
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018 1023

A Simple and Effective Heuristic Method for
Threshold Logic Identification

Augusto Neutzling, Student Member, IEEE, Mayler G. A. Martins, Member, IEEE,
Vinicius Callegaro, Member, IEEE, André I. Reis, Senior Member, IEEE,

and Renato P. Ribas, Member, IEEE

Abstract—In this paper, a straightforward and effective
method to identify threshold logic function (TLF) is presented.
Threshold logic is a promising alternative to conventional Boolean
logic due to its suitability for emerging technologies, like memris-
tors, quantum-dot cellular automata, resonant tunneling device,
and spintronic devices. Identification and synthesis of TLF are
essential tasks in a design flow based on such a logic strategy. The
proposed method relies on irredundant sum-of-products Boolean
function description form and exploits both ordering of variables
and system of inequalities to assign the variable weights and the
function threshold value. This is the first heuristic algorithm able
to identify all threshold functions with up to six variables, being
also more effective than other heuristic methods for functions
with a larger number of variables. For functions obtained from
k-cuts of benchmark circuits, experimental results demonstrated
effectiveness near to 100% when compared to exact methods,
even when the number of function variables increases. The execu-
tion time of the proposed approach is similar to related heuristic
methods, being faster than integer linear programming-based
algorithms.

Index Terms—Digital circuit, linear separable function, thresh-
old functions, threshold logic gate, threshold logic identification.

I. INTRODUCTION

THE LIMITS of MOS transistor shrinking have made
necessary the investigation of new alternatives to very

large-scale integration circuit design. Among potential can-
didates are the most recent nanodevices like memristors,
resonant tunneling devices, quantum-dot cellular automata,
single electron transistors, and spintronic devices [1]–[3]. In
this context, the proposed strategies to design digital inte-
grated circuits based on such new technologies seem to be
more effective through the implementation of threshold logic
functions (TLFs) into single gates, i.e., by building threshold

Manuscript received August 30, 2016; revised January 15, 2017 and
April 6, 2017; accepted May 26, 2017. Date of publication July 19, 2017; date
of current version April 19, 2018. This work was supported by the Brazilian
funding agencies CAPES, CNPq, and FAPERGS. This paper was recom-
mended by Associate Editor S.-C. Chang. (Corresponding author: Augusto
Neutzling.)

A. Neutzling, A. I. Reis, and R. P. Ribas are with the Institute of Informatics,
Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
(e-mail: ansilva@inf.ufrgs.br; andreis@inf.ufrgs.br; rpribas@inf.ufrgs.br).

M. G. A. Martins is with Carnegie Mellon University, Pittsburgh, PA 15213
USA (e-mail: mayler@cmu.edu).

V. Callegaro is with Mentor-A Siemens Business, Fremont, CA 94538 USA
(e-mail: vinicius_callegaro@mentor.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2729403

logic gates (TLGs). For this reason, threshold logic synthesis
has been recently revisited aiming to explore the particulari-
ties of this kind of Boolean functions [2]–[5]. Moreover, the
construction of TLGs has been proposed for both CMOS and
emerging nanometric technologies [5]–[8], [16].

In this scenario, the threshold logic identification is an
essential task that corresponds to the process of identifying
whether a given Boolean function is TLF, besides computing
the variable weights and function threshold value. Notice that
the most of the identification methods available in the literature
are based on solving systems of inequalities generated from
truth table description form. These methods exploit integer lin-
ear programming (ILP) to provide optimal results [2], [4], [9].
However, scalability is their main bottleneck because the
system of inequalities tends to increase exponentially with
the number of function variables. One of the first heuristic
(non-ILP-based) methods to identify threshold functions was
proposed by Gowda et al. [10], and later improved in [11].
Gowda et al.’s [10] method applies functional decomposition
and min-max factorization tree techniques. The target function
is decomposed into simple subfunctions until these ones can be
directly identified as AND and OR basic functions, or even as
constant logic values “0” and “1.” These subfunctions are then
merged by exploiting TLF properties. Palaniswamy et al. [12]
proposed a method-based directly on the Chow’s parameters,
being later improved in [13]. However, the main drawbacks
of Palaniswamy et al.’s [12] approach are the degradation on
the number of identified TLFs and the fact that the assigned
variable weights do not always correspond to the minimum
possible values. These nonminimum weights may impact the
final circuit area [2], [5].

This paper presents a novel non-ILP-based method to
perform the identification and synthesis of TLF. This new
algorithm is inspired by previous work presented in [14],
being based on the manipulation of inequalities generated from
irredundant sum-of-products (ISOPs) function representation
in order to assign the TLF variable weights. The proposed
approach presents three major contributions.

1) A new heuristic method to assign the variable weight
values of TLFs.

2) A novel ISOP-based procedure able to define the vari-
able weight ordering (VWO) before computing the
absolute variable weight values.

3) A fast algorithm to generate ISOP representation of
unate Boolean functions.

To the best of our knowledge, the proposed method is
the first heuristic approach capable of identifying all TLFs
with up to six variables. The method can be applied in

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 

mailto:ansilva@inf.ufrgs.br
mailto:andreis@inf.ufrgs.br
mailto:rpribas@inf.ufrgs.br
mailto:mayler@cmu.edu
mailto:vinicius_callegaro@mentor.com
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


1024 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

threshold logic synthesis tools finding TLF with more vari-
ables without loss of efficiency [2], [4], [11], [15], [16], [27].
Moreover, the proposed method is also able to identify more
TLFs with a larger number of variables in comparison to
other non-ILP-based methods, maintaining similar execution
time. For functions obtained from k-cuts of Altera open-
cores circuits [25], experimental results have demonstrated
that the effectiveness is near to 100% when compared to exact
methods, even when the number of inputs increases.

The rest of this paper is organized as follows. In Section II,
we present some preliminaries about Boolean functions
and threshold logic. The proposed method is described in
Section III. In Section IV, two case studies are presented in
order to demonstrate the application of the method. Section V
presents experimental results, proving the algorithm effi-
ciency through an extensive comparison to the state-of-the-art
approaches. The conclusions are outlined in Section VI.

II. PRELIMINARIES

Some definitions and fundamentals are presented for a better
comprehension of the proposed method.

A Boolean function f defined over the variable set X =
{x1, . . . , xn} is a function defined as f (X) : Bn → B, where
B = {0, 1} and n = |X|, i.e., n is the number of variables in
X. In this paper, AND, OR, and NOT operations are denoted
by “·,” “∨,” and “!,” respectively.

A literal is a variable (xi) or its complement (!xi), whereas
a cube is a product of literals that represents a Boolean sub-
space. The cube size of a cube with l literals in a Boolean
space Bn is given by 2(n−l). Consequently, the size of a cube
is inversely proportional to the number of literals in this cube.

Furthermore, an expression is called sum-of-
products (SOPs) when this expression corresponds to
product terms (AND) joined by a sum (OR) operation. In
particular, an ISOPs is an SOP in which neither a literal
nor a cube can be removed without changing the function
behavior.

Given a function f represented by an ISOP form, this func-
tion is unate if, and only if, either direct (positive polarity) or
complemented (negative polarity) literals, but not both, appear
to each variable. Notice that a unate function has a unique
ISOP representation [17].

By considering a set of all functions with up to n variables,
these functions can be grouped into classes. Boolean functions
can be grouped taking into account the negation (N), and/or the
permutation (P) of variables, and/or the negation of function
value [18]. For instance, NP-class corresponds to the set of
distinct functions obtained by negating and/or permuting the
input variables.

On the other hand, in the threshold logic context, TLF is
a Boolean function that fits in the following structure. Each
variable has a corresponding weight and the Boolean function
has a threshold value. If the sum of weights of variables pre-
senting true (1) value is greater than or equal to the threshold
value, then the function evaluates to true (1) value. Otherwise,
the function is false (0). This behavior can be expressed as
follows [19]:

f =

⎧
⎪⎨

⎪⎩

1,

n∑

i=1

wi·xi ≥ T (1a)

0, otherwise (1b)

Fig. 1. Elementary properties of TLFs [19].

where xi represents each variable [0, 1], wi is the correspond-
ing weight of each variable, and T is the threshold value of the
function. A threshold function can be completely represented
by the vector [w1, w2, . . . , wn; T]. Notice that NAND and NOR

Boolean functions are TLF, as well as some complex functions
as the following one:

f1 = (x1 · x2) ∨ (x1 · x3) ∨ (x2 · x3 · x4) ∨ (x2 · x3 · x5) (2)

that corresponds to the TLF represented by f =
[4, 3, 3, 1, 1; 7].

All TLFs are unate functions but not all unate functions are
TLF. Therefore, if a function has binate variables then it is not
TLF [19]. For instance, the function f2 = (x1 · x2) ∨ (x3 · x4)

is a unate function that is not TLF. Notice that, when
a given unate Boolean function presents variables in neg-
ative polarity, these variables can be treated in the same
way as functions having all variables in positive polarity in
order to identify whether it is TLF. If f (x1, x2, . . . , xn) is
TLF, represented by [w1, w2, . . . , wn; T], then the comple-
mented function !f (x1, x2, . . . , xn) is also TLF, defined by
[−w1,−w2, . . . ,−wn; (1 − T)]. This property is illustrated in
Fig. 1.

In terms of circuit design, a TLG corresponds to the physical
construction of a given TLF into a single gate. As discussed
above, some complex Boolean functions can be identified as
TLF. Thus, respecting the restrictions and limitations of the
target technology, a promising feature of threshold logic design
is the reduction in the number of gates instantiated in the
circuit, and probably the associated physical area [2], [5].

Several works have proposed TLGs built on different tech-
nologies, based both on conventional static CMOS design and
emerging technologies [5]–[8], [16]. These works also analyze
electrical characteristics of gates.

In addition to signal delay propagation, circuit area and
power dissipation evaluation, the reliability of TLG is also
an important concern. In particular, using minimum weights
can decrease the reliability of the TLG. In this sense, some
works have exploited a tradeoff between area and reliability
where the variable weights are increased in order to improve
the circuit reliability [29], [30]. These methods consider that
the variability on the manufacturing process and the signal
noise can be modeled as perturbations in the variable weights
and function threshold value.

The identification method proposed herein tries to compute
minimum input weights, aiming the area optimization. Notice
that obtaining minimum weights is the first action in a reli-
ability aware flow. Therefore, in a future work, the proposed
method can be extended by adding a reliability factor for each
input weight assignment.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



NEUTZLING et al.: SIMPLE AND EFFECTIVE HEURISTIC METHOD FOR THRESHOLD LOGIC IDENTIFICATION 1025

Fig. 2. Flowchart of the proposed algorithm for TLF identification.

III. THRESHOLD LOGIC FUNCTION IDENTIFICATION

The most common methodology adopted to identify TLF
performs the generation of a system of inequalities from the
truth table representation and then solves this system by using
ILP approach [2], [4], [9]. If a solution for such inequalities
system is found, the given function is considered TLF and the
solution corresponds to the variable weights and the thresh-
old value. In the case that the system cannot be solved, the
function is not TLF and more than one TLF is required to
implement the target function.

In our method, a complete system of inequalities is also built
using a similar strategy to ILP inequalities generation algo-
rithms. However, unlike ILP-based approaches, the inequalities
system is not solved. Instead, the algorithm selects some of
the inequalities as constraints to the associated variables to
compute the variable weights in a bottom-up way. After this
assignment, the consistency of the complete system is verified
in order to check whether the weights have been correctly
computed.

For the sake of comprehension, the algorithm has been split
into ten steps, illustrated in Fig. 2, as summarized in the fol-
lowing. Step 1 checks the unateness of the given Boolean
function; if the function is unate, then the ISOP is generated
in step 2, except whether the ISOP has already been applied
as input function description; in step 3, the ordering of the
variable weights is identified; step 4 generates the inequali-
ties; step 5 creates the system of inequalities; in step 6, the
simplification of the inequalities set is executed; in step 7, the
association of each variable to some inequalities is performed;
and step 8 assigns the variable weights while the consistency
of the solution is verified and whether the given Boolean
function is confirmed as TLF. In step 9, it is performed an

Algorithm 1 Function Unateness Checking
Input: Function f in truth table form
Output: Vector U containing the unateness of each variable

1: for each xi ∈ X
2: α = f (xi = 1)
3: β = f (xi = 0)
4: γ = α ∨ β
5: if (α = β) then U [xi] = don’t_care
6: else if (α ≡ γ) then U [xi] = positive_unate
7: else if (β ≡ γ) then U [xi] = negative_unate
8: else if (α �= β �= γ) then
9: U [xi] = binate

10: return FALSE
11: end if
12: end for
13: return U

eventual adjustment of the weights, when necessary. Finally,
the threshold value is computed in step 10.

A. Unateness Checking

As mentioned before, if a given function is not unate then it
is not TLF. Therefore, in step 1, the algorithm checks the func-
tion unateness property. For binate function, this step already
returns FALSE, i.e., the function is not TLF.

A completely specified function is positive unate in variable
x, iff(xi = 1) ⊃ f (xi = 0), where f (xi = 1) is the positive
cofactor and f (xi = 0) is the negative cofactor of f with respect
to variable xi. The unateness checking is based on the positive
and negative cofactors generation. Algorithm 1 presents the
pseudocode of the unateness checking, considering the input as
a truth table that corresponds to step 1 of the method, depicted
in Fig. 2. If the input is an ISOP form, the unateness checking
is trivially performed by iterating on all cubes and storing the
polarities of each variable. If both polarities of at least one
variable appear, the function is not unate.

As discussed in Section II, considering threshold functions,
a negative unate variable can be changed to a positive one by
just inverting the weight signal, and this amount is then sub-
tracted from the threshold value. In our method, the negative
variables are treated as positive ones, and this information is
stored. After computing the threshold function parameters, the
input weights are adjusted.

For instance, in the given function foriginal = (!a∨(b·c)), the
variable a is negative unate. The method considers the function
fpositive = (a ∨ (b · c)), where a is positive unate. The identi-
fied variable weights for fpositive are 2, 1, and 1. Afterwards,
the signal of the negative variables and the function threshold
value are adjusted based on the properties illustrated in Fig. 1.
The variable weights for foriginal are −2, 1, and 1, respectively.

B. ISOP Generation Based on Hasse Diagram

The method proposed herein for threshold logic identifica-
tion works over an ISOP representation of a given Boolean
function f and an ISOP representation of !f . The ISOP needs
to be generated when either the input function is represented
by a truth table (usually for functions with up to 16 variables)
or an ISOP of !f is not provided.

The conventional methods adopted in the ISOP genera-
tion usually apply the Espresso logic minimizer [17] and the
Minato [20] algorithm, being suitable for general (unate and

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



1026 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Fig. 3. Hasse diagram of a four-input Boolean function [21].

Algorithm 2 Compute the ISOP of a Positive Unate Function
Based on the Hasse Diagram
Input: Boolean function f
Output: Set of cubes isop

1: queue = Ø
2: isop = Ø
3 status[ ] = Ø
4: fp = Ø
5: for each xi ∈ X
6: queue.add (2i)
7: while(queue is not empty)
8: cube = queue.remove
9: if (status[parentrof (cube)] = ACCEPTED)
10: continue
11: fc = getfunction(cube)
12: if (f = f ∨ fc)
13: isop = isop ∪ cube
14: status[cube] = ACCEPTED
15: fp = fp ∨ fc
16: else
17: queue.add (childrenof(cube))
18: if( fp = f )
19 return isop
20: end while
21: return isop

binate) Boolean functions. In this paper, we developed a faster
procedure created specifically to handle unate functions.

This novel ISOP generation algorithm is based on the Hasse
diagram, where each vertex corresponds to a minterm, each
level i contains cubes with i literals, and each cube covers all
of its descendants in the diagram [21]. A breadth-first search is
performed, such that larger cubes, i.e., cubes that cover more
minterms, are visited before the smaller cubes. For instance,
a complete Hasse diagram of a four-input Boolean function is
illustrated in Fig. 3.

For each visited vertex in the diagram, if the respective
cube function fc is contained in the target function f, then this
cube is added to the partial solution fp and its descendants are
not visited. When the partial solution function is equivalent to
the target function (f ≡ fp), the final solution is found. The
ISOP generation procedure is described by the pseudocode
in Algorithm 2 and corresponds to step 2 of the flowchart
depicted in Fig. 2.

Algorithm 3 Compute the VWO
Input: Function f with n variables represented by an ISOP F with

cube set C that contains m cubes
Output: List VWO parameters list_vwo in ascending order

1: initialize all values of list_vwo as zero
2: for each cube c ∈ C do
3: lit = |c|
4: for each xi ∈ c do
5: add m(n-lit) in list_vwo[xi]
6: end for
7: end for
8: order(list_vwo)
9: return list_vwo

C. Variable Weight Ordering Computation

In the proposed method, the computation of the VWO
it is a crucial task because this information is used in the
inequalities simplification and the weight assignment steps.
A well-known way to obtain such an ordering is through
the Chow’s parameters [17], [19]. The correlation between the
Chow’s parameters pi and pj of two variables xi and xj, respec-
tively, induces the correlation between the corresponding
weights wi and wj, i.e., if pi > pj then wi > wj [22].

A new algorithm to obtain a VWO parameter is presented
in this paper. VWO parameters provide similar VWO as the
Chow’s ones, although the absolute parameter values are pos-
sibly different. These parameters are calculated directly from
the ISOP, being quite straightforward and fast to compute.
They are based on the max literal computation, as proposed
in [11].

Considering an ISOP representation of a given function f,
the largest variable weight of the target TLF is associated to
the literal that occurs most frequently in the largest cubes of
f, i.e., in the cubes with fewer literals. In the case of a tie, it
is decided by comparing the frequency of the literals in the
next cubes with the smaller size.

The algorithm defines a weight for each cube, corresponding
to the cube size. This weight is added to the VWO parameter
of the variables present in the cube. The VWO is associ-
ated with the ordering of these parameters computed for each
variable. The pseudocode of step 3 is described in Algorithm 3.

In [14], the variable ordering is obtained through the
Chow’s parameters computation, whose time complexity is
always 2n for each variable. The complexity to compute
the VWO parameter of each variable depends on the num-
ber of ISOP cubes, which is strictly smaller than 2n. For
unate functions, the worst case of the number of cubes is
(n!/�(n/2)�! · (n/2)�!).

For instance, for a given Boolean function defined by the
following ISOP:

f3 = (x1 · x2) ∨ (x1 · x3 · x4) (3)

the calculated values of variables x1, x2, x3, and x4 are 6 =
22 + 21, 4 = 22, 2 = 21, and 2 = 21, respectively, whereas
the Chow’s parameters for these variables are 10, 6, 2, and 2,
respectively. Notice that the same ordering is obtained in both
calculations. Thus, in this case, the algorithm assigns initially
the weight of the variables x3 and x4, and then the weight of
the variable x2, being the weight of variable x1 the last one to
be assigned.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



NEUTZLING et al.: SIMPLE AND EFFECTIVE HEURISTIC METHOD FOR THRESHOLD LOGIC IDENTIFICATION 1027

TABLE I
INEQUALITIES FROM TRUTH TABLE REPRESENTING

THE FUNCTION IN (3)

D. Generation of Inequalities From ISOP

Equation (1) defines the relationship between the variable
weights and the threshold value of the target TLF. If the func-
tion value is true (1) for certain assignment vector then the
sum of weights of this assignment is equal to or greater than
the threshold value. Otherwise, the function value is false (0),
i.e., the sum of weights is less than the threshold value. From
these relationships, it is possible to generate the associated
inequalities. As illustration, the relationships between the vari-
able weights and the threshold value in respect with the truth
table of the function from (3) are shown in Table I.

Some of these relationships are redundant because some
inequalities are self-contained into other ones. For instance,
once we have the relationship (w1 + w2) ≥T and the vari-
able weights are always positive, so the relationship (w1 +
w2 +w3) ≥ T is redundant. The irredundant information is the
lesser assignments (i.e., the lesser weight sum) that make the
function true (1) and the greater assignments (i.e., the greater
weight sum) that make it false (0). Notice that an assignment
vector A(a1, a2, a3 . . . an) is smaller than or equal to an assign-
ment vector B(b1, b2, b3 . . . bn), denoted as A ≤ B, if, and only
if, ai ≤ bi for (i = 1, 2, 3, . . . , n). For instance, the assignment
vector (1,0,0,1) is lesser than the assignment vector (1,1,0,1),
whereas the assignment vectors (0,1,0,1) and (1,1,0,0) are not
comparable.

In our method, these redundancies are avoided using two
ISOP expressions, one for the direct function f and another
for the negated function !f. In the example above, the least true
assignment vectors are (1,1,0,0) and (1,0,1,1), and the greatest
false assignment vectors are (1,0,1,0), (1,0,0,1), and (0,1,1,1).
Therefore, the algorithm creates only (w1 + w2) and (w1 +
w3 + w4) on the greater side, and (w1 + w3), (w1 + w4), and
(w2 + w3 + w4) on the lesser side. The ISOP expressions of f,
and !f are considered as inputs to the proposed method. Each
sum of variable weights greater than the function threshold
value is placed on the greater side set, whereas each sum of
weights which is less than the threshold value belongs to the
lesser side set. Table II shows these two sets for function f3,
defined in (3).

TABLE II
INEQUALITIES SYSTEM GENERATED FOR

FUNCTION DESCRIBED IN TABLE I

Algorithm 4 Generation of Inequalities Sides
Input: ISOP form of function f and negated function !f
Output: Two sets of inequalities sides, a set ineq_greater and a set

ineq_lesser

1: for each cube c ∈ C
2: create inequality_side S from c
3: add S in ineq_greater
4: end for
5: for each cube c ∈ C’
6: create inequality_side S from c
7: add S in ineq_lesser
8: end for
9: return <ineq_greater, ineq_lesser>

TABLE III
INEQUALITIES SYSTEM GENERATED TO THE

FUNCTION DESCRIBED IN TABLE I

This procedure corresponds to step 4 of the flowchart
depicted in Fig. 2, and is described by the pseudocode
in Algorithm 4. The time complexity of this algorithm is
O(m + m′), where m is the number of cubes in the ISOP of
function f and m′ is the number of cubes in the ISOP of the
negated function !f.

E. Creation of Inequalities System

The pseudocode that represents the procedure to create
the system of inequalities, corresponding to step 5 illus-
trated in Fig. 2, is presented in Algorithm 5. The instruction
compose_inequality creates a new inequality from the two
inequality sides. Each element on the greater side is greater
than each element on the lesser side, and the greater side
elements are greater than (or equal to) the threshold value,
whereas the lesser side elements are smaller than that. The
inequalities system is generated by performing a Cartesian
product of the greater side set and the lesser side set.

Table III shows the six inequalities generated by the Boolean
function illustrated in Table I. Notice that if the procedure
had taken into account all the truth table assignments then
55 inequalities had been generated. The time complexity of
Algorithm 5 is O(m · m′), where m is the number of cubes in
the ISOP of function f and m′ is the number of cubes in the
ISOP of negated function !f.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



1028 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Algorithm 5 Inequalities System Generation
Input: Two sets of inequalities: a set ineq_greater and a set

ineq_lesser
Output: Set of inequalities ineq_set

1: set_ineq = ∅
2: for each inequality_side g ∈ ineq_greater
3: for each inequality_side l ∈ ineq_lesser
4: ineq = compose_inequality(g,l)
5: add ineq in set_ineq
6: end for
7: end for
8: return <set_ineq>

Fig. 4. Sequential tasks for inequalities simplification.

TABLE IV
UPDATED VARIABLES BASED ON VWO PARAMETERS FROM (3)

F. Simplification of Inequalities

Besides generating only irredundant inequalities, the
proposed method also simplifies each inequality and eventually
discards some of them. The inequalities simplification process
is performed through four basic tasks, as shown in Fig. 4.

The method assumes that if two variables have similar VWO
parameters value then they present the same weight (it was
proved by Muroga et al. [23] for functions with up to seven
variables). Based on this assumption, the algorithm creates
a new reduced set of variables where each variable corresponds
to a VWO parameter value. These variables are called updated
variables and are represented by A, B, C, and others, where A
corresponds to the variable with the greatest VWO parameter
value, B is the next, and so on.

The reduction in the number of variables allows the reduc-
tion of inequalities and, consequently, decreases the algorithm
runtime. Table IV shows the updated variable created to the
function described in (3), where the new number of variables is
now three instead of four. Table V presents the new inequalities
system with the updated variables. This domain transformation
is described in Algorithm 6, whose time complexity is O(n2),
being n the original number of variables.

The inequality simplification occurs when the variable
weight appears on both sides of a given inequality. When
it occurs, this variable is removed from the inequality. For
instance, consider the inequality (A+C+C)> (B+C+C). This
inequality can be simplified by removing C, so resulting in the
inequality A > B. This procedure is illustrated in Table VI.
The resulting set of inequalities is presented in Table VII.

TABLE V
INEQUALITIES FROM TABLE III REPRESENTED

BY NEW UPDATED VARIABLES

Algorithm 6 Domain Transformation for Inequalities
Simplification
Input: Set of variables X, VWO parameters V, and inequalities

set_ineq
Output: Set of inequalities set_ineq’ with updated variables, grouped

by VWO values

1: set_ineq’ := Ø
2: set_tuples := Ø
3: for each VWO vi ∈ V
4: vi_set := Ø
5: for each variable xi∈ X
6: if (vwo(xi) = vi)
7: add xi in vi_set
8: end if
9: end for

10: xj’ := get_first_element(vi_set)
11: create tuple t < vi_set, xj’ >
12: add t in set_tuples
13: end for
14: set_ineq’ := set_ineq
15: for each inequality ineq ∈ set_ineq’
16: change_variables (ineq,set_tuples)
17: end for
18: return set_ineq’

TABLE VI
SIMPLIFICATION OF INEQUALITIES FROM TABLE V

TABLE VII
RESULTING SET OF INEQUALITIES FROM TABLE VI

Since all variable weights are positive, the algorithm dis-
cards the inequalities that have null weight (i.e., a weight equal
to zero) on the lesser side. These inequalities are not useful
because they only confirm that the weights are positive.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



NEUTZLING et al.: SIMPLE AND EFFECTIVE HEURISTIC METHOD FOR THRESHOLD LOGIC IDENTIFICATION 1029

Algorithm 7 Inequalities Simplification
Input: Set of inequalities set_ineq
Output: Simplified set of inequalities set_ineq_simplified

1: set_ineq_simplified := Ø
2: for each inequality ineq ∈ set_ineq
3: split ineq in greater and lesser side
4: for each variablev1 ∈ greater_side
5: for each variablev2 ∈ lesser_side
6: if (v1 = v2)
7: remove(v1,greater_side)
8: remove(v2,lesser_side)
9: end if

10: end for
11: end for
12: if lesser_side is not empty
13: ineq := compose_inequality (greater,lesser)
14: add ineq in set_ineq_simplified
15: end if
16: end for
17: return set_ineq_simplified

The inequalities which contain only one element on each
side are checked just once using directly the VWO parameters.
If one of these inequalities is not consistent, the function is
defined as not TLF because the VWO parameter ordering is
not respected. For instance, for inequality #1 in Table VII
(B > C), the variables are replaced by the VWO parameter
values, obtaining 6 > 2. In this case, the VWO order holds
and then the inequality is discarded.

Notice that, until this moment:
1) the method has not assigned the input weights yet;
2) the method is not able to determine whether a given

Boolean function is TLF yet;
3) it is only possible to determine some functions that have

been identified as non-TLF.
After all these simplifications, the set of useful inequalities

can be significantly reduced. In the demonstration example,
described in Table I, inequality #3 is the only one remaining
in Table VII, that is A > (C + C). As a result, it is the only
inequality to be used in the assignment step. The reduction in
the number of inequalities is a key factor of the proposed
method since the weight assignment is based on inequali-
ties manipulation. However, such a simplification makes the
method heuristic, i.e., discarded inequalities could be essen-
tial for the right solution. It can generate false negatives for
functions with more than six variables. The pseudocode of the
complete inequalities simplification process, corresponding to
step 6 illustrated in Fig. 2, is shown in Algorithm 7. The time
complexity of this step is O(n · log(n) · m · m′), being n the
number of variables, m the number of cubes in the ISOP of
function f, and m′ the number of cubes in the ISOP of the
negated function !f .

G. Association of Inequalities to Variables

Before computing the variable weights, the tuple
<variables,inequalities> associating the variables with
some of the inequalities is created in step 7 of the method,
presented in Fig. 2. By making so, each variable points to
inequalities in which the variable is present on the greater
side. This relationship is exploited in the weight assignment
step, discussed in the next section. However, the function
defined by (3), used as example in the description of previous

Fig. 5. Example of relationship associating variables and inequalities of
function from (4).

steps, is not actually the most appropriate one to illustrate
how this procedure works because the simplified set of
inequalities has only one inequality. For a better visualization
of this step, Fig. 5 illustrates such a kind of relationship for
the following function:

f4 = (x1 · x2 · x3) ∨ (x1 · x2 · x4) ∨ (x1 · x3 · x4) ∨ (x1 · x2 · x5)

∨ (x1 · x3 · x5) ∨ (x1 · x4 · x5) ∨ (x1 · x2 · x6)

∨ (x1 · x3 · x6) ∨ (x2 · x3 · x4) ∨ (x2 · x3 · x5). (4)

H. Variable Weights Assignment

The variable weight assignment step receives the updated
set of variables, after the domain transformation, ordered by
the VWO parameters, as well as the inequalities and relation-
ships defined in the previous section. The first task is to assign
minimum values for each variable. The variable with the low-
est VWO parameter value is assigned by 1, the second lowest
one by 2, and so on. In the example in Table III, the initial
weights assignment trial is C = 1, B = 2, and A = 3. This
step is described in line 1 in Algorithm 8.

The algorithm iterates over all variables, in ascending order
(according to the VWO ordering). Each variable points to a set
of inequalities, as explained in step 7. The consistency of each
inequality is verified, being performed by checking whether
the sum of the current values of the greater side variables is
greater than the sum of the current values of the lesser side
variables.

The difference between the two inequality sides is called
delta. If delta is not positive, the inequality is not consistent,
i.e., the current assigned weights do not satisfy this inequality.
In this case, the value of the variable under verification is
incremented, trying to make it valid. Delta is computed in
line 6 in Algorithm 8, whereas the consistency is checked in
line 7.

When the value of this variable is incremented, the value
of the variables with greater VWO parameter is also be
incremented in order to maintain the ordering. For instance,
considering the following case (A + C) > (B + B + B),
increasing the value of C would never turn the inequality con-
sistent because it also increases the values of A and B, i.e.,
(A+1+C+1) > (B+1+B+1+B+1). In this sense, the lesser
side cannot increase more than the greater side. The procedure
increment_weights is responsible for incrementing the weight
of variable vi and the weight of the variables greater than vi.

The decision whether the weight of a variable should be
incremented is computed in three steps.

1) Increment the value of the variable, as well as the value
of the greater variables, by 1.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



1030 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Algorithm 8 Weight Assignment
Input: List of variables list_variables, relationship of variables
Output: Array of weights W with assigned values
1: for all variable vi ∈ list_variables do W[v]] = i
2: end for
3: for each vi ∈ list_variables do
4: set_ineq = get_ineq_by_variable(vi)
5: for each inequation ineq ∈ set_ineq
6: delta = weight_sum(greaterSide) - weight_sum(lesserSide)
7: if (delta <= 0) // is the inequality inconsistent?
8: increment_weights(vi,list_variables,1)
9: delta’=weight_sum(greaterSide)- weight_sum(lesserSide)
10: if (delta’ > delta) //will the variable be incremented?
11: increment = -delta / (delta - delta’)
12: increment_weights(vi,list_variables, increment)
13: else
14: increment_is_undone
15: end for
16: end for
17: return W

TABLE VIII
ORIGINAL SYSTEM, FROM TABLE VI, WITH

COMPUTED VARIABLE WEIGHTS

2) Compute the new delta, denoted delta′·
3) If delta′ = delta, then the increment is undone and

the inequality is kept as inconsistent, and the algorithm
proceeds to the next inequalities and variables.

When delta′ > delta, the increment_weights procedure is
applied.

The increment value that makes the inequality consistent is
computed as follows:

increment =
⌈

−delta
(
delta − delta′)

⌉

. (5)

Finally, the original system is checked for consistency by
replacing the variables by the assigned weights. If all inequal-
ities are consistent, then the values correspond to the right
variable weights. Otherwise, if at least one of the inequalities
is not consistent then the method identifies the given func-
tion as not TLF. This ensures that false positive solutions are
not found.

In the previous example, illustrated in Table VII, only the
inequality A > (C+C) remains to the assignment step. In this
case, the assigned weights are C = 1, B = 2, and A = 3. The
inequality is consistent with these values and so no increment
is required. These updated variable values are assigned to the
corresponding variable weights, resulting in w1 = 3, w2 = 2,
and w3 = w4 = 1. Table VIII shows the original system with
the assigned values.

Since all inequalities are consistent, the computed values
are accepted as a valid solution of the system. Algorithm 8
shows the pseudocode of the assignment task that corresponds

to step 8 shown in Fig. 2. The time complexity of this step is
O(n ·m ·m′), being n the number of variables, m the number of
cubes in the ISOP of function f, and m′ the number of cubes
in the ISOP of the negated function !f.

I. Variable Weights Adjustment

When the weight of a variable is incremented, a true
inequality can become false. One way to identify and to
prevent the occurrence of such a problem is discussed below.

For a given function, consider that the growing ordering
of the updated variable is D, C, B, and A, where A has the
highest weight value and D has the lowest weight value. At
a certain time, the algorithm has checked the inequalities asso-
ciated with D, C, and B variables. The inequalities associated
with the variable A are checked again, and any inconsistency
determines that the value of this variable needs to be incre-
mented. However, there is a certain inequality that has already
been checked, e.g., (B + C + D) > A. By increasing the value
of variable A, the inequality that had been verified consistent
could now become inconsistent.

This kind of problem may occur when a variable on the
lesser side of the inequality has greater value than any variable
value on the greater side. In our investigation, it has been
observed in less than 2% of the six-input functions and never
in functions with fewer variables. As a consequence, in these
cases, the minimum weight values are not guaranteed.

In order to solve this problem, we present a relationship
represented by the tuple <variable,inequalities>, where the
variables point to inequalities. This relationship is similar to
that one presented in Section III-G and is called reverse rela-
tion. If a variable x is on the lesser side and its VWO parameter
value is greater than any VWO parameter of the greater side
variables then this information is stored on the relationship
tuple. In the assignment, presented in Section III-H, when the
method determines that a variable must be incremented, this
reverse relation may also be checked.

When incrementing a variable, the method:
1) checks if there is an inequality associated to this variable

in the reverse relation;
2) checks if this inequality becomes inconsistent after

incrementing the variable x;
3) (if so) increments the greatest value variable of the

greater side, and makes the inequality consistent again.
This is done recursively for the variables with VWO
parameter greater than the one of variable x.

It is important to notice that, whenever the value of some
variable is incremented, the value of the higher variables
must also be incremented, i.e., the ordering must be main-
tained. A demonstration of this improvement is shown in
Section IV-B.

J. Function Threshold Value Computation

After checking whether the input weights have been
assigned correctly, the method calculates the function thresh-
old value in step 10. In a TLF represented through an ISOP
form, the sum of weights of the variables present in each prod-
uct is equal to or greater than the threshold value. Therefore,
the threshold value is equal to the least sum of weights of the
greater side set. In the example defined by (3) and in Table I,
the threshold value is 5, obtained from the greater side element
of any inequality in Table VIII (in this case, each greater sides

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



NEUTZLING et al.: SIMPLE AND EFFECTIVE HEURISTIC METHOD FOR THRESHOLD LOGIC IDENTIFICATION 1031

TABLE IX
VWO PARAMETER VALUES FOR FUNCTION OF (5)

TABLE X
INEQUALITIES GENERATION FOR FUNCTION DESCRIBED BY (5)

have equal weight sum). The final solution for this particular
function is [3, 2, 1, 1; 5].

IV. CASE STUDIES

In the previous section, the method proposed for TLF
identification was described. The example of (3), used to
demonstrate the algorithms, is quite straightforward, having
been adopted just to simplify the explanation and to facilitate
the understanding of the procedure steps. However, the impor-
tance and impact of each step can be underestimated with such
a simple example. In this section, two more complex functions
are used as case studies in order to illustrate the major gains
and benefits of the proposed method.

A. First Case Study

Consider the following Boolean function:

f5 = (x1 · x2) ∨ (x1 · x3) ∨ (x1 · x4)

∨ (x2 · x3) ∨ (x2 · x4) ∨ (x1 · x5 · x6). (6)

The first step is to compute the VWO parameter for each
variable and sort them, as shown in Table IX.

The given function described in (6) presents 64 possible
assignment vectors since it has six variables. Among these
assignments, 23 are false and 41 are true. If all truth table
assignments were taken into account, then the system would
have 943 inequalities. However, as it was discussed before,
the method considers the ISOP expression as input and gen-
erates only the greatest false assignments and the least true
assignments. The greater side and lesser side sets for this
case are presented in Table X. Afterwards, the Cartesian prod-
uct between the greater side and the lesser side is performed
and 24 inequalities are obtained, as shown in Table XI. In
the next, the algorithm creates the updated variables based on
repeated VWO parameters and replaces the variable weights,
as shown in Table XII. The simplification is then performed
by removing variables that appear on both sides of the
inequalities. The simplified set of inequalities is presented
in Table XIII.

For the variable weight assignment, the method selects only
inequalities that have more than one weight on the lesser
side and discards repeated inequalities. Table XIV presents
the selected inequalities for the given example. We have only

TABLE XI
ORIGINAL INEQUALITIES SYSTEM FOR FUNCTION DESCRIBED BY (5)

TABLE XII
UPDATED VARIABLE CREATED FOR EACH VWO PARAMETER

VALUE FOR FUNCTION DESCRIBED BY (5)

TABLE XIII
SIMPLIFIED INEQUALITIES SYSTEM FROM TABLE XI USING

UPDATED VARIABLES FROM TABLE XII

8 inequalities against 943 inequalities whether a conventional
method had been applied and against 24 inequalities present
in the system originally generated.

Fig. 6 illustrates the variable weight assignment. At first,
the variables are assigned with minimum values, respecting
the ordering defined by the respective VWO parameters. Thus,
these values are A = 4, B = 3, C = 2, and D = 1, as indicated
in Fig. 6 (1). Since there are not any inequalities pointed by
variable D, the method accepts the value 1 for this variable
and starts the verification of the inequalities pointed by C.
This way, the inequality #14 in Table XIV is not consistent.
This inequality becomes consistent by increasing the value of
variable C, as indicated in Fig. 6 (2). The updated value of C
is 3, and all of the inequalities containing variable C are now
consistent.

In the next, the method checks the inequalities pointed by B.
The verification concludes that the inequality #13 in Table XIV

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



1032 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Fig. 6. Variable weight assignment for the first case study described by (5).

TABLE XIV
SELECTED INEQUALITIES FROM TABLE XIII FOR THE

VARIABLE WEIGHT ASSIGNMENT STEP

is inconsistent. However, by incrementing just once the value
of variable B does not become the inequality valid, as indicated
in Fig. 6 (3). Instead, it decreases the difference between the
sums of the two sides.

The increment is performed again, and the current values
are B = 6 and A = 7, as indicated in Fig. 6 (4), now making
all inequalities pointed by B consistent. Finally, the method
checks the inequalities pointed by A and verifies that these
inequalities are also valid with the weights A = 7, B = 6,
C = 3, and D = 1.

After computing all variable weights, the algorithm defines
the function threshold value. This value is obtained from the
least sum of weights value in the greater side set. In this case,
the threshold value is equal to 9 in any of the weight sums in
Table XI, (w2 + w4), (w2 + w3), or (w1 + w5 + w6).

The final check is then performed over the original inequali-
ties system presented in Table XI, i.e., before the simplification
step, with the assigned variable weights. All inequalities are
verified consistent, so the right solution found is w1 = 7, w2 =
6, w3 = 3, w4 = 3, w5 = 1, w6 = 1, and T = 9.

Due to the bottom-up characteristic of our approach,
the variable weights and function threshold value found
are the minimum possible ones. This is a quite relevant
feature because it impacts directly on the circuit area of
the corresponding TLG. In the Palaniswamy et al.’s [13]
method, for instance, the solution found for the same TLF
is [9, 8, 4, 4, 1, 1; 11].

B. Second Case Study

The second case study represents a TLF that is not found
by other related heuristic approaches. It demonstrates the

TABLE XV
UPDATED VARIABLE CREATED FOR EACH VWO PARAMETER

VALUE OF FUNCTION DESCRIBED BY (6)

TABLE XVI
SIMPLIFIED INEQUALITIES FOR THE WEIGHT ASSIGNMENT

STEP OF FUNCTION DESCRIBED BY (6)

improvement discussed in Section III-I, exploiting the reverse
relation concept.

Consider the function represented by the following ISOP:

f6 = (x1 · x2 · x3) ∨ (x1 · x2 · x4) ∨ (x1 · x3 · x4) ∨ (x1 · x2 · x5)

∨ (x1 · x3 · x5) ∨ (x1 · x4 · x5) ∨ (x1 · x2 · x6)

∨ (x2 · x3 · x4) ∨ (x2 · x3 · x5) ∨ (x2 · x4 · x5). (7)

Table XV shows the relationship between the variable
weights, the corresponding VWO parameters, and the created
updated variables. For the sake of simplicity, the process of
generation and simplification of variables is not presented.
Table XVI shows the already simplified system using the
updated variables.

As discussed in Section III-G, for this case, the relationship
associating the inequalities of the system with variables that
appear in the greater side would be the variable B pointing
to inequality #1 and the variable A pointing to inequalities
#2–#4 in Table XVI.

Inequality #1, shown in Table XVI, presents the character-
istics described in Section III-I, where the variable with the
greatest value appears on the lesser side of the inequality.
This information is stored in the reverse relation, with vari-
able A pointing to this inequality. In other words, when it is
necessary to increase the value of variable A, it is required to
check whether this inequality has not become inconsistent. If

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



NEUTZLING et al.: SIMPLE AND EFFECTIVE HEURISTIC METHOD FOR THRESHOLD LOGIC IDENTIFICATION 1033

Fig. 7. Variable weight assignment for the second case study described by (6).

TABLE XVII
NUMBER OF TLFS IDENTIFIED BY EACH METHOD

the inequality is now inconsistent, the variable with the great-
est value of greater side, in this case, the variable B, must also
be incremented.

The weight assignment process occurs as shown in Fig. 7.
First of all, the variables are assigned to minimum weights,
such as C = 1, B = 2, and A = 3, as indicated in Fig. 7 (1).
Since there is not any inequality to be checked associated with
variable C, the value 1 is accepted. To check the current value
of variable B, the inequality (B+B) > A is verified and, at this
moment, it is consistent. Thus, the value 2 is accepted for B.

Finally, the inequalities pointed by variable A are verified.
The inequality (A+A) > (B+B+B) is inconsistent. Increasing
the value of variable A would make valid the inequality, as
indicated in Fig. 7 (2). However, since there is the inequality
(B + B) > A in the reverse relation, it is necessary to ver-
ify if this inequality remains valid. With B = 2 and A = 4,
the inequality is inconsistent. This means that when the pro-
cess increments the value of variable A, the value of B must
also be incremented becoming equal to 3, as indicated in
Fig. 7 (3).

The current values are A = 4, B = 3, and C = 1. Looking
at the inequalities pointed by variable A, the method checks
that the inequality A > (B + C) is inconsistent. Hence, the
value of the variable A is incremented again and the inequal-
ity becomes valid. At this time, the increment does not make
inconsistent the inequality (B + B) > A, as indicated in
Fig. 7 (4). The new value of variable A is accepted and the
solution found is A = 5, B = 3, and C = 1. When replacing
these values in the original variable weights, it is possible to
check the consistency of the original system with all inequal-
ities. Therefore, the solution is valid. The final solution is
w1 = w2 = 5, w3 = w4 = w5 = 3, and w6 = 1, and the
function threshold value is equal to 11, also represented by
[5, 5, 3, 3, 3, 1; 11].

V. EXPERIMENTAL RESULTS

Three sets of experiments were carried out in order to
validate our approach in comparison to the related methods
available in the literature. In the first experiment, the effec-
tiveness of the proposed method is evaluated in terms of the
number of TLF identified. In the second experiment, the func-
tions extracted from k-cut enumeration in the logic synthesis
of opencores are analyzed for both effectiveness and runtime
of TLF identification. The execution time is verified in the
third experiment, calculating the runtime per function identi-
fied and estimating the method scalability. The platform used
to run the experiments was an Intel Core i5-2400 processor
with 8 GB of main memory. The ILP solver adopted was the
lpsolve 5.5 [29].

A. Identification Effectiveness

The main goal of TLF identification methods is to maximize
the number of TLFs identified, representing their effectiveness.
The enumeration of all TLFs with up to eight variables has
been already calculated by Muroga et al. [23], being used as
a reference in this paper.

Gowda et al. [10] presented the first approach to identify
TLF without using linear programming, afterward improved
in [11]. The method presented by Palaniswamy et al. [13],
provides better results than the Gowda et al.’s [10] one.

Table XVII shows the experimental results. For functions
with up to three variables, both Gowda et al.’s [10] and
Palaniswamy et al.’s [13] methods identify 100% of existing
TLFs. Moreover, the Gowda et al.’s [10] method identifies
81.3%, 42.8%, and 10% of TLFs with four, five, and six
variables, respectively, whereas the Palaniswamy et al.’s [13]
identified 100%, 87.4%, and 65.1%, respectively, for the same
sets. Our method identified all existing TLFs with up to five

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



1034 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

TABLE XVIII
NUMBER OF TLFS IDENTIFIED BY EACH METHOD CONSIDERING NP REPRESENTATIVE CLASS OF FUNCTIONS

TABLE XIX
ANALYSIS OF k-CUTS (n-VARIABLE FUNCTIONS) OBTAINED FROM THE SYNTHESIS OF ALTERA OPENCORES [25]

variables and, to the best of our knowledge, this is the first
non-ILP-based method able to identify all TLFs with six
variables.

Since the number of TLFs with seven inputs is too large,
corresponding to 8 274 794 440 functions, we have adopted
the NP representative class of functions [18]. The results are
shown in Table XVIII. Notice that, for the universe of TLFs
with seven variables, our approach identified almost 80% of
them, whereas the other methods identify less than 35%.

B. Altera Opencores

In the second experiment, we aim to demonstrate the run-
time efficiency when testing a very large number of small
subcircuits. That is a typical task performed by technology
mapping tools, where the goal is to match, as quickly as
possible, the functions obtained during the decomposition pro-
cess with an implementation in a single threshold gate. In
this sense, we have enumerated all the priority cuts of the
opencores [25].

The cut enumeration was performed by the technology map-
per available in the ABC logic synthesis tool [26]. In general,
during the matching process, the entire set of enumerated
functions has no more than 16 inputs. Notice that ABC tool
limits the k-cuts to 15 inputs due to internal restrictions of truth
table representation. In this experiment, our method was able
to identify more than 2 million functions with up to 15 inputs
in approximately 11 s.

Table XIX summarizes the number of TLFs found by both
proposed approach and ILP-based method. In the third col-
umn, the amount and respective percentage of unate functions
among the k-cuts obtained from the synthesis of the open-
cores are presented. Remember that only unate functions are
candidates to be TLF. The amount of TLFs in the unate
functions set identified by the ILP-based method represents

the total number of TLFs, as shown in the fourth column in
Table XIX. The number of TLFs identified by our method
is shown in the fifth column. The sixth and seventh columns
present the total execution time for the identification of all
k-cuts with up to n inputs.

These experimental results demonstrate a good tradeoff
between the number of TLFs identified and the corresponding
runtime when applying the proposed method. The execution
time was improved more than 8× in average when compared
to the ILP-based method. Moreover, our approach does not
show a loss in the quality of the results once the number of
identified TLFs is practically the totality of them. The method
described in this paper is available in the current version of the
ABC logic synthesis tool. It has been applied in a complete
threshold logic synthesis flow described in [15].

C. Runtime Efficiency

In the third experiment, the scalability of our heuristic
approach was evaluated. The method is able to identify TLF
either from a truth table or from an ISOP expression. In gen-
eral, the truth table representation is not suitable to represent
Boolean functions with more than 16 variables. Therefore, in
order to demonstrate the method scalability, we have generated
ISOP forms of TLFs with a considerable number of inputs.

The time complexity of the proposed method depends
mainly on two values: 1) the number of cubes on the ISOP
representation of the input function and 2) the maximal input
weight value.

1) Functions With Huge Number of ISOP Cubes: We have
evaluated the method considering also a given system with
a huge number of inequalities. The number of inequalities (i.e.,
the system size) is equal to |f | · |!f |, where |f | and |!f | repre-
sent the number of cubes in the ISOP of function f and the
corresponding negated function !f, respectively. The majority

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 



NEUTZLING et al.: SIMPLE AND EFFECTIVE HEURISTIC METHOD FOR THRESHOLD LOGIC IDENTIFICATION 1035

Boolean function MAJ(n), or voter, has an ISOP representa-
tion with a very large number of cubes: MAJ(n) function has
(nn/2) cubes.

2) TLF With Very Large Input Weights: In order to evaluate
our method in identifying threshold functions with very large
input weights, we have recursively defined a class of function,
called herein as the onion(n) functions, as follows:

onion(n) =
⎧
⎨

⎩

xi, n = 1 (8a)

xi · (onion(n − 1)), n is odd (8b)

xi ∨ (onion(n − 1)), n is even. (8c)

For instance, take a look on the following functions:

onion(5) = (x5 · (x4 · (x3 · (x2 ∨ x1)))) (9a)

onion(8) = (x8 ∨ (x7 · (x6 ∨ (x5 · (x4 ∨ (x3 · (x2 ∨ x1))))))).

(9b)

Onion(n) functions are TLF by definition [19]. Besides, during
the experiments, we have figured out that this class of function
presents an interesting property: the weight wi of a variable
i is equivalent to the ith number of the Fibonacci sequence,
presenting a well-known behavior. Therefore, we have used
the onion(n) functions to generate TLF with a larger number
of inputs and a very large maximal weight.

3) Balancing the Number of ISOP Cubes and the Input
Weight: We have defined a class of functions, called
MAJion(n), as follows:

MAJion(n)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi, n = 1 (10a)

xn · (MAJion(n − 1)), n%3 = 0 (10b)

xn ∨ (MAJion(n − 1)), n%3 = 1 (10c)

MAJ(xn, xn−1, MAJion(n − 2)), n%3 = 2 (10d)

where % represents the modulo operation.
For instance, take a look on the following functions:

MAJion(5) = MAJ(x5, x4, (x3 · (x2 ∨ x1))) (11a)

MAJion(9) = MAJ(x9, x8, (x7 · (x6 ∨ (MAJ(x5, x4, (x3

(x2 ∨ x1))))))). (11b)

MAJion(n) functions are similar to onion(n) functions.
However, MAJion(n) has also MAJ(n) functions in order to
increase the ISOP cubes count. MAJion(n) functions have
a smaller number of distinct VWO but more cubes when com-
pared to the onion(n) functions, and a larger number of distinct
VWO but fewer cubes when compared to the MAJ(n) ones. In
this sense, we believe that the class of MAJion(n) functions
fits well to a balanced tradeoff between the cubes count and
the largest input weight.

The experimental results regarding the threshold identifi-
cation for onion(n) and MAJion(n) functions are shown in
Table XX. These results demonstrate that for onion(n) func-
tions both proposed method and ILP-based approach are very
efficient due to the small number of inequalities, even taking
into account very high maximal weights. For MAJion(n) from
50 to 65 inputs, the proposed method runs in less than 1 s,
whereas the ILP-based is several orders of magnitude slower.
For MAJion(n) with more than 65 inputs, the ILP-based
method was not able to solve with a timeout about 10 000 s.

The limits of our implementation when running MAJ(n),
onion(n), and MAJion(n) functions are as follows.

1) The number of cubes for MAJ(n) functions becomes too
large. For instance, the input file containing the ISOP of

TABLE XX
TLF IDENTIFICATION FOR LARGE ISOPS

MAJ(27) has 1.2 GB of data. In this case, our method
runs in 10.1 s. We were not able to run the method for
the MAJ(31) function since the input file has 20 GB
of data.

2) The number of cubes for onion(n) functions, on the other
hand, grows linearly but the worst input weight grows
exponentially to the number of inputs. In this sense,
we were able to obtain results for the onion(n) func-
tions with up to 92 inputs. In particular, for onion(92),
our method runs in 1.2 ms, being the worst input
weight equal to 7.5×1018. The worst input weight for
onion(n) functions with more than 92 inputs cannot be
represented through an unsigned integer of 64 bits.

3) The cubes count on MAJion(n) grows slower than on
MAJ(n) but faster than on onion(n) functions. We were
able to obtain results for MAJion(n) functions with up
to 70 inputs. In this case, the number of cubes is more
than 500 000 and the maximal input weight is more than
6×1012.

VI. CONCLUSION

A straightforward and very effective non-ILP-based method
for identifying TLFs was presented. The variable weights are
assigned using a bottom-up strategy based on the VWO param-
eter ordering. As demonstrated by experimental results, the
method identifies more TLFs than other existing related heuris-
tic approaches, and the obtained solutions are minimum in
terms of variable weight for 98% of cases. Although represent-
ing Boolean functions is intrinsically an exponential problem,
we showed the runtime is scalable, enabling the application of
the method when the number of variables increases.

REFERENCES

[1] (2011). Semiconductor Industries Association Roadmap. [Online].
Available: http://public.itrs.net

[2] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network
synthesis and optimization and its application to nanotechnologies,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1,
pp. 107–118, Jan. 2005.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 

http://public.itrs.net


1036 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

[3] N. S. Nukala, N. Kulkarni, and S. Vrudhula, “Spintronic threshold logic
array (STLA)—A compact, low leakage, non-volatile gate array archi-
tecture,” in Proc. IEEE/ACM Int. Symp. Nanoscale Archit., Amsterdam,
The Netherlands, 2012, pp. 188–195.

[4] M. J. Avedillo and J. M. Quintana, “A threshold logic synthesis tool for
RTD circuits,” in Proc. Euromicro Symp. Digit. Syst. Design, Rennes,
France, 2004, pp. 624–627.

[5] L. Gao, F. Alibart, and D. B. Strukov, “Programmable CMOS/memristor
threshold logic,” IEEE Trans. Nanotechnol., vol. 12, no. 2, pp. 115–119,
Mar. 2013.

[6] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI implementations
of threshold logic-a comprehensive survey,” IEEE Trans. Neural Netw.,
vol. 14, no. 5, pp. 1217–1245, Sep. 2003.

[7] A. K. Maan, D. A. Jayadevi, and A. P. James, “A survey of memristive
threshold logic circuits,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 8, pp. 1734–1746, Aug. 2016.

[8] C. B. Dara, T. Haniotakis, and S. Tragoudas, “Delay analysis for cur-
rent mode threshold logic gate designs,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 25, no. 3, pp. 1063–1071, Mar. 2016.

[9] J. L. Subirats, J. M. Jerez, and L. Franco, “A new decomposition algo-
rithm for threshold synthesis and generalization of Boolean functions,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3188–3196,
Nov. 2008.

[10] T. Gowda, S. Vrudhula, and G. Konjevod, “A non-ILP based threshold
logic synthesis methodology,” in Proc. Int. Workshop Logic Syn., 2007,
pp. 222–229.

[11] T. Gowda, S. Vrudhula, N. Kulkarni, and K. Berezowski, “Identification
of threshold functions and synthesis of threshold networks,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 5, pp. 665–677,
May 2011.

[12] A. K. Palaniswamy, M. K. Goparaju, and S. Tragoudas, “Scalable identi-
fication of threshold logic functions,” in Proc. Great Lakes Symp. VLSI,
Providence, RI, USA, 2010, pp. 269–274.

[13] A. K. Palaniswamy, M. K. Goparaju, and S. Tragoudas, “An efficient
heuristic to identify threshold logic functions,” ACM J. Emerg. Technol.
Comput. Syst., vol. 8, no. 3, pp. 1–17, 2012.

[14] A. Neutzling, M. G. A. Martins, R. P. Ribas, and A. I. Reis, “Synthesis of
threshold logic gates to nanoelectronics,” in Proc. Symp. Integr. Circuits
Syst. Design, Curitiba, Brazil, 2013, pp. 1–6.

[15] A. Neutzling, J. M. A. Matos, A. I. Reis, R. P. Ribas, and
A. Mishchenko, “Threshold logic synthesis based on cut pruning” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Austin, TX, USA,
2015, pp. 494–499.

[16] N. Kulkarni, J. Yang, J.-S. Seo, and S. Vrudhula, “Reducing power,
leakage, and area of standard-cell ASICs using threshold logic flip-
flops,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 9,
pp. 2872–2886, Sep. 2016.

[17] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and
G. D. Hatchel, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA, USA: Kluwer Acad., 1984.

[18] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,”
in Proc. Design Autom. Conf., San Francisco, CA, USA, 1998,
pp. 206–211.

[19] S. Muroga, Threshold Logic and Its Applications. New York, NY, USA:
Wiley, 1971.

[20] S. Minato, “Fast generation of prime-irredundant covers from binary
decision diagrams,” IEICE Trans. Fundam. Elect. Commun. Comput.
Sci., vol. E76-A, no. 6, pp. 967–973, 1993.

[21] G. Birkhoff et al., Lattice Theory, vol. 25. New York, NY, USA: Amer.
Math. Soc., 1948.

[22] R. O. Winde, “Chow parameters in threshold logic,” J. ACM, vol. 18,
no. 2, pp. 265–289, 1971.

[23] S. Muroga, T. Tsuboi, and C. R. Baugh, “Enumeration of threshold
functions of eight variables,” IEEE Trans. Comput., vol. C-19, no. 9,
pp. 818–825, Sep. 1970.

[24] E. M. Stentovich et al., “SIS: A system for sequential circuit synthesis,”
EECS Dept., Univ. California, at Berkeley, Berkeley, CA, USA, Tech.
Rep. UCB/ERL M92/41, 1992.

[25] J. Pistorius, M. Hutton, A. Mishchenko, and R. Brayton, “Benchmarking
method and designs targeting logic synthesis for FPGAs,” in Proc. Int.
Workshop Logic Syn., 2007, pp. 230–237.

[26] Berkeley Logic Synthesis and Verification Group. ABC:
A System for Sequential Synthesis and Verification Release
20160425. Accessed on Jul. 6, 2017. [Online]. Available:
https://people.eecs.berkeley.edu/∼alanmi/abc/

[27] Y.-C. Chen, R. Wang, and Y.-P. Chang, “Fast synthesis of threshold logic
networks with optimization,” in Proc. Asia South Pac. Design Autom.
Conf., Macau, China, 2016, pp. 486–491.

[28] M. Berkelaar, K. Eikland, and P. Notebaert. Lp_Solve 5.5,
Open Source (Mixed-Integer) Linear Programming System.
Release 5.5. Accessed on Jul. 6, 2017. [Online]. Avaliable:
http://lpsolve.sourceforge.net/5.5/

[29] M. K. Goparaju and S. Tragoudas, “A fault tolerant design methodology
for threshold logic gates and its optimizations,” in Proc. IEEE Int. Symp.
Qual. Elect. Design, San Jose, CA, USA, 2007, pp. 420–425.

[30] A. K. Palaniswamy, S. Tragoudas, and T. Haniotakis, “ATPG for delay
defects in current mode threshold logic circuits,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 11, pp. 1903–1913,
Nov. 2016.

Augusto Neutzling (S’13) received the B.S. degree
in computer engineering from the Federal University
of Rio Grande, Rio Grande, Brazil, in 2012 and the
M.S. degree in computer science from the Federal
University of Rio Grande do Sul, Porto Alegre,
Brazil, in 2014, where he is currently pursuing the
Ph.D. degree.

Mayler G. A. Martins (M’16) received the B.S.
degree in computer engineering from the Federal
University of Espírito Santo, Vitória, Brazil, in 2009,
and the M.S. (summa cum laude) and Ph.D. degrees
in microelectronics from the Federal University of
Rio Grande do Sul, Porto Alegre, Brazil, in 2012
and 2015, respectively.

He is currently a Researcher with Carnegie Mellon
University, Pittsburgh, PA, USA.

Vinicius Callegaro (S’14–M’17) received the B.S.,
M.S. (summa cum laude), and Ph.D. (summa cum
laude) degrees in computer science from the Federal
University of Rio Grande do Sul (UFRGS), Porto
Alegre, Brazil, in 2009, 2012, and 2016, respec-
tively.

From 2016 to 2017, he was a Post-Doctoral
Researcher with PGMICRO, UFRGS. He is cur-
rently a Senior Research and Development Engineer
with the ICDS Synthesis Solutions Group, Mentor-A
Siemens Business, Fremont, CA, USA.

André I. Reis (M’99–SM’05) received the B.S.
degree in electrical engineering from the Federal
University of Rio Grande do Sul (UFRGS),
Porto Alegre, Brazil, in 1991 and the Ph.D. degree in
automatic and microelectronics systems from UMII,
Montpellier, France, in 1998.

He has been a Professor with the Institute of
Informatics, UFRGS, since 2000.

Renato P. Ribas (M’12) received the B.S. degree in
electrical engineering from the Federal University
of Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil, in 1991 and the Ph.D. degree in microelec-
tronics from the Institut National Polytechnique de
Grenoble, Grenoble, France, in 1998.

He has been a Professor with the Institute of
Informatics, UFRGS, since 2000.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:03:51 UTC from IEEE Xplore.  Restrictions apply. 

https://people.eecs.berkeley.edu/~alanmi/abc/
http://lpsolve.sourceforge.net/5.5/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


