays the standard model of parallel computers at

least for the purposes of the complexity theory.

DEFINITION 1.1 : A parallel random access machine (PRAM) for

n Boolean inputs consists of processors Pi (1 ≤ i ≤ p(n)) , a read-only

input tape of n cells M1� � � � �Mn containing the inputs x1� � � � � xn and

a shared memory of cells Mj (n � j ≤ n + c(n)) , all containing at

first zeros. Pi starts in the state q(i� 0) . At time step t , depending

on its state q(i� t) , Pi reads the contents of some cell Mj of the shared

memory, then, depending on q(i� t) and the contents of Mj , it assumes

a new state q(i� t+1) , and, depending on q(i� t+1) , it writes some in-

formation into some cell of the shared memory. The PRAM computes

fn ∈ Bn in time T(n) if the cell Mn+1 of the shared memory contains

on input x = (x1� � � � � xn) at time step T(n) the output fn(x) .

We distinguish between some models of PRAMs with different rules

for solving read and write conflicts.

– An EREW PRAM (exclusive read, exclusive write) works correctly

only if at any time step and for any cell at most one processor reads

the contents of this cell and at most one processor writes into this cell.

– A CREW PRAM (concurrent read, exclusive write) or shortly

PRAM allows that many processors read the contents of the same

cell at the same time step, but it works correctly only if at any time

step and for any cell at most one processor writes into this cell.

363

– A CRCW PRAM (concurrent read, concurrent write) or shortly

WRAM solves write conflicts. If more than one processor tries to

write at time step t into cell Mj , then the processor with the smallest

number wins. This processor writes its information into Mj , all other

competitors fail to write.

– A WRAM satisfies the common write rule (CO WRAM) if when-

ever several processors are trying to write into a single cell at the same

time step, the values that they try to write are the same.

Our PRAM models are non uniform. Nevertheless, we shall de-

sign uniform algorithms. For efficient algorithms the computation

time T(n) , the number of processors p(n) and the communication

width c(n) should be simultaneously small. Moreover, the computa-

tion power of the single processors should be restricted realistically.

For lower bounds we choose the model as general as possible.

In § 2 we compare the different models and obtain efficient algo-

rithms via simulations. All functions with efficient circuits of bounded-

depth can be computed efficiently by CO WRAMs. The reverse holds

for WRAMs of restricted computation power. This result, which is

proved in § 3 , enables us to generalize lower bounds proved in the

previous chapters. In § 4 – § 6 we discuss lower bound methods. The

lower bounds depend on combinatorial measures which we investigate

in § 7.

13.2 Upper bounds by simulations

THEOREM 2.1 : i) Each function fn ∈ Bn can be computed in

time �log n�+ 1 by an EREW PRAM with n powerful processors and

communication width n .

364

ii) Each fn ∈ Bn can be computed in time �log n� + 2 by a PRAM

with n 2n realistic processors and communication width n 2n .

iii) Each fn ∈ Bn can be computed in time 2 by a CO WRAM with

n 2n realistic processors and communication width 2n .

Proof : i) At time step 0 processor Pi reads the i -th input xi , stores

this value in its internal memory and writes it into Yi , i.e. the i -th

cell Mn+i of the shared memory. At time step t , processor Pi reads

the contents of Yj where j = i + 2t−1 . If j � n , Pi does nothing. If

j ≤ n , Pi concatenates the contents of its internal memory and the

contents of Yj . The result is stored in its internal memory and written

into Yi . It is easy to prove that Pi knows after time step t the vector

(xi� � � � � xj) where j = min{n� i + 2t − 1} . After time step �log n� , P1

knows (x1� � � � � xn) . P1 evaluates f(x1� � � � � xn) and writes the result

into the output cell Y1 .

ii) We use the DNF of f . Each minterm can be evaluated in time

�log n� + 1 by n realistic processors and communication width n . A

minterm is a conjunction of n literals x
a(k)
k . We use a binary tree as

in the proof of i) , but the conjunction is a simple function. Instead

of (xi� � � � � xj) we only store x
a(i)
i ∧ · · · ∧ x

a(j)
j . All minterms can be

evaluated in parallel by a PRAM. Before the last step there is for each

a ∈ f−1
n (1) a processor P(a) knowing ma(x). W.l.o.g. Y1 contains 0 .

P(a) writes 1 into Y1 iff ma(x) = 1 . There is no write conflict, since

at most one minterm computes 1 .

iii) The disjunction of n literals can be computed by a CO WRAM

consisting of n realistic processors in one time step and communication

width 1 . Each processor reads one input and writes 1 into the output

cell iff its literal equals 1 . We use the CNF of f and evaluate all

maxterms in parallel. Moreover we write 1 into Y1 . In the second

step a processor P(a) for a ∈ f−1(0) reads sa(x) and writes 0 into Y1

iff sa(x) = 0 . �

365

These simple algorithms are not efficient algorithms, since either

the number of processors grows exponentially or the processors are

too powerful. We have seen that it is possible to simulate the DNF or

CNF for f . This idea can be extended to circuits (van Leeuwen (83),

Stockmeyer and Vishkin (84)).

THEOREM 2.2 : i) Let S be a circuit of binary gates computing

fn ∈ Bn with s gates in depth d . Then there is a PRAM com-

puting fn in time O(d) with p = �s�d� realistic processors and

communication width s .

ii) Let S be a circuit of unbounded fan-in gates computing fn ∈ Bn

with s gates and e edges in depth d . Then there is a CO WRAM

computing fn in time d+1 with e realistic processors and commu-

nication width s .

Proof : i) The depth of a gate is the length of a longest path from

an input to this gate. Let Ni be the number of gates of depth i in S .

These gates are partitioned to p blocks of at most �Ni�p� gates each.

We simulate the circuit level by level. A processor may simulate a

binary gate in two steps of time. Hence the i -th level is simulated in

2 �Ni�p� steps by p processors. The result of each gate is written into

a definite cell of the shared memory. The time for this simulation is

estimated by∑
1≤i≤d

2 �Ni�p� ≤ 2 d + 2 (N1 + · · · + Nd)�p (2.1)

≤ 2 d + 2 s (d�s) = 4 d�

ii) There is for each gate of the circuit a cell in the shared memory and

for each edge of the circuit a processor. In time step 0 the contents

of the cells representing ∧-gates are replaced by ones. In time step i

(1 ≤ i ≤ d) all gates on the i -th level are simulated. The processors

for the edges leading to these gates read the inputs of the edges. If the

level is an ∧-level a processor writes 0 into the corresponding cell for

366

the gate iff the processor has read 0 . ∨-gates are simulated similarly.

�

This theorem leads to efficient PRAM algorithms. We obtain

for many fundamental functions O(log n)-time algorithms on PRAMs

with a polynomial number of realistic processors and polynomial com-

munication width (see Ch. 3). By the results of Ch. 10, § 3 , and Ch. 11

we obtain for certain fundamental problems O(1)-time algorithms on

CO WRAMs with a polynomial number of realistic processors and

polynomial communication width. In § 4 we prove Ω(log n)-bounds

on the PRAM complexity of many fundamental functions even if the

number of processors, the power of processors and the communication

width are unlimited. These results imply that realistic CO WRAMs

may be faster by a factor of Θ(log n) than PRAMs of unlimited re-

sources. This speed up is optimal because of the following results.

THEOREM 2.3 : A WRAM of p processors, communication width c

and time complexity t may be simulated by an EREW PRAM with

(c + n) p processors, communication width c + (c + n)p and time com-

plexity t (4 + 2 �log p�) .

Proof : The simulation is step-by-step. The c cells of the shared

memory are simulated directly by c cells. Furthermore each of the

n input cells and the c cells of the shared memory is simulated once

for each processor. We assume that we have simulated i computation

steps. Then the information of each of the c + n cells of the WRAM

is copied and written into p definite cells. This can be done for each

cell by p processors in time �log p� + 1 without read conflicts. If the

information is copied r times, r processors may read the information

and may write it into r other cells and so on. Afterwards we simulate

one computation step. Each processor can read the information in

its own cells, i.e. without read conflict. Each processor simulates the

internal computation and marks that of its cells representing the cell in

which it tries to write. For each cell of the shared memory p processors

367

are sufficient to compute in time �log p�+1 the number of the processor

who wins the write conflict according to the rules. This is simply the

computation of the minimum of at most p numbers. Each processor is

informed whether it has won the write conflict. Afterwards all winners

write their information into the corresponding cells which causes no

write conflict. The whole computation step has been simulated in

4 + 2 �log p� steps. �

WRAMs can be simulated rather efficiently by simple

EREW PRAMs. What is the difference between WRAMs and

CO WRAMs ? This question has been answered by Kucera (82).

THEOREM 2.4 : A WRAM of p processors, communication width c

and time complexity t may be simulated by a CO WRAM of
(p

2

)
processors, communication width c + p and time complexity 4 t .

Proof : The simulation is step-by-step. We use processors Pj

(1 ≤ j ≤ p) for the simulation and Pij (1 ≤ i � j ≤ p) for some extra

work. Since Pj and Pij never work simultaneously
(p

2

)
processors are

sufficient if p ≥ 3 . The case p = 2 is obvious. Each computation step

is simulated in 4 steps. At first the processors Pj (1 ≤ j ≤ n) simulate

the reading and the internal computations of the WRAM , and Pj

writes into the j -th extra cell of the shared memory the number of

that cell into which Pj likes to write. In the following two steps Pij

decides whether Pj loses a write conflict against Pi . Pij writes a mark

into the j -th extra cell iff Pj has lost a write conflict against Pi .

This causes no conflict for CO WRAMs. All processors writing at this

time step write the same letter, namely the mark # . In the fourth

step Pj reads whether it has lost a write conflict. Only if Pj has not

lost a write conflict, Pj simulates the write phase of the WRAM. This

causes no write conflict at all. �

368

All these simulations lead to upper bounds on the time complexity

of parallel computers. For several fundamental functions we obtain

(nearly) optimal algorithms. For many other functions new ideas for

the design of efficient parallel algorithms are needed. Because we did

not present efficient algorithms for non fundamental functions, we shall

not discuss efficient parallel algorithms for such functions.

13.3 Lower bounds by simulations

Stockmeyer and Vishkin (84) have proved that restricted WRAMs

may be simulated efficiently by circuits of unbounded fan-in gates.

We restrict the computation power of the single processors in such a

way that each single step may be simulated by a polynomial circuit of

constant depth. This is the only restriction we actually need.

Each processor p follows some program of l(p) lines. Its current

state l ∈ {1� � � � � l(p)} describes the actual line of the program. The

initial state is l = 1 . The processor has a local random access memory.

We give a list of legitimate operations.

– M(r) = c (reading of constants). The constant c is written into the

r -th cell of the local memory.

– M(r) = M(i) (direct reading). The contents of the i -th cell of the

local memory is written into the r -th cell of the local memory.

– M(r) = M(i)◦M(j) (computation step). Let x and y be the contents

of the i -th and j -th cell of the local memory resp. Then z = x ◦ y is

written into the r -th cell of the local memory. The function ◦ is one

of a finite list of operations. We allow only operations which can

be computed by polynomial circuits of constant depth and where the

length |z| of the output z is bounded by max{|x| + 1� |y| + 1� n} . By

the results of Ch. 11, § 2 , the list may include addition, subtraction,

comparison and also the multiplication of numbers of length O(log n) .

369

– M(r) = ∗M(i) {l�c} (indirect reading). Let I be the contents of

the i -th cell of the local memory. The contents of the I -th cell of the

local/common (or shared) memory is written into the r -th cell of the

local memory.

– ∗M(r) = M(i) {l�c} (indirect writing). The contents of the i -th cell

of the local memory is written into the j -th cell of the local/common

memory, j is the contents of the r -th cell of the local memory.

– GO TO l if M(i)��= M(j) (if-tests). It is tested whether the con-

tents of the i -th cell of the local memory is smaller than / equal to

the contents of the j -th cell of the local memory. In the positive case

we proceed to line l of the program. Otherwise we proceed (as usual)

to the next line of the program.

– STOP (end of the program).

The so-restricted WRAMs are called RES WRAMs. The program size

is the number of bits in the program.

THEOREM 3.1 : Let fn ∈ Bm where m = n2 . Let Wn be a sequence

of RES WRAMs computing fn , if the input is given in n blocks of n

bits each, with p(n) processors of program size s(n) , unlimited com-

munication width and time complexity t(n) .

Then for some polynomial Q , there are circuits Sn computing fn with

Q(n� p(n)� s(n)� t(n)) unbounded fan-in gates in depth O(t(n)) .

Proof : Although the communication width is unlimited, only a lim-

ited number of cells is available. The numbers of the input have length

n and the length of the numbers in the programs is bounded by s(n) .

RES WRAMs cannot produce large numbers in short time. The length

of all numbers used by Wn is bounded by

L(n) = max{n� s(n)}+ t(n)� (3.1)

We simulate Wn step-by-step. The difficulty is to find the infor-

mation in the memories, since by numbers of length L(n) one may

address 2L(n) different cells. These are 2L(n) possible addresses. For

370

each definite input each processor may change the contents of at most

t(n) cells. Therefore the circuits use an internal representation of the

memories of Wn . Everything written at time step k gets the inter-

nal address k . If this information is deleted at a later time step,

the information is marked as invalid. The index l refers to the local

memory and index c to the common memory. For all 1 ≤ p ≤ p(n) ,

1 ≤ k ≤ t(n) , k ≤ t ≤ t(n) we shall define al(p� k) , vl(p� k) and

wl(p� k� t) . al(p� k) is a number of length L(n) and indicates the ad-

dress of that cell of the local memory into which the p-th processor

has written at time step k . vl(p,k) is also a number of length L(n) and

equals the number which the p-th processor has written at time step k .

The bit wl(p,k,t) indicates whether at time step t the information the

p-th processor has written into the local memory at time step k is still

valid (wl(p� k� t) = 1) or has been deleted (wl(p� k� t) = 0) . In the

same way we define ac(p� k) , vc(p� k) and wc(p� k� t) . At the begin-

ning all local cells contain zeros, only the first n cells of the common

memory contain the input. Hence we define ac(i� 0) = i , vc(i� 0) = xi

and wc(i� 0� 0) = 1 for 1 ≤ i ≤ n . Here we assume, like we do in the

whole proof, that numbers are padded with zeros if they have not the

necessary length. All other parameters are equal to 0 for t = 0 .

Let l(p) be the number of lines in the program of the p-th proces-

sor. Let i(p� l) , j(p� l) , c(p� l) and r(p� l) be the parameters in the l -th

line of the p-th program. Here and in the following we assume that

non existing parameters are replaced by zeros and that the empty dis-

junction is zero. Let ic(p� l � t) = 1 iff during the (t+1)-st computation

step processor p is in line l of its program. Obviously ic(p� l � 0) = 1 iff

l = 1 .

Let us assume that t computation steps of Wn have been simulated

correctly. This is satisfied at the beginning for t = 0 . We describe

the simulation of the (t+1)-st computation step. Let EQ(a� b) = 1 iff

a = b , let

a ∧ (b1� � � � � bm) = (a ∧ b1� � � � � a ∧ bm) and (3.2)

371

(a1� � � � � am) ∨ (b1� � � � � bm) = (a1 ∨ b1� � � � � am ∨ bm) (3.3)

for arbitrary m . We simulate each line of each program. Let R(p� l � t)

be the result produced by the p-th processor during the (t + 1)-st

computation step, if the processor is in line l of the program. The

result is the information which will be written into some cell or the

result of an if-test. Let A(p� l � t) be the address of the cell into which

R(p� l � t) will be written. Let I(p� l � t) be the contents of the i(p� l)-th

cell of the local memory before the (t + 1)-st computation step. Then

I(p� l � t) =
∨

1≤k≤t

[
EQ(i(p� l)� al(p� k)) ∧ wl(p� k� t) ∧ vl(p� k)

]
� (3.4)

The equality test ensures that we are looking for information at the

correct address only, and the validity bit wl ensures that we con-

sider only valid information. If we consider a computation step or

an if-test, we compute J(p� l � t) in the same way. R(p� l � t) equals

c(p� l) (reading of constants), or I(p� l � t)◦J(p� l � t) (computation step),

or I(p� l � t) (indirect writing), or 1 or 0 if I(p� l � t) ��= J(p� l � t) or

I(p� l � t) ≥��= J(p� l � t) resp. (if-test). For steps of indirect reading

R(p� l � t) equals the contents of the cell I(P� l � t) of the local or common

memory. Hence R(p� l � t) can be computed by (3.4) if we replace i(p� l)

by I(p� l � t) . For the common memory we replace al(p� k) , vl(p� k) , and

wl(p� k� t) by ac(p
′� k) , vc(p

′� k) and wc(p
′� k� t) resp. and compute the

disjunction over all p′ , since each processor may have written into the

common memory. In every case all R(p� l � t) are computed in poly-

nomial size and constant depth. Only for indirect writing, A(p� l � t)

is not a constant. Then A(p� l � t) is computed in the same way as

R(p� l � t) . Finally

R(p� t) =
∨

1≤l≤l(p)
ic(p� l � t) ∧ R(p� l � t) and (3.5)

A(p� t) =
∨

1≤l≤l(p)
ic(p� l � t) ∧A(p� l � t) (3.6)

are the actual results and addresses.

This information is used for an updating of our parameters. The

instruction counter ic(p� l � t + 1) equals 1 iff ic(p� l − 1� t) = 1 and line

l−1 does not contain an if-test or ic(p� l ′� t) = 1 , line l ′ contains an if-

372

test and the result of this test leads us to line l . Hence all ic(p� l � t+1)

are computed in polynomial size and constant depth.

Let λ(p� t) = 1 iff the p-th processor writes into its local memory

during the (t + 1)-st computation step. Let γ(p� t) = 1 iff the p-th

processor tries to write into the common memory during the (t+1)-st

computation step. λ(p� t) as well as γ(p� t) is the disjunction of some

ic(p� l � t) . Now the local memories are updated. Let al(p� t + 1) =

A(p� t) , vl(p� t + 1) = R(p� t) and wl(p� t + 1� t + 1) = λ(p� t) . For

1 ≤ k ≤ t , let wl(p� k� t + 1) = 0 iff wl(p� k� t) = 0 or λ(p� t) = 1

and al(p� k) = A(p� t) . An information is not valid iff it was not valid

before or the p-th processor writes into that cell of its local memory

where this information has been stored.

For the updating of the common memory we have to decide write

conflicts. Let γ ′(p� t) = 1 iff the p-th processor actually writes some

information into the common memory at the (t + 1)-st computation

step. Then

γ ′(p� t) = γ(p� t) ∧ [¬(
∨

1≤q�p
γ(q� t) ∧ EQ(A(q� t)�A(p� t)))

]
� (3.7)

since a processor loses a write conflict iff a processor with a smaller

number tries to write into the same cell. Finally ac(p� t+1) = A(p� t) ,

vc(p� t + 1) = R(p� t) and wc(p� t + 1� t + 1) = γ ′(p� t) . For 1 ≤ k ≤ t ,

wc(p� k� t + 1) = 0 iff wc(p� k� t) = 0 or γ ′(p′� t) = 1 and ac(p
′� t) =

A(p′� t) for some p′ . One computation step can be simulated in poly-

nomial size and constant depth.

At the end of the simulation we compute the output in the same

way as we have read the contents of cells. �

Combining this simulation and the lower bounds of Ch. 11 we ob-

tain lower bounds on the complexity of RES WRAMs.

373

13.4 The complexity of PRAMs

We know (Theorem 2.1) that all Boolean functions f ∈ Bn can be

computed by an EREW PRAM in time �log n�+1 . This upper bound

is proved by doubling the information of each processor in each step. If

a (very powerful) processor knows the whole input a , it can compute

the output and write it into the output cell. Here we consider lower

bounds. If a PRAM stops the computation with output 1 , it has to

be sure that f(a) = 1 . Let t be a shortest prime implicant covering a ,

i.e. t(a) = 1 . Let l be the length of t . If we have knowledge on less

than l input bits, and if these bits agree with a , we do not know that

the output equals 1 .

DEFINITION 4.1 : Let f ∈ Bn . For a ∈ f−1(1) let l(f� a) be the

length of a shortest prime implicant t ∈ PI(f) such that t(a) = 1 . For

a ∈ f−1(0) let l(f� a) be the length of a shortest prime clause s ∈ PC(f)

such that s(a) = 0 . Let

lmax(f) = max{l(f� a) | a ∈ {0� 1}n} and (4.1)

lmin(f) = min{l(f� a) | a ∈ {0� 1}n}� (4.2)

Obviously lmin(f) is the length of a shortest prime implicant or

prime clause and (4.2) agrees with Definition 4.1, Ch. 11. Since lmax(f)

and lmin(f) will play an important role in the following sections, we

interpret l(f� a) also in another way. An implicant of length k cor-

responds to an (n − k)-dimensional subcube C of {0� 1}n such that f

computes 1 for all a ∈ C . A prime implicant t has the additional

property that C cannot be extended, i.e. f is not constant on any cube

C′ where C is a proper subcube of C′ . This implies the following

characterization of l(f� a) .

LEMMA 4.1 : l(f� a) is the maximum k such that f is not constant

on any (n− k + 1)-dimensional subcube of {0� 1}n containing a .

374

l(f� a) is called sensitive complexity of f at input a (Vishkin and

Wigderson (85)). We believe that it is more adequate to interpret this

measure using the fundamental notion of prime implicants and prime

clauses.

We also remark that lmax(f) may be small even when f has long

prime implicants and prime clauses.

LEMMA 4.2 : Let SAn ∈ Bn+k where n = 2k be the storage access

function. Then lmax(SAn) = lmin(SAn) = k + 1 but SAn has a prime

implicant and a prime clause of length 2k each.

Proof : The proof is left as an exercise. �

By our considerations above we have to know at least l(f� a) bits,

if the input is a , before we may know the output. One might believe

that one can at most double his information in one computation step.

This leads to the conjecture that the PRAM time complexity of f is

not smaller than �log lmax(f)� . For the disjunction ORn of n variables,

lmax(ORn) = n . The conjecture is false, since ORn can be computed

by an EREW PRAM in less than �log n� steps (Cook, Dwork and

Reischuk (86)).

THEOREM 4.1 : Let a =
(
(1 +

√
5)�2

)2 ≈ 2�618 . ORn can be

computed by an EREW PRAM with n realistic processors and com-

munication width n in time �loga n� .

Proof : It is essential that a processor may transfer information if it

does not write. We consider the situation of two memory cells M and

M′ containing the Boolean variables x and y resp. and a processor P

knowing the Boolean variable z . P reads the contents of M′ , computes

r = y ∨ z and writes 1 into M iff r = 1 . Then M contains x ∨ y ∨ z ,

the disjunction of 3 variables. If r = 1 , this value is written into M .

If r = 0 , x∨ y ∨ z = x . M contains this information, since P does not

write anything.

375

This idea can be generalized and parallelized. W.l.o.g. the in-

put tape is not read-only, and we have no further memory cells. Let

OR(i� j) be the disjunction of xi� � � � � xi+j−1 . Let Pt(i) be the knowl-

edge of the i -th processor after t computation steps, and let Mt(i) be

the contents of the i -th memory cell after t computation steps. Then

P0(i) = OR(i�G0) for G0 = 0 and M0(i) = OR(i�H0) for H0 = 1 . Let

Pt−1(i) = OR(i�Gt−1) and Mt−1(i) = OR(i�Ht−1) .

During the t-th computation step the i -th processor reads the con-

tents of the (i + Gt−1)-th cell (if i + Gt−1 ≤ n) and computes

Pt(i) = Pt−1(i) ∨Mt−1(i + Gt−1) (4.3)

= OR(i�Gt−1) ∨OR(i + Gt−1�Ht−1) = OR(i�Gt−1 + Ht−1)�

We have simplified the notation and have assumed that xj = 0 if j � n .

The i -th processor writes 1 into the (i−Ht−1)-th cell (if i−Ht−1 ≥ 1)

iff Pt(i) = 1 . As in our example at the beginning of the proof

Mt(i) = Mt−1(i) ∨ Pt(i + Ht−1) (4.4)

= OR(i�Ht−1) ∨OR(i + Ht−1�Gt−1 + Ht−1)

= OR(i�Gt−1 + 2 Ht−1)�

Hence Gt = Gt−1 + Ht−1 and Ht = Gt−1 + 2 Ht−1 . We set F2t = Gt

and F2t+1 = Ht . Then

F0 = 0� F1 = 1� F2t = F2t−2 + F2t−1�F2t+1 = F2t−1 + F2t� (4.5)

This is the well-known recursion for the Fibonacci numbers

Ft =
(
Φt − (Φ−

√
5)t)�√5 for Φ = (

√
5 + 1)�2� (4.6)

Hence Mt(1) is the disjunction of the first F2t+1 variables. We stop

the computation if F2t+1 ≥ n . �

By this result we have improved the obvious upper bound by a

small constant factor. Cook, Dwork and Reischuk (86) have proved

that this is nearly optimal. The PRAM complexity of ORn is Θ(log n) .

376

By Theorem 4.1 this result is not obvious.

THEOREM 4.2 : Let b = (5 +
√

21)�2 ≈ 4�791 . The PRAM time

complexity (number of processors, communication width and compu-

tation power of the processors are unlimited) of f ∈ Bn is not smaller

than logb n if lmax(f) = n .

Proof : Let a∗ be an input where l(f� a∗) = n . Then f is not con-

stant on any 1-dimensional subcube of {0� 1}n containing a∗ . Hence

f(a∗(i)) �= f(a∗) for the neighbors a∗(i) of a∗ , where a∗(i)j = a∗j for i �= j

and a∗(i)i = 1− a∗i .

We introduce some notation. An index i influences a processor P

at time step t on input a if the state of P at t on a differs from the

state of P at t on a(i) . In a similar way we define the influence of

an index on a memory cell. Let K(P� t� a) and L(M� t� a) be the set of

indices influencing P and M resp. at t on a .

Obviously K(P� 0� a) = � ◦ , L(Mi� 0� a) = {i} if i ≤ n and

L(Mi� 0� a) = � ◦ if i � n . Let T be the computation time of a PRAM

computing f and let M1 be the output cell. Then L(M1�T� a
∗) =

{1� � � � � n} , since l(f� a∗) = n . We shall estimate the information flow.

If L(M1� t� a
∗) grows only slowly with t , then T is large.

We anticipate the results of our estimations. We prove for

K0 = 0� L0 = 1� Kt+1 = Kt + Lt� Lt+1 = 3 Kt + 4 Lt � (4.7)

all processors P , memory cells M , inputs a and time steps t that

|K(P� t� a)| ≤ Kt and |L(M� t� a)| ≤ Lt� (4.8)

The recursion (4.7) has for b′ = (5−√
21)�2 the solution

Kt = (bt − b′t)�
√

21 and (4.9)

Lt = ((3 +
√

21)bt + (
√

21− 3)b′t)�(2
√

21) ≤ bt� (4.10)

Hence

377

n = |L(M1�T� a
∗)| ≤ LT ≤ bT and T ≥ logb n� (4.11)

We prove (4.8) by induction on t . The assertion is obvious for

t = 0 . A processor P may store all available information and may

read the contents of one memory cell M . Hence

K(P� t + 1� a) ⊆ K(P� t� a)∪ L(M� t� a) (4.12)

and by induction hypothesis

|K(P� t + 1� a)| ≤ Kt + Lt = Kt+1� (4.13)

A memory cell M is influenced in a complicated way if no processor

writes into M . If processor P writes into M at t + 1 on a , then

all information in M is deleted and M is influenced only by indices

influencing P . Hence

L(M� t + 1� a) ⊆ K(P� t + 1� a) and (4.14)

|L(M� t + 1� a)| ≤ Kt+1 = Kt + Lt ≤ 3 Kt + 4 Lt = Lt+1� (4.15)

If no processor writes into M at t+1 on a , then M may be influenced

by those indices which have influenced M before. Furthermore, index i

may influence M at t + 1 on a if some processor P writes into M at

t + 1 on input a(i) . Hence

L(M� t + 1� a) ⊆ L(M� t� a) ∪ Y(M� t + 1� a) (4.16)

for the set Y(M� t+1� a) of indices i such that some processor P writes

into M at t + 1 on a(i) but not on a. It is sufficient to prove that

|Y(M� t + 1� a)| ≤ 3 Kt+1� (4.17)

For a bound on the size of Y(M� t+1� a) we investigate the situation

where 1� 2 ∈ Y(M� t + 1� a) . P′ and P′′ write into M at t + 1 on a(1)

and a(2) resp., and P′ and P′′ do not write into M at t + 1 on a . This

is possible only if 1 ∈ K(P′� t+1� a(1)) and 2 ∈ K(P′′� t+1� a(2)) . The

assumptions 1 �∈ K(P′′� t + 1� a(2)) , 2 �∈ K(P′� t + 1� a(1)) and P′ �= P′′

lead to a write conflict on the input a′ = a(1)(2) = a(2)(1) . P′ writes

on a(1) into M and is not influenced by index 2 . Hence P′ writes on a′

into M . The same holds for P′′ �= P′ in contradiction to the definition

378

of PRAM programs.

We conclude that P′ = P′′ or 1 ∈ K(P′′� t + 1� a(2)) or

2 ∈ K(P′� t + 1� a(1)) .

Now we investigate the general situation in which Y(M� t + 1� a) =

{u1� � � � � ur} . Let zi be the number of that processor which writes

into M at t + 1 on a(ui) . We construct a bipartite graph G on the

vertices v1� � � � � vr and w1� � � � �wr . G contains the edge (vi�wj) iff ui ∈
K(P(zj)� t + 1� a(uj)) . Since |K(P(zj)� t + 1� a(uj))| ≤ Kt+1 , the degree

of wj is bounded by Kt+1 . Hence

e ≤ r Kt+1 (4.18)

for the number of edges e of G . Our preliminary investigations imply

that for each pair (ui� uj) where P(zi) �= P(zj) , G contains at least

one of the edges (vi�wj) and (vj�wi) . We estimate the number of

these pairs. There are r possibilities for ui . If P(zi) = P(zj) , then

uj ∈ K(P(zi)� t + 1� a) . This is possible for at most Kt+1 indices.

Hence there are at least r−Kt+1 possibilities for uj . We have counted

each pair twice. Hence

e ≥ r(r−Kt+1)�2� (4.19)

We combine (4.18) with (4.19) and obtain the following estimation for

r = |Y(M� t + 1� a)| .
r(r−Kt+1)�2 ≤ r Kt+1 and r ≤ 3 Kt+1� (4.20)

�

The following conjecture is a natural generalization of Theorem 4.2.

CONJECTURE : T(f) = Ω(log lmax(f)) for the PRAM time complex-

ity T(f) of Boolean functions f .

This conjecture is open. Only a (perhaps) weaker lower bound has

been proved.

DEFINITION 4.2 : For a ∈ {0� 1}n , let Γ(a) be the neighborhood

of a consisting of those n vectors which differ from a at exactly one

379

position. The critical complexity c(f� a) of f at a is the number of

neighbors b ∈ Γ(a) where f(a) �= f(b) . The critical complexity c(f) of

f is defined by

c(f) = max{c(f� a) | a ∈ {0� 1}n}� (4.21)

THEOREM 4.3 : T(f) ≥ logb c(f) for the PRAM time complexity of

Boolean functions f and b = (5 +
√

21)�2 .

Proof : Let a∗ be an input where c(f� a∗) = c(f) . W.l.o.g. f(a∗) �=
f(a∗(i)) for 1 ≤ i ≤ c(f) . Let f ′ be that subfunction of f on c(f)

variables where we have replaced the variables xj for j � c(f) by a∗j .

Obviously l(f ′� a∗) = c(f) is equal to the number of variables of f ′ .
T(f ′) ≥ logb c(f) by Theorem 4.2 , and T(f) ≥ T(f ′) , since f ′ is a

subfunction of f . �

PROPOSITION 4.1 : c(f) ≤ lmax(f) for all f ∈ Bn .

Proof : It is sufficient to prove c(f� a) ≤ l(f� a) for all a ∈ {0� 1}n .

Let k = c(f� a) . Then f(b) �= f(a) for k neighbors b of a , and f is not

constant on any (n−k+1)-dimensional subcube of {0� 1}n containing a .

�

Because of Proposition 4.1 the conjecture is not weaker than The-

orem 4.3. The conjecture is a more natural assertion, since lmax is

a more natural complexity measure than c . It is open, whether the

conjecture is really stronger than Theorem 4.3. What is the largest

difference between c(f) and lmax ?

Does there exist a sequence fn ∈ Bn such that c(fn) = o(lmax(fn)) or

even log c(fn) = o(log lmax(fn)) ? Only in the second case the conjec-

ture is stronger than Theorem 4.3.

380

In § 7 we estimate the critical and the sensitive complexity of al-

most all functions and of the easiest functions. It will turn out that

the bound of Theorem 4.3 is often tight.

13.5 The complexity of PRAMs and WRAMs with small communi-

cation width

It is reasonable to restrict the communication width of PRAMs

and WRAMs (Vishkin and Wigderson (85)). We begin the discussion

with an efficient algorithm.

THEOREM 5.1 : ORn and PARn can be computed in time

O
(
(n�m)1�2 + log m

)
by an EREW PRAM with O

(
(n m)1�2

)
realistic

processors and communication width m .

Proof : We consider only PARn , the algorithm for ORn is similar. At

first we consider the case m = 1 . Let
(k

2

)
� n ≤ (k+1

2

)
= 1 + · · · + k .

Then k = O(n1�2) . We compute the parity of
(k+1

2

)
variables by k

processors in time k + 1 . The set of inputs is partitioned to blocks

A1� � � � �Ak where |Ai| = i . The i -th processor computes in time i the

parity of the variables in Ai . During the (i + 1)-st computation step

the i -th processor reads the contents of the common memory cell. If

this is the parity of the variables in the blocks A1� � � � �Ai−1 , the i -th

processor computes the parity of the variables in the blocks A1� � � � �Ai

by a binary parity gate and writes the result into the common memory

cell. By induction we conclude that the k -th processor writes the result

into the common memory cell during the (k+1)-st computation step.

If m � 1 , we partition the variables to m blocks of at most �n�m�
variables each. For each block O

(
(n�m)1�2

)
processors are sufficient

to compute the parity in time O
(
(n�m)1�2

)
and communication width

1 . Using O
(
(nm)1�2

)
processors and communication width m , these

381

computations can be performed in parallel. Afterwards m processors

compute in time �log m� + 1 the parity of the m results and so the

parity of all variables. W.l.o.g. m ≤ n , otherwise the result follows

directly. �

COROLLARY 5.1 : Each f ∈ Bn can be computed in time

O
(
(n�m)1�2 + log m

)
by an EREW PRAM with O

(
(nm)1�2

)
powerful

processors and communication width m .

Proof : We use the approach of the proof of Theorem 5.1 and col-

lect during each time step all available information as in the proof of

Theorem 2.1 i. �

THEOREM 5.2 : If a WRAM computes fn ∈ Bn in time T(fn) with

communication width m , then T(fn) ≥ (lmin(fn)�m)1�2 .

The upper and lower bounds of Theorem 5.1 and 5.2 are of the

same size if lmin(fn) = Θ(n) and m = O(n log−2 n) . In particular

lmin(PARn) = n . In § 7 we prove that lmin(fn) = Θ(n) for almost all

fn ∈ Bn , almost all fn ∈ Mn , almost all fn ∈ Sn and several fundamental

functions. Hence Theorem 5.2 is a powerful result. If lmin(fn) is small,

the complexity of WRAMs of small communication width cannot be

described correctly by lmin(fn) . Obviously lmin(ORn) = 1 and ORn

can be computed in time 1 with communication width 1 . Let

gn(x1� � � � � xn) = x1 ∨ (x2 ⊕ · · · ⊕ xn)� (5.1)

Then lmin(gn) = 1 , but by Theorem 5.2 and the fact that PARn−1

is a subfunction of gn the time complexity of gn is not smaller than

((n− 1)�m)1�2 .

Proof of Theorem 5.2 : We add m processors with numbers larger

than those of the given processors. The i -th additional processor al-

ways reads the contents of the i -th memory cell (not on the read-only

382

input tape) and tries to write this information again into the same

cell. Hence for each memory cell there is always a processor which

writes into it.

Let k = lmin(f). A processor which knows less than k inputs, does

not know the output. The processors gather their information from

reading inputs on the input tape or information in common memory

cells. During t computation steps a processor may read directly at

most t inputs. For efficient computations the amount of information

flowing through the common memory cells needs to be large. We

estimate this information flow. We construct (deterministic) restric-

tions such that for the so-constructed subfunctions the contents of all

memory cells does not depend on the input.

At the beginning we consider all inputs, namely the cube E0 =

{0� 1}n . We construct cubes E1�1� � � � �E1�m� � � � �ET�1� � � � �ET�m (T =

T(fn)) such that each cube is a subcube of the one before. Let us

construct Et�l and E′ be the previous cube, namely Et�l−1 if l � 1 or

Et−1�m if l = 1 . For a ∈ E′ let p(a) be the number of the processor that

writes into the l -th memory cell Ml at t on a . We choose at�l ∈ E′

such that p(at�l) ≤ p(a) for a ∈ E′ . Let i1� � � � � ir be the indices of

those inputs which the p(at�l)-th processor has read during the first

t computation steps directly on the input tape. Obviously r ≤ t .

Let Et�l be the set of all a ∈ E′ which agree with at�l at the positions

i1� � � � � ir . Et�l is a subcube of E′ whose dimension is by r smaller than

the dimension of E′ . Since r ≤ t , the dimension of ET�m is at least

n−m
∑

1≤t≤T
t = n−m T(T + 1)�2� (5.2)

CLAIM : fn is constant on ET�m .

By this claim it is easy to prove the theorem. The largest subcube

on which fn is constant has dimension n− lmin(fn) . Hence

383

lmin(fn) ≤ m T(T + 1)�2 and T ≥ (lmin(fn)�m)1�2� (5.3)

Proof of the Claim : The diction, that a processor writes the same in

several situations, should also include the case that a processor never

writes. We prove that the computation paths for the inputs a ∈ ET�m

are essentially the same. The initial configuration does not depend

on the input. Then we choose some input a′ and a processor p′ that

writes on a′ into the first common cell at t = 1 such that no processor

p � p′ writes on some a ∈ E0 into M1 at t = 1 . We restrict the input

set to those inputs which agree with a′ at that position which has been

read by p′ . Let a ∈ E1�1 . No processor p � p′ writes into M1 on a

at t = 1 (by construction). Processor p′ cannot distinguish between a

and a′ . Hence p′ writes on both inputs the same into M1 and switches

to the same state.

Let us consider Et�l and the previous cube E′ . We assume that the

contents of all Mi at the time steps 0� � � � � t−1 and of Mi (1 ≤ i ≤ l−1)

at time step t do not depend on a ∈ E′ . Then we choose some input

a′ ∈ E′ and a processor p′ writing on a′ into Ml at time step t such that

no processor p � p′ writes on some a ∈ E′ into Ml at t . We restrict the

input set to those inputs which agree with a′ at those positions which

have been read by p′ on the input tape. Let a ∈ Et�l . No processor

p � p′ writes into Ml on a at t (by construction). Processor p′ does

the same on a and a′ , since it has read the same information on the

input tape and in the common memory. Hence p′ writes the same on

a and on a′ into Ml and switches to the same state.

The contents of the output cell M1 is for all a ∈ ET�m the same.

Hence f is constant on ET�m . �

THEOREM 5.3 : If a PRAM computes fn ∈ Bn in time T(fn) with

communication width m , then T(fn) ≥ (lmax(fn)�m)1�3 .

384

This result improves the bound of Theorem 5.2 only for PRAMs

and functions where lmax(fn) is much larger than lmin(fn) . We present

two examples. Obviously lmin(ORn) = 1 but lmax(ORn) = n .

Obviously lmin(cln�3) = 3 , and the reader may easily verify that

lmax(cln�3) =
(n−1

2

)
.

Proof of Theorem 5.3 : Let e be an input where l(f� e) = lmax(fn) .

Again we construct a sequence of cubes E0 = {0� 1}n, E1�1� � � �,

E1�m� � � � �ET�1� � � � �ET�m for T = T(fn) . Each cube is a subcube of

its predecessor. Since we only know that e is a difficult input, we en-

sure that e ∈ Et�l . E.g. for ORn , e consists of zeros only. If e �∈ Et�l ,

the subfunction of ORn on Et�l is a simple function, namely a constant.

We discuss the construction of Et�l out of E′ where E′ = Et�l−1 or

E′ = Et−1�m or E′ = E0 .

Case 1 : There is no input a ∈ E′ such that a processor writes into Ml

on a at time step t . Then Et�l = E′ .

Case 2 : The i -th processor writes into Ml on input e at t . Let

i1� � � � � ir be the indices of those inputs which the i -th processor has

read on e during the first t computation steps directly on the input

tape. Then r ≤ t . Let Et�l be the set of all a ∈ E′ which agree with e

at the positions i1� � � � � ir .

Case 3 : No processor writes into Ml on input e at t , but there are

some input a ∈ E′ and some processor p such that p writes into Ml on

a at t . Again Et�l is the set of all a′ ∈ E′ which agree with e at some

positions i1� � � � � ir . Here we choose a minimal set of indices such that

no processor writes into Ml on some input b ∈ Et�l at t .

CLAIM 1 : e ∈ ET�m and f is constant on ET�m .

Proof : e ∈ Et�l for all t and l by our construction. The second part

of the assertion is proved in the same way as the Claim in the proof

of Theorem 5.2. �

385

CLAIM 2 : For the construction of Et�l we fix at most t(t + 1)�2

additional variables.

The proof of this claim is postponed. It follows from the claim,

that we altogether fix not more than

m
∑

1≤t≤T
t(t + 1)�2 ≤ m T3 (5.4)

variables. By Claim 1 , f is constant on an (n − mT3)-dimensional

subcube of {0� 1}n containing e . Hence

lmax(fn) = l(f� e) ≤ m T3 and T ≥ (lmax(fn)�m)1�3� (5.5)

It is sufficient to prove Claim 2.

Proof of Claim 2 : We only have to consider Case 3. Let a(1)� � � � � a(k)

be those inputs for which some processor writes into Ml at t . Let

i(j) be the number of the processor corresponding to a(j) . Let Et�l

be the set of all a ∈ E′ which agree with e at all positions which

have been read for some j ∈ {1� � � � � k} by the i(j)-th processor on

input a(j) during the first t computation steps directly on the input

tape. Obviously no processor writes into Ml on some input b ∈ Et�l

at t . We have fixed at most k t variables. This estimate is too rough.

For a more profound analysis, we construct Et�l in a few more steps.

We always consider one input only. Let Et�l �0 = E′ . Let Et�l �h be the set

of all a ∈ Et�l �h−1 which agree with e at all positions which have been

read by the i(h)-th processor on a(h) during the first t computation

steps. We assume w.l.o.g. that the inputs a(i) are ordered in the

following way. a(1) is defined as before. If there is still some input a ∈
Et�l �h−1 such that some processor writes into Ml at t , then a(h) = a .

Otherwise the construction is finished, we set Et�l = Et�l �h−1 . Now it is

sufficient to prove that at most max{0� t− h + 1} additional variables

are fixed for the construction of Et�l �h out of Et�l �h−1 . Then the number

of fixed variables can be estimated by t + · · ·+ 1 = t(t + 1)�2 .

The new claim is proved by induction on h . The assertion is ob-

386

vious for h = 1 , since a processor reads at most t inputs during t

computation steps. For h � 1 , let R(h − 1) and R(h) be the set

of variables we fix for the construction of Et�l �h−1 and Et�l �h resp. By

the induction hypothesis, |R(h − 1)| ≤ max{0� t − h + 2} . Since

a(h) was a candidate which could have been chosen as a(h− 1) , also

|R′(h− 1)| ≤ max{0� t−h− 2} for the set of variables R′(h− 1) which

would have been fixed by variables if we chose a(h) as a(h− 1) . Ob-

viously R(h) = R′(h − 1) − R(h− 1) , so it is sufficient to prove that

the intersection of R′(h− 1) and R(h− 1) is not empty. Then R(h) is

a proper subset of R′(h− 1) .

Let i(h− 1) and i(h) be the numbers of those processors that write

on a(h− 1) and a(h) resp. at t into Ml .

Case 1 : i(h − 1) �= i(h) . If R′(h − 1) and R(h − 1) are disjoint, we

define an input b in the following way.

bj = a(h− 1)j if j ∈ R(h− 1) (5.6)

bj = a(h)j if j ∈ R′(h− 1)

bj = ej if j �∈ (R(h− 1) ∪ R′(h− 1)) .

On input a(h − 1) , the i(h − 1)-st processor reads on the input tape

during the first t computation steps only variables which either have

been fixed for the construction of Et�l �h−1 or have indices in R(h− 1) .

On input b , the i(h− 1)-st processor reads the same information, as

all fixed variables agree with e . Since the i(h− 1)-st processor writes

on a(h− 1) into Ml at t , it writes also on b into Ml at t . In the same

way we conclude that the i(h)-th processor writes on b into Ml at t .

The assumption, that R′(h − 1) and R(h− 1) are disjoint, leads to a

write conflict which cannot be solved by a PRAM.

Case 2 : i(h − 1) = i(h) . The inputs a(h − 1) and a(h) agree on all

variables which have been fixed during the construction of Et�l �h−2 .

Let t′ be the first time step where the i(h)-th processor reads on the

input tape on a(h−1) a variable which has not been fixed. During the

computation steps 1� � � � � t′−1 the i(h)-th processor cannot distinguish

between a(h− 1) and a(h) . Hence it reads on both inputs at t′ in the

387

same input cell. The index of this cell is contained in R(h− 1) and in

R′(h− 1) . �

Beame (published by Vishkin and Wigderson (85)) considered an-

other complexity measure.

DEFINITION 5.1 : Let m(f) = min{|f−1(0)|� |f−1(1)|} and let M(f) =

n− log m(f) .

THEOREM 5.4 : If a PRAM computes fn ∈ Bn in time T(fn) with

communication width m , then T(fn) ≥ (M(fn)�m)1�2 .

We omit the proof of this theorem. Obviously M(PARn) = 1 and

we obtain a trivial bound. But M(ORn) = n and the lower bound

(n�m)1�3 of Theorem 5.3 is improved to (n�m)1�2 . This bound is

optimal for ORn if m = O(n log−2 n) (see Theorem 5.1). For a com-

parison of the lower bounds of Theorem 5.3 and 5.4 we remark that

M(fn) ≤ lmax(fn) for all fn ∈ Bn and M(fn) = O(1) for almost all fn ∈ Bn

(see Exercises).

13.6 The complexity of WRAMs with polynomial resources

In § 5 we have proved lower bounds on the time complexity of

WRAMs with very small communication width. Other lower bounds

under severe restrictions (either on the number of processors or on

the computation power of the processors or on the input size (in the

non Boolean case)) have been proved. Beame ((86 a) and (86 b))

proved the first optimal bounds for non-trivial Boolean functions and

WRAMs with polynomial resources (number of processors or commu-

nication width). He proved an Ω((log n)� log log n)-bound for parity,

but actually, the proof works as H̊astad’s proof (see Ch. 11) for all

388

functions f where lmin(f) is sufficiently large. The lower bound can

be extended via the simulation of § 2 and the reducibility results of

Ch. 10, § 3 , to many fundamental functions and graph functions. The

optimality of the lower bound follows from the simulation in § 2 and

the upper bound of Ch. 11, § 2.

Beame’s proof works with probabilistic methods. One of the cru-

cial ideas is the description of a computation by processor and cell

partitions.

DEFINITION 6.1 : For each WRAM , its i -th processor Pi , its

j -th common memory cell Mj and any time step t ∈ {0� � � � �T} we

define the processor partition P(i� t) and the cell partition M(j� t) .

Two inputs x and y are equivalent with respect to P(i� t) iff they

lead to the same state of Pi at time step t . Two inputs x and y are

equivalent with respect to M(j� t) iff they lead to the same contents of

Mj at time step t .

DEFINITION 6.2 : Let A = (A1� � � � �Am) be a partition of {0� 1}n .

Let fi(x) = 1 iff x ∈ Ai . Let (as in Ch. 11, § 3) lPI(fi) denote the

maximal length of a prime implicant of fi . The degree d(A) of A is

the maximum of all lPI(fi) .

Since ANDn , the conjunction of n variables, can be computed by

a WRAM in one step, the degree of a cell partition may increase vio-

lently during one step. But after having applied a random restriction

ρ (see Def. 3.1, Ch. 11) , with large probability the degree is not too

large. The projection g ρ of a parity function again is a parity function.

Hence the degree of the output cell at the end of the computation, i.e.

at time step T , is as large as the input size. We choose restrictions

such that on the one hand the number of variables does not decrease

too fast and, on the other hand, the degree of the partition does only

increase slowly. Then the computation time T cannot be too small for

the parity function.

389

Another fundamental notion is that of graded sets of Boolean func-

tions.

DEFINITION 6.3 : A graded set of Boolean functions is a set F of

Boolean functions on the same set of n variables together with a grade

function γ : F → � ∪ {∞} such that γ(f) = γ(g) implies f ∧ g ≡ 0 .

F determines a partition [F] of {0� 1}n . Two inputs x and y are

equivalent with respect to [F] iff either f(x) = f(y) = 1 for some f ∈ F

and g(x) = g(y) = 0 for all g ∈ F where γ(g) � γ(f) or f(x) = f(y) = 0

for all f ∈ F .

We often make use of the following fact. If ρ is a restriction shrink-

ing the input set from {0� 1}n to {0� 1}n
ρ , then [Fρ] = [F]ρ where Fρ

is the class of all fρ for f ∈ F . In particular we are interested in the

following graded set of Boolean functions.

DEFINITION 6.4 : Let F (j� t) be the following graded set of Boolean

functions for a given WRAM , a memory cell number j and a time

step t . The function f describing an equivalence class with respect

to P(i� t) such that Pi tries to write on inputs of this equivalence

class into the j -th memory cell at time step t is in F (j� t) and has

grade i . The function f describing an equivalence class with respect

to M(j� t− 1) is in F (j� t) and has grade ∞ .

LEMMA 6.1 : i) F (j� t) is a graded set of Boolean functions.

ii) [F (j� t)] is a refinement of M(j� t) .

Proof : i) follows directly from the definitions.

ii) We have to prove that x and y are equivalent with respect to M(j� t)

if they are equivalent with respect to [F (j� t)] .

Since M(j� t−1) is a partition of {0� 1}n , it is impossible that f(x) = 0

for all f ∈ [F (j� t)] . Hence, if x and y are equivalent with respect to

[F (j� t)] , then f(x) = f(y) = 1 for some f ∈ F (j� t) and g(x) = g(y) = 0

390

for all g ∈ F (j� t) where γ(g) � γ(f) . If γ(f) = i � ∞ , the i -th

processor is on x and y at t in the same state and tries to write the

same information into the j -th memory cell. Since no processor with

a number l � i tries to write on x or y at t into Mj , the i -th processor

wins the write conflict. On x and y the same information is written

into the j -th cell at t . If γ(f) = ∞ , no processor writes into the j -th

cell at t for x or y . The contents of this cell remains unchanged. Since

in this situation x and y are equivalent with respect to M(j� t − 1) ,

the contents of the cell is the same for x and y . Hence x and y are

equivalent with respect to M(j� t) . �

LEMMA 6.2 : If β satisfies
(4 p

β(1 + p)
+ 1

)r
= 2 , then

β =
4 p

(1 + p) (21�r − 1)
� 6 p r� (6.1)

Proof : The easy proof is left to the reader. �

MAIN LEMMA 6.3 : i) Let F be a graded set of Boolean functions

on {0� 1}n . Let d([F]) ≤ r for some r � 0 and let ρ ∈ Rp be a

random restriction. Then

Pr (d([Fρ]) ≥ s) ≤ βs � (6 p r)s (6.2)

for the constant β of Lemma 6.2.

ii) The same assertion holds for arbitrary partitions A of {0� 1}n in-

stead of [F] .

This Main Lemma is proved by Beame (86 b) in a way similar

to our proof of the Main Lemma 3.2 in Ch. 11. Although the proof

contains some new estimations we do not present it here.

THEOREM 6.1 : i) Let W be a WRAM computing the parity of n

variables in time T = T(n) with p(n) processors and communication

width c(n) . Then for large n

391

p(n) + c(n) ≥ 1

4
2(1�24) n1�T

� (6.3)

p(n) ≥ 1

4
2(1�96) n1�T

� and (6.4)

c(n) ≥ 1

4
2(1�12) (n�T!)1�T� (6.5)

ii) If p(n) is bounded by a polynomial, then

T(n) ≥ log n

O(1) + log log n
=

log n

log logn
−O

(log n

(log logn)2

)
� (6.6)

iii) If c(n) is bounded by a polynomial, then

T(n) ≥ log n

2 log logn
−O

(log n

(log logn)2

)
� (6.7)

We again emphasize that these bounds hold for all functions fn
where lmin(fn) is sufficiently large and for all functions fn ∈ Bn where

PAR ≤cd f = (fn) . Part ii and Part iii of Theorem 6.1 are simple

corollaries to (6.4) and (6.5) resp. The proofs of (6.3) – (6.5) follow

the same pattern. We present the proof of (6.4) which seems to be the

most important assertion.

Proof of (6.4) : We define restrictions ρ(1)� � � � � ρ(T) such that ρ(t)

may be applied after ρ(1)� � � � � ρ(t− 1) have been applied. Let π(t) be

the composition of ρ(1)� � � � � ρ(t) . Let Et be the subcube of {0� 1}n on

which fπ(t) for f ∈ Bn is defined. Let Dt be the dimension of Et and

let s = log 4 p(n) .

We prove for t ≥ 1 that we can choose π(t) such that Dt ≥
(1�48) n (96 s)−(t−1) and the degree of all partitions P(i� t)π(t) and

M(j� t)π(t) is bounded by s . P(i� t)π(t) and M(j� t)π(t) are the partitions

P(i� t) and M(j� t) restricted to Et = {0� 1}n
π(t) .

First we show how this claim implies (6.4). Let M1 be the output

cell. Then the degree of M(1�T)π(T) is equal to DT . The claim implies

that

392

s ≥ d(M(1�T)π(T)) = DT ≥ 1

48
n (96 sd)−(T−1)� (6.8)

(96 s)T ≥ 2 n ≥ n and s ≥ (1�96) n1�T� (6.9)

Since s = log 4 p(n) , (6.4) follows from (6.9).

We prove the claim by induction on t . At time step t = 1 the i -th

processor reads one memory cell, and the state afterwards depends on

a single input bit. Hence the degree of P(i� 1) is bounded by 1 ≤ s and

the degree of P(i� 1)π(1) cannot be larger.

By Lemma 6.1 ii , [F (j� 1)] is a refinement of M(j� 1) . By definition

each f ∈ F (j� 1) is a function describing an equivalence class of some

P(i� 1) or M(j� 0) . All these functions depend on at most one variable.

Let ρ ∈ Rq for q = 1�48 be a random restriction. The Main Lemma

implies for r = 1

Pr (d([F (j� 1)ρ]) ≥ s) ≤ (6 q)s = 8−s = 2−2s−2�p(n)� (6.10)

Each processor knows at most one variable. Hence there are at most

two memory cells into which a definite processor may write at time

step 1 . For at most 2 p(n) memory cells Mj the degree of [F (j� 1)ρ]

may be larger than s . The probability that the degree of all [F (j� 1)ρ]

is less than s is at least 1 − 2−2s−1 . Since [F (j� 1)ρ] is a refinement

of M(j� 1)ρ , the function f describing an equivalence class of M(j� 1)ρ

is the disjunction of some functions gi describing equivalence classes

of [F (j� 1)ρ] . If lPI(gi) ≤ s , also lPI(f) ≤ s . Hence the degree of

M(j� 1)ρ is bounded by the degree of [F (j� 1)ρ] . The probability that

D1 ≥ n�48 , the expected number of remaining variables, is at least

1�3 . Hence we can choose a restriction ρ(1) for which all conditions

hold simultaneously.

For the induction step we assume that the claim holds for some

t ≥ 1 . The state of the i -th processor at t+1 depends only on the state

of this processor at t (the partition P(i� t)) and on the contents of that

cell which the processor reads at t . For all inputs of an equivalence

class of P(i� t) this is the same cell. Hence each equivalence class

of P(i� t + 1) is the intersection of some equivalence class of P(i� t)

393

and some equivalence class of some M(j� t) . If g′ describes the class of

P(i� t) and g′′ describes the appropriate class of M(j� t) , then g = g′∧g′′

describes the equivalence class of P(i� t + 1) . Obviously lPI(g) is not

larger than lPI(g
′) + lPI(g

′′) . Hence, by the induction hypothesis,

d
(
P(i� t + 1)π(t)

) ≤ d
(
P(i� t)π(t)

)
+ max

j

{
M(j� t)π(t)

} ≤ 2 s� (6.11)

We look for a restriction ρ(t+1) which keeps the degrees of the proces-

sor and cell partitions small and keeps the number of variables large.

Let ρ ∈ Rq be a random restriction for some q chosen later. By (6.11)

and the Main Lemma for r = 2 s

Pr
(
d(P(i� t + 1)π(t)�ρ) ≥ s

)
� (12 q s)s� (6.12)

Now we consider the j -th memory cell Mj . By Lemma 6.1 [F (j� t+1)]

is a refinement of M(j� t + 1) , this holds also when we restrict the sets

to Et . By Definition 6.4 each equivalence class of some [F (j� t+1)]π(t)

is an equivalence class of some P(i� t + 1) or an equivalence class of

M(j� t) . By the induction hypothesis and (6.11)

d([F (j� t + 1)]π(t)) ≤ 2 s� (6.13)

and also the degree of M(j� t+1)π(t) is bounded by 2 s . If no processor

writes into Mj at t + 1 , the degree is even bounded by s . In the same

way as we have proved (6.12) we also conclude that

Pr
(
d(M(j� t + 1)π(t)�ρ) ≥ s

)
� (12 q s)s� (6.14)

We hope that the degree of all processor and all cell partitions is simul-

taneously bounded by s for some restriction ρ . We have to consider

p(n) processors and infinitely many memory cells. But for those mem-

ory cells which no processor writes into at t + 1 it is for sure by the

induction hypothesis that the degree of M(j� t + 1)π(t)�ρ is bounded by

s . By (6.11) the equivalence classes of P(i� t + 1)π(t) are described by

functions whose prime implicants have a length of at most 2 s . Such

a prime implicant is satisfied for a fraction of 2−2s of all inputs. Hence

P(i� t + 1)π(t) partitions the input set to at most 22 s subsets. This

394

implies that the i -th processor may write only into one of 22 s different

memory cells at t + 1 . Altogether for only 22 s p(n) memory cells Mj

it is not for sure that the degree of M(j� t + 1)π(t)�ρ is bounded by s .

Let q = 1�(96 s) . The probability that the degree of all processor

and cell partitions (with respect to π(t) and ρ) is not bounded by s is

(since s = 4 log p(n)) at most

(22 s + 1) p(n) (12 q s)s = (22 s + 1) p(n) 2−3 s (6.15)

= (1 + 2−2 s) p(n) 2−s

= (1 + 2−2 s) p(n)
1

4 p(n)
=

1

4
(1 + 2−2 s)�

The probability that Dt+1 is less than its expected value Dt�(96 s) ≥
(1�48) n (96 s)−t is bounded by 2�3 . Since

1

4

(
1 + 2−2 s)+

2

3
� 1� (6.16)

we can choose a restriction ρ(t+1) such that all assertions are satisfied

for time step t + 1 . �

Beame (86 b) generalized his methods (in a way similar to those of

H̊astad (86) for bounded-depth circuits, see Ch. 11, § 5) and defined

explicitly functions for the following hierarchy results which we present

without proofs.

THEOREM 6.2 : i) For any T such that

T =
log n

3 log logn
− ω

(log n

log logn2

)
(6.17)

there is a Boolean function f ∈ Bn which can be computed by a

WRAM with p(n) = nO(1) processors in time T but which cannot

be computed by a WRAM with p(n) = nO(1) processors in time

T− 1 .

The same holds if the number of processors p(n) and the commu-

nication width c(n) simultaneously are bounded by a polynomial.

395

ii) For any T such that

T =
log n

5 log logn
− ω

(log n

log logn2

)
(6.18)

there is a Boolean function f ∈ Bn which can be computed by a

WRAM with communication width c(n) = nO(1) in time T but

which cannot be computed by a WRAM with communication

width c(n) = nO(1) in time T− 1 .

Essentially the proof of Theorem 6.1 depends only on lmin(fn) . The

only argument which depends on the parity function is the equality

d(M(1�T)π(T)) = DT in (6.8). The degree of M(1�T)π(T) equals the

dimension of the restricted input set, since lmin(fn) = n for the parity

function fn . In the general case the degree of M(1�T)π(T) is not smaller

than lPI(gn) where gn = (fn)π(T) . lPI(gn) is not smaller than lmin(fn)−
(n−DT) (see the proof of Theorem 4.2 iv, Ch. 11). Hence

s ≥ lmin(fn)− n +
1

48
n (96 s)−(T−1) (6.19)

for s = log 4 p(n) . This implies

96T sT−1(s + n− lmin(fn)) ≥ 2 n� (6.20)

For almost all fn ∈ Bn , lmin(fn) ≥ n − �log n� − 1 (see § 7). W.l.o.g.

p(n) ≥ n . Then s ≥ n− lmin(fn) and

2 n ≤ 96T sT−1(s + n− lmin(fn)) ≤ 2 · 96T sT� (6.21)

(96 s)T ≥ n and s ≥ (1�96) n1�T� (6.22)

THEOREM 6.3 : The lower bounds of Theorem 6.1 hold for almost

all fn ∈ Bn .

Furthermore (6.20) holds for all fn ∈ Bn . If lmin(fn) is not too

small, we obtain powerful lower bounds on the WRAM complexity of

these functions.

396

13.7 Properties of complexity measures for PRAMs and WRAMs

All the powerful lower bounds for bounded-depth circuits, PRAMs

or WRAMs depend essentially on one of the following three combinato-

rial complexity measures: c(f) , the critical complexity of f (Def. 4.2) ,

lmin(f) , the minimal sensitive complexity or the length of a shortest

prime implicant or prime clause of f (Def. 4.1, Ch. 11 and Ch. 13) , and

lmax(f) , the maximal sensitive complexity or the length of a longest

necessary prime implicant or prime clause of f (Def. 4.1). We inves-

tigate these complexity measures in detail. If nothing else is stated

explicitly the results are due to Bublitz, Schürfeld, Voigt and We-

gener (86).

We begin with the relations between the single complexity mea-

sures.

THEOREM 7.1 : i) lmin(f) ≤ lmax(f) and c(f) ≤ lmax(f) for all f ∈ Bn .

ii) lmin(ORn) = 1 but c(ORn) = lmax(ORn) = n for the symmetric

and monotone function ORn ∈ Bn .

iii) There are functions fn ∈ Bn where c(fn) = �n�2�+2 but lmax(fn) =

n− 1 .

iv) For all n = 6 m , there are functions fn ∈ Bn where c(fn) = (1�2) n

but lmin(fn) = (5�6) n .

v) c(f) ≥ lmax(f) 2lmax(f)−n for all f ∈ Bn , in particular c(fn) = n iff

lmax(fn) = n for fn ∈ Bn .

Proof : i) The first part is obvious and the second part is Proposi-

tion 4.1.

ii) is obvious.

iii) Let fn ∈ Sn be defined by its value vector v(fn) = (v0� � � � � vn)

where vi = 1 iff i ∈ {�n�2� � �n�2� + 1} . The assertion holds for

397

these functions. The proof is left to the reader (who should apply

Theorem 7.3).

iv) Let f ∈ B4 be defined by the following Karnaugh diagram.

f 0 0 0 1 1 1 1 0

0 0 0 1 1 1

0 1 0 0 0 1

1 1 1 1 0 1

1 0 0 1 0 0

By case inspection, c(f) = 2 and lmin(f) = 3 . If n = 4m , let

fn ∈ Bn be equal to the
⊕

-sum of m copies of f on disjoint sets of

variables. Then c(fn) = (1�2) n and lmin(fn) = (3�4) n . Paterson

(pers. comm.) defined some f ∈ B6 where c(f) = 3 and lmin(f) = 5 .

This leads considering the above arguments to the claim of Part iv of

the theorem.

v) We use a pigeon-hole argument. Let k = lmax(f) . Then we find an

(n − k)-dimensional subcube S where f is constant such that f is not

constant on any subcube S′ which properly contains S . By definition∑
a∈S

c(f� a) ≤ c(f) |S| = c(f) 2n−k� (7.1)

There are k dimensions to increase S , but in each dimension we find

a neighbor b of some a ∈ S where f(a) �= f(b) . Hence∑
a∈S

c(f� a) ≥ k� (7.2)

The assertion follows from (7.1) and (7.2). �

It is an open problem to prove optimal bounds on lmin(fn)�c(fn)

or lmax(fn)�c(fn) . The importance of such bounds has already been

discussed in § 4. We obtain optimal results for the classes Mn of

monotone functions and Sn of symmetric functions (Wegener (85 b)).

398

THEOREM 7.2 : c(f) = lmax(f) for all f ∈ Mn .

Proof : Because of Theorem 7.1 i it is sufficient to prove the ˝≥˝-part.

Let t be a prime implicant of f of length k . Let a ∈ {0� 1}n be defined

such that ai = 1 iff xi is contained in t . Since t(a) = 1 , also f(a) = 1 .

Monoms m , where m(a) = 1 , are shortenings of t . Hence t is the

unique prime implicant where t(a) = 1 . If b is a neighbor of a such

that ai = 1 but bi = 0 for some i , then t(b) = 0 . By monotonicity

t′(b) = 0 for all t′ ∈ PI(f) and f(b) = 0 . Hence c(f) ≥ c(f� a) = k .

Dual arguments hold for prime clauses. �

We remember that vmax(fn) and vmin(fn) denote for fn ∈ Sn the

length of a longest and shortest maximal constant substring of v(fn)

resp. (see Ch. 11, § 4 and Exercises).

THEOREM 7.3 : i) lmin(f) = n + 1− vmax(f) for f ∈ Sn .

ii) lmax(f) = n + 1− vmin(f) for f ∈ Sn .

iii) Let v(f) = (v0� � � � � vn) for f ∈ Sn and let v−1 = vn+1 = −1 . If

vi �= vi+1 and vi �= vi−1 for some i , then c(f) = n . Otherwise

c(f) = max{k + 1� n− k | vk �= vk+1� 0 ≤ k ≤ n− 1}� (7.3)

iv) lmin(f) ≤ c(f) ≤ lmax(f) for f ∈ Sn .

Proof : i) see Lemma 4.1 in Ch. 11.

ii) see Exercise 9 in Ch. 11.

iii) If a ∈ {0� 1}n contains i ones, a has i neighbors with i− 1 ones and

n− i neighbors with i + 1 ones.

iv) is obvious by i and iii. �

Later we prove that c(f) ≥ �(n + 1)�2� for all non constant f ∈ Sn .

The example in the proof of Theorem 7.1 iii is that symmetric function

where lmax(fn)�c(fn) is maximum. Hence the quotient is bounded by 2 .

399

By Theorem 7.3 , lmin(f) , c(f) and lmax(f) can be computed for

f ∈ Sn from v(f) in linear time O(n) . For further fundamental func-

tions it is possible to compute the complexity with respect to these

complexity measures. But in general this computation is NP-hard.

Therefore it is helpful to know the complexity of an easiest function

in some class. This yields a lower bound for all other functions in this

class.

DEFINITION 7.1 : Let Fn ⊆ Bn be a class of functions and let M

be a complexity measure for the functions in Fn . Then M(Fn) is the

minimal M(f) for all f ∈ Fn depending essentially on all n variables.

Obviously lmin(Bn) = lmin(Mn) = lmin(Sn) = 1 and this assertion

leads to useless lower bounds. The situation is different for the critical

and the maximal sensitive complexity. The lower bounds of the fol-

lowing theorem have been proved by Simon (83) and the upper bounds

by Wegener (85 b).

THEOREM 7.4 : If n ≥ 2 ,

1

2
log n− 1

2
log logn +

1

2
≤ c(Bn) ≤ lmax(Bn) ≤ lmax(Mn) (7.4)

= c(Mn) ≤ 1

2
log n +

1

4
log logn + O(1)�

Proof : It follows from Theorem 7.1 and Theorem 7.2 that c(Bn) ≤
lmax(Bn) ≤ lmax(Mn) = c(Mn) .

For the upper bound we define a monotone storage access function

MSAn on n + k variables x = (x1� � � � � xk) and y = (y1� � � � � yn) where

n =
(k
�k�2�

)
. Let A be the class of all subsets of {1� � � � � k} of size �k�2�

and let α : A → {1� � � � � n} be one-to-one. Then

400

MSAn(x� y) = Tk
�k�2�+1(x) ∨ ∨

A∈A

(∧
i∈A

xi ∧ yα(A)
)
� (7.5)

Only address vectors with exactly �k�2� ones are valid for MSAn . We

claim that

c(MSAn) = �k�2�+ 1� (7.6)

Obviously the length of all prime implicants is �k�2�+1 . For inputs in

MSA−1
n (0) let l be the number of ones in x . If l � �k�2�−1 , the input

is 0-critical. If l = �k�2� − 1 , the input is at most k − (�k�2� − 1) =

�k�2�+1-critical, since we have to change some xi from 0 to 1 in order

to obtain an input in MSA−1
n (1). Some of these inputs are �k�2�+ 1-

critical, e.g. if all yj = 1 . If l = �k�2� , we have to change one of the

k− �k�2� = �k�2� 0-entries in x or the appropriate yj in order to find

a neighbor in MSA−1
n (1). Since l ≤ �k�2� for inputs in MSA−1

n (0) , we

have proved the claim.

For arbitrary n , we consider the smallest m such that MSAm is

defined on at least n variables. We define fn ∈ Bn as a subfunction

of MSAm where the appropriate number of y-variables is replaced by

ones. Then fn depends essentially on n variables and c(fn) ≤ c(MSAm) .

We obtain the upper bound in (7.4) by (7.6) and Stirling’s formula.

The lower bound is proved by counting methods. At first we prove

a simple combinatorial claim.

CLAIM : Let G be a subgraph of the cube Cn = {0� 1}n where in Cn

the vertices with Hamming distance 1 are connected by an edge. If

the degree of each vertex in G is at least r , then G has at least 2r

vertices.

Proof of the Claim : By induction on n . Obviously n ≥ r . If n = r ,

G = Cn and G contains 2n vertices. If n � r , we partition Cn to C0
n−1

and C1
n−1 by fixing the last dimension to 0 and 1 resp. If G is contained

in C0
n−1 or in C1

n−1 , the claim follows from the induction hypothesis.

Otherwise G is partitioned to G0 ⊆ C0
n−1 and G1 ⊆ C1

n−1 . The degree

of each vertex in G0 or G1 is at least r − 1 , since only one neighbor

401

is in the other subcube. It follows from the induction hypothesis that

G0 and G1 contain at least 2r−1 vertices each. Hence G contains at

least 2r vertices. �

For the proof of the lower bound let f ∈ Bn depend essentially on n

variables. We color the cube Cn = {0� 1}n by coloring the vertex a by

f(a) and the edge (a� b) by 1 if f(a) �= f(b) and by 0 otherwise. Since

c(f� a) ≤ c := c(f) , each vertex is connected to at most c 1-edges. Cn

contains at most c 2n−1 1-edges.

We look for a lower estimate on the number of 1-edges. We fix i ∈
{1� � � � � n} . Let C0 and C1 be the (n− 1)-dimensional subcubes where

we have fixed the i -th dimension to 0 and 1 resp. We estimate the

number of 1-edges between C0 and C1 . Since f depends essentially on

xi there is a 1-edge between some a ∈ C0 and a(i) ∈ C1 . Again a(i) is

the i -th neighbor of a . We consider the graph G of all vertices (b� b(i))

where b ∈ C0 . The vertices (b� b(i)) and (b′� b′(i)) are connected by

an edge iff b and b′ are neighbors in C0 and f(b′) = f(b) �= f(b(i)) =

f(b′(i)) . Let H be the set of vertices (b� b(i)) which can be reached

in G from (a� a(i)) . Since f(b) �= f(b(i)) for (b� b(i)) ∈ H , at least

|H|1-edges are connecting C0 and C1 .

We claim that each (b� b(i)) ∈ H has at least n− 2c + 1 neighbors

in G . At most c 1-edges are leaving b , one of them leads to b(i) . At

most c 1-edges are leaving b(i) , one of them leads to b . Hence there

are at least n−2c+1 dimensions to which b and b(i) are connected by

0-edges. These neighbors are in G . The graph of all b where (b� b(i)) ∈
H is a subgraph of some (n − 1)-dimensional cube where the degree

of each vertex is at least n − 2c + 1 . From the combinatorial claim

it follows that this graph contains at least 2n−2c+1 vertices. Hence we

have at least 2n−2c+1 1-edges in the i -th dimension and altogether at

least n 2n−2c+1 1-edges. We combine this result with the upper bound

c 2n−1 on the number of 1-edges. Thus

n 2n−2c+1 ≤ c 2n−1 ⇒ 4 n ≤ c 22c (7.7)

402

⇒ c �
1

2
log n− 1

2
log logn +

1

2
�

�

THEOREM 7.5 : i) If f ∈ Bn depends essentially on n variables, then

a PRAM computing f has time complexity Ω(log logn) .

ii) MSAn depends essentially on more than n variables and can be

computed by a PRAM with O(n log n) processors and communi-

cation width O(n log n) in time O(log log n) .

Proof : i) follows from Theorem 7.4 and Theorem 4.3. For the proof

of ii we refer to Wegener (85 b). �

This result indicates again how excellent the lower bound of The-

orem 4.3 is.

THEOREM 7.6 : c(Sn) = lmax(Sn) = �(n + 1)�2� .

Proof : Obviously c(Sn) ≤ lmax(Sn) . For fn = Tn
�(n+1)�2� , lmax(fn) =

�(n + 1)�2� , since Tn
k has only prime implicants of length k and prime

clauses of length n + 1 − k . Hence lmax(Sn) ≤ �(n + 1)�2� . If f ∈ Sn

is not constant, vi �= vi+1 for some i . By Theorem 7.3 iii

c(f) ≥ max{i + 1� n− i} ≥ �(n + 1)�2� (7.8)

and c(Sn) ≥ �(n + 1)�2� . �

The lower bound of Theorem 7.4 is optimal, but it implies only a

lower bound of Θ(log n) on the critical and maximal sensitive com-

plexity of Boolean functions. That is why one looked for fundamental

classes of functions for which one can prove better results. One exam-

ple is the class of symmetric functions (see Theorem 7.6), and another

one is the class of graph properties.

DEFINITION 7.2 : A Boolean function f on N =
(n

2

)
variables xij

(1 ≤ i � j ≤ n) is a graph property if for all permutations π ∈ Σn

403

f(x1�2� � � � � xn−1�n) = f(xπ(1)�π(2)� � � � � xπ(n−1)�π(n)) (7.9)

is satisfied. We denote the set of all (monotone) graph properties by

GN and MGN resp.

Obviously all graph problems are described by graph properties.

A graph problem does not depend on the numbering of the vertices.

THEOREM 7.7 : i) �n�4� � c(GN) ≤ lmax(GN) ≤ n− 1 .

ii) c(MGN) = lmax(MGN) = n− 1 .

Part i has been proved by Turán (84), his conjecture that

c(GN) = n− 1 is still open. Only the weaker assertion that c(MGN) =

n− 1 has been proved by Wegener (85 b). We present only the proof

of Part ii of the Theorem which includes the upper bound of Part i.

The proof of the lower bound of Part ii is more typical than the proof

of the lower bound of Part i and supports our philosophy that the

complexity of functions is described by the length and structure of

the prime implicants and prime clauses.

Proof of Theorem 7.7 ii : For the upper bound we investigate the

graph property ˝no vertex is isolated˝ (Turán (84)). The proper func-

tion f ∈ GN is obviously monotone. Its monotone conjunctive normal

form is

f(x) =
∧

1≤i≤n

(∨
1≤j�i

xji ∨
∨

i�j≤n
xij
)
� (7.10)

each prime clause has length n−1 . The i -th clause computes 0 iff the

i -th vertex is isolated. The prime implicants correspond to minimum

graphs without isolated vertices. These are spanning forests where

each tree contains at least 2 vertices. The number of edges in spanning

forests, and therefore also the length of prime implicants, is bounded

by n− 1 . Hence lmax(MGN) ≤ n− 1 .

Since MGN ⊆ MN , lmax(MGN) = c(MGN) by Theorem 7.2. It is

sufficient to prove that lmax(MGN) ≥ n − 1 . All prime implicants

404

and prime clauses of monotone functions are necessary. Therefore it

is sufficient to prove for f ∈ MGN the existence of a prime implicant

or prime clause whose length is at least n − 1 . This is equivalent to

the existence of a minimum satisfying graph with at least n− 1 edges

or a maximum non satisfying graph with at least n− 1 missing edges.

A graph G is called satisfying for f ∈ GN iff G satisfies the graph

property described by f .

We assume that all minimum satisfying graphs have at most n− 2

edges, otherwise we are done. We construct a maximum non satisfying

graph with at least n− 1 missing edges.

Let l be the maximal number of isolated vertices in a minimum

satisfying graph. For a graph G let m(G) be the minimal degree of

a non isolated vertex. Let m be the minimal m(G) for all minimum

satisfying graphs with l isolated vertices. We claim that

m ≤ �(2 n− 4)�(n− l)� � (7.11)

For the proof of this claim we investigate a graph G∗ defining m . G∗

has, by our assumption, at most n− 2 edges. The sum of the degrees

of all vertices is at most 2n− 4 . The degree of each of the n− l non

isolated vertices is at least m . Hence the sum of the degrees of all

vertices is at least m(n − l) . This implies m(n − l) ≤ 2n − 4 and

(7.11).

We construct a maximum non satisfying graph G . Let G′ consist

of a complete graph Kn−l−1 on the vertices v1� � � � � vn−l−1 and l + 1

isolated vertices vn−l � � � � � vn . It follows from the definition of l that

G′ is non satisfying. We add as many edges as possible, until we

obtain a maximum non satisfying graph G . For i ≥ n− l , vertex vi is

connected to at most m−1 vertices vk where k � n− l . Otherwise we

could embed G∗ into G and by monotonicity G would be satisfying.

For this purpose we identify the vertices vj (j �= i� j ≥ n− l) with the

l isolated vertices of G∗ . We identify vi with a vertex v∗ of degree m

in G∗ and m neighbors of vi with the m neighbors of v∗ .

We prove that at least n−1 edges are missing in G . The number of

missing edges between the vertex sets v1� � � � � vn−l−1 and vn−l � � � � � vn

is at least (n− l − 1− (m− 1))(l + 1) . We are done if

405

(n− l −m)(l + 1) ≥ n− 1� (7.12)

If l = 0 , m = 1 by (7.11) and (7.12) is satisfied. Otherwise it is by

(7.11) sufficient to prove that

(n− l − (2 n− 4)�(n− l))(l + 1) ≥ n− 1� (7.13)

If l ≥ 1 , this is equivalent to

l2 − 2 l n + l + n2 − 3 n + 3 ≥ (n− 4)�l � (7.14)

For l ≥ 1 it is sufficient to have

l2 − 2 l n + l + n2 − 3 n + 3 ≥ n− 4 or (7.15)

l ≤ n− (1�2)− (3 n− 27�4)1�2� (7.16)

In particular, the assertion is proved for n ≤ 3 . To capture the cases

where (7.16) is not satisfied we distinguish between two cases.

Case 1 : G∗ is not the complete graph on n− l vertices, Kn−l , together

with l isolated vertices.

In this case m ≤ n−l−2 and n−l−m ≥ 2 . Hence vi is for i ≥ n−l

not connected to at least two of the vertices vj where j � n − l . The

number of missing edges is at least 2(l + 1) . This is at least n− 1 iff

l ≥ (n− 3)�2 (7.17)

is satisfied. It is easy to see that always either (7.16) or (7.17) is

satisfied.

Case 2 : G∗ is equal to the complete graph on n − l vertices, Kn−l ,

together with l isolated vertices.

This minimum satisfying graph has, for r = n − l ,
(r
2

)
edges. It

follows from our assumption that(
r

2

)
≤ n− 2� (7.18)

Until now we have not counted the missing edges within the vertex

set vn−l � � � � � vn . Since m ≥ 1 , at least l + 1 = n − r + 1 edges are

406

missing between the two vertex sets. Let z be the number of vertices

vi (i ≥ n− l) which are not connected to at least two vertices vj where

j � n − l . Then we may count at least n − r + 1 + z missing edges

between the two vertex sets. Furthermore there are n − r + 1 − z

vertices vi (i ≥ n− l) for which only one edge to the other vertex set is

missing. If z ≥ r− 2 , we have already counted enough missing edges.

Otherwise we partition the n − r + 1 − z vertices vi (i ≥ n − l) with

one missing edge to r− 1 equivalence classes. vi and vj are equivalent

if they have the same missing neighbor vk (1 ≤ k ≤ n− l − 1 = r− 1) .

If vi and vj are in the k -th equivalence class the edge between vi and

vj is missing. Otherwise vi , vj and all vl (1 ≤ l ≤ r− 1 , l �= k) build

an r-clique and G is a satisfying graph.

Let N(k) be the size of the k -th equivalence class. Altogether we

have proved the existence of

n− r + 1 + z +
∑

1≤k≤r−1

(
N(k)

2

)
(7.19)

missing edges. The parameters N(k) satisfy the condition∑
1≤k≤r−1

N(k) = n− r + 1− z� (7.20)

The sum of all
(N(k)

2

)
where the parameters N(k) satisfy (7.20) is min-

imal (because of the convexity of x → (x
2

)
) if {N(1)� � � � �N(r − 1)}

consists of at most two numbers M and M + 1 . If the sum of all N(k)

is 2 (r− 2− z) + (z + 1) , the sum of all
(N(k)

2

)
is minimal if N(k) = 2

for r− 2− z terms and N(k) = 1 for z + 1 terms. Then the sum of all(N(k)
2

)
is at least r− 2− z and the number of missing edges is at least

n− 1 . Hence we are done if

n− r + 1− z ≥ 2 (r− 2− z) + (z + 1) = 2 r− 3− z (7.21)

is satisfied. (7.21) is equivalent to

r ≤ (n + 4)�3� (7.22)

It is easy to prove that (7.18) implies (7.22). �

407

It follows from Theorem 7.7 and Theorem 4.3 that the PRAM time

complexity of all graph properties is Ω(log N) and from Theorem 7.7

and Theorem 5.3 that the time complexity of all graph properties

with respect to PRAMs of communication width m is Ω
(
(n�m)1�3

)
=

Ω
(
N1�6�m1�3

)
. The last lower bound can be improved to Ω

(
(N�m)1�3

)
for most of the fundamental graph properties f ∈ GN by proving that

lmax(f) = Θ(N) for these graph properties. Nearly all fundamental

graph properties are monotone. Schürfeld and Wegener (86) present

conditions which can be tested efficiently and which lead for most of

the fundamental graph properties to the assertion that these graph

properties are Θ(N)-critical.

We have seen that some functions have small critical and small

maximal sensitive complexity, that several functions have small min-

imal sensitive complexity and that many functions have a large com-

plexity with respect to the complexity measures. We present tight

bounds for the complexity of almost all functions in Bn�Mn or Sn .

These results have already been applied in Ch. 11, § 4 and Ch. 13, § 6 ,

and they generalize all lower bounds of Ch. 11 and Ch. 13.

THEOREM 7.8 : i) The fraction of f ∈ Bn where c(f) = n − 1 or

c(f) = n tends to e−1 or 1 − e−1 resp., hence c(f) ≥ n − 1 for almost

all f ∈ Bn .

ii) c(f) = lmax(f) for almost all f ∈ Bn .

iii) Let α(n) be any function tending to ∞ as n →∞ . Then

n− ⌈
log(n + log2 n− log n + α(n))

⌉
� lmin(f) (7.23)

≤ n− �log(n− log n− α(n))�
for almost all f ∈ Bn , in particular lmin(f) ∈ In for almost all

f ∈ Bn and some intervals In containing n − �log n� and at most

one further positive integer.

Proof : i) We motivate the result. Consider a random Boolean func-

tion, i.e. all 22n
f ∈ Bn have the same probability. Then for all

408

a ∈ {0� 1}n

Pr(c(f� a) = n) = 2−n and Pr(c(f� a) = n− 1) = n 2−n� (7.24)

Let us assume for a moment that c(f� a) and c(f� b) are independent,

which is only satisfied if d(a� b) ≥ 3 for the Hamming distance d .

Then

Pr(c(f) = n) = 1− (1− 2−n)2
n → 1− e−1 and (7.25)

Pr(c(f) ≥ n− 1) = 1− (1− (n + 1) 2−n)2
n → 1 as n →∞ . (7.26)

The critical complexity c(f� a) is not independent from the critical

complexity of only n+
(n

2

)
of the other 2n−1 inputs. Thus we suggest

that (7.25) and (7.26) are almost correct.

Let Xa(f) = 1 if c(f� a) = n− 1 and Xa(f) = 0 otherwise. Let X(f)

be the sum of all Xa(f) , then X(f) is the number of (n − 1)-critical

inputs. Since

Pr(c(f) ≥ n− 1) ≥ Pr(X � 0)� (7.27)

it is sufficient to prove that Pr(X = 0) → 0 as n → ∞ . From

Chebyshev’s inequality follows that

Pr(X = 0) ≤ V(X)�E2(X) = E(X2)�E2(X)− 1� (7.28)

Obviously E(Xa) = n 2−n and E(X) = n . By definition

X2 =
∑
a

X2
a +

∑
a �=b

Xa Xb =
∑
a

Xa +
∑
a �=b

Xa Xb� (7.29)

By case inspection, we prove that

E(Xa Xb) = O
(
n2 2−2n) if d(a� b) ≤ 2� (7.30)

If d(a� b) ≥ 3 , c(f,a) and c(f,b) are independent and

E(Xa Xb) = E(Xa) E(Xb) = n2 2−2 n� (7.31)

Altogether

E(X2) ≤ E(X) + E2(X) + O
(
n4 2−n) and (7.32)

Pr(X = 0) ≤ 1

n
+ 1 + O

(
n2 2−n)− 1 (7.33)

tends to 0 as n →∞ .

409

By a more complicated calculation, using the method of factorial

moments, one proves that the number of n-critical inputs is asymp-

totically Poisson distributed with parameter λ = 1 . In particular

Pr(c(f) = n) → 1− e−1 as n →∞ . (7.34)

For a detailed proof of these claims we refer to Bublitz, Schürfeld,

Voigt and Wegener (86). (7.34) together with the fact that

Pr(c(f) ≥ n− 1) → 1 as n →∞ implies the assertions of Part i.

ii) follows from i , Theorem 7.1 i and Theorem 7.1 v.

iii) Again we investigate random Boolean functions f ∈ Bn . For f we

color the vertex a of the input cube {0� 1}n by f(a) . We want to prove

that

Pr (lmin(f) ≤ n− c(n)) → 1 (7.35)

for c(n) = �log(n− log n− α(n))� and

Pr(lmin(f) ≤ n− d(n)) → 0 (7.36)

for d(n) =
⌈
log(n + log2 n− log n + α(n))

⌉
�

To prove (7.35) we observe that lmin(f) ≤ n − c(n) iff there

exists a c(n)-dimensional subcube of {0� 1}n colored by one color.

We partition {0� 1}n to 2n−c(n) disjoint c(n)-dimensional subcubes Ci

(1 ≤ i ≤ 2n−c(n)) . Then the events Ei: ˝not all vertices of Ci have

the same color˝ are independent. Obviously the probability of Ei is

1− 2−2c(n)+1 . Hence

Pr (lmin(f) ≤ n− c(n)) ≥ 1− Pr(∀ i : Ei) (7.37)

≥ 1−
(
1− 2−2c(n))2n−c(n)

= 1−
((

1− 2−2c(n))22c(n))2n−c(n)−2c(n)

�

The right-hand side of this inequality tends to 1 if n−c(n)−2c(n) tends

to infinity. This property is fulfilled for c(n) = �log(n− log n− α(n))� .

410

For the second assertion we observe that a function f where

lmin(f) ≤ n − d(n) has to possess an implicant or a clause of length

n − d(n) . An implicant or a clause of length n − d(n) determines

the value of f on 2d(n) inputs. Therefore there are 22n−2d(n)
functions

f ∈ Bn with the same fixed implicant or clause of length n−d(n) . Fur-

thermore there are 2
(n
n−d(n)

)
2n−d(n) different implicants and clauses of

length n− d(n) . Thus

Pr (lmin(f) ≤ n− d(n)) ≤ 2−2n
2

(
n

n− d(n)

)
2n−d(n) 22n−2d(n)

(7.38)
≤ 2n+1+d(n) (log n−1)−2d(n)

�

The right-hand side of this inequality tends to zero if 2d(n) − (n + 1 +

d(n) (log n− 1)) tends to infinity. This happens if

d(n) =
⌈
log(n + log2 n− log n + α(n))

⌉
� (7.39)

�

THEOREM 7.9 : i) c(f) = lmax(f) = �n�2�+1 for almost all f ∈ Mn .

ii) lmin(f) = �n�2� − 1 for almost all f ∈ Mn .

Proof : The proof is based on the characterization of almost all f ∈ Mn

due to Korshunov (81 a), see Theorem 5.1, Ch. 4. His result implies

that for almost all f ∈ Mn

a1 + · · ·+ an ≤ �n�2� − 2 ⇒ f(a) = 0 and (7.40)

a1 + · · ·+ an ≥ �n�2�+ 2 ⇒ f(a) = 1� (7.41)

Since prime implicants correspond to minimal ones and prime clauses

correspond to maximal zeros, we know that for almost all f ∈ Mn the

length of any prime implicant or prime clause may take only the values

�n�2� − 1� � � � � �n�2�+ 2 . Hence

�n�2� − 1 ≤ lmin(f) ≤ lmax(f) = c(f) ≤ �n�2�+ 2 (7.42)

for almost all f ∈ Mn . For the proof of the exact bounds of the

theorem we refer to Bublitz, Schürfeld, Voigt and Wegener (86). Here

we are satisfied with the weaker result (7.42). �

411

THEOREM 7.10 : i) c(f) = lmax(f) = n for almost all f ∈ Sn .

ii) Let α(n) be any function tending to ∞ as n →∞ . Then

n− log n− α(n) ≤ lmin(f) ≤ n− log n + α(n) (7.43)

for almost all f ∈ Sn .

Proof : i) c(f) = n if the value vector v(f) contains 0 1 0 or 1 0 1 as a

substring. Obviously almost all v ∈ {0� 1}n+1 contain 0 1 0 or 1 0 1 as

a substring.

ii) By Theorem 7.3 i lmin(f) = n + 1 − vmax(f) for f ∈ Sn . The claim

(7.43) is equivalent to

log n− α(n) ≤ vmax(f) ≤ log n + α(n) (7.44)

for almost all f ∈ Sn . This is a well-known result about the longest

constant substring of a random 0-1-string of length n + 1 (see e.g.

Feller (68)). �

EXERCISES

1. (Cook, Dwork and Reischuk (86)). A PRAM is called almost

oblivious if the number of the memory cell into which the i -th

processor writes at time step t is allowed to depend on the input

length but not on the input itself. A PRAM is called oblivious if

also the decision whether the i -th processor writes at time step t

may depend on the input length and not on the input itself. The

time complexity of oblivious PRAMs computing f is not smaller

than �log c(f)�+ 1 . Hint: Kt+1 = Lt+1 , Lt+1 = Kt + Lt .

2. The time complexity of almost oblivious PRAMs computing f is

not smaller than t if c(f) ≥ F2t+1 , the (2t+1)-st Fibonacci number.

Hint: Kt+1 = Kt + Lt , Lt+1 = Kt+1 + Lt .

412

3. Prove Theorem 7.5 ii.

4. The graph property ˝no vertex is isolated˝ can be decided by a

PRAM with O(N) realistic processors in time log N + O(1) .

5. Estimate the size and the depth of the circuit designed in the proof

of Theorem 3.1.

6. The processors of a non deterministic WRAM (N-WRAM) may

flip during one computation step independent unbiased coins. An

N-WRAM accepts a ∈ {0� 1}n iff there is an accepting compu-

tation path. There is an N-WRAM with O(n) processors and

communication width 1 computing Tn
2 in O(1) steps.

7. Prove Lemma 4.2.

8. Let f ∈ Bn be defined by a set of clauses or implicants and k ∈
{1� � � � � n} . It is NP-hard to decide whether c(f) ≥ k . The same

holds for lmin and lmax .

9. Investigate the complexity of the outputs of

a) the binary addition ,

b) the binary multiplication ,

c) the Boolean matrix product ,

d) the Boolean convolution

with respect to c , lmin and lmax .

10. How long are the prime implicants and prime clauses of the mono-

tone storage access functions ?

413

11. How long are the prime implicants and prime clauses of ftn ∈ Bn

where ftn(a) = 1 iff ai = · · · = ai+t−1 (indices modn) for some i ?

12. Each non constant graph property depends on all N variables.

13. The graph properties

a) G contains a k-clique ,

b) G contains a Hamiltonian circuit ,

c) G contains an Eulerian circuit ,

d) G contains a perfect matching

are Θ(N)-critical.

14. The graph property ˝ G contains a vertex whose degree is at least

�dn�˝ is Θ(N)-critical, if 0 � d � 1 .

15. The graph property ˝ G contains no isolated vertex˝ has minimal

sensitive complexity �n�2� .

16. lmin(f) = min{l(f� 0)� l(f� 1)} for f ∈ Mn and the constant inputs 0

and 1 .

17. Determine the number of f ∈ Mn where lmin(f) ≥ �n�2�+ 1 .

18. Let M be the complexity measure of Def. 5.1. Then M(f) ≤ lmax(f)

for all f ∈ Bn and M(f) = O(1) for almost all f ∈ Bn .

19. The number of f ∈ Sn where c(f) � n or lmax(f) � n is 2 Fn−1 for

the (n− 1)st Fibonacci number Fn−1 .

414

14. BRANCHING PROGRAMS

14.1 The comparison of branching programs with other models of

computation

DEFINITION 1.1 : A branching program (BP) is a directed acyclic

graph consisting of one source (no predecessor), inner nodes of fan-

out 2 labelled by Boolean variables and sinks of fan-out 0 labelled

by Boolean constants. The computation starts at the source which

also is an inner node. If one reaches an inner node labelled by xi , one

proceeds to the left successor, if the i -th input bit ai equals 0 , and one

proceeds to the right successor, if ai = 1 . The BP computes f ∈ Bn if

one reaches for the input a a sink labelled by f(a) .

A branching program may be understood as a single processor of

arbitrary computation resources which can read at most one input bit

per time unit.

DEFINITION 1.2 : The size of a BP is equal to the number of inner

nodes (computation nodes), and the depth of a BP is equal to the

length of a longest path. The corresponding complexity measures for

f ∈ Bn are denoted by BP(f) and BPD(f) .

The branching program depth is a measure for the computation

time. What is the meaning of the branching program size ? Obviously,

a BP of size c can be written as a (non uniform) program of GO TO’s

depending on if-tests on the Boolean variables. Then c is the number

of GO TO’s , i.e. the program size. The following relations between

the branching program size BP(f) and the space complexity S(f) of

non uniform Turing machines (see Def. 4.1, Ch. 9) for f have been

proved by Cobham (66) and Pudlák and Zák (83).

415

THEOREM 1.1 : If fn ∈ Bn , then

S(fn) = O
(
log
(
max{BP(fn)� n}

))
and (1.1)

BP(fn) = 2O(h(n)) where h(n) = max{S(fn)� log n}� (1.2)

Proof : Let Gn be a BP for fn of size BP(fn) . We simulate Gn by

a non uniform Turing machine whose oracle is an encoding of Gn .

We encode each node of Gn by its number (O(log BP(fn)) bits) , the

number of its direct successors (O(log BP(fn)) bits) and the index of

its label (O(log n) bits).

The encoding of Gn has length look on the input tape for the input

bit tested at this node and copy the encoding of the successor node.

Hence the space complexity of the Turing machine is bounded by (1.1).

Let M be a non uniform Turing machine for fn with space complex-

ity S(fn) . The number of configurations of M is bounded by 2O(h(n))

(see (3.3) and § 4, Ch. 9). We simulate M by a BP Gn . Each configura-

tion of M is simulated by a node, the initial configuration is the source,

accepting configurations are 1-sinks, and rejecting configurations are

0-sinks. The successors of a node v simulating the configuration c

are the nodes for the configurations c0 and c1 which are the successor

configurations of c if M reads on the input tape 0 and 1 resp. The

label of v is xi if c is neither accepting nor rejecting and the head of

the input tape reads xi . Hence (1.2) is proved. �

Moreover, there are tight relations between branching programs

and circuits (see e.g. Wegener (84 b)).

THEOREM 1.2 : i) C(f) ≤ 3 BP(f) for all f ∈ Bn .

ii) D(f) ≤ 2 BPD(f) for all f ∈ Bn .

iii) BP(f) ≤ LΩ(f) + 1 for all f ∈ Bn and Ω = {∧�∨�¬} .

416

Proof : i) Let G be a BP for f of size BP(f) . At an inner node labelled

by xi we select the left successor if xi = 0 and the right successor if

xi = 1 . The selection function sel(x� y� z) = x y ∨ x z selects y if x = 0

or z if x = 1 . Hence we obtain a circuit over the basis {sel} with

BP(f) gates for f if we reverse the direction of the edges, all inner

nodes are sel-gates with the following inputs: xi , the former label of

the node, v0 , the former left successor of the node, and v1 , the former

right successor of the node. The assertion follows since C(sel) = 3 .

ii) can be proved in a similar way starting with a depth optimal BP.

D(sel) = 2 .

iii) is proved by induction on l = LΩ(f). The assertion is obvious

for l = 0 . Let l = LΩ(f) � 0 , and let the assertion be proved for

functions of smaller formula size. Let F be an optimal formula for

f . If the last gate of F is a ¬-gate, the assertion follows from the

induction hypothesis, since f and ¬f have the same BP size. If the

last gate of F is an ∧-gate, f = g∧h for some functions g and h , where

LΩ(g)+LΩ(h) = l−1 . By induction hypothesis, BP(g)+BP(h) ≤ l+1 .

Hence it is sufficient to prove that BP(f) ≤ BP(g) + BP(h) . We use

optimal BPs G(g) for g and G(h) for h . We obtain a BP G(f) for f

of size BP(g) + BP(h) in the following way. The source of G(f) is the

source of G(g) and all 1-sinks of G(g) are identified with the source

of G(h) . Similar arguments work for an ∨-gate. �

The branching program complexity of f lies in the interval

[C(f)�3�LΩ(f) + 1] . For almost all f ∈ Bn , BP(f) is close to the left

end of the interval.

417

THEOREM 1.3 : i) BP(f) ≥ (1�3) 2n n−1 for almost all f ∈ Bn .

ii) BP(f) = O(2n n−1) for all f ∈ Bn .

Proof : i) follows from Theorem 2.1, Ch. 4 , and Theorem 1.2 i.

ii) follows from a simple simulation of the improved decoding circuit

in § 2, Ch. 4. �

DEFINITION 1.3 : A BP G is synchronous if for all nodes v in G all

paths from the source to v have the same length d(v) . The width w(l)

of level l is the number of nodes v with d(v) = l . The width of G is

the maximum w(l) .

Bounded-depth circuits with gates of unbounded fan-in can be sim-

ulated efficiently by branching programs of small width.

THEOREM 1.4 : If f ∈ Bn can be computed by a circuit with c gates

of unbounded fan-in (∧-, ∨-gates) and k logical levels, then f can be

computed by a BP G of depth ck−1 n and width max{2� k} . Hence the

size of G is at most ck−1 n max{2� k} .

Proof : Induction on k . For k = 1 we can compute the conjunction or

disjunction of at most n literals. This can be done by a BP of depth

n and width 2 . The BP can be constructed in such a way that it has

only two sinks, both on the same level.

If k � 1 , let g1� � � � � gm be the functions computed in k − 1 logical

levels. By the induction hypothesis there are BPs G1� � � � �Gm of depth

ck−2 n and width max{2� k− 1} for g1� � � � � gm . If the last gate of the

circuit is a conjunction (similar arguments work for a disjunction) ,

we join the BPs G1� � � � �Gm in the same way as G(g) and G(h) in

the proof of Theorem 1.2. We have to ensure that the new BP is

synchronous. Therefore we gather the 1-sinks of each Gi on a new

path which increases the width by 1 . If k = 2 , the new path is not

necessary, since Gi has only one 1-sink at its bottom. Since m ≤ c ,

we obtain a BP for f of depth ck−1 n and width k . �

418

This theorem implies that functions with c prime implicants can

be computed by a BP of depth c n and width 2 . The theorem also

implies that lower bounds on the complexity of width-bounded BPs

are harder to achieve than lower bounds on depth-bounded circuits.

For instance, the parity function is not in SIZE - DEPTH(poly� const)

but has width-2 BPs of depth n . At the computation nodes on level i

(0 ≤ i ≤ n− 1) we test xi+1 . If x1 ⊕ · · · ⊕ xi+1 = 0 , we proceed to the

first node on level i + 1 , otherwise to the second node on level i + 1 .

On level n the first node is a 0-sink, the second one a 1-sink. We

discuss width-bounded BPs more detailed in § 5.

14.2 The depth of branching programs

DEFINITION 2.1 : A function f ∈ Bn with BPD(f) = n is called

elusive.

This notation has been introduced by Bollobás (76). Kahn, Saks

and Sturtevant (84) used the notion evasive instead of elusive. The

elusiveness of many functions can be proved by the following relation

(Bublitz, Schürfeld, Voigt and Wegener (86)) and results of Ch. 13.

THEOREM 2.1 : BPD(f) ≥ lmax(f) ≥ c(f) for all f ∈ Bn .

Proof : The second inequality has been proved in Proposition 4.1,

Ch. 13. For the first inequality we consider an input a ∈ {0� 1}n where

k := l(f� a) = lmax(f) If BPD(f) � k , the computation path for a in

some depth-optimal BP for f has length l � k . We have tested at

most l variables and f is constant on some (n − l)-dimensional cube

containing a . Since n− l ≥ n− k + 1 , this contradicts the definition

of k . �

419

This result indicates that many functions are elusive. This fact is

also underlined by the following asymptotic results.

THEOREM 2.2 : i) Almost all f ∈ Bn are elusive.

ii) Almost all f ∈ Mn are elusive.

iii) All non constant f ∈ Sn are elusive.

Proof : i) (Rivest and Vuillemin (76)). If BPD(f) ≤ n−1 , we consider

a depth-optimal decision tree for f . A decision tree is a BP whose

nodes have fan-in bounded by 1 . This restriction does not increase

the depth. We add computation nodes such that all leaves (sinks)

are lying on level n − 1 . Since the BP is a tree, we assume w.l.o.g.

that no variable is tested twice on any computation path. Hence each

of the 2n−1 leaves is reached for 2 inputs a and b with Hamming

distance d(a� b) = 1 . Each 1-leaf is reached by one input a where |a| ,
the number of ones in a , is even and one input b where |b| is odd.

We conclude that the sets {a ∈ f−1(1) | |a| even} and {a ∈ f−1(1) |
|a| odd} have the same size k ∈ {0� � � � � 2n−1} if BPD(f) ≤ n− 1 . For

fixed k , there are
(2n−1

k

)
possibilities of choosing k inputs out of the

2n−1 inputs with |a| even. The same holds for |a| odd. Therefore N(n) ,

the number of non elusive f ∈ Bn , can be estimated by

N(n) ≤
∑

0≤k≤2n−1

(
2n−1

k

)(
2n−1

k

)
(2.1)

=
∑

0≤k≤2n−1

(
2n−1

k

)(
2n−1

2n−1 − k

)
=

(
2n

2n−1

)
�

The number of all f ∈ Bn is 22n

. Hence the assertion i follows from a

simple application of the Stirling formula.

ii) has been proved by Bublitz, Schürfeld, Voigt and Wegener (86)

using results of Rivest and Vuillemin (76) and Korshunov (81 a). We

do not present the proof here.

420

iii) If f ∈ Sn is not constant, then v(f) , the value vector of f , is not

constant either. Let vi �= vi+1 . We consider a depth-optimal decision

tree for f . We follow that path where the first i tested variables have

value 1 and the next n−1−i tested variables have value 0 . Afterwards

it might be possible that the number of ones in the input is i or i + 1 .

Since vi �= vi+1 , we have to test the last variable and the depth of the

tree is n . �

It is easy to describe functions with the minimum BP depth.

THEOREM 2.3 : i) If f depends essentially on n variables, then

BPD(f) ≥ �log(n + 1)� .

ii) There are functions f ∈ Bn depending essentially on n variables

where BPD(f) = �log(n + 1)� .

Proof : i) If f depends essentially on xi , each BP for f contains at least

one inner node labelled by xi . Since the fan-out in a BP is bounded

by 2 , the lower bound follows.

ii) Consider a binary tree with n inner nodes and depth �log(n + 1)�
and label exactly one inner node by xi (1 ≤ i ≤ n) . The leaves

are labelled in such a way that brothers have different labels. The

function f , computed by this BP , depends essentially on x1� � � � � xn

and its BP depth is �log(n + 1)� . �

Another example of a simple function with respect to BP depth is

the storage access function SAn ∈ Bn+k where n = 2k (see Def. 5.1 ,

Ch. 3). First of all, we test the k address variables ak−1� � � � � a0 and

then x|a| . Hence

BPD(SAn) = k + 1 = �log(n + k + 1)� � (2.2)

It is often difficult to decide whether f is elusive. Elusiveness proofs

follow, in general, the pattern of the proof of Theorem 2.2 iii. For each

421

BP for f one tries to define an input a whose computation path has

length n .

The input size for graph properties is N =
(n

2

)
. The results of

Ch. 13 imply that BPD(f) ≥ n�4 for all f ∈ GN , BPD(f) ≥ n − 1 for

all f ∈ MGN and BPD(f) = Ω(N) for most of the fundamental graph

properties. Best, van Emde Boas and Lenstra (74) described a graph

property (scorpion graphs) whose BP depth is small, namely at most

6 n . Aanderaa and Rosenberg conjectured that there is some ε � 0

such that BPD(f) ≥ ε N for all f ∈ MGN . This conjecture has been

proved by Rivest and Vuillemin (76) for ε = 1�16 and by Kleitman

and Kwiatkowski (80) for ε = 1�9 . Kahn, Saks and Sturtevant (84)

achieved the best result which is

BPD(f) ≥ (1�4) N− o(N) for all n and f ∈ MGN and (2.3)

BPD(f) = N for n = 6 or n = pk (p prime) and f ∈ MGN . (2.4)

The extended conjecture of Karp that all f ∈ MGN are elusive is still

open. Further examples of elusive graph properties are ˝the graph

contains a k-clique˝ and ˝the graph is k-colorable˝ (Bollobás (76)).

For additional results on elusiveness we refer to Bollobás (78) and

Hedtstück (85).

14.3 The size of branching programs

There is no theory on design methods for size optimal BPs. What is

known about lower bounds ? We cannot expect ω(n2)-bounds, since

BP(f) ≤ L{∧�∨�¬}(f) + 1 (Theorem 1.2 i). The Krapchenko method

cannot be translated to BPs , since this method yields its largest bound

for the parity function, and the parity function has linear BPs. But

the idea of the Nechiporuk method (Ch. 8, § 7) works also for BPs.

422

THEOREM 3.1 : Let f ∈ Bn depend essentially on all its variables,

let S1� � � � � Sk ⊆ X be disjoint sets of variables and let si be the number

of Si-subfunctions of f . Then

BP(f) = Ω
(∑
1≤i≤k

(log si) � (log log si)
)
� (3.1)

Proof : We estimate N(r� t) , the number of BPs of size t on r variables.

The number of edges is 2 t , since each inner node has fan-out 2 . Each

edge leaving vi may select its end out of vi+1� � � � � vt and the two sinks.

There are r possible labellings for each inner node. Hence

N(r� t) ≤ rt((t + 1)!)2 ≤ rt t2t� if t ≥ 3� (3.2)

Let r(i) = |Si| and let t(i) be the number of nodes in an optimal

BP for f labelled with some xj ∈ Si . Each Si-subfunction of f can be

computed by a BP of size t(i) . We only have to replace the other

variables by the appropriate constants. Hence

si ≤ N(r(i)� t(i)) ≤ r(i)t(i)(t(i))2t(i)� if t(i) ≥ 3� (3.3)

Since f depends essentially on all variables, r(i) ≤ t(i). Therefore

si ≤ t(i)3t(i)� if t(i) ≥ 3 and (3.4)

t(i) = Ω ((log si)�(log log si)) � (3.5)

Since, by definition, BP(f) is the sum of all t(i) , we have proved the

theorem. �

From the arguments used in Ch. 8, § 7 , we obtain the follow-

ing results. By Theorem 3.1 one cannot prove larger lower bounds

than bounds of size n2 log−2 n . BP(ISAn) = Ω
(
n2 log−2 n

)
but

C(ISAn) = O(n) for the storage access function for indirect address-

ing, BP(detn) = Ω
(
n3 log−1 n

)
for the determinant and BP(cln�m) =

Ω
(
(n−m)3 log−1 n

)
for clique functions.

Pudlák (84 b) translated the Hodes and Specker method (Ch. 8,

§ 5) to BPs and proved Ω (n(log log n)�(log log log n)) lower bounds on

423

the BP complexity of threshold functions Tn
k where k and n−k are not

too small. Budach (84) applied topological methods, but he obtained

only bounds for decision trees.

14.4 Read-once-only branching programs

DEFINITION 4.1 : A read-k-times-only branching program (BPk)

is a branching program where each variable is tested on each com-

putation path at most k times. The minimum size of a BPk for f is

denoted by BPk(f) .

A BP1 is called read-once-only branching program. This computa-

tion model was introduced by Masek (76). The corresponding machine

model is the non uniform eraser Turing machine, i.e. a Turing machine

that erases each input bit after having read it. For BPks each input

bit is given k times. Theorem 1.1 holds also for read-once-only BPs

and eraser Turing machines. Hence lower bounds on the BP1- com-

plexity lead to lower bounds on the space complexity of eraser Turing

machines. The same holds for upper bounds.

For read-k-times-only BPs and k ≥ 2 no lower bounds are known

which are essentially larger than lower bounds for general BPs. Hence

we consider in this section only read-once-only BPs.

At first we show that optimal BP1s for symmetric functions f ∈ Sn

can be designed by an efficient algorithm working on the value vector

v(f) of f (Wegener (84 b)). In the following we denote by Sn the class

of all non constant symmetric functions f ∈ Bn .

THEOREM 4.1 : For all f ∈ Sn there is an optimal BP1 which is

synchronous and where all computation nodes on level l are labelled

by xl+1 .

424

Proof : The following claim holds for all BP1s but in general not for

BPs. If p is a path in a BP1 , then there is an input a(p) for which p

is part of the computation path. Let fp be the subfunction of f where

we have replaced the variables read on p by the proper constants.

Now we consider an optimal BP1 G for f ∈ Sn . Let p′ and p′′ be

paths from the source to the computation node v . We claim, that

l(p′) = l(p′′) , where l(p) is the length of p , that we read the same

input variables on p′ and p′′ (perhaps with different results) and that

fp′ = fp′′ .

If v is followed for some b ∈ {0� 1} by b-sinks only, v can be replaced

by a b-sink. Hence we assume that fp′ and fp′′ are not constant. fp′ is

a symmetric function on n − l(p′) variables. By Theorem 2.2 iii the

longest path p starting in v has length n− l(p′) . The same holds for

p′′ . Hence l(p′) = l(p′′) . On p′ and p′′ we read all variables that have

not been read on p . In particular, we read on p′ and p′′ the same

set of variables. The BP1 with source v computes fp′ and fp′′ . Hence

fp′ = fp′′ .

Now we relabel the computation nodes such that the nodes on level

l (the BP is synchronous by the claim above) are labelled by xl+1 . We

claim that the new BP1 G′ computes f . Let p be a path in G from

the source to a b-sink. If we have chosen m0 times the left successor

and m1 times the right successor on p , then f(a) = b for all inputs a

with at least m0 zeros and at least m1 ones. If the same path is used

in G′ , the input contains at least m0 zeros and at least m1 ones. The

output b is computed correctly. �

By this theorem on the structure of optimal BP1s for symmet-

ric functions f , we can design optimal BP1s efficiently. The level 0

consists of the source labelled by x1 . At each node v on level l we

still have to compute a symmetric function fv on n− l variables. The

node v gets a second label i indicating that (vi� � � � � vi+n−l) is the value

vector of fv . This additional label is i = 0 for the source. For a node v

on level l labelled by xl+1 and i we need two successors v0 and v1 on

425

level l + 1 with labels xl+2 (if l + 2 ≤ n) and i or i + 1 resp. The only

problem is now to decide which nodes on level l + 1 can be merged or

replaced by sinks. A node can be replaced by a constant iff the proper

value vector is constant. Two nodes can be merged iff the proper value

vectors coincide.

The number of nodes constructed on level l + 1 is at most 2 N(l)

where N(l) is the minimum number of nodes on level l in an optimal

BP1 for f . This consequence results from the fact that all nodes on

level l for which we have constructed successors belong to an optimal

BP1 for f . We know the value vectors which belong to the nodes

on level l + 1 . By a generalized bucket sort we sort these value vec-

tors in time O(nN(l)) according to the lexicographical order. In time

O(nN(l)) it can be decided which nodes can be replaced by sinks and

which nodes can be merged. We continue until all nodes are replaced

by sinks on level n . Altogether we have constructed an optimal BP1

for f ∈ Sn in time O(n BP1(f)) . If we can handle also large numbers

in one unit of time, we can decrease the running time of the algorithm

to O(BP1(f)) . But then the space complexity is large, namely O(2n) .

The original algorithm can be performed with linear space.

THEOREM 4.2 : There is an O(n BP1(f))-time and O(n)-space

algorithm for the computation of an optimal BP1 for f ∈ Sn given by

its value vector.

Together with this algorithm we obtain the following characteriza-

tion of the BP1-complexity of symmetric functions.

THEOREM 4.3 : For f ∈ Sn let rl(f) (0 ≤ l ≤ n− 1) be the number

of different non constant subvectors (vi� � � � � vi+n−l) (0 ≤ i ≤ l) of the

value vector v(f) .

i) BP1(f) =
∑

0≤l≤n−1
rl(f)�

426

ii) BP1(f) ≤ ∑
0≤l≤n−1

min
{
l + 1� 2n−l+1 − 2

}
= n2�2− n log n + O(n)�

Proof : i) follows from Theorem 4.1 and the algorithm from Theorem

4.2. For ii) we state that rl(f) ≤ l+1 (we consider only l+1 subvectors)

and that rl(f) ≤ 2n−l+1−2 (we consider non constant vectors of length

n− l + 1) . �

If the value vector of f ∈ Sn is a de Bruijn sequence (see Exercises),

we obtain a symmetric function of maximum BP1-complexity. The

proofs of the following results on the majority function Tn
�n�2� and the

exactly - �n�2� function En
�n�2� are left as an exercise.

THEOREM 4.4 : i) BP1(Tn
�n�2�) = n2�4 + Θ(n) .

ii) BP1(En
�n�2�) = n2�4 + Θ(n) .

iii) BPk(En
�n�2�) = O(n(k+1)�k) .

iv) BP(En
�n�2�) = O(n log2 n� log log n) .

All symmetric functions have BP1-complexity bounded by O(n2)

(Theorem 4.3 ii). Because of the small number of subfunctions many

computation paths can be merged after a short time. For many other

functions f one can prove that paths, whose lengths are at most d ,

cannot end in a sink and cannot be merged with other computation

paths. Then each BP1 for f contains at its top a complete binary

tree of d levels and therefore at least 2d − 1 computation nodes. This

lower bound method has been introduced by Wegener (84 c) for the

proof of lower bounds on the BP1-complexity of clique functions cln�k
(see Def. 11.1, Ch. 6). Dunne (85) applied this method to the logical

permanent PMn (perfect matching, see Def. 12.2, Ch. 6) and to the

Hamiltonian circuit functions (see Exercise 32 b, Ch. 6).

427

THEOREM 4.5 : Let G be a BP1 for the clique function cln�k . Let

p and q be different paths in G starting at the source and ending

in v(p) and v(q) resp. If at most k(1) =
(k

2

) − 1 ones and at most

k(0) = n− k2 + 2 zeros have been read on p and q , then neither v(p)

nor v(q) is a sink and v(p) �= v(q) . In particular

BP1(cln�k) ≥
∑

0≤m≤k(0)+k(1)

∑
m−k(0)≤j≤k(1)

(
m

j

)
� (4.1)

Proof : (4.1) follows easily from the first part of the theorem. For each

0-1-sequence a1� � � � � am with at most k(0) zeros and k(1) ones there is

a computation node in G . The lower bound in (4.1) is equal to the

number of these sequences.

We turn to the proof of the structural results. Before we have not

tested all variables of a prime implicant or a prime clause with the right

result we do not reach a sink. cln�k is monotone. Consequently, the

variables of a prime implicant have to be ones. All prime implicants of

cln�k have length
(k

2

)
� k(1) , they correspond to a minimal graph with

a k-clique. According to the results of Ch. 13 prime clauses correspond

to maximal graphs without any k-clique. The largest maximal graphs

are by Turán’s theorem (see e.g. Bollobás (78)) complete (k − 1)-

partite graphs where the size of all parts is �n�(k− 1)� or �n�(k− 1)� .

We have to estimate the number of missing edges. This number is

underestimated if we assume that all parts have size n�(k − 1) and

each vertex is not connected to n�(k − 1) − 1 other vertices. Hence

l(0) ≥ (1�2)n(n�(k− 1)− 1) for the length l(0) of the shortest prime

clause. Since l(0) � k(0) , neither v(p) nor v(q) is a sink.

Let us assume that w = v(p) = v(q) . Since p and q are different

paths, there is a first node w′ where the paths separate. W.l.o.g. w′ is
labelled by x1�2 . Let Gp and Gq be the partially specified graphs spec-

ified by the computation paths p and q resp. Edges tested positively

are called existing, whereas edges tested negatively are called forbid-

den, all other edges are called variable. W.l.o.g. the edge (1,2) exists

in Gp and is forbidden in Gq . Let G′ be the part of G whose source

428

is w . We shall prove the existence of a path r from w to some sink

such that we have to reach a 1-sink on the compound path (p,r) and a

0-sink on (q� r) . This will contradict the assumption that v(p) = v(q) .

Let A be the set of vertices i �∈ {1,2} such that i lies on some

existing edge in Gq . Since Gq contains at most k(1) edges,

|A| ≤ 2 k(1) = k2 − k− 2� (4.2)

Let B be a set of vertices j �∈ {1� 2} such that for each edge e = (i� i′)
forbidden in Gp , i ∈ B or i′ ∈ B . It is possible to choose B such that

|B| ≤ k(0) = n− k2 + 2� (4.3)

The set C := {1� � � � � n} − A − B contains at least k vertices, among

them the vertices 1 and 2 . Let D ⊆ C be chosen such that |D| = k

and 1� 2 ∈ D . Let r be the path from w to a sink where we choose

the right successor, the 1-successor, iff i� j ∈ D for the label xij of the

computation node. The path (p� r) leads to a 1-sink, since no edge on D

has been tested negatively. Let Gq�r be the graph specified on (q� r) .

Only vertices in D ∪ A may have positive degree. Since Gq does not

contain any k-clique and only edges on D are tested positively on r , a

k-clique in Gq�r has to contain two vertices of D . Since the edge (1� 2)

is forbidden, a k-clique in Gq�r has to contain a vertex i ∈ D − {1� 2}
and a vertex j ∈ A . The edge (i� j) is not tested positively on (q� r) .

Hence Gq�r does not contain any k-clique, and the path (q� r) leads to

a 0-sink. �

COROLLARY 4.1 : i) BP1(cln�k) = Ω(nk(k−1)�2−1) for constant k .

ii) BP1(cln�m(n)) ≥ 2n�3−o(n) for m(n) =
⌈
(2n�3)1�2

⌉
.

iii) BP1(cln�n�2) ≥ 2n�6−o(n) .

iv) The space complexity of eraser Turing machines for cln�n�2 is

Ω(n) = Ω(N1�2) where N =
(n

2

)
is the input size.

Proof : i) follows from (4.1) where
(k(0)+k(1)

k(1)

)
is the largest term.

429

ii) By definition of m(n) , k(0) and k(1) are of size n�3− o(n) . Each

BP1 for cln�m(n) contains at the top a complete binary tree of depth

n�3− o(n) .

iii) cln−m(n)� n�2−m(n) is a subfunction of cln�n�2 . Let m(n) = n�2 −⌈
(n�3)1�2

⌉
. Then k(0) and k(1) are of size n�6− o(n) .

iv) is a corollary to iii. �

Larger lower bounds have been proved by Ajtai, Babai, Hajnal,

Komlós, Pudlák, Rödl, Szemerédi and Turán (86).

THEOREM 4.6 : Let
⊕

cln�3 be the graph property computing 1 if

the number of triangles (3-cliques) in the graph specified by x is odd.

Then BP1 (
⊕

cln�3) = 2Ω(N) and the space complexity of eraser Turing

machines for
⊕

cln�3 is Ω(n2) = Ω(N) .

Recently Kriegel and Waack (86) gave an easier proof of a 2Ω(N)-

bound for another function. We do not prove these theorems. We

prove two results which we shall apply in § 6. The first one is due to

Wegener (86 a).

DEFINITION 4.2 : cl ∗n�k ∈ MGN is the graph property which tests

whether a graph contains a k-clique of special type, these are k-cliques

where at least k − 2 vertices i1� � � � � ik−2 build a consecutive sequence

i� i + 1� � � � � i + k− 3 mod n .

THEOREM 4.7 : BP1(cl∗n�k(n)) = 2m(n) if k(n) =
⌊
n1�3

⌋
and m(n) =

(1�4) n2�3 − o(n2�3) .

Proof : After m(n) positive tests we still have not found a k-clique

of special type. After m(n) negative tests at most (1�2) n2�3 vertices

lie on a forbidden edge. Hence there is a consecutive sequence of

k(n) vertices which may still build a k(n)-clique of special type. The

depth of all sinks is larger than m(n) .

430

It is now sufficient to prove that two paths p and q whose lengths

are bounded by m(n) and which start at the source of a BP1 for cl∗n�k(n)

cannot stop at the same node. Again w.l.o.g. (1,2) exists in Gp but

is forbidden in Gq . There is a set of vertices D such that |D| = k(n) ,

D contains the vertices 1 and 2 , D contains a consecutive sequence of

k(n)− 2 vertices, and no edge incident to some i ∈ D−{1,2} has been

tested on p or q . The proof is completed on the pattern of the proof

of Theorem 4.5. �

DEFINITION 4.3 : clon ∈ GN (n even) is the graph property which

tests whether a graph contains an n�2-clique but no edge outside of

this clique.

This so-called clique-only function has been investigated by Pudlák

and Zák (83) and Zák (84). The function has short prime clauses. If

the edges (1,2) and (1,3) exist, but (2,3) is forbidden, we know that

clon(x) = 0 . But all prime implicants have length N =
(n

2

)
. It is

possible to prove that the ˝width˝ of a BP1 for clon is somewhere not

too small.

THEOREM 4.8 : BP1(clon) ≥ 2n�3−o(n) .

Proof : W.l.o.g. n can be divided by 6 . Let G be a BP1 for clon .

For a vertex set H of size n�2 let p(H) be the computation path for

the graph that contains only the clique on H . Let v(H) be the first

computation node on p(H) where at least n�2 − 2 vertices lie on an

existing edge. We claim that v(H) �= v(H′) if |H ∩ H′| ≤ n�2− 3 . We

conclude the theorem from our claim before we prove the claim. We

partition the vertex set {1� � � � � n} to three sets M1 , M2 and M3 each

of size n�3 . The number of subsets of Mi of size n�6 is a =
(n�3
n�6

)
.

Let Mi�j (1 ≤ j ≤ a) be these sets. We consider Hj , the union of

M1�j , M2�j and M3�j for 1 ≤ j ≤ a . Then |Hj ∩Hj′| ≤ n�2− 3 if j �= j′ .
The computation nodes v(H1)� � � � � v(Ha) are different due to the claim

above. Hence G contains at least a = 2n�3−o(n) computation nodes.

431

For the proof of the claim we assume that v(H) = v(H′) although

|H ∩ H′| ≤ n�2− 3 . Let p∗(H) and p∗(H′) be those parts of p(H) and

p(H′) resp. that lead from the source to v(H) . On p∗(H) and p∗(H′)

we have tested the same set of variables. Otherwise some path, where

not all variables are tested, would lead from the source to a 1-sink

although all prime implicants have length N .

We investigate the computation path leading from the source via

p(H) to v(H) and then via p(H′) to a 1-sink. The computation path

is the path p(H′′) for some set H′′ of size n�2 . |H ∩ H′′| ≥ n�2− 2 by

definition of v(H) . In particular, H′′ contains some vertex i �∈ H′ . We

prove the claim by proving that H′ = H′′ . Each positive test increases

the number of vertices lying on existing edges at most by 2 . Hence

there is some j ∈ H′ such that no edge (j� ·) has been tested positively

on p∗(H′) . For all k ∈ H′−{j} , the edge (j� k) is tested positively on

the second part of p(H′) and therefore on p(H′′) . All these vertices

k ∈ H′ and j have to belong to H′′ because of the definition of clon . �

We have proved exponential lower bounds on the BP1-complexity

of NP-complete functions like cln�n�2 but also on the BP1-complexity

of functions in P like clon , cl∗n�k(n) and
⊕

cln�3 .

14.5 Bounded-width branching programs

We have defined the width of BPs in Definition 1.3. By Theo-

rem 1.4 all f ∈ Bn can be computed by a width-2 BP. Therefore

w-k-BP(f) , the minimum size of a width-k BP for f , is well-defined for

k ≥ 2 . We have already proved in Theorem 1.4 that depth-bounded

432

circuits can be simulated efficiently by width-bounded branching pro-

grams. But the converse is false. The parity function has linear

width-2 complexity but exponential size in circuits of constant depth

(see Ch. 11, § 3). Later we present a complete characterization of BPs

of bounded width and polynomial size.

Before that we report the history of lower bounds. Borodin, Dolev,

Fich and Paul (83) proved that width-2 BPs for the majority function

have size Ω
(
n2 log−1 n

)
. By probabilistic methods Yao (83) improved

this result. Width-2 BPs for the majority function cannot have poly-

nomial size. Shearer (pers. comm.) proved an exponential lower

bound on the width-2 BP complexity of the counting function Cn
1�3

computing 1 iff x1 + · · ·+ xn ≡ 1 mod 3 .

For k ≥ 3 no large lower bounds on the width-k BP complexity

of explicitly defined Boolean functions are known. Using the Ram-

sey theory (see e.g. Graham, Rothschild and Spencer (80)) Chandra,

Fortune and Lipton (83) proved that there is no constant k such that

the majority function can be computed in width-k BPs of linear size.

Ajtai et al. (86) could prove non trivial lower bounds for BPs whose

width is not larger than (log n)O(1) (poly log). Almost all symmetric

functions, and in particular the following explicitly defined function

˝ x1+ · · ·+xn is a quadratic residue mod p for a fixed prime p between

n1�4 and n1�3 ˝ , cannot be computed by poly log - width BPs of size

o(n(log n)� log log n) .

All these results are motivated by the conjecture that the ma-

jority function cannot be computed by BPs of constant width and

polynomial size. But this conjecture has been proved false by Bar-

rington (86).

THEOREM 5.1 : Let fn ∈ Bn . There is for some constant k a

sequence of width-k BPs Gn computing fn with polynomial size iff

there is a sequence Sn of circuits with binary gates computing fn with

polynomial size and depth O(log n) .

433

Each symmetric function fn ∈ Sn can be computed by a circuit of

linear size and logarithmic depth (Theorem 4.1, Ch. 3). Hence The-

orem 5.1 implies the existence of polynomial BPs of constant width

for all symmetric functions, among them the majority function. We

prove Theorem 5.1 in several steps.

Proof of Theorem 5.1 , only-if-part : Let Gn be BPs computing fn
in constant width k and polynomial size p(n) . The nodes of Gn are

denoted in the following way: vi�j (1 ≤ i ≤ k , 0 ≤ j ≤ p(n)) is the i -th

node on level j , v1�0 is the source, w.l.o.g. we have only two sinks both

on level p(n) , v1�p(n) is the 1-sink, v2�p(n) the 0-sink. Let gi�j�i′�j′(x) = 1 if

starting at the node vi�j on input x we reach vi′�j′ . Then fn = g1�0�1�p(n) .

The functions gi�j�i′�j+1 depend essentially at most on one input vari-

able, namely the label of vi�j . These functions can be computed at a

single gate. Let j � j′ � j′′ . Each path from level j to level j′′ has to

pass through level j′ . Hence

gi�j�i′′�j′′(x) =
∨

1≤i′≤k
gi�j�i′�j′(x) ∧ gi′�j′�i′′�j′′(x)� (5.1)

This leads to a divide-and-conquer approach. W.l.o.g. p(n) = 2m(n) .

Then m(n) = O(log n) . We proceed in m(n) steps. In Step 0 we

compute in parallel all gi�j�i′�j+1(x). In Step r we apply (5.1) and com-

pute in parallel all gi�j�i′′�j′′ where j is a multiple of 2r , j′′ = j + 2r

and j′ = j + 2r−1 . The functions on the right-hand side of (5.1) are

computed in Step r−1 . In Step m(n) we compute g1�0�1�p(n) = fn . Alto-

gether we apply (5.1) not more than 2 k2 p(n) times. (5.1) can be real-

ized by a circuit of size 2 k and depth �log k�+1 . Hence there is a cir-

cuit for fn of size 4 k3 p(n) and depth (�log k�+1) �log p(n)� = O(log n) .

�

For the if-part Barrington introduced a new type of BPs.

DEFINITION 5.1 : A permutation σ ∈ Σ5 is called a 5-cycle if

σi(j) �= j for i ∈ {1� 2� 3� 4} and j ∈ {1� � � � � 5} . We present a 5-

434

cycle σ by the string (a1 a2 a3 a4 a5) where σ(ai) = ai+1 for i ≤ 4 and

σ(a5) = a1 .

DEFINITION 5.2 : A permutation branching program (PBP) of

width k and length (or depth) l is given by a sequence of instruc-

tions (j(i)� gi� hi) for 0 ≤ i � l , where 1 ≤ j(i) ≤ n and gi� hi ∈ Σk .

A PBP has on each level 0 ≤ i ≤ l k nodes v1�i� � � � � vk�i . On level i

we realize σi(x) = gi if xj(i) = 0 and σi(x) = hi if xj(i) = 1 . The PBP

computes σ(x) = σl−1(x) · · ·σ0(x) ∈ Σk on input x . The PBP com-

putes fn ∈ Bn via τ if σ(x) = id for x ∈ f−1
n (0) and σ(x) = τ �= id for

x ∈ f−1
n (1).

LEMMA 5.1 : A PBP for f of width k and length l can be simulated

by a BP of width k and length k l .

Proof : The PBP has k ˝sources˝ on level 0 . We obtain k BPs of

width k and length l (one for each source). The nodes vm�i (1 ≤ m ≤ k)

are labelled by xj(i) , and the wires from level i to level i+1 correspond

to gi and hi . The nodes on the last level are replaced by sinks. In the

r -th BP the τ(r)-th node on the last level is replaced by a 1-sink, all

other sinks are 0-sinks. This BP computes 1 iff σ(x)(r) = τ(r) . Hence

f(x) = 1 iff all BPs compute 1 . Similarly to the proof of Theorem 1.4

we combine the k BPs to a BP for f . We do not have to increase the

width since all sinks lie on the last level. �

Hence it is sufficient to design PBPs of width 5 . We restrict our-

selves to 5-cycles τ which have properties that serve our purposes.

LEMMA 5.2 : If the PBP G computes f via the 5-cycle τ and ρ is

another 5-cycle, then there is a PBP G′ of the same length computing

f via ρ .

Proof : The existence of ϑ ∈ Σ5 where ρ = ϑ τ ϑ−1 follows from

elementary group theory (or by case inspection). In G′ we simply

435

replace the permutations gi and hi in the sequence of instructions by

ϑ gi ϑ
−1 and ϑ hi ϑ

−1 resp. Then the output permutations id and τ are

replaced by ϑ idϑ−1 = id and ϑ τ ϑ−1 = ρ . �

LEMMA 5.3 : If the PBP G computes f via the 5-cycle τ , then there

is a PBP G′ of the same length computing ¬f via a 5-cycle.

Proof : Obviously τ−1 is a 5-cycle. We only change the last instruc-

tion : gl−1 is replaced by τ−1 gl−1 and hl−1 is replaced by τ−1 hl−1 .

Then σ′(x) = τ−1 σ(x) . Hence σ′(x) = τ−1 for x ∈ f−1(0) and

σ′(x) = id for x ∈ f−1(1) . G′ computes ¬f via τ−1 . �

LEMMA 5.4 : There are 5-cycles τ1 and τ2 such that τ1 τ2 τ−1
1 τ−1

2 is

a 5-cycle.

Proof : (1 2 3 4 5) (1 3 5 4 2) (5 4 3 2 1) (2 4 5 3 1) = (1 3 2 5 4) . �

THEOREM 5.2 : Let f be computed by a depth-d circuit S over

the basis U2 . Then there is a PBP G computing f in width 5 and

length 4d .

Proof : The proof is by induction on d . For d = 0 the assertion is

obvious. For the induction step we assume (by Lemma 5.3 w.l.o.g.)

that the last gate of S is an ∧-gate where f is computed as f = f1 ∧ f2 .

Hence, by induction hypothesis, for f1 and f2 there are PBPs G1 and

G2 of length 4d−1 each computing f1 and f2 via the 5-cycles ρ1 and

ρ2 resp. By Lemma 5.2 and Lemma 5.4 we replace ρ1 and ρ2 by τ1

and τ2 resp. such that τ1 τ2 τ−1
1 τ−1

2 is a 5-cycle. Furthermore there

are PBPs G3 and G4 of length 4d−1 each computing f1 and f2 via the

5-cycles τ−1
1 and τ−1

2 resp. (see Lemma 5.2). If we concatenate the

PBPs G1 , G2 , G3 and G4 , we obtain a PBP G of length 4d . Let

σ(x) = σ1(x) σ2(x) σ3(x) σ4(x) ∈ Σ5 be the permutation computed

by G .

436

1. f1(x) = f2(x) = 0 ⇒ σ1(x) = · · · = σ4(x) = id ⇒ σ(x) = id .

2. f1(x) = 0 , f2(x) = 1 ⇒ σ1(x) = σ3(x) = id , σ2(x) = τ2 ,

σ4(x) = τ−1
2 ⇒ σ(x) = id .

3. f1(x) = 1 , f2(x) = 0 ⇒ σ(x) = id (similarly to Case 2).

4. f1(x) = f2(x) = 1 ⇒ σ(x) = τ1 τ2 τ−1
1 τ−1

2 , a 5-cycle and therefore

unequal to id .

Hence G computes f = f1 ∧ f2 in width 5 and length 4d . �

Proof of Theorem 5.1 , if-part : We only have to concatenate the

constructions of Theorem 5.2 and Lemma 5.1. �

This result explains also why one was not able to prove non polyno-

mial lower bounds on the width-k BP complexity of explicitly defined

functions if k ≥ 5 .

14.6 Hierarchies

We have proved implicitly that certain functions are hard in some

models and simple in other models. We summarize these results.

THEOREM 6.1 : The majority function has non polynomial com-

plexity with respect to circuits of constant depth and BPs of width 2 ,

but it has polynomial complexity with respect to monotone circuits,

monotone formulas, BP1s and BPs of width 5 .

THEOREM 6.2 : The clique function cl ∗n�k(n) for cliques of special

type and size k(n) =
⌊
n1�3

⌋
has exponential complexity with respect

to BP1s, but it has polynomial complexity with respect to width-2

437

BPs, depth-2 circuits, monotone circuits, and monotone formulas.

Proof : The number of prime implicants of cl∗n�k(n) can easily be esti-

mated by O(n3) . �

THEOREM 6.3 :
⊕

cln�3 has exponential complexity with respect

to BP1s , but it has polynomial complexity with respect to BPs of

constant width and circuits.

Proof : We only have to prove the upper bound. In constant depth

we decide with O(n3) binary gates for each 3-clique whether it exists.

Then we compute the parity of these results in logarithmic depth and

size O(n3) . Finally we apply Theorem 5.1. �

In Ch. 11, § 5 , we have seen that the classes Σk(P) build a proper

hierarchy.

DEFINITION 6.1 : Let w-k-BP(P) be the class of sequences f =

(fn) of functions fn ∈ Bn which can be computed by width-k BPs of

polynomial size.

Obviously w-k-BP(P) ⊆ w-(k + 1)-BP(P) for k ≥ 2 . The results

of Barrington (86) (see § 5) imply that this hierarchy collapses at the

fifth level. But, from the results on the majority function, we know

that w-2-BP(P) � w-5-BP(P) .

DEFINITION 6.2 : Let BPk(P) be the class of sequences f = (fn) of

functions fn ∈ Bn which can be computed by read-k-times-only BPs

of polynomial size.

438

Obviously BPk(P) ⊆ BP(k + 1)(P) for all k . We conjecture that

the classes BPk(P) build a proper hierarchy. But we only know that

the first step of the hierarchy is proper (Wegener (84 c)).

THEOREM 6.4 : BP1(P) � BP2(P) .

Proof : By Theorem 4.8 , (clon) �∈ BP1(P) . We design BP2s of

polynomial size for clon . We use the following simple characterization

of the clique-only function. clon(x) = 1 iff in G(x) , the graph specified

by x , the degree of each vertex is 0 or n�2−1 , and there is some vertex

i∗ of degree n�2− 1 such that all vertices i � i∗ have degree 0 and all

vertices of positive degree are connected to i∗ .

It is easy to design a BP1 on m variables which has size O(m2)

and m + 1 sinks and where all inputs with exactly i ones reach the

i -th sink (0 ≤ i ≤ m) . Let Tl (1 ≤ l ≤ n) be such a BP1 for all

variables representing edges (l � ·) . The source of T1 is the source of

the BP2 we construct. For l � n , the sink 0 of Tl is the source of Tl+1 ,

and the sink n�2 − 1 of Tl is the source of Hl which we define later.

All other sinks including those of Tn are 0-sinks. If we reach such a

sink, clon(x) = 0 . If we reach the source of Hl , we know that the

vertices 1� � � � � l − 1 are isolated in G(x) and that the vertex l equals

the vertex i∗ in the characterization above. Hl is the concatenation

of Hl �l+1� � � � �Hl �n . In Hl �j we test whether the vertex j has the right

degree and whether it is, if necessary, connected to i∗ = l . At first we

˝compute˝ (similar to the BP1 Tl) d∗(j) , the number of vertices j′ �= l

connected by an edge to the vertex j . If d∗(j) �∈ {0� n�2− 2} we reach

0-sinks. If d∗(j) = 0 and the edge (l � j) exists (does not exist), we

reach a 0-sink (the source of Hl �j+1) . If d∗(j) = n�2− 2 and the edge

(l � j) exists (does not exist), we reach the source of Hl �j+1 (a 0-sink).

If j = n , the source of Hl �n+1 is replaced by a 1-sink. The so defined

BP computes clon , if n ≥ 6 .

439

The size of each Tl and Hl �j is O(n2) . Hence the total size is O(n4) .

The BP is a read-twice-only BP. Each path leads for some l at most

through the BP1s T1� � � � �Tl , Hl �l+1� � � � �Hl �n . The edge (i� j) is tested

in Ti , if i ≤ l , in Tj , if j ≤ l , in Hl �i , if l � i , and in Hl �j , if l � j .

Hence each edge is tested at most twice. �

We present a candidate which is in BPk(P) and probably not in

BP(k− 1)(P) . An edge in an undirected graph is a two-element subset

of the set of vertices. A k-hyperedge in a hypergraph is a k-element

vertex set.

DEFINITION 6.3 : The k-hyperclique-only function k clon is defined

on
(n

k

)
variables representing the possible k-hyperedges of a hyper-

graph. k clon(x) = 1 iff the hypergraph H(x) specified by the variables

contains exactly all k-hyperedges on an n�2 vertex set.

EXERCISES

1. The number of 1-leaves in a decision tree for f ∈ Bn is not smaller

than the number of gates on level 1 in a Σ2-circuit for f .

2. Let DT(f) be the decision tree complexity of f . Then D(f) ≤
c log(DT(f) + 1) for some constant c .

3. Estimate the time complexity of the Turing machine we used for

the proof of (1.1).

4. Let f ∈ Bn be not elusive. Let f ′ ∈ Bn be a function differing from

f on exactly one input. Then f ′ is elusive.

440

5. BP(PARn) = 2n− 1 .

6. Determine BP1(En
k) and BP1(Tn

k) exactly.

7. The upper bound in Theorem 4.3 ii is optimal. Hint: Consider

de Bruijn sequences (see e.g. Knuth (81)) as value vectors.

8. Prove Theorem 4.4. Hint: Chinese Remainder Theorem.

9. Design an efficient algorithm for the construction of optimal deci-

sion trees for symmetric functions.

10. Prove a counterpart of Theorem 4.3 for decision trees.

11. Determine DT(PARn) .

12. BP1(clon) = 2O(n) .

13. There is a BP1 for cln�k where two paths, on which at most k(1)+1

variables are tested positively and at most O(k(0)) variables are

tested negatively, lead to the same node.

14. (Dunne (85), just as 15.). Assume that for f ∈ Bn , all sets

V ⊆ {x1� � � � � xn} of size bounded by m , and all xi �∈ V there

is a restriction ρ : {x1� � � � � xn} − (V ∪ {xi}) → {0� 1} such that

fρ(V� xi) ∈ {xi� xi} . Then BP1(f) ≥ 2m−1 − 1 .

15. The BP1-complexity of the Hamiltonian circuit function and the

BP1-complexity of the logical permanent are exponential.

16. Prove an upper bound (as small as possible) on the constant-width

BP-complexity of the majority function.

441

17. (k clon) ∈ BPk(P) .

442

References

Adleman(78): Two theorems on random polynomial time. 19.FOCS,75-83.

Adleman;Booth;Preparata;Ruzzo(78): Improved time and space bounds for Boolean
matrix multiplication. Acta Informatica 11, 61-70.

Ahlswede;Wegener(86): Search problems. Wiley (in press).

Aho;Hopcroft;Ullman(74): The design and analysis of computer algorithms.
Addison-Wesley.

Ajtai(83): Σ1
1-formulae on finite structures. Ann.Pure and Appl.Logic 24, 1-48.

Ajtai;Babai;Hajnal;Komlós;Pudlák;Rödl;Szemerédi;Turán(86): Two lower bounds
for branching problems. 18.STOC, 30-38.

Ajtai;Ben-Or(84): A theorem on probabilistic constant depth computations.
16.STOC, 471-474.

Ajtai;Komlós;Szemerédi(83): An 0(n log n) sorting network. 15. STOC, 1-9.

Alekseev(73): On the number of k-valued monotonic functions. Sov.
Math.Dokl.14,87-91.

Alt(84): Comparison of arithmetic functions with respect to Boolean circuit depth.
16.STOC, 466-470.

Alt;Hagerup;Mehlhorn;Preparata(86): Simulation of idealized parallel computers on
more realistic ones. 12.MFCS, LNCS 233, 199-208.

Alon;Boppana(85): The monotone circuit complexity of Boolean functions.
Preprint.

Anderson;Earle;Goldschmidt;Powers(67): The IBM system/360 model 91: floating-
point execution unit. IBM J.Res.Dev.11, 34-53.

Andreev(85): On a method for obtaining lower bounds for the complexity of indi-
vidual monotone functions. Sov.Math.Dokl. 31, 530-534.

Arlazarov;Dinic;Kronrod;Faradzev(70): On economical construction of the transi-
tive closure of a directed graph. Sov.Math.Dokl.11, 1209-1210.

Ashenhurst(57): The decomposition of switching functions. Symp. Theory of
Switching, 74-116.

Ayoub(63): An introduction to the analytical theory of numbers. Amer.Math.Soc.

Balcázar;Book;Schöning(84): Sparse oracles, lowness and highness. 11.MFCS,
LNCS 176, 185-193.

Barrington(86):Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. 18.STOC, 1-5.

Barth(80): Monotone Bilinearformen. TR Univ. Saarbrücken.

Bassalygo(82): Asymptotically optimal switching circuits. Probl.Inf.Transm.17,
206-211.

Batcher(68): Sorting networks and their applications. AFIPS 32, 307-314.

Beame(86a): Limits on the power of concurrent-write parallel machines. 18.STOC,
169-176.

Beame(86b): Lower bounds in parallel machine computation. Ph.D.Thesis, Univ.
Toronto.

443

Beame;Cook;Hoover(84): Log depth circuits for division and related problems.
25.FOCS, 1-6.

Bennet;Gill(81): Relative to a random oracle A, PA �= NPA �= coNPA with proba-
bility 1. SIAM J.on Comp.10, 96-113.

Berkowitz(82): On some relationship between monotone and non-monotone circuit
complexity. TR Univ. Toronto.

Best;van Emde Boas;Lenstra(74): A sharpened version of the Aanderaa-Rosenberg
conjecture. TR Univ.Amsterdam.

Bloniarz(79): The complexity of monotone Boolean functions and an algorithm for
finding shortest paths in a graph. Ph.D.Th., MIT.

Blum(84): A Boolean function requiring 3n network size. TCS 28, 337-345.

Blum(85): An Ω
(
n4�3

)
lower bound on the monotone network complexity of the

n-th degree convolution. TCS 36, 59-70.

Blum;Seysen(84): Characterization of all optimal networks for a simultaneous com-
putation of AND and NOR. Acta Inform.21, 171-182.

Bollobás(76): Complete subgraphs are elusive. J.on Comb.Th.21, 1-7.

Bollobás(78): Extremal graph theory. Academic Press.

Boppana(84): Threshold functions and bounded depth monotone circuits.
16.STOC, 475-479.

Borodin(77): On relating time and space to size and depth. SIAM J.on Comp.6,
733-744.

Borodin;Dolev;Fich;Paul(83): Bounds for width two branching programs. 15.STOC,
87-93.

Brent(70): On the addition of binary numbers. IEEE Trans.on Comp.19, 758-759.

Brent;Kuck;Maruyama(73): The parallel evaluation of arithmetic expressions with-
out division. IEEE Trans.on Comp.22, 532-534.

Brent;Kung(80): The chip complexity of binary arithmetic. 12.STOC, 190-200.

Brown(66): On graphs that do not contain a Thompsen graph. Can.Math.Bull.9,
281-285.

Brustmann;Wegener(86): The complexity of symmetric functions in bounded-depth
circuits. TR Univ.Frankfurt.

Bublitz(86): Decomposition of graphs and monotone formula size of homogeneous
functions. Acta Inform. (in press).

Bublitz;Schürfeld;Voigt;Wegener(86): Properties of complexity measures for
PRAMs and WRAMs. TCS (in press).

Budach(84): A lower bound for the number of nodes in a decision tree. TR
Univ.Berlin (GDR).

Caldwell(64): Der logische Entwurf von Schaltkreisen. Oldenbourg.

Carlson;Savage(83): Size-space tradeoffs for oblivious computations. JCSS 26, 65-
81.

Chandra;Fortune;Lipton(83): Lower bounds for constant depth circuits for prefix
functions. 10.ICALP, 109-117.

444

Chandra;Fortune;Lipton(85): Unbounded fan-in circuits and associative functions.
JCSS 30; 222-234.

Chandra;Furst;Lipton(83): Multiparty protocols. 15.STOC, 94-99.

Chandra;Kozen;Stockmeyer(81): Alternation. JACM 28, 114-133.

Chandra;Stockmeyer;Vishkin(82): A complexity theory for unbounded fan-in par-
allelism. 23.FOCS, 1-13.

Chandra;Stockmeyer;Vishkin(84): Constant depth reducibility. SIAM J.on
Comp.13, 423-439.

Cobham(66): The recognition problem for the set of perfect squares. 7.SWAT,
78-87.

Commentz-Walter(79): Size-depth tradeoff in monotone Boolean formulae. Acta
Inform.12, 227-243.

Commentz-Walter;Sattler(80): Size-depth tradeoff in non-monotone Boolean formu-
lae. Acta Inform.14, 257-269.

Cook(71): The complexity of theorem proving. 3.STOC, 151-158.

Cook(79): Deterministic CFL’s are accepted simultaneously in polynomial time and
log squared space. 11.STOC, 338-345.

Cook(80): Towards a complexity theory of synchronous parallel computation.
Symp.on Logic and Algorithmic, 75-100.

Cook(83): The classification of problems which have fast parallel algorithms. FCT,
LNCS 158, 78-93.

Cook;Dwork;Reischuk(86): Upper and lower time bounds for parallel random access
machines without simultaneous writes. SIAM J.on Comp. 15, 87-97.

Cook;Hoover(85): A depth-universal circuit. SIAM J.on Comp.14, 833-839.

Cooley;Tukey(65): An algorithm for the machine calculation of complex Fourier
series. Math.Comp.19, 297-301.

Coppersmith;Winograd(82): On the asymptotic complexity of matrix multiplica-
tion. SIAM J.on Comp.11, 472-492.

Denenberg;Gurevich;Shelah(83): Cardinalities definable by constant depth polyno-
mial size circuits. TR Univ. Harvard.

Dunne(84): Techniques for the analysis of monotone Boolean networks. Ph.D.Th.,
Univ. Warwick.

Dunne(85): Lower bounds on the complexity of 1-time only branching programs.
FCT, LNCS 199, 90-99.

Edwards(73): The principles of switching circuits. MIT Press.

Ehrenfeucht(72): Practical decidability. TR Univ.of Colorado.

Fagin;Klawe;Pippenger;Stockmeyer(85): Bounded depth, polynomial-size circuits
for symmetric functions. TCS 36, 239-250.

Feller(68): An introduction to probability theory and its applications. Wiley.

Finikov(57): On a family of classes of functions in the logic algebra and their real-
ization in the class of π-schemes. Dokl.Akad.Nauk.115, 247-248.

Fischer(74): Lectures on network complexity. TR Univ. Frankfurt.

445

Fischer;Meyer(71): Boolean matrix multiplication and transitive closure. 12.SWAT,
129-131.

Fischer;Meyer;Paterson(82): Ω(n log n) lower bounds on length of Boolean formulas.
SIAM J.on Comp.11, 416-427.

Friedman(84): Constructing O(n log n) size monotone formulae for the k-th elemen-
tary symmetric polynomial of n Boolean variables. 25.FOCS, 506-515.

Furst;Saxe;Sipser(84): Parity, circuits and the polynomial time hierarchy.
Math.Syst.Th.17, 13-27.

Gabber;Galil(79): Explicit constructions of linear size superconcentrators.
20.FOCS, 364-370.

Galbiati;Fischer(81): On the complexity of 2-output Boolean networks. TCS 16,
177-185.

Galil;Paul(83): An efficient general purpose parallel computer. JACM 30, 360-387.

Garey;Johnson(79): Computers and intractability: A guide to the theory of NP-
completeness. W.H.Freeman.

Gaskov(78): The depth of Boolean functions. Probl.Kibernet. 34, 265-268.

Gilbert(54): Lattice theoretic properties of frontal switching functions.
J.Math.Phys.33, 57-97.

Glassey;Karp(72): On the optimality of Huffman trees. SIAM J.on Comp.1, 31-39.

Goldschlager(78): A unified approach to models of synchronous parallel machines.
10.STOC, 89-94.

Graham;Rothschild;Spencer(80): Ramsey theory. John Wiley.

Gumm;Poguntke(81): Boolesche Algebra. BI.

Hansel(64): Nombre minimal de contacts de fermeture nécessaire pour réaliser une
fonction Booléenne symmétriques de n variables. C.R.Acad.Sci.Paris 258,
6037-6040.

Hansel(66): Sur le nombre de fonctions Booléennes monotones de n variables.
C.R.Acad.Sci.Paris 262, 1088-1090.

Harper(77): An n log n lower bound on synchronous combinational complexity.
Proc.AMS 64, 300-306.

Harper;Hsieh;Savage(75): A class of Boolean functions with linear combinational
complexity. TCS 1, 161-183.

Harper;Savage(72): On the complexity of the marriage problem. Adv.Math.9, 299-
312.

Harper;Savage(73): Complexity made simple. Symp.on Comb.Th., 2-15.

Harper;Savage(79): Lower bounds on synchronous combinational complexity. SIAM
J.on Comp.8, 115-119.

Hastad(86): Almost optimal lower bounds for small depth circuits. 18.STOC, 6-20.

Hedtstück(85): Über die Argumentkomplexität Boolescher Funktionen. Diss. Univ.
Stuttgart.

Henno(79): The depth of monotone functions in multivalued logic. IPL 8, 176-177.

446

Hill;Peterson(81): Switching theory & logical design. John Wiley.

Hodes(70): The logic complexity of geometric properties in the plane. JACM 17,
339-347.

Hodes;Specker(68): Length of formulas and elimination of quantifiers. Contr.to
Math.Logic. North-Holland.

Hoover;Klawe;Pippenger(84): Bounding fan-out in logical networks. JACM 31, 13-
18.

Hopcroft;Karp(73): An n5�2 algorithm for maximum matching in bipartite graphs.
SIAM J.on Comp.2, 225-231.

Hotz(74): Schaltkreistheorie. de Gruyter.

Hromkovic(85): Linear lower bounds on unbounded fan-in Boolean circuits. IPL 21,
71-74.

Hsieh(74): Intersection theorems for systems of finite vector spaces and other com-
binatorial results. Ph.D.Th., MIT.

Huppert(67): Finite groups I. Springer.

Johnson;Savage;Welch(72): Combinational complexity measures as a function of
fan-out. TR.

Kahn;Saks;Sturtevant(84): A topological approach to evasiveness. Combinatorica
4, 297-306.

Kannan(82): Circuit-size lower bounds and non-reducibility to sparse sets. IC 55,
40-56.

Karatsuba;Ofman(63): Multiplication of multidigit numbers on automata.
Sov.Phys.Dokl.7, 595-596.

Karnaugh(53): The map method for synthesis of combinational logic circuits. AIEE
Trans.Comm.Elect.72, 593-598.

Karp(72): Reducibility among combinatorial problems. Complexity of computer
computations. Plenum Press. 85-104.

Karp;Lipton(80): Some connections between non uniform and uniform complexity
classes. 12.STOC, 302-309.

Khasin(69): On realizations of monotonic symmetric functions by formulas in the
basis +,•,-. Syst.Th.Res.21, 254-259.

Khasin(70): Complexity bounds for the realization of monotone symmetrical func-
tions by means of formulas in the basis +,•,-. Sov.Phys.Dokl.14, 1149-1151.

Klawe;Paul;Pippenger;Yannakakis(84): On monotone formulae with restricted
depth. 16.STOC, 480-487.

Kleiman;Pippenger(78): An explicit construction of short monotone formulae for
the symmetric functions. TCS 7, 325-332.

Klein;Paterson(80): Asymptotically optimal circuit for a storage access function.
IEEE Trans.of Comp.29, 737-738.

Kleitman(69): On Dedekind’s problem: The number of monotone Boolean functions.
Proc.AMS 21, 677-682.

Kleitman(73): The number of Sperner families of subsets of an n element set. Col-
loq.Math.Soc. János Bolyai 10, 989-1001.

447

Kleitman;Kwiatkowski(80): Further results on the Aanderaa-Rosenberg conjecture.
J.on Comb.Th.(B) 28, 85-95.

Kleitman;Markowsky(75): On Dedekind’s problem: the number of isotone Boolean
functions II. Trans.AMS 213, 373-390.

Kloss(66): Estimates of the complexity of solutions of systems of linear equations.
Sov.Math.Dokl.7, 1537-1540.

Kloss;Malyshev(65): Estimates of the complexity of certain classes of functions.
Vestn.Moskov.Univ.Ser.1 4, 44-51.

Knuth(81): The art of computer programming. Addison Wesley.

Ko;Schöning(85): On circuit-size complexity and the low hierarchy in NP. SIAM
J.on Comp.14, 41-51.

Korobkov(56): The realization of symmetric functions in the class of π-schemes.
Dokl.Akad.Nauk.109, 260-263.

Korshunov(77): The solution to a problem of Dedekind on the number of monotone
Boolean functions. Dokl.Akad.Nauk.233, 543-546.

Korshunov(81a): On the number of monotone Boolean functions. Probl.Kibern.38,
5-108.

Korshunov(81b): On the complexity of the shortest disjunctive normal forms of
Boolean functions. Met.Diskr.Anal.37, 9-41.

Kovari;Sós;Turán(54): On a problem of K. Zarankiewicz. Coll.Math. 3, 50-57.

Kramer;van Leeuwen(82): The complexity of VLSI circuits for arbitrary Boolean
functions. TR Univ. Utrecht.

Krapchenko(70): Asymptotic estimation of addition time of parallel adder.
Syst.Th.Res.19, 105-122.

Krapchenko(71): Complexity of the realization of a linear function in the class of
π-circuits. Math.Notes Acad.Sci.USSR 10, 21-23.

Krapchenko(72a): The complexity of the realization of symmetrical functions by
formulae. Math.Notes.Acad.Sci.USSR 11, 70-76.

Krapchenko(72b): A method of obtaining lower bounds for the complexity of π-
schemes. Math.Notes Acad.Sci.USSR 11, 474-479.

Krichevskii(64): Complexity of contact circuits realizing a function of logical algebra.
Sov.Phys.Dokl.8, 770-772.

Kriegel;Waack(86): Lower bounds on the complexity of real-time branching pro-
grams. TR AdW Berlin (GDR).

Kucera(82): Parallel computation and conflicts in memory access. IPL 14, 93-96.

Kuznetsov(83a): On the complexity of the realization of a sequence of Boolean
functions by formulas of depth 3 in the basis {∨�&�−}. Ver.Met.Kibern.19,
40-43.

Kuznetsov(83b): On the lower estimate of the length of the shortest disjunctive
normal form for almost all Boolean functions. Ver.Met. Kibern.19, 44-47.

Ladner;Fischer(80): Parallel prefix computation. JACM 27, 831-838.

Lamagna(75): The complexity of monotone functions. Ph.D.Th., Brown Univ.

448

Lamagna(79): The complexity of monotone networks for certain bilinear forms,
routing problems, sorting and merging. IEEE Trans.on Comp.28, 773-782.

Lamagna;Savage(73): On the logical complexity of symmetric switching functions
in monotone and complete bases. TR Brown Univ.

Lamagna;Savage(74): Combinational complexity of some monotone functions.
15.SWAT, 140-144.

Lee(78): Modern switching theory and digital design. Prentice Hall.

Lipton;Tarjan(79): A separator theorem for planar graphs. SIAM J.on
Appl.Math.36, 177-189.

Lipton;Tarjan(80): Applications of a planar separator theorem. SIAM J.on Comp.9,
615-627.

Lotti;Romani(80): Application of approximating algorithms to Boolean matrix mul-
tiplication. IEEE Trans.on Comp.29, 927-928.

Lupanov(58): A method of circuit synthesis. Izv.VUZ Radiofiz 1, 120-140.

Lupanov(61): Implementing the algebra of logic functions in terms of bounded depth
formulas in the basis &�∨�−. Sov.Phys.Dokl.6, 107-108.

Lupanov(62a): On the principle of local coding and the realization of func-
tions of certain classes of networks composed of functional elements.
Sov.Phys.Dokl.6, 750-752.

Lupanov(62b): Complexity of formula realization of functions of logical algebra.
Probl.Kibern.3, 782-811.

Lupanov(65a): On the realization of functions of logical algebra by formulae of finite
classes (formulae of limited depth) in the basis •�+�−. Probl.Kibern.6, 1-14.

Lupanov(65b): A method of synthesis of control systems - the principle of local
coding. Probl.Kibern.14, 31-110.

Lupanov(70): On circuits of functional elements with delay. Probl.Kibern.23, 43-81.

Mac Lane;Birkhoff(67): Algebra. Mac Millan.

Margulis(75): Explicit construction of concentrators. Probl.of Inform.Transm.,
Plenum Press.

Masek(76): A fast algorithm for the string editing problem and decision graph
complexity. M.Sc.Th. MIT.

McCluskey(56): Minimization of Boolean functions. Bell Syst.Techn.J.35, 1417-
1444.

McColl(76): Some results on circuit depth. Ph.D.Th., Univ. Warwick.

McColl(78a): Complexity hierarchies for Boolean functions. Acta Inform.11, 71-77.

McColl(78b): The maximum depth of monotone formulae. IPL 7, 65.

McColl(78c): The circuit depth of symmetric Boolean funtions. JCSS 17, 108-115.

McColl(81): Planar crossovers. IEEE Trans.on Comp.30, 223-225.

McColl(85a): On the planar monotone computation of threshold functions.
2.STACS, LNCS 182, 219-230.

McColl(85b): Planar circuits have short specifications. 2.STACS, LNCS 182, 231-
242.

449

McColl;Paterson(77): The depth of all Boolean functions. SIAM J.on Comp.6, 373-
380.

McColl;Paterson(84): The planar realization of Boolean functions. TR Univ. War-
wick.

McKenzie;Cook(84): The parallel complexity of some Abelian permutation group.
TR Univ. Toronto.

Mead;Conway(80): Introduction to VLSI systems. Addison Wesley.

Mead;Rem(79): Cost and performance of VLSI computing structures. IEEE J.Solid
State Circuits 14, 455-462.

Mehlhorn(77): Effiziente Algorithmen. Teubner.

Mehlhorn(79): Some remarks on Boolean sums. Acta Inform.12, 371-375.

Mehlhorn;Galil(76): Monotone switching circuits and Boolean matrix product.
Computing 16, 99-111.

Mehlhorn;Preparata(83): Area-time optimal VLSI integer multiplier with minimum
computation time. IC 58, 137-156.

Mehlhorn;Vishkin(84): Randomized and deterministic simulations of PRAMs by
parallel machines with restricted granularity of parallel memories. Acta
Inform.21, 339-374.

Mendelson(82): Boolesche Algebra und logische Schaltungen. McGraw-Hill.

Meyer;Stockmeyer(72): The equivalence problem for regular expressions with squar-
ing requires exponential time. 13.SWAT, 125-129.

Meyer auf der Heide(84): A polynomial linear search algorithm for the n-dimensional
knapsack problem. JACM 31, 668-676.

Meyer auf der Heide(86): Efficient simulations among several models of parallel
computers. SIAM J.on Comp.15, 106-119.

Mileto;Putzolu(64): Average values of quantities appearing in Boolean function min-
imization. IEEE Trans.El.Comp.13, 87-92.

Mileto;Putzolu(65): Statistical complexity of algorithms for Boolean function mini-
mization. JACM 12, 364-375.

Miller,R.E.(79): Switching theory. Robert E.Krieger Publ.Comp.

Miller,W.(75): Computer search for numerical instability. JACM 22, 512-521.

Muller;Preparata(75): Bounds to complexities of networks for sorting and switching.
JACM 22, 195-201.

Muller;Preparata(76): Restructing of arithmetic expressions for parallel evaluation.
JACM 23, 534-543.

Muroga(79): Logic design and switching theory. John Wiley.

Nechiporuk(66): A Boolean function. Sov.Math.Dokl.7, 999-1000.

Nechiporuk(71): On a Boolean matrix. Syst.Th.Res.21, 236-239.

Nigmatullin(67a): Certain metric relations in the unit cube. Discr.Anal.9, 47-58.

Nigmatullin(67b): A variational principle in an algebra of logic. Discr.Anal.10,
69-89.

450

Nurmeev(81): On circuit complexity of the realization of almost all monotone
Boolean functions. Iz.VUZ Mat.25, 64-70.

Oberschelp(84): Fast parallel algorithms for finding all prime implicants for discrete
functions. LNCS 171, 408-420.

Ofman(63): On the algorithmic complexity of discrete functions. Sov.Phys.Dokl.7,
589-591.

Okol’nishnikova(82): On the influence of negations on the complexity of a re-
alization of monotone Boolean functions by formulas of bounded depth.
Met.Diskr.Anal.38, 74-80.

Pan(84): How can we speed up matrix multiplication? SIAM Rev.26, 393-415.

Paterson(73): New bounds on formula size. 3.TCS-GI, 17-26.

Paterson(75): Complexity of monotone networks for Boolean matrix product. TCS
1, 13-20.

Paterson(76): An introduction to Boolean function complexity. Astérisque 38-39,
183-201.

Paterson(83): An improved depth 0(log n) comparator network for sorting. Ober-
wolfach Conf.on Compl.Th.

Paterson;Hewitt(80): Comparative schematology. Proj.MAC Conf.on
Conc.Syst.and Par.Comp., 119-127.

Paterson;Valiant(76): Circuit size is nonlinear in depth. TCS 2, 397-400.

Paterson;Wegener(86): Nearly optimal hierarchies for network and formula size.
Acta Inform.23, 217-221.

Paul(75): Boolesche Minimalpolynome und Überdeckungsprobleme. Acta Inform.4,
321-336.

Paul(76): Realizing Boolean functions on disjoint sets of variables. TCS 2, 383-396.

Paul(77): A 2�5 n lower bound on the combinational complexity of Boolean func-
tions. SIAM J.on Comp.6, 427-443.

Paul(78): Komplexitätstheorie. Teubner.

Picard(65): Théorie des questionnaires. Gauthier-Villars.

Pippenger(76): The realization of monotone Boolean functions. 8. STOC, 204-210.

Pippenger(77a): Superconcentrators. SIAM J.on Comp.6, 298-304.

Pippenger(77b): Fast simulation of combinatorial logic networks by machines with-
out random-access storage. 15.Allerton Conf.on Comm.,Contr.and Comp.

Pippenger(77c): On another Boolean matrix. TR IBM Yorktown Heights.

Pippenger(78): The complexity of monotone Boolean functions. Math.Syst.Th.11,
289-316.

Pippenger(79): On simultaneous resource bounds. 20.FOCS, 307-311.

Pippenger;Fischer (73): Relations among complexity measures. TR IBM Yorktown
Heights.

Pippenger;Fischer(79): Relations among complexity measures. JACM 26, 361-381.

Pippenger;Valiant(76): Shifting graphs and their applications. JACM 23, 423-432.

451

Pratt(75a): The power of negative thinking in multiplying Boolean matrices. SIAM
J.on Comp.4, 326-330.

Pratt(75b): The effect of basis on size of Boolean expressions. 16.FOCS, 119-121.

Preparata;Muller(71): On the delay required to realize Boolean functions. IEEE
Trans.on Comp.20, 459-461.

Preparata;Muller(76): Efficient parallel evaluation of Boolean expressions. IEEE
Trans.on Comp.25, 548-549.

Pudlák(83): Boolean complexity and Ramsey theorems. TR Univ. Prague.

Pudlák(84a): Bounds for Hodes-Specker theorem. LNCS 171, 421-445.

Pudlák(84b): A lower bound on complexity of branching programs. 11.MFCS,
LNCS 176, 480-489.

Pudlák;Žák(83): Space complexity of computations. TR Univ. Prague.

Quine(52): The problem of simplifying truth functions. Am.Math.Soc.61, 521-531.

Quine(53): Two theorems about truth functions. Bol.Soc.Math.Mex.10, 64-70.

Quine(55): A way to simplify truth functions. Am.Math.Monthly 62, 627-631.

Razborov(85a): A lower bound on the monotone network complexity of the logical
permanent. Matemat.Zametki 37, 887-900.

Razborov(85b): Lower bounds on the monotone complexity of some Boolean func-
tions. Dokl.Akad.Nauk.281, 798-801.

Razborov(86): Lower bounds on the size of bounded-depth networks over the basis
{∧�⊕}. Preprint.

Red’kin(73): Proof of minimality of circuits consisting of functional elements.
Syst.Th.Res.23, 85-103.

Red’kin(79): On the realization of monotone Boolean functions by contact circuits.
Probl.Kibern.35, 87-110.

Red’kin(81): Minimal realization of a binary adder. Probl.Kibern.38, 181-216,272.

Reif(83): Logarithmic depth circuits for algebraic functions. 24.FOCS, 138-145.

Reznik(62): The realization of monotonic functions by means of networks consisting
of functional elements. Sov.Phys.Dokl.6, 558-561.

Riordan;Shannon(42): The number of two-terminal series-parallel networks. J.on
Math.Phys.21, 83-93.

Rivest;Vuillemin(76): On recognizing graph properties from adjacency matrices.
TCS 3, 371-384.

Runge;König(24): Die Grundlehre der mathematischen Wissenschaften 11.
Springer.

Ruzzo(81): On uniform circuit complexity. JCSS 22, 365-383.

Sattler(81): Netzwerke zur simultanen Berechnung Boolescher Funktionen. 5.TCS-
GI, LNCS 104, 32-40.

Savage(72): Computational work and time on finite machines. JACM 19, 660-674.

Savage(74): An algorithm for the computation of linear forms. SIAM J.on Comp.3,
150-158.

Savage(76): The complexity of computing. John Wiley.

452

Savage(81): Planar circuit complexity and the performance of VLSI algorithms.
VLSI Syst.and Comp., Comp.Sc.Press.

Savage(82): Bounds on the performance of multilective VLSI algorithms. TR Brown
Univ.

Scarpellini(85): Complex Boolean functions obtained by diagonalization. TCS 36,
119-126.

Schnorr(74): Zwei lineare untere Schranken für die Komplexität Boolescher Funk-
tionen. Computing 13, 155-171.

Schnorr(76a): The network complexity and the Turing machine complexity of finite
functions. Acta Inform.7, 95-107.

Schnorr(76b): The combinational complexity of equivalence. TCS 1, 289-295.

Schnorr(76c): A lower bound on the number of additions in monotone computations.
TCS 2, 305-315.

Schnorr(77): The network complexity and the breadth of Boolean functions.
Stud.Logic Found.Math.87, 491-504.

Schnorr(80): A 3-n lower bound on the network complexity of Boolean functions.
TCS 10, 83-92.

Schönhage;Strassen(71): Schnelle Multiplikation großer Zahlen. Computing 7, 281-
292.

Schöning(83): A low and a high hierarchy within NP. JCSS 27, 14-28.

Schöning(84): On small generators. TCS 34, 337-341.

Schürfeld(83): New lower bounds on the formula size of Boolean functions. Acta
Inform.19, 183-194.

Schürfeld;Wegener(86): On the CREW PRAM complexity of Boolean functions.
Parallel Computing 85, Eds.Feilmeier, Joubert, Schendel; Elsevier Publ.,
247-252.

Shannon(38): A symbolic analysis of relay and switching circuits. Trans.AIEE 57,
713-723.

Shannon(49): The synthesis of two-terminal switching circuits. Bell Syst.Techn.J.28,
59-98.

Simon,H.U.(83): A tight Ω(log log n) bound on the time for parallel RAM’s to com-
pute nondegenerate Boolean functions. FCT, LNCS 158, 439-444.

Simon,J.(77): Physical limits on the speed of computing. TR Univ. Campinas.

Sipser(83): Borel sets and circuit complexity. 15. STOC, 61-69.

Sklansky(60a): An evaluation of several two-sum and binary adders. IRE
Trans.Elect.Comp.9, 213-226.

Sklansky(60b): Conditional-sum addition logic. IRE Trans.Elect.Comp. 9, 226-231.

Skyum(83): A measure in which Boolean negation is exponentially powerful. IPL
17, 125-128.

Skyum;Valiant(85): A complexity theory based on Boolean algebra. JACM 32,
484-502.

Soprunenko(65): Minimal realizations of functions by circuits using functional ele-
ments. Probl.Kibern.15, 117-134.

453

Spaniol(76): Arithmetik in Rechenanlagen. Teubner.

Specker;Strassen(76): Komplexität von Entscheidungsproblemen. LNCS 43.

Spira(71a): On time-hardware complexity tradeoffs for Boolean functions. 4.Hawaii
Symp.on Syst.Sc., 525-527.

Spira(71b): On the time necessary to compute switching functions. IEEE Trans.on
Comp.20, 104-105.

Stockmeyer(74): The complexity of decision problems in automata and logic. TR
MIT.

Stockmeyer(76): The polynomial-time hierarchy. TCS 3, 1-22.

Stockmeyer(77): On the combinational complexity of certain symmetric Boolean
functions. Math.Syst.Th.10, 323-326.

Stockmeyer(83): The complexity of approximate counting. 15.STOC, 118-126.

Stockmeyer;Vishkin(84): Simulation of parallel random access machines by circuits.
SIAM J.on Comp.13, 409-422.

Strassen(69): Gaussian elimination is not optimal. Num.Math.13, 354-356.

Strassen(86): Relative bilinear complexity and matrix multiplication. TR Univ.
Zürich.

Tarjan(78): Complexity of monotone networks for computing conjunctions.
Ann.Discr.Math.2, 121-133.

Thompson(79): Area time complexity for VLSI. 11.STOC, 81-88.

Thompson(80): A complexity theory for VLSI. Ph.D.Th., Carnegie-Mellon Univ.

Tiekenheinrich(83): Verallgemeinerungen des Tiefenhierarchiesatzes für Boolesche
Funktionen. Dipl.arb. Univ. Bielefeld.

Tiekenheinrich(84): A 4n-lower bound on the monotone network complexity of a
one-output Boolean function. IPL 18, 201-202.

Tkachev(80): On the complexity of realizations of a sequence of Boolean functions
by Boolean circuits and π-schemes under some additional restrictions on the
construction of the schemes. Comb.and Alg.Meth.in Appl.Math., 161-207.

Turán(84): The critical complexity of graph properties, IPL 18, 151-153.

Ugolnikov(76): On the realizations of monotone functions by circuits of functional
elements. Probl.Kibern.31, 167-185.

Uhlig(74): On the synthesis of self-correcting schemes from functional elements with
a small number of reliable elements. Math.Notes Acad.Sci.USSR 15, 558-
562.

Uhlig(84): Zur Parallelberechnung Boolescher Funktionen. TR Ing.hochsch. Mit-
tweida.

Ullman(84): Computational aspects of VLSI. Comp.Sc.Press.

Valiant(76a): Graph-theoretic properties in computational complexity. JCSS 13,
278-285.

Valiant(76b): Universal circuits. 8.STOC, 196-203.

Valiant(79): Completeness classes in algebra. 11.STOC, 249-261.

Valiant(80): Negation can be exponentially powerful. TCS 12, 303-314.

454

Valiant(83): Exponential lower bounds for restricted monotone circuits. 15.STOC,
110-117.

Valiant(84): Short monotone formulae for the majority function. J.of Algorithms 5,
363-366.

Valiant(86): Negation is powerless for Boolean slice functions. SIAM J.on Comp.15,
531-535.

van Leeuwen(83): Parallel computers and algorithms. Coll.on Par.Comp.and Alg.

van Voorhis(72): An improved lower bound for sorting networks. IEEE Trans.on
Comp.21, 612-613.

Veitch(52): A chart method for simplifying truth functions. Proc.Ass. Com-
put.Mach., 127-133.

Vilfan(72): The complexity of finite functions. Ph.D.Th., MIT.

Vishkin;Wigderson(85): Trade-offs between depth and width in parallel computa-
tion. SIAM J.on Comp.14, 303-314.

Vuillemin(83): A combinatorial limit to the computing power of VLSI circuits. IEEE
Trans.on Comp.32, 294-300.

Wallace(64): A suggestion for a fast multiplier. IEEE Trans.on Comp.13, 14-17.

Wegener(79a): Switching functions whose monotone complexity is nearly quadratic.
TCS 9, 83-97.

Wegener(79b): A counterexample to a conjecture of Schnorr referring to monotone
networks. TCS 9, 147-150.

Wegener(80): A new lower bound on the monotone network complexity of Boolean
sums. Acta Inform.13, 109-114.

Wegener(81): An improved complexity hierarchy on the depth of Boolean functions.
Acta Inform.15, 147-152.

Wegener(82a): Boolean functions whose monotone complexity is of size n2� log n.
TCS 21, 213-224.

Wegener(82b): Best possible asymptotic bounds on the depth of monotone functions
in multivalued logic. IPL 15, 81-83.

Wegener(83): Relating monotone formula size and monotone depth of Boolean func-
tions. IPL 16, 41-42.

Wegener(84a): Proving lower bounds on the monotone complexity of Boolean func-
tions. LNCS 171, 446-456.

Wegener(84b): Optimal decision trees and one-time-only branching programs for
symmetric Boolean functions. IC 62, 129-143.

Wegener(84c): On the complexity of branching programs and decision trees for
clique functions. TR Univ. Frankfurt.

Wegener(85a): On the complexity of slice functions. TCS 38, 55-68.

Wegener(85b): The critical complexity of all (monotone) Boolean functions and
monotone graph properties. IC 67, 212-222.

Wegener(86a): Time-space trade-offs for branching programs. JCSS 32, 91-96.

Wegener(86b): More on the complexity of slice functions. TCS 43, 201-211.

455

Weiß(83): An Ω
(
n3�2

)
lower bound on the monotone complexity of Boolean convo-

lution. IC 59, 184-188.

Weyh(72): Elemente der Schaltungsalgebra. Oldenbourg.

Wilson(83): Relativized circuit complexity. 24.FOCS, 329-334.

Wippersteg(82): Einige Ergebnisse für synchrone Schaltkreise. Dipl.arb. Univ.
Bielefeld.

Yablonskii(57): On the impossibility of eliminating trial of all functions from P2 in
solving some problems on circuit theory. Dokl.Akad.Nauk.USSR 124, 44-47.

Yao(83): Lower bounds by probabilistic arguments. 24.FOCS, 420-428.

Yao(85): Separating the polynomial-time hierarchy by oracles. 26.FOCS, 1-10.

Yap(83): Some consequences of non-uniform conditions of uniform classes. TCS 26,
287-300.

Zák(84): An exponential lower bound for one-time-only branching programs.
11.MFCS, LNCS 176, 562-566.

FCT - Fundamentals of Computation Theory

FOCS - Symp. on Foundations of Computer Science

IC - Information and Control

ICALP - Int.Colloquium on Automata, Languages and Programming

IPL - Information Processing Letters

JACM - Journal of the Association for Computing Machinery

JCSS - Journal of Computer and System Sciences

LNCS - Lecture Notes in Computer Science

MFCS - Mathematical Foundations of Computer Science

STACS - Symp. on Theoretical Aspects of Computer Science

STOC - Symp. on Theory of Computing

SWAT - Symp. on Switching and Automata Theory

TCS - Theoretical Computer Science

TCS-GI - GI Conf. Theoretical Computer Science

TR - Technical Report

456

Index

addition 7,39,124,313,322,341,348
affine function 251
Ajtai,Komĺos and Szemeŕedi sorting
network 152
almost all 87
arithmetic circuit 64
Ashenhurst decomposition 304

basis 7
Batcher sorting network 149
bilinear function 169
bipartite matching 310
Boolean convolution 58,168,209,350
Boolean matrix product 78,107,170,350
Boolean sum 36,107,163,213
BPP 286
branching program 414

canonical slice 203
carry function 39,226,341
carry-look-ahead-adder 83
carry save adder 51
cell partition 388
central slice 204
Chinese Remainder Theorem 61
circuit 7
circuit size 9
circuit value problem 310
clause 36
clique function 107,184,189,192,203,
204,257,270,384,421,422,427,436
clique-only function 430,438
communication width 363
comparison function 143,322
complete basis 9
conditional sum adder 40
configuration 278
conjunctive normal form 5
connectivity 85,309
constant depth reducibility 312
counting function 74,123,127,252,314
CO WRAM 363
CRCW PRAM 363
CREW PRAM 362
critical complexity 379

data rate 348
deMorgan laws 4
decision tree 419

decoding circuit 90
depth 9
determinant 81,256,262,343,422
direct product 301
Discrete Fourier Transform 63
disjoint bilinear form 215
disjunctive normal form 5
division 67,308
dual function 148

elimination method 121
elusive function 418
equality test 126
EREW PRAM 362
essential dependence 19,120
Eulerian cycle 309
evasive function 418
exactly - k - function 74,426
explicitly defined function 119,139
exponential growth 17
EXP TAPE HARD 139

fan-in 11
fan-out 10
Fast Fourier Transform 62
Fischer, Meyer and Paterson method
251
formula 12
formula size 12

gate 7
generating circuit 283
graded set of Boolean functions 389
graph property 402

Hamiltonian circuit 217,426
hierarchy 296,337,394,436
(h� k)-disjoint Boolean sum 163
Hodes and Specker method 249
homogeneous function 107
Horner scheme 227

implicant 24

Karnaugh diagram 30
Krapchenko method 258
(k� s) - Lupanov representation 91

Las Vegas algorithm 286
logical level 23,320

457

logical permanent 193,426

majority function 154,243,312,313,
333,426,436
marriage problem 102
mass production 301
maxterm 5
merging function 149,151,158,322
minimal polynomial 23
minterm 5
monom 23
monotone basis 145
monotone circuit 145
monotone disjunctive normal form 32
monotone function 3
monotone representation 197
monotone storage access function 399
Monte Carlo algorithm 285
multiplication 51,226,308,313,350

NC - Nick’s class 292
NC1 reducibility 307
Nechiporuk method 253,421
negative envelope of convolution 58
network flow problem 310
non degenerated function 19,120
non deterministic Turing machine 269
non uniform computation model 19,
279,363,414
NP 33,269
NP - completeness 33,184,203,270,288

oblivious Turing machine 271
odd-even merge 149
1 - fan-in 326
oracle 270,307

P 269
parity function 36,125,261,312,313,324
380,387
partially defined function 22
perfect matching 193,426
period 348
permutation branching program 434
Πk-circuit 320
planar circuit 344
polynomial 23
polynomial growth 17
P �Poly 283
prefix problem 48
prime clause 36

prime implicant 24
probabilistic computation model 285,
352
processor partition 388
programmable circuit 110
projection reducibility 146,309
pseudo complement 195

quadratic function 107
Quine and McCluskey algorithm 25

radix - 4 -representation 54
random restriction 326
read-once-only branching program
423
replacement rule 160
ring sum expansion 6
root of identity 62

satisfiability problem 270,289
Schönhage and Strassen algorithm 56
selection function 20,218
self reducibility 289
semi-disjoint bilinear form 169
sensitive complexity 374
set circuit 208
set cover problem 33
Shannon effect 88
Shannon’s counting argument 87
Σk-circuit 320
single level 236
size 9
SIZE - DEPTH(poly� const) 312
slice function 195
sorting function 148,158,313
sorting network 74,148
space complexity 269
Stockmeyer hierarchy 270
storage access function 76,123,374,420
storage access function for indirect
addressing 255,422
Strassen algorithm 79
strong connectivity 310
subtraction 50
symmetric function 74
synchronous circuit 340

table of prime implicants 27
threshold function 74,107,127,148,154,
196,235,239,243,250,313,323,357,422

458

time complexity 269
trade-off 225
transitive function 349
Turing machine 268

uniform computation models 267,292
universal circuit 110
universal gate 112
universal graph 112

value function 176
value vector 74
variational principle 106
VLSI 226,347

weak Shannon effect 106
width of a branching program 417
WRAM 363

