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Editor’s note:
As an emerging technology, quantum computing brings unique promises 
in creating a fundamentally different paradigm of information processing. 
This article reviews introductory concepts and building blocks—quantum 
logic gates and memory, i.e., qubits, for quantum computing and depicts 
the challenges as well as prospects associated with design, test, and 
fabrication of quantum devices.
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 Quantum computing promises new capabili-
ties for processing information and performing compu-
tationally hard tasks. This includes significant algorith-
mic advances for solving hard problems in computing 
[1], sensing [2], and communication [3]. The break-
through examples of Shor’s algorithm for factoring 
numbers and Grover’s algorithms for unstructured 
search have fueled a series of more recent advances 
in computational chemistry, nuclear physics, and 
optimization research among many others. However, 
realizing the algorithmic advantages of quantum com-
puting requires hardware devices capable of encod-
ing quantum information, performing quantum logic, 
and carrying out sequences of complex calculations 
based on quantum mechanics [4]. For more than 35 
years, there has been a broad array of experimen-
tal efforts to build quantum computing devices to 
demonstrate these new ideas. Multiple state-of-the-art 
engineering efforts have now fabricated functioning 
quantum processing units (QPUs) capable of carrying 
out small-scale demonstrations of quantum comput-
ing. The QPUs developed by commercial vendors 

such as IBM, Google, 
D-Wave, Rigetti, and IonQ 
are among a growing 
list of devices that have 
demonstrated the funda-
mental elements required 
for quantum computing 
[5]. This progress in pro-
totype QPUs has opened 
up new discussions about 

how to best utilize these nascent devices [6]–[8].
Quantum computing poses several new challenges 

to the concepts of design and testing that are unfamil-
iar to conventional CMOS-based computing devices. 
For example, a striking fundamental challenge is the 
inability to interrogate the instantaneous quantum 
state of these new devices. Such interrogations may 
be impractically complex within the context of con-
ventional computing, but they are physically impos-
sible within the context of quantum computing due 
to the no-cloning principles. This physical distinc-
tion fundamentally changes how QPUs are designed 
and their operation tested relative to past practice. 
This tutorial provides an overview of the principles 
of operation behind quantum computing devices 
as well as a summary of the state of the art in QPU 
development. The continuing development of quan-
tum computing will require expertise from the con-
ventional design and testing community to ensure the 
integration of these nontraditional devices into exist-
ing design  workflows and testing infrastructure. There 
is a wide variety of technologies under consideration 
for device development, and this article focuses on 
the current workflows surrounding quantum devices 
fabricated in semiconducting, superconducting, and 
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trapped-ion technologies. We also discuss the design 
of logical circuits that quantum devices must execute 
to perform computational work.

While the tutorial captures many of the introduc-
tory topics needed to understand the design and test-
ing of quantum devices, several more advanced topics 
have been omitted due to space constraints. Foremost 
is the broader theory of quantum computation, which 
has developed rapidly from early models of quan-
tum Turing machines to a number of different but 
equally powerful computational  models. In addition, 
we have largely omitted the sophisticated techniques 
employed to mitigate the occurrence of errors in quan-
tum devices. Quantum error correction is an important 
aspect of long-term and large-scale quantum comput-
ing, which uses redundancy to overcome the loss in 
information from noisy environments. Finally, our 
review of quantum computing technologies is inten-
tionally narrowed to three of the leading candidates 
capable of near-term experimental demonstrations. 
However, there is a great diversity of experimental 
quantum physical systems that can be used for encod-
ing and processing quantum information.

Principles of quantum computing
The principles of quantum computing derive 

from quantum mechanics, a theoretical frame-
work that has accurately modeled the microscopic 
world for more than 100 years. Quantum computing 
draws its breakthroughs in computational capabili-
ties from the many unconventional features inher-
ent to quantum mechanics, and we provide a brief 
overview of these features while others offer more 
exhaustive explanations [4].

In quantum mechanics, all knowable informa-
tion about a physical system is represented by a 
quantum state. A prominent example of a quantum 
state within the context of quantum computing is 
the case of a qubit. A qubit, or quantum bit, refers 
to the quantum state of an isolated two-level quan-
tum mechanical system. Informally, the qubit is the 
quantum analog of bit that serves as the fundamen-
tal unit of information within quantum computing. 
Methods for storing a qubit of information require 
the control of a physical two-level system, and we 
denote those physical systems as quantum register 
elements that have the ability to store a single qubit 
of information. We will discuss some of the differ-
ent physical systems as quantum register elements 
in the “Devices for quantum computing” section. 

Logically, the qubit is defined over a basis of binary 
states labeled as “0” and “1,” respectively, such that 
an arbitrary state of a qubit may be expressed as the 
linear combination

  |ψ 〉 =  c  0   |0〉 +  c  1  |1〉.  (1)

The superposition of these orthogonal basis states 
is fundamental to quantum mechanics. The expan-
sion coefficients are complex-valued numbers nor-
malized as |c0|2 + |c1|2 = 1 and a convenient graphi-
cal representation of the qubit is given in spherical 
coordinates. As shown in Figure 1, the surface of a 
unit sphere represents all possible qubit values, 
where the points of |0 〉 and |1〉 are located at the 
north and south poles, respectively. While the abso-
lute phase of a quantum state is arbitrary [9], | Ψ〉 
is normalized to unity and must lie on the surface 
of the sphere. In Figure 1, the amplitudes c0 and c1 

represent the projection of the quantum state onto 
the corresponding basis states and the example 
qubit | Ψ〉 has expansion coefficients c0 = cosθ and  
c1 = ei φ  sinθ.  This  representation of the qubit state on 
a unit sphere is commonly called the Bloch sphere in 
quantum mechanics.

Figure 1. The Bloch sphere with a 
unit radius provides a geometrical 
representation of a qubit. The north 
and south poles of the sphere define the 
orthonormal basis states |0〉 and |1〉,  
respectively, while the surface defines 
the set of all possible qubit values. In 
spherical coordinates, the example qubit 
|Ψ〉 has expansion coefficients c0 = cosθ 
and c1 = eiφ sinθ.
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More formally, a quantum state is defined as 
a vector within a Hilbert space, which is a com-
plex-valued vector space supporting an inner prod-
uct. By convention, the quantum state with label  Ψ
is expressed using the “ket” notation as | Ψ〉, whereas 
the dual vector is expressed as the “bra” 〈 Ψ|. The 
inner product between these two vectors is   〈Ψ| Ψ 〉and 
normalized to one. An orthonormal basis for an  
N-dimensional Hilbert space satisfies 〈i|j  〉 = δi,j , and 
an arbitrary quantum state may be represented 
within a complete basis as

  |Ψ〉 =   ∑ 
j = 0

  
N−1

  c  j   | j 〉 ,   (2)

where cj = 〈j |Ψ〉 is the corresponding coefficient. 
Within a chosen basis, the coefficients of the quan-
tum state are interpreted as probability amplitudes 
such that the squared magnitude of this amplitude 
yields the probability to lie along the chosen basis, 
that is, pj = |cj |2. The mathematical theory of quan-
tum mechanics is exceedingly rich and draws from 
aspects of linear algebra, probability, and complex 
analysis. Additional details on these aspects points 
are found, for example, in [9].

The fundamental equation of motion for the 
quantum state is the Schrodinger equation, a partial 
differential equation defined as

  ih̄    ∂ |Ψ(t ) 〉 ______ ∂ t   =  ̂  H  (t ) | Ψ(t ) 〉,  (3)

where the time-dependent operator   ̂  H  (t )  defines the 
energetic interactions governing the physical system 
and is referred to as the Hamiltonian. Consequently, 
the Hamiltonian is important for manipulating the 
quantum state and its control plays a prominent 
role in the design and testing of quantum comput-
ing technologies. It is important to note that a quan-
tum state cannot be directly observed by physical 
measurement. Rather, the measurements of a quan-
tum state must be performed relative to a basis set, 
for example, {|j  〉}. The probability to observe the i th 
outcome corresponds to the probability pi defined 
above, such that a series of repeated measurements 
over an ensemble of identically prepared quantum 
states will generate a distribution of outcomes that 
approximates the set of probabilities {pj}. Thus, the 
accurate characterization of this distribution can be 
exceedingly difficult due to a large number of basis 
states and the infrequent occurrence of measure-
ment outcomes corresponding to low probabilities. 
A survey of methods for measuring quantum state is 
provided in [10].

A multiqubit register is an addressable array of n 
two-level physical systems. The principle of superpo-
sition may be extended to the register as the quan-
tum state for the composite physical system is also 
given by (2). For an n-qubit register, the computa-
tional basis is expressed in binary notation as

  |j 〉= |  j  1    j   2   …  j  n  〉 = |  j  1  〉 ⊗ | j   2   〉… ⊗ | j  n   〉 ,  (4)

where the binary values jk correspond to the binary 
expansion of j. The dimensionality of the underly-
ing Hilbert space is N = 2n and any normalized vec-
tor represents a valid quantum state. In particular, 
there are composite quantum states that cannot be 
expressed as separable products of n single-qubit 
states. Such states are known as entangled states 
and they are a hallmark of quantum mechanics and, 
therefore, quantum computing. For example, con-
sider the quantum state of a two-qubit register as

  |Ψ〉 =   1 __ 
 √ 

__
 2  
    (|  0  1    0  2   〉 + |  1  1    1  2   〉) .  (5)

Measuring the individual elements of the register will 
generate binary outcomes 0 or 1 with equal proba-
bility. Accordingly, the classical expectation for joint 
measurement of the register is a uniform distribution 
of four possible outcomes. However, measurements of 
this quantum state are always correlated such that both 
results are either (0,0) or (1,1), where the probability 
for each of these outcomes is 1/2. Notably, there is no 
possibility for observing anticorrelated  outcomes for 
this quantum state, for example, (0, 1). The presence 
of these correlations in the measurement statistics is 
known as entanglement and the underlying quantum 
state is said to be entangled. Fundamentally, entan-
glement is a limitation on the ability to describe 
states of a register solely by specifying the value of 
each register element, and entangled states are nota-
ble for the ability to violate the local, causal relations 
predicted by classical mechanics [11].

The no-cloning principle represents a fundamental 
constraint placed on quantum information processing. 
The no-cloning principle is a consequence of the line-
arity of quantum mechanics [12], in which the ability 
to perfectly clone, aka copy, an arbitrary quantum state 
is not permitted. In particular, given a quantum register 
storing an arbitrary state   |Ψ  1    〉, this information cannot 
be copied into a second register without loss of infor-
mation. Efforts to optimally approximate the value of 
the first register, known as quantum cloning [13], can 
be evaluated by measuring the fidelity defined as

  f = | 〈Ψ  2    |Ψ  1   〉 |   2     , (6)
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where |Ψ2 〉 is the value of the second register and  
f ∈ [0,1].  

The principles of operation for a quantum com-
puter are based on Schrodinger’s equation in (3), 
in which the time-dependent Hamiltonian   ̂  H (t )  can 
be directly controlled through the use of externally 
applied fields. Depending on the specific technology 
in place, these controls will consist of electrical, mag-
netic, or optical fields designed to drive the dynam-
ics toward a specific response. In the “Devices for 
quantum computing” section, we present examples 
for devices based on semiconductors, superconduc-
tors, and trapped-ion technologies. In some compu-
tational models, the time-dependent controls are 
realized as pulsed fields that act discretely on the 
quantum register elements.   These discrete periods 
of field interaction are known as gates and the effect 
of the gate on the quantum register is described by a 
unitary operator that transforms the stored quantum 
state.   This is known as the gate or circuit model since 
a diagrammatic sequence of gates acting on registers 
provides a design for instruction execution.

An alternative computational model applies the 
time-dependent field as continuous interaction sub-
ject to constraints on the rate of change for the overall 
Hamiltonian. This constraint imposes an adiabatic 
condition on the dynamics of the quantum system [14], 
such that the Hamiltonian slowly modifies the interac-
tions between quantum physical subsystems, that is, 
register elements, relative to the internal energy scales 
describing those subsystems. As a result, the register 
state can be driven toward the desired outcome. This 
is known as the adiabatic model given the constraints 
on the controls. A device design based on the adiaba-
tic model has been implemented in superconducting 
technology by the commercial vendor D-Wave Sys-
tems, Inc. In the realization of that design, the Ham-
iltonian control is restricted to a specific functional 
form, namely, the transverse Ising model, which limits 
the device operation to computing discrete optimiza-
tion problems. In addition, the physics of the device 
is not well modeled by the Schrodinger equation (3)  
but rather require a more sophisticated model that 
includes nontrivial interactions with the surround-
ing quantum physical systems as well as finite- 
temperature effects [15]. Nonetheless, the device has 
been observed to correctly compute the solution to 
a wide variety of discrete optimization problems and 
has been characterized as having some advantages 
relative to conventional computing devices. While 

the remainder of this article will focus on the gate 
model for quantum computing, we refer the reader 
interested in adiabatic quantum computing to the 
recent review by Albash and Lidar [16].

We now summarize the basic criteria that define 
the expected functionality of quantum comput-
ing devices. As first presented by DiVincenzo  
et al. [17], these criteria represent the minimal behav-
iors needed to perform general-purpose quantum 
computing in the presence of likely architectural 
constraints. First is the ability to address the elements 
in a scalable register of quantum systems. Scalability 
implies a manufacturing capability to fabricate and 
layout as many register elements as needed for a spe-
cific computation. Second, these register elements 
must be capable of being initialized with high fidelity, 
as the starting quantum state of the computation must 
be well known to ensure accurate results. Third is the 
ability to measure register elements in a well-specified 
basis. As discussed above, measurement samples the 
statistical distribution encoded by the quantum state 
according the probabilities pi over a given basis set. 
A measurement sample represents readout from the 
register of the quantum computer and this value may 
be subsequently processed.

Fourth, the control over the register must include 
the ability to apply sequences of gates drawn from 
a universal set. Universality of the gate set charac-
terizes the potential to perform an arbitrary unitary 
operation on the quantum state using a sufficiently 
long series of gates from that set. In particular, it is 
known that a finite set of gates is sufficient to approx-
imate universality and, moreover, that a finite set of 
addressable one- and two-qubit gates are sufficient 
for universality [18]. The latter result, known as the 
Solovay–Kitaev theorem, provides a constructive 
method for composing arbitrary gates from a finite, 
universal gate set. Selection of a universal gate set 
raises the question of the optimal instruction set 
architecture for an intended application within a 
specific device technology [19]. The fifth criterion 
is that the gate operation times must be much shorter 
than the characteristic interaction times on which 
the register couples to other unintended quantum 
physical systems. These interactions induce deco-
herence of the stored quantum superposition states, 
which leads to the loss of information [20], [21]. In 
order to maintain the stored quantum state with suf-
ficient accuracy, the duration of the gate sequence 
must be shorter than the characteristic decoherence 
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time. Fault-tolerant protocols for gate operations are 
designed to counter the losses from decoherence 
and other errors by redundantly encoding informa-
tion with quantum error correction codes [22].

Two additional functional criteria are necessary 
for a quantum computer with geometrical con-
straints on the layout of the quantum register. In par-
ticular, layout constraints may impose restrictions on 
which register elements can be addressed by mul-
tiqubit gates, for example, nearest neighbors within 
a 2D rectangular lattice design. Physical layout 
restrictions may be overcome by moving the stored 
quantum states between register elements. This is 
accomplished using the SWAP gate, a unitary opera-
tion that exchanges the quantum state between two 
register elements. In addition, a MOVE operation can 
support long-distance transport of a stored value, in 
which the register element itself is displaced. The 
latter proves useful for distributed quantum registers 
that may require interconnects, aka communication 
buses, to SWAP register values. The necessity of these 
functions depends on the purpose of the quantum 
computer and especially the limitations of the tech-
nology. Presently, all technologies for quantum com-
puting face some constraints on register layout.

Devices for quantum computing
There are many different possible technologies 

available for building quantum computers, and 
these are typically classified by how qubits of infor-
mation are stored [23]. As discussed in the “Princi-
ples of quantum computing” section, these devices 
must meet several functional criteria to carry out 
reliable quantum computation. In this section, we 
provide an overview of three technologies that are 
currently used for developing quantum computing 
devices and we discuss the progress toward meeting 
the functional criteria.

Silicon spin qubits
Silicon spin qubits denote a technology imple-

mentation by which quantum information is 
encoded either in the spin states of an electron in 
a silicon quantum dot, or in the spin state of the 
electron or nucleus of a single-dopant atom (typi-
cally group V donors) in a silicon substrate. In par-
ticular, the orientation of the spin in these systems is 
used to encode the |0 〉 and |1 〉 states. Notably, these 
silicon devices are fabricated with conventional 
CMOS techniques and consist of gate electrodes  

(normally aluminum or polysilicon) that can control 
the energy landscape in the silicon substrate. These 
electrodes are appropriately designed and biased 
such that a single electron is confined in a quantum 
dot at the interface. Examples of a silicon quantum 
dot include the MOS device as shown in Figure 2a 
or the Si/SiGe device as shown in Figure 2b. Similar 
electrostatic control is used for silicon donor devices 
like the example shown in Figure 2c of a phosphorus 
donor implanted inside a silicon substrate. In all of 
these examples, the electrons are strongly confined 
such that the lowest electronic orbital energy in the 
quantum dot or the donor is well isolated from other 
excited electronic states. The confinement length 
for the donor electron is ∼1.5 nm in all three dimen-
sions, whereas for the dot electron, these dimensions 
are ∼10 and ∼2 nm in the lateral and vertical direc-
tions, respectively. These characteristic dimensions 
make silicon qubits the most compact technology 
as compared to the qubit technologies discussed in 
later sections.

Addressing silicon spin qubits uses an applied 
static magnetic field B0 to split the orbital degeneracy 
of the dot electron at the interface. Due to the Zeeman 
effect, the orbital for the confined electron is split into 
the distinct spin states |↑〉 and |↓〉. These spin states 
encode the computational states |0〉 and |1〉, where 
the energy splitting is given by the Zeeman energy 
γe B0 with γe, ∼28 GHz/T, being the gyromagnetic 
ratio of the electron. For 31P donors, the electron and 
nuclear spins are coupled by the hyperfine interac-
tion, A ∼117 MHz [28]. The donor qubits are gener-
ally operated under large magnetic fields B0 > 1 T,  
such that   (γ  e    + γ   n  )   B  0     A , where γn ∼ 17 MHz/T is the 
gyromagnetic ratio of the nucleus. In this limit, the 
eigen spin states are the tensor products of the elec-
tronic spin (|↑〉, |↓〉) and the nuclear spin (|⇑〉, |⇓〉) 
states. The resulting energies are shown in Figure 2d, 
where the electron spin qubit splitting depends 
on the nuclear spin states, and vice versa. Typical 
energy splittings are of the order of tens of gigahertz 
and megahertz for the electron and nuclear spins, 
respectively [29], [30]. The hyperfine interaction A 
and the electron gyromagnetic ratio γe depend on 
the orbital wavefunction of the electron, which can 
be tuned with electric fields [31], [32]. As a result, 
the qubit splittings are electrically tunable after the 
silicon qubit devices are fabricated. 

Electron spin qubits are commonly initial-
ized and measured using spin-charge conversion 
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techniques [33]. Charge sensors such as quantum 
point contacts and single-electron transistors (SETs) 
are located adjacent to the quantum dot (or donor) 
and are then capacitively coupled to them, cf.,  
Figure 2. The charge sensors are biased appropri-
ately with gate voltages, such that the current passing 
through them is strongly sensitive to the electrostatic 
environment in their vicinity. The orbital energy of 
the electron is then electrically tuned such that the 
electron can preferentially tunnel to the same or 
another nearby charge reservoir, depending on its 
spin. The presence or absence of the electron on the 
donor or dot can then be detected via a change in 
current passing through the charge sensors, which 
aids to readout the electron spin state. The protocol 
will also initialize the electron spin state in the dot or 
the donor to |↓〉 [33].

For spin control, an oscillating (driving) magnetic 
field is applied to the qubits. The frequency of the oscil-
lating field is chosen to be equivalent to the energy 
difference between the two spin qubit  levels. Based 

on the principles of magnetic  resonance,  transitions 
between the spin states are then achieved at a rate 
proportional to the amplitude of the driving field [35]. 
The driving field is pulsed appropriately to obtain a 
specific rotation of the spin state, for implementing 
a single qubit gate. A microwave transmission line 
antenna (see Figure 2a and 2c) is normally used to 
generate the driving field [36], yielding magnetic field 
amplitudes of ∼0.1 mT, and single qubit gate times of 
few microseconds [29] (or milliseconds [30]) for the 
electron (or nucleus). Alternatively, a micromagnet 
producing a dc magnetic field gradient (Figure 2b) 
can also be embedded on chip [37]. In the presence 
of an additional oscillating electric field (from gate 
voltages), the electron feels an effective oscillating 
magnetic field, resulting in spin resonance with faster 
gate times. Note that the frequency of the control field 
is different for both the electron [electronic spin reso-
nance (ESR) frequencies ∼ tens of gigahertz] and the 
nucleus (NMR frequencies ∼ tens of megahertz). The 
ability to  control and readout the electron spin state 

Figure 2. (a) Bottom: Scanning electron microscope (SEM) image of a MOS quantum dot 
device similar to the one where single and two-qubit gates were demonstrated.  
Top: Cross-sectional schematic of the device illustrating the location of qubits at the  
Si/SiO2 interface. (Reprinted from [24] with permission from Nature.) (b) Bottom: SEM 
image of a Si/SiGe double quantum dot device, where two-qubit operations were 
implemented. Middle: Variation of the static magnetic field along the axis of quantum 
dots. Top: Cross sectional device schematic highlighting the position of the quantum 
dots. (Reprinted from [25] with permission from the American Association for the 
Advancement of Science (AAAS).) (c) SEM image of an ion-implanted 31P device similar 
to the one used for demonstrating record spin-coherence times [26], [27]. (d) 31P donor 
electron (|↑〉, |↓〉) and nuclear (|⇑〉, |⇓〉) spins states [34].
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also allows measurement of the nuclear spin state. As 
the  electron spin resonance frequency is determined 
by the nuclear spin state (see Figure 2d), probing 
frequencies at which the electron can be controlled 
allows readout of the nuclear spin [30].

Since the splittings are dependent on A and γe, 
they can be tuned electrically and it is possible to 
independently control each donor located within 
a precisely positioned array [38]. In their idle state, 
the qubits are electrically detuned from the control 
field by appropriately tuning A and γe. When opera-
tions need to be performed on the qubits, they are 
brought in resonance with the control field, that is, 
the energy splitting is tuned to the frequency of the 
control field.

The coupling between two electron spin qubits 
occurs via the intrinsic exchange interaction 
between them [38]. The exchange coupling Je is pri-
marily determined by the overlap between the two- 
electron wave functions. Je can hence be tuned by 
either modifying the tunnel barrier between the two 
electrons or by shifting the relative orbital energies 
of the two electrons [39]. Both these methods can 
be realized by appropriately tuning the gate voltages 
that control the potential landscape in the device. 
To perform a CNOT gate, the electron spin qubits 
are operated in a regime where Je is smaller than 
the energy difference between the qubit splittings 
of the two electrons (often termed as the detuning). 
In such a regime, each electron spin qubit will have 
two resonance frequencies, which are determined 
by the state of the other qubit. Hence, an oscillating 
control field at one resonant frequency will con-
ditionally rotate the qubit dependent on the state 
of the other qubit, resulting in a CNOT gate [24], 
[25]. To perform SWAP, the qubits are initialized 
in a regime, where the exchange coupling is much 
smaller than their detuning. The exchange coupling 
is then increased to a value much larger than their 
detuning, such that the two qubits exchange infor-
mation with each other. After an appropriate time 
that determines the angle of SWAP, the exchange 
coupling is brought back to a low value.

The spin-orbit coupling is weak for electrons in sil-
icon, resulting in long spin-relaxation times T1. The 
relaxation time has been shown to be dependent on 
the temperature and magnetic field [40]. Operating 
the qubits at low temperatures (< 1 K) and magnetic 
fields (< 5 T) yield T1 exceeding several seconds and 
even hours. The presence of spin-containing nuclei 

(such as Si-29) in the lattice, and their fluctuations, 
can result in decoherence of the electron spins [41]. 
Hence, isotopic purification of silicon from spin- 
containing nuclei allows for long-coherence times 
(T2) of milliseconds and seconds for the electron 
and nuclear spins, respectively [27]. Additional 
sources of decoherence include charge or electric 
field noise arising from nearby defects or traps, con-
trol signals, gate electrodes, and thermal radiation 
from the microwave antenna [27].

Although the methods used to address and couple 
silicon qubits can be integrated with the microelec-
tronics industry, the qubits are very sensitive to atomic 
details that have not yet been addressed in the indus-
try. These details strongly affect the qubit operation, 
and hence, it is essential to design devices that mini-
mize their influence on the qubits. First, the exchange 
coupling between donor electrons is extremely sen-
sitive to the position of donors, necessitating precise 
donor placement accuracies and/or large exchange 
coupling tunability [42], [43]. Efforts are underway 
to demonstrate qubits with single-donor atoms in 
silicon that are placed precisely with scanning tun-
neling microscopy [44], as well as to explore alter-
nate means of coupling between the qubits (such 
as dipolar interactions [45], [46]) that are less sen-
sitive to donor placement inaccuracies. In addition, 
atomic roughness and step edges at the interface can 
result in the excited orbital states coming close to the 
ground orbital state in silicon quantum dots, acceler-
ating relaxation and even resulting in a nonspin-1/2 
ground state [40]. The energy separation between the 
ground and excited orbital states (also referred to as 
valley splitting) can be tuned with electric field to an 
extent [47], yet it is always desirable to obtain larger 
and uniform valley splittings with a smooth interface. 
Finally, uncontrolled strain in the lattice arises from 
the thermal mismatch between the gate and substrate 
materials when the device is cooled from room tem-
perature to milli-Kelvin temperatures [48]. This modi-
fies the potential landscape in the device, altering the 
position and confinement of the quantum dots, along 
with introducing accidental dots. Ref. [48] highlights 
that using gate materials (such as polysilicon rather 
than aluminum), which have similar thermal expan-
sion coefficients to that of silicon, can aid to reduce 
the lattice strain.

The exchange interaction between the qubits is 
short-range (within a few tens of nanometers) can 
only result in nearest neighbor couplings. To scale 
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up silicon qubit devices to a large-scale architecture, 
it is beneficial to have connectivity between qubits 
that are separated by much larger distances. Methods 
to couple silicon qubits to a photonic mode spanning 
∼ centimeter in a microwave resonator have been 
proposed [45], [49], and recently demonstrated in 
Si/SiGe quantum dots [50], [51]. Through the pho-
tonic mode, two qubits, separated by as far as a 
centimeter, can be virtually coupled to each other, 
enhancing the qubit-connectivity significantly. Cou-
pling the spins to the resonator also provides a path-
way to readout the spin states [45]. The transmission 
frequency of the resonator then depends on the spin 
state of the qubit. Hence, applying a microwave sig-
nal to the resonator, and measuring its transmission 
aids to detect the spin state.

Designing silicon spin qubit devices requires 
modeling several classical and quantum mechani-
cal parameters with a range of techniques that are 
adapted from the semiconductor industry [34]. 
Classical variables that are relevant and need to be 
solved for include the electrostatic potential land-
scape, electric fields, electron densities, capaci-
tances, magnetic fields, and strain. The electrostatic 
parameters in silicon devices can be obtained by 
solving Poisson’s equation with the finite-element 
method with traditional technology computer-aided 
design (TCAD) packages such as Sentaurus TCAD, or 
a general multiphysics package like COMSOL. Solv-
ing Maxwell’s equations with high-frequency electro-
magnetic solvers (such as CST-Microwave Studio or 
ANSYS-HFSS) aids estimating the driving magnetic 
fields generated by the microwave antenna in such 
devices. Thermal strain while cooling such devices 
can also be simulated by solving the stress–strain 
equations with COMSOL [48]. In addition to the clas-
sical parameters, it is also essential to solve the elec-
tronic structure in silicon qubit devices and estimate 
the electron orbital energies and wave functions. 
Effective mass theory and tight-binding techniques 
have been extensively used for such calculations [40].  
The orbital energies and wave functions act as a 
handle to the hyperfine, exchange, and tunnel cou-
plings, along with the electron gyromagnetic ratio 
and electron spin relaxation times. These parameters 
are ultimately fed into a simplified spin Hamiltonian, 
which is solved with mathematical packages (such 
as MATLAB, Mathematica, or QuTiP), to simulate the 
instantaneous spin states and quantum gate fidelities.

Trapped ion qubits
Trapped ion qubits represent an implementation 

where quantum information is encoded in the elec-
tronic energy levels of ions suspended in vacuum. 
To obtain trapped ions, metals such as Calcium 
(Ca) or Ytterbium (Yb) are first resistively heated 
and vaporized with a current passing through them, 
and then directed to the trap. While loading these 
ions into the trap, these vaporized neutral atoms are 
simultaneously photo-ionized, where their outer-
most electron is removed, resulting in ions that have 
a single valence electron. As the ions are charged 
particles, appropriate voltages applied to gate elec-
trodes in their vicinity and resulting electric fields 
can then confine the ions in the trap. The most com-
mon gate electrode configuration for ion trapping 
is the (rf   ) Paul trap (Figure 3a), which consists of 
four electrodes (two with oscillating voltages and 
two grounded) that induce an effective harmonic 
potential in the xy plane, and additional two dc gate 
electrodes to induce harmonic confinement in the 
z plane [55]. In the harmonic oscillator potential, 
there are several eigenstates corresponding to the 
vibrational modes of the trapped ions. To ensure 
that thermal effects and fluctuating electromagnetic 
fields do not cause random excitation of these states 
and thereby motion of the ions, the ions are laser-
cooled to their vibrational ground state [56]. For a 
small number of ions (∼50), the ions will then be 
arranged in a linear chain along the z-direction such 
that overall forces from the external fields cancel out 
the forces from their Coulomb interaction. Typical 
ion separation in the trap is ∼10 µm.

As mentioned above, a qubit is defined using the 
energy levels of individual ions in the trap to encode 
the basis states |0 〉and |1 〉. Depending on the orbital 
energy levels used for encoding, there are two popu-
lar implementations of trapped-ion qubits: hyperfine 
and optical. For hyperfine qubits, the states corre-
spond to the hyperfine levels in the atomic s-orbital. 
For example, as shown in Figure 3b, the ion 171Yb+ 

has a nuclear spin of 1/2 and the qubit is encoded 
using the singlet |S  〉 and |T0  〉 configurations of the 
electron and nuclear spins [57]. A small dc mag-
netic field is applied to separate the |T0 〉 state from 
other triplet states |T− 〉 and |T+ 〉. The qubit splitting 
of 12.6 GHz for 171Yb+ is determined by the hyperfine 
interaction between the electron and the nucleus, 
and insensitive to magnetic field fluctuations up to 
first order [58]. Alternatively, for the optical qubit 
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encoding with trapped ions, the basis corresponds 
to s-orbital and d-orbital electronic energy levels. As 
shown for 40Ca+ in Figure 3c [54], the energy splitting 
is then ≈ 411 THz and equivalent to 729 nm. Trapped 
ion qubits are highly reproducible [59] provided 
there are no magnetic and electric field inhomoge-
neities in the trap, which may modify the energy lev-
els through Stark and Zeeman effects, respectively.

Fluorescent techniques are used to visualize the 
ions, where the qubit states are continuously excited 
to the p-states with the help of a laser, to induce an 
electric dipole transition [56]. On such a transition, the 
ions scatter the photons that are detected by photo- 
multiplers or a charge-coupled device (CCD) camera 
(see Figure 3a). The required laser frequency is equiv-
alent to the separation between the energy states used 
for the transition and depends on the choice of the ion.

The hyperfine and optical qubits are initialized 
with optical pumping. Here, a laser is incident on 
the ions with an appropriate frequency that can con-
tinuously drive the |1 〉 state to the excited p-states. 
Any spontaneous decay from the excited p-state to 
ground states apart from |0 〉, are also further driven 
by the laser [60]. Over a period of time (∼microsec-
onds), all the spontaneous emissions result in the 
qubit state being initialized to |0 〉[61].

For readout of trapped-ion qubits, the laser is 
tuned to a frequency that continuously drives one 
of the basis states (e.g., |1 〉) to an excited p-state. The 
polarization of the laser and excited state is chosen 
such that spontaneous emission cannot occur to the 

other basis state |0 〉, base d on spin-selection rules 
[60]. Hence, if the initial qubit state is |1 〉, the result-
ing p-state after excitation may spontaneously decay 
to states apart from |0 〉, which are also continuously 
excited. Photons from the spontaneous emission are 
then detected with a CCD camera. If the initial qubit 
state is |0 〉, the qubit cannot be excited to the p-states 
by the laser, as its frequency is far away from reso-
nance and there is no output at the CCD camera.

For optical qubits, a stable laser (having ∼400-THz  
frequencies) with a narrow line-width can drive 
the transitions between the |0 〉 and |1 〉 states via a 
quadrupole transition, enabling qubit control [62]. 
The hyperfine qubits can be controlled with two 
methods. First, microwave radiation with frequen-
cies (e.g., 12.6 GHz for 171Yb+) matching the qubit 
splitting can drive transitions between |0 〉 and  
|1 〉 states [63]. Microwaves can be generated with 
a microwave horn that is located several centime-
ters from the trap. However, as microwaves corre-
spond to centimeters in wavelength, and the ions 
are separated by micrometers, it is not possible to 
focus microwaves and address individual qubits in 
a chain of several ions. Second, stimulated Raman 
transitions with two laser fields (from a pulsed laser) 
can be used to control the qubit state [64]. Each 
laser field excites the qubit states to a virtual level  
|e 〉 that is well detuned (by δ  ) from the excited 
p-states (see Figure 3b). The frequency difference 
between the two laser fields is chosen to match the 
qubit splitting. Based on a Raman process, the qubit 

Figure 3. (a) Schematic of a Paul trap used to confine ions in vacuum. Inset: 
Visualization of ions in the trap with fluorescent techniques. (Reprinted from [52] with 
permission from Nature.) (b) Electronic energy levels of a 171Yb+ ion illustrating qubit 
encoding (|0〉 and |1〉) with hyperfine energy levels [53]. Transition between qubit states 
is achieved by a Raman process via excitation to a virtual state |e〉. (c) Electronic 
energy levels of a 40Ca+ ion illustrating qubit encoding with the s- and d-orbital energy 
levels. (Reprinted from [54] with permission from Springer.)
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is rotated at a frequency proportional to the  product 
of the individual Rabi frequencies (from |0 〉 to  
|e 〉 and from |1 〉to |e 〉 determined by the laser power) 
and inversely proportional to the detuning δ from 
the p-states. This method has the advantage of selec-
tively addressing the qubits, where the laser can be 
focused individually on each qubit. Typical times-
cales for single qubit operations are of the order of 
several microseconds.

The Coulomb interaction between the ions 
serves to mediate the coupling between the qubits 
[52]. Based on this interaction, the qubit states are 
coupled to the vibrational modes of the ion chain. 
Hence, appropriate laser frequencies can help trans-
ferring the qubit states to the vibrational modes. 
Depending on the vibrational modes of the ion-trap, 
a subsequent ion in the chain can be rotated with a 
laser, to demonstrate a CNOT gate. The vibrational 
modes can also be swapped with the subsequent 
qubit, resulting in a SWAP gate.

Like silicon spin qubits, trapped ion qubits have 
extremely long relaxation and coherence times. The 
relaxation mechanism is via spontaneous decay that 
approaches several seconds for optical qubits, and 
several days for hyperfine qubits. The coherence of 
the qubits is primarily affected by ambient magnetic 
field fluctuations that modify the qubit energy lev-
els through the Zeeman effect, laser intensity, and 
frequency fluctuations over time, and coupling of 
the qubit states to the vibrational degree of freedom 
during two-qubit operations [65]. The sources of 
decoherence for the vibrational degree of freedom 
include unstable trap parameters, the coupling of 
the electric dipole associated with the motion 
of ions to thermal radiation in the environment, and 
ion collisions with the residual background gas. Typ-
ical coherence times of the trapped ion qubits due to 
these effects is of the order of seconds.

The coupling rate between the qubit state and 
vibrational mode (for two-qubit operations) has been 
shown to be inversely proportional to the square 
root of the number of ions in the chain [61]. Hence, 
increasing the ion number in the chain beyond 
∼50 slows down the two-qubit operations, where 
decoherence (heating) of the motional modes and 
fluctuating electric fields become significant. Archi-
tectures for scale-up with a larger number of ions 
include quantum charge coupled device (QCCD) 
architectures [66] where individual ions at the edges 
of a trap are shuttled to nearby traps and made to 

interact with them, for connecting distant qubits. 
This would require exquisite control of the shuttling 
of the atomic ions, as well as the periodically cooling 
down the excess motion arising from shuttling ions. 
Although this method could potentially work for a 
larger number of qubits (∼1000), it becomes imprac-
tical for scale-up due to the complexity of intercon-
nects, diffraction of optical beams, and extensive 
hardware requirements. Photonic interfaces have 
been proposed to connect even larger systems [61]. 
Here, qubits at the edges of the chain are driven to 
an excited state with very fast laser pulses so that 
at most one photon emerges from each qubit after 
radiative decay. Following selection rules, the radi-
ative decay can lead to entanglement between the 
photonic and trapped ion qubit. Photons from two 
separate qubits are mode-matched and interfered on 
a beamsplitter, which is then detected. A successful 
detection then yields an entangled state between the 
two distant ion trap qubits.

The design packages available in the conven-
tional microelectronics industry cannot be directly 
extended to design trapped ion qubits, as their 
implementation has very little overlap with that 
of silicon. Nevertheless, the electric fields avail-
able from classical electrostatic solvers (such as 
 COMSOL) can be used to optimize and design the 
gate electrode configuration and voltages for the 
trap. As illustrated previously in this section, the 
electronic orbital levels of single ions (or even a 
cluster of ions) in the trap, determine the laser fre-
quencies needed for initialization, readout, control, 
and coupling of the trapped ion qubits. The orbital 
energies and hyperfine interactions for a variety 
of trapped ion candidate materials can be deter-
mined from ab initio electronic structure calcula-
tion techniques such as DFT. A significant aspect 
of the design also includes the optical setup for the 
lasers, including its power and focus. These param-
eters can be obtained with commercial ray-tracing 
software packages such as Zemax, Code V, or Oslo. 
The dynamics of the trapped ion qubits upon inter-
action with a laser can be mapped onto a simpli-
fied Hamiltonian, which can then be solved with 
commercial mathematical packages, such as MAT-
LAB. While there are several analytical expressions 
and mathematical models for light-matter interac-
tions, a device simulator capable of capturing the 
nonidealities in realistic trapped ion devices is cur-
rently nonexistent.
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Superconducting transmon qubits
Transmon qubits encode quantum information 

in the charge states of superconducting islands con-
nected by Josephson junctions. The superconduc-
tors, typically aluminum or niobium, are deposited 
on a silicon substrate, allowing transmon qubits 
to be fabricated on a large scale with techniques 
adapted from the microelectronics industry. A micro-
scopic image of a transmon qubit device is shown in  
Figure 4a and illustrates that the qubit region spans 
length scales of tens of micrometers.

The simplified qubit Hamiltonian can be derived 
as a quantum analog of a classical LC oscillator, 
where L is the Josephson inductance, and C is the 

capacitance between the superconductors [68]. The 
qubit splitting is then given by  E01 ≈ ℏ/  √

___
 LC    , where  

ℏ  is the reduced Planck constant. E01 is typically 
∼5 GHz in units of frequency.

The total energy of the system is distributed 
between the inductor and capacitor, and thereby 
consists of two parts: 1) Josephson energy  
EJ =  ℏ 2/(4e2L) and 2) charging energy EC = e2/2C 
of the superconductors [69]. As the charge states 
constitute the qubit, they can heavily be suscep-
tible to electric field noise. The noise sensitivity 
can be minimized with appropriate distribution of  
energies EJ and EC. Figure 4b plots the energy levels 
for several values of EJ /EC , and indicates that large 

Figure 4. (a) The transmon qubit consisting of two superconducting islands that are 
coupled through Josephson junctions and a large interdigitated capacitance. Inset: SEM 
image of the device in the vicinity of the Josephson junctions. (b) Eigenenergies Em (first 
three levels, m = 0, 1, 2) of the superconducting system as a function of the effective 
offset charge ng induced by nearby gate electrodes and environment [67]. Energies 
are given in units of the transition energy E01 = E1 − E0 evaluated at ng = 1/2, and are 
calculated for various values of EJ / EC. The zero point energy is chosen as the bottom of 
m = 0 level. For increasing values of EJ /EC, Em becomes more robust against fluctuations 
in ng arising from environmental noise, whereas the anharmonicity (Eδ = E01 − E12)  
reduces. EJ / EC is chosen between 10 and 50 for transmon qubits in order to obtain 
robustness with sufficient anharmonicity. (c) Schematic of a transmon qubit capacitively 
coupled to a superconducting resonator for initialization, readout and control [67]. 
The capacitances between various entities of the transmon-resonator system are also 
labeled. (d) Equivalent circuit of a transmon coupled to the resonator [67]. [(b), (c), and 
(d) are reprinted from [67] with permission from the American Physical Society (APS).]
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values of EJ /EC render the qubits robust against 
noise. However, this will also lower the difference 
between qubit splitting and other splittings in 
the system, often called the anharmonicity. A large 
anharmonicity is required to ensure that charge 
states with higher energy levels are not excited 
while operating the qubit. As a tradeoff, EJ /EC is 
normally chosen between 10 and 50 for sufficient 
robustness of the qubit, along with anharmonicity 
Eδ ≈ EC /2 ∼100 MHz [67].

To perform quantum operations, the transmon 
qubits are commonly placed adjacent to a super-
conducting resonator (Figure 4c) and is capacitively 
coupled to it (Figure 4d) [67], [70], [71]. Here, the 
qubit-resonator system is designed to be in the dis-
persive regime, where the detuning (∆ ∼100 MHz) 
between the qubit and the photonic mode of the res-
onator is much larger than the coupling ( g ∼10 MHz)  
between them. In this regime, the shift in the reso-
nator transmission frequency from its fundamen-
tal mode frequency is given by ± g2/∆, where the 
sign (+ or −) depends on the qubit state [70]. By 
applying microwave pulses to the resonator, and  
measuring its transmission, the qubit state can hence 
be readout.

Resonant microwave pulses can be used to con-
trol the qubits, as the qubit splitting is ∼5 GHz. Qubit 
control timescales are a few hundreds of nanosec-
onds depending on the quantum gate operation and 
are much faster than that of trapped ion and silicon 
spin qubits. Measurement of the qubit and its subse-
quent control also aids in deterministic initialization 
of the qubit state.

Two qubits, which are significantly detuned from 
the resonator, can be coupled to each other via the 
resonator. The coupling rate between the qubits is 
given by       g  1    g  2   ___ 2    ( 1⁄ ∆  1   +  1/∆  2   ) ,  where g1 and g2 are their 
individual coupling strengths to the resonator, and 
∆1 and ∆2 are their detunings with respect to the 
resonator [72]. However, the effective coupling 
rates (∼megahertz) between the qubits will still be 
smaller than the detunings (∼300 MHz) between 
them, caused by differences in the qubit splittings 
during manufacturing. As a result, the resonance fre-
quency of each qubit will be determined by the state 
of the other qubit, similar to the electron/nuclear 
spin qubit splittings shown in Figure 2d. This enables 
conditional rotation of one qubit, dependent on the 
state of the other qubit, and hence a CNOT gate. 

Alternatively, direct capacitive coupling between 
two adjacent transmon qubits can also be leveraged 
for demonstrating CNOT gates. However, using only 
direct capacitive coupling between the qubits leads 
to significant cross talk when they are incorporated 
in a large-scale architecture.

Compared to silicon and trapped-ion qubits, the 
relaxation and coherence times of superconducting 
qubits are short. The main sources of decoherence 
arise from the coupling of the qubits to additional 
two-level systems present in the bulk or interfaces 
of the device, nonequilibrium quasi-particles gen-
erated from stray infrared light, and radiation to 
 additional modes present in device [73], [74]. The 
relaxation rate has also been shown to be expo-
nentially dependent on the temperature, due to the 
qubit interaction with thermal photons [67]. As a 
result, extremely low temperatures, ∼20 mK, are nec-
essary for the high-fidelity operation of qubits. Dif-
ferent device designs and operation regimes during 
the last decade have resulted in improvements in the 
relaxation and coherence times by several orders of 
magnitude. Dephasing times currently is of the order 
of ∼100 µs.

The Josephson energy is strongly determined by 
the critical current across the junction, which, in 
turn, is dependent on the superconducting energy 
gap and the normal resistance (Rn) of the Josephson 
junction when it is operated above the critical tem-
perature [75]. Rn is determined by the thickness (few 
nm) of the Josephson junction and can be variable 
across different devices. This results in nonuniform 
qubit splittings across devices, with an in-homogeneity 
of ∼300 MHz. Another significant challenge is the 
large size (several tens of micrometers) of supercon-
ducting qubits, limiting the number of qubits that 
can be coupled to each other via a single resona-
tor, which spans about a centimeter. Scaling up the 
current demonstrations to a large-scale architecture 
with millions of well-connected qubits operating at 
extremely low temperature will benefit strongly by a 
reduction in the size of the qubits [76].

While a standalone tool for designing supercon-
ducting qubits is nonexistent, parameters such as the 
capacitance (for determining EC) and inductance 
(for determining EJ) can be estimated with classical 
electrostatic and electromagnetic packages such as 
FastCap and FastHenry, respectively. Microwave soft-
ware such as TXLINE (in AWR Microwave Office) has 
been used to design and estimate the  characteristic 
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impedance of the superconducting resonator that 
aids to readout, control, and couple the qubits. In 
addition, the electromagnetic fields experienced by 
the superconducting qubits can be obtained by solv-
ing Maxwell’s equations with high-frequency elec-
tromagnetic simulators, such as ANSYS-HFSS. As for 
silicon and trapped-ion qubits, the qubit dynamics 
can also be obtained by solving the simplified Ham-
iltonian with mathematical packages.

To conclude this section, we reiterate that dif-
ferent implementations are unique with their qubit 
type, and methods for qubit readout, control, and 
interaction. We summarize our description of the 
different qubit technologies in Table 1.

Testing and characterization of  
quantum devices

In spite of the great progress in fabrication and 
control of qubits, today’s quantum computing 
devices are far noisier and error-prone than conven-
tional digital circuits. Bit error probabilities of 10−3 
to 10−2 per qubit per operation (or per clock cycle) 
are typical. Even with continued progress in qubit 
technologies, it is unlikely that the errors incurred 
by physical qubits will ever become negligible. Thus 
understanding and mitigating fault processes in 
qubit devices is a critical aspect of quantum com-
puter development. Correspondingly, the experi-
mental testing of qubit devices primarily concerns 
the accuracy and reliability of hardware operation 
rather than the correctness of the circuit logic.

Qubit device testing may be divided into two 
broad categories: characterization, wherein the 
goal is to obtain a detailed model of a device’s fault 
modes; and benchmarking, wherein the goal is to 
determine a few high-level performance metrics. 
Characterization is the more costly type of testing 

but can provide important insights leading to fault 
mitigation strategies or improved devices. For simply 
assessing the performance of a device, benchmark-
ing is more practical.

Benchmarking: Metrics and techniques
The most basic performance metric is the prob-

ability that the device outputs the correct state. In 
the context of quantum mechanics, this corresponds 
to the inner product (or overlap) between the out-
put state and the intended state, which is called the 
fidelity. The infidelity, defined as 1 minus the fidelity, 
quantifies the amount of error in the output state. 
Another common way of quantifying the output 
error is in terms of the geometric distance between 
the output state and the target state in the complex 
vector space.

If a qubit device is used to output a specific 
quantum state, for example, some reference state or 
resource state, the fidelity of the output with respect 
to this known state can be estimated by measuring 
random subsets of qubits along various directions 
of the Bloch sphere [77], [78]. In such cases, the 
experimental cost scales favorably with the regis-
ter size. However, a qubit device would be used to 
perform a wide variety of computations each with 
a different output state, and these output states 
presumably cannot be computed by any conven-
tional means. In this case, one desires experimen-
tal metrics that allow one to estimate or bound the 
fidelity of the device output for any computation it 
 performs. The state-of-the-art approach for this pur-
pose is randomized benchmarking (RB) [79]. RB is a 
technique for assessing how much, on average, each 
 operation decreases the output fidelity. Essentially, 
RB involves measuring the final fidelity of a qubit for 
random operation sequences of varying lengths. For 

Table 1. Summary of qubit implementations.
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weak uncorrelated errors, the fidelity decays expo-
nentially as a function of sequence length. The RB 
decay constant is broadly interpreted as the aver-
age error per gate, an obviously useful performance 
metric. Extensions of RB have been devised to yield 
operation-specific error metrics [80], [81], to incor-
porate multiqubit operations [82], to include qubit 
loss [83], and to assess cross-talk [84]. While RB 
remains a very popular benchmarking method, its 
underlying fault model is not universal; hence, RB in 
its current form may not be entirely valid or accurate 
as engineering efforts continue to make the simple 
fault modes assumed by RB less and less prominent 
[85]. Additionally, it has been noted that relating 
RB decay constants to operation fidelities is subtly  
problematic [86].

Characterization via quantum tomography
An alternative to benchmarking is to thoroughly 

characterize the fault modes of the device. Since the 
output state of a quantum circuit is exponentially 
large in the number of qubits, characterization of a 
quantum circuit as a whole is generally infeasible. 
The established strategy is to characterize each oper-
ation of a qubit device as completely as possible so 
that the result of any given sequence of operations 
can (in principle) be predicted accurately. The gen-
eral name for this strategy is quantum tomography, a 
name derived from the medical imaging technique in 
which a 3D image of a subject is reconstructed from 
a set of 2D projections. In a similar manner, quantum 
tomography reconstructs a quantum state or oper-
ation from multiple measurements, each of which 
reveals a particular projection of the state. This recon-
struction is based on the fact that a quantum state is 
uniquely specified by the probability distributions for 
certain characteristic quantities of a physical system. 
(For a spin qubit, the characteristic quantities are the 
projection of the spin along three independent spatial 
directions.) State tomography is the determination of 
the quantum state via statistical estimation of these 
characteristic distributions. Tomographic methods 
can also be used to characterize qubit operations. A 
qubit operation can be thought of as a linear transfor-
mation of the characteristic probability distributions. 
Quantum process tomography is the determination 
of the transformation matrix by characterizing the 
output state for each possible input state, or more 
precisely, for a set of linearly independent states that 
span the state space.

Quantum tomography as just described requires 
well-calibrated measurements, whereas qubit meas-
urements are among the device operations that need 
to be characterized. This problem is overcome with 
Gate Set Tomography [87], [88], the state-of-the-
art method for detailed characterization of qubit 
devices. Gate set tomography involves tomographic 
measurements of many different sequences of 
device operations. These sequences, which range in 
length up to hundreds or thousands of operations, 
are carefully chosen to reveal all possible types of 
qubit errors. The data are then fit to a highly nonlin-
ear model using a sophisticated procedure, yielding 
a self-consistent model of all of a device’s operations, 
including the measurement operations themselves. 
Gate Set Tomography has been used to characterize 
and significantly improve the control of  trapped-ion 
qubits [89].

Other approaches
In addition to RB and Gate Set Tomography, 

a number of other testing approaches have been 
developed. Some of these remain theoretical pro-
posals, while others have had at least limited experi-
mental demonstrations.

One approach is to test a quantum device utiliz-
ing another quantum device, either as a reference or 
as a resource to perform more powerful quantum- 
based tests [90]. This line of approach stands to 
greatly reduce the cost of quantum device char-
acterization, but it requires the availability of well- 
characterized quantum circuits that are similarly 
difficult to certify.

Another approach is to exploit prior knowledge 
to reduce the cost of conventional benchmarking 
and tomographic methods. For example, adaptive 
testing based on Bayesian principles can signifi-
cantly accelerate both RB [91] and tomography 
[92], [93]. In the case that the state or operation in 
question has some known characteristics (e.g., it has 
low rank or belongs to a certain symmetry class), 
specialized testing methods that are more efficient 
are applicable [94], [95]. Related to this, the tech-
nique of compressive sensing has been adapted to 
the quantum domain and applied to the characteri-
zation of quantum states [96].

Other forms of testing may be categorized as 
model fitting, for example, determining particular 
parameters of qubit dynamics, or assessing particu-
lar properties of the device output (e.g., purity or 
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entanglement). One recently developed approach 
to characterizing the quality of many qubit devices 
is to measure the distribution of output states pro-
duced by executing random quantum circuits [97]. 
This reveals the extent to which the device can cre-
ate and maintain superpositions of computational 
states, a key facet of the “quantumness” of quantum 
computation. Finally, there is now a rapidly growing 
interest in the use of machine learning techniques for 
characterizing quantum systems. Instead of attempt-
ing to match the experimental data to an intrinsi-
cally quantum model that is likely to be intractable, 
researchers have begun to use neural nets to learn 
the behavior of quantum systems from experimental 
data [98]–[101]. The learning process implicitly cre-
ates a tractable model of the quantum system.

Quantum circuit design and synthesis
Quantum circuits provide representation for how 

register elements may be modified by a sequence 
of gates to implement basic computation. As sum-
marized in the “Principles of quantum computing” 
section, gates represent quantum mechanical opera-
tors that address one or more register elements and 
by design, the gates are reversible and represented 
by unitary matrices [102]. However, the available 
gates are often restricted to well-defined subsets 
of available operators from which a quantum cir-
cuit specification must be constructed. Fixed-point 
arithmetic circuits can be used for solving complex 
elementary functions including evaluation of Tay-
lor series [103], [104]. In this section, we review 
the design of quantum circuits with an emphasis 
on arithmetic operations, such as addition, sub-
traction, and multiplication, which are required in 
the implementations of many quantum algorithms 
[102], [105]. We also review the steps required for 
the synthesis of quantum circuits into technology- 
specific implementations.

The design of quantum arithmetic circuits 
based on Clifford+T gates has caught the attention 
of researchers [105]–[108]. Figure 5 presents the 
quantum gates in the Clifford+T gate set with their 
matrix and graphic representations. The Clifford+T 
quantum gate set can be used to realize multiqubit 
logic gates such as the Toffoli and Fredkin gates 
previously presented in [109] and [110]. These 
multiqubit gates will prove useful for describing the 
implementation of quantum circuits presented in 
this article.

• CNOT gate: The CNOT gate belongs to the set of 
Clifford+T gates, cf., Figure 5, and the two inputs 
produce two outputs according to the logical 
mapping A, B → A, A ⊕ B.

• Toffoli gate: Figure 6 presents the circuit dia-
gram and matrix representations of the Toffoli 
gate, while Figure 7 shows an example of how 
this three-qubit gate may be implemented as a 
series of two-qubit Clifford gates and the T gate. 
Notably, the Toffoli gate itself is universal for 
reversible logic and the three inputs produce 
three outputs according to the logical mapping 
A, B, C → A, B, A · B ⊕ C.

• Fredkin gate: Figure 8 presents the circuit dia-
gram for the three-qubit Fredkin gate and its ma-
trix representation. The Fredkin gate is universal 

Figure 5. The Clifford+T gate set is  
a universal basis for expressing  
quantum circuits.

Figure 6. The circuit diagram for the 
three-qubit Toffoli gate and its matrix 
representation.
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for reversible logic and, as shown in Figure 9, it 
can also be realized as a sequence of two-qubit 
Clifford gates and T gates. The Fredkin gate maps 
three inputs to three outputs as A, B, C → A,  

  
_

 A   · B + A · C, A · B +   
_

 A   · C.

Recent proposals for the realizations of reversible 
logic gates and quantum circuits have focused on 
the fault tolerant Clifford+T gate set due to its demon-
strated tolerance to noise errors [111], [112]. Potential 
fault-tolerant implementations of these gates could 
play an important role in mitigating the noise observed 
in current quantum computing devices [111]–[113].

While fault-tolerant implementations can help to 
tolerate limited amounts of noise [114], [115], it is 
important to note that the overhead associated with 
the implementation of fault-tolerant protocols can 
be significant [112], [113]. Therefore, an important 
concern for designing quantum circuits is to account 
for the resource overhead associated with each gate. 
For example, fault-tolerant T gates are well known 
to incur a significant increase in resources, thereby 
making T-count and T-depth important performance 
measures for fault-tolerant quantum circuit design 
[114], [116].

The number of qubits in a quantum circuit is a 
resource measure of interest because of the limited 
number of qubits available on existing quantum 

computers [117], [118]. We now define the T-count, 
T-depth, and qubit cost resource measures.

• Qubit cost: The total number of qubits required 
to design the quantum circuit.

• T-count: The total number of T gates used in the 
quantum circuit.

• T-depth: The number of T gate layers in the cir-
cuit, where a layer consists of  quantum opera-
tions that can be performed simultaneously.

Quantum operators are reversible, and therefore, 
a quantum circuit must establish a one-to-one 
mapping between the input and output states. 
Ensuring a one-to-one mapping between input 
and output states may require circuit overhead 
that includes the use of ancillae qubits and gar-
bage outputs. For example, any constant input 
required by the quantum circuit may be encoded 
using ancillae qubits. Garbage output refers to 
output that may not be a useful part of the result 
but is necessary for the quantum circuit to pre-
serve a one-to-one mapping. The inputs regen-
erated at the circuit output are not considered  
garbage outputs [110]. An ideal quantum circuit 
would be garbageless in nature, and efforts to min-
imize the circuit overhead from ancillae and gar-
bage outputs are active research areas.

When a quantum circuit has garbage outputs, 
the garbage outputs can be removed by using Ben-
nett’s garbage removal scheme [119]. Figure 10 
illustrates Bennett’s garbage removal scheme. Let 
U represent an arbitrary quantum circuit that per-
forms f (x1, x 2,···, xn −1, xn ) and let U −1 represent its 
logical inverse.

Bennett’s garbage removal scheme is three-step 
process. After U is applied, all desired outputs are 
copied to ancillae with CNOT gates. Then, U −1 is 
applied to the qubits of the original circuit U. Thus, 
at the end of the computation, the garbage outputs 
have been restored to their initial values.

Figure 9. The Fredkin gate may be 
implemented as the series of Clifford and 
T gates shown [111].

Figure 7. The Toffoli gate may be 
implemented as the series of Clifford  
and T gates shown [111].

Figure 8. The circuit diagram for the  
Fredkin gate and its matrix representation.
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Quantum arithmetic circuits
The quantum logic gates presented in the pre-

vious section can be combined to create quantum 
circuits that implement quantum algorithms. As a 
demonstration of these ideas, we present a series of 
quantum circuits designed for arithmetic operations 
such as addition, subtraction, and multiplication. 
We draw these examples from recent results in the 
literature [106]–[108], [120].

Quantum circuit for addition
We show an example of a quantum ripple carry 

addition circuit with no input carry presented in 
[107]. Consider the addition of two n-bit numbers  
a and b stored at quantum registers |A 〉 and |B 〉, 
respectively. Furthermore, let quantum register loca-
tion |An 〉 be initialized with z = 0. At the end of the 
computation, the quantum register |B 〉 will have the 
values sn −1:0 while the quantum register |A 〉 keeps 
the value a. The additional quantum register loca-
tion |An 〉 that initially stored the value z will have the 
value sn at the end of the computation. Here, si is the 
sum bit and is defined as

   s  i   =  {   a  i   ⊕  b  i   ⊕  c  i    
 
      if 0 ≤ i ≤ n − 1       ,  (7)

where ci is the carry bit and is defined as

  c  i   =  { 
0        

  
 a  i−1   ⋅  b  i−1   ⊕  b  i−1   ⋅  c  i−1   ⊕  a  i−1   ⋅  c  i−1    if 1 ≤ i ≤ n .

   

 (8)

  c  n    if i = n 

 if i = 0 

Figure 11 illustrates the complete addition circuit for 
the case of two 4-bit inputs a and b.

The carry bits ci are produced based on the inputs 
ai−1, bi−1 and the carry bit ci−1 from the previous stage. 
Each generated carry bit ci is stored at the quantum 
register location |Ai  〉 that initially stored the value ai 
for 0 ≤ i ≤ n − 1. After the generated carry bits are 
used in further computation, each quantum register 
location |Ai  〉 is restored to the value ai while each 
quantum register location |Bi 〉 stores the sum bit si 

for 0 ≤ i ≤ n − 1. The restoration of |Ai  〉 to the value 
ai eliminates all garbage outputs and transforming  
|Bi  〉 to the sum si cuts the ancillae cost to 1.

Quantum circuit for multiplication
We present an example of a quantum integer 

multiplication circuit that is presented in [108]. 
The quantum circuit is based on a novel design of 
a quantum conditional addition (Ctrl-Add)  circuit 
with no input carry and the Toffoli gate array. The 
quantum multiplication circuit implements the 
shift and add multiplication algorithm. As a result, 
the circuit will require a total of n Ctrl-Add cir-
cuits and Toffoli gate arrays. The Ctrl-Add circuits 
and Toffoli gate arrays are placed such that the 
shift operations are accomplished with no addi-
tional gates.

Consider the multiplication of two n bit numbers a 
and b stored in quantum registers |A 〉 and |B 〉, respec-
tively. Furthermore, consider a quantum register |P 〉 
of size 2 · n + 1 initialized to z = 0. At the end of the 
computation, the quantum registers |A 〉 and |B 〉 keep 
the values a and b, respectively. At the end of the 
computation, the quantum register locations |P0:2·n−1 〉  
will have the product of a and b. The quantum reg-
ister location |P2·n  〉 will be restored to the value 0. 

Figure 10. An example illustration for 
the steps in Bennett’s garbage removal 
scheme described in the text. (a) After 
Step 1. (b) After Step 2. (c) After Step 3.

Figure 11. A four-qubit example of the 
quantum ripple carry addition circuit with 
no input carry [107].
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 Figure 12 illustrates the quantum integer multiplica-
tion circuit for the case of two 4-bit inputs a and b.

Figure 13 illustrates the quantum Ctrl-Add circuit 
used in the quantum multiplier for the case of two 
4-bit inputs a and b. The operation of the quantum 
Ctrl-Add circuit is conditioned on the value of the 
qubit |ctrl 〉. When |ctrl = 1 〉, the circuit performs addi-
tion. The sum of a and b will appear on the quantum 
register that originally holds the value b at the end 
of the computation. The quantum register that origi-
nally holds the value a will be restored to the value a. 
When |ctrl = 0 〉, the quantum registers that initially 
hold the values a and b will be restored to the values 
a and b at the end of the computation.

Application of quantum arithmetic circuits  
in Taylor series

In this section, we present an application of the 
quantum multiplication and quantum addition circuits 
presented in the previous sections. For this example, 
we consider a quantum circuit implementation of the 
Taylor series expansion.  Taylor series are used in quan-
tum algorithms for scientific computation such as to 
calculate the Hamiltonian evolution of a quantum 
system or in the simulation of open quantum systems  
[121]–[123]. Furthermore, Taylor series polynomials 
are used to approximate the functions frequently 

used in scientific computing applications, such 
as sin(x), ln(x), and ex. These functions have been 
used in additional quantum algorithms besides 
those for Hamiltonian evolution such as algo-
rithms for Pell’s equation and the principal ideal 
problem [123], [124]. The value of a given function 
f(x) near a point c is estimated by computing the  
Taylor series equation shown below

  f (x ) ≈   ∑ 
i = 0

  
∞
    

 f    i  (c )
 ___ 

i !
    ⋅  (x − c )   i .  (9)

We will consider an example for a Taylor series 
limited to the first three terms, that is, 

   f (x ) ≈ f (c ) +  f  ′  (c ) ⋅ (x − c ) +   
 f  ″  (c )

 ___ 
2
   ⋅  (x − c )   2  ,  (10)

in which we compute this approximation for f (x) 
centered at value c. Let c and x be n-bit values stored 
in quantum registers |x 〉 and |c 〉, respectively. Fur-
thermore, let f (c),   f  ′   (c), and   f  ″   (c)/2 be represented 
as n-bit numbers stored at quantum registers |f  (c) 〉,  
|  f  ′   (c) 〉, and |  f  ″   (c)/2 〉, respectively. Finally, consider 
quantum registers |Y1 〉, |Y2 〉, |Y3 〉, and |Y4 〉 that  contain 
ancillae set to 0. At the end of the computation, 
quantum register |Y4 〉 will have the first three terms 
of the Taylor series expansion. The quantum registers  
|c 〉, |x 〉, |f (c) 〉, |  f  ′   (c) 〉, and |  f  ″   (c)/2 〉 will be restored 
to the values c, x, f (c),   f  ′   (c), and   f  ″   (c)/2 at the end 
of computation. The quantum registers |Y1 〉, |Y2 〉 and 
|Y3 〉 that initially held ancillae will be restored to their 
initial values.

The quantum Taylor series circuit is built from the 
quantum addition circuit, the quantum subtraction 
circuit, the quantum multiplication circuit and the 
logical reverse of the quantum multiplication cir-
cuit. Figure 14 shows the graphical representation 
of components used in the Taylor series circuit. We 
will use a quantum subtraction circuit presented in 
[120] that is based on the  ripple carry adder shown 
in this article.

Figure 13. A four-qubit example of the 
quantum Ctrl-Add circuit with no input 
carry [108].

Figure 12. A four-qubit example of 
the quantum integer multiplication 
circuit [108].
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Figure 15 illustrates an example of the quantum 
subtraction circuit based on the design in [120]. 
The quantum circuit shown calculates   ‾  

_
 b  + a   where  

  ‾  
_

 b  + a   = b − a. Given two 2's complement inputs, the 
quantum subtractor will not experience overflow. 
Therefore, the circuitry used to calculate the sum 
bit sn is removed from the quantum adder because 
the circuitry is not needed to calculate   ‾  

_
 b  + a  . The 

steps to design the quantum Taylor series circuit are 
explained below. Figure 16 illustrates Steps 1 and 2.

• Step 1: Calculate  f (x ) ≈ f (c ) +  f  ′  (c ) ⋅ (x − c ) +  
  
 f  ″  (c )

 ___ 
2
   ⋅  (x − c )   2   . We use the quantum multipli-

cation circuit, quantum addition circuit, and 

 quantum subtraction circuit in this step. The 
result of the quantum subtraction circuit x − c is 
copied to ancillae using an array of n CNOT gates.

• Step 2: Remove garbage output. At the end of 
Step 1, three quantum registers (|Y1 〉, |Y2 〉, and |Y3 〉)  
that initially held ancillae are tran sf ormed to  
f (c) +   f  ′   (c) · (x − c), (x − c)2 and (x − c). Further-
more, at t he end  of the computation, qu antum 
register |x 〉 that initially held the value x has been 
transformed to the value x − c. These outputs 
are garbage outputs. We use the logical reverse 
of the quantum multiplication circuit, the quan-
tum adder,  t he  q u antum subtraction ci rc uit, 
and an ar r ay  o f CNOT gates to remove these 
garbage outputs.

Quantum circuit synthesis
Quantum circuit synthesis is the generation of a 

quantum circuit derived from a given input definition 
and any necessary constraints. While this process 
may be either manual or automated, a typical generic 
quantum circuit synthesis design flow is shown in 

Figure 14. Quantum circuit diagrams for 
the gates used in computing the Taylor 
series circuit. (a) Quantum addition circuit. 
(b) Quantum subtraction circuit. (c) Quantum 
multiplication circuit. (d) Logical reverse of 
quantum multiplication circuit.

Figure 16. Generation of the quantum 
circuit for the calculation of the first three 
terms of the Taylor series of f(x): Steps 1 
and 2. (a) After Step 1. (b) After Step 2.

Figure 15. A four-qubit example of 
the conversion of a quantum addition 
circuit into a subtraction circuit via the 
procedure in [120].
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Figure 17. The first step of presynthesis optimization 
includes the addition of ancilla lines and output order-
ing to satisfy reversibility. The synthesis step then 
transforms any irreversible operation into a reversible 
operation—this step may be performed either opti-
mally or heuristically. There are many different opti-
mal methods for quantum circuit synthesis including 
those proposed in [126]–[128]. However, many cir-
cuits grow non  linearly with input size and they can 

quickly become too large for optimal  synthesis tech-
niques. Heuristic algorithms, such as decision dia-
grams (see [127] and [129]) and the search of circuit 
databases (see [125]), are widely used in these lim-
its. Such heuristic synthesis methods are often sub-
optimal and therefore further improvements may be 
achieved by local optimization methods. In general, 
synthesis methods can optimize resource metrics by 
reducing gate count, reducing the number of ancillae 
qubits, reducing the overall circuit depth, and improv-
ing locality. Postsynthesis optimization techniques 
such as template matching [125], [127] can also be 
employed to further achieve better resource usage. 
Finally, during the technology mapping stage, the 
quantum circuit is mapped (decomposed) into the 
intrinsic gates available within the target technology. 
The growing literature on the topic of quantum cir-
cuit synthesis for various levels of abstraction hints 
at many  important  avenues of research [125]–[127], 
[129]–[133].

We have summarized the basic features and require-
ments for quantum computing devices. This includes 
the fundamental criteria that a quantum computing 
device must implement as well as the principles of 
operation for performing computation within the cir-
cuit model. We have reviewed the state of the art in 
three specific technologies currently being developed 
for quantum computing devices. Silicon spins, trapped 
ions, and superconducting transmons represent three 
of the leading approaches for quantum computing 
but these devices still face fundamental research chal-
lenges. Therefore, methods to accurately characterize 
and benchmark the behavior of quantum computing 
devices play an important role in design and testing. 
We have emphasized the necessity of statistical anal-
ysis to infer the operation of quantum devices. We 
have also discussed the design of quantum circuits 
for the case of arithmetic operations, which represent 
an important use case for future quantum computing 
devices. These circuits were designed to minimize the 
occurrence of a specific instruction, the T gate, due to 
the expected complexity of fault-tolerant implemen-
tation. These designs are expected to play a critical 
role in future device operation as tradeoffs in gate 
and device complexity become more sophisticated. 
While we have not discussed logic test for quantum 
circuits, there are existing methods for fault detection 
in classical reversible circuits that might be applica-
ble to quantum  circuits [134]–[137]. As an example, 

Figure 17. Generic automatic quantum 
circuit synthesis design flow. Derived 
from representation in [125].
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quantum circuits with noisy gates would require 
novel fault-models and novel methods for test-vector 
generation [138]. Therefore, we anticipate that the 
fault-testing of quantum circuits will be an important 
future research area.

The design and testing of early quantum comput-
ing devices face many near-term challenges. We have 
emphasized a small subset of the technologies currently 
under investigation for developing quantum computing 
devices. However, there are many more approaches to 
be considered, each with their own nuanced physics. 
This suggests that variations in the physics of each 
quantum computing technology may lead to different 
implementations for design and testing. Comparison 
across technologies will require standard calibration 
techniques that have yet to be developed. In addition, 
methods for quantifying well-defined metrics will be 
important for evaluating device performance. Current 
testing is focused on meeting the minimal criteria for 
functionality in the regime of noisy, error-prone, and 
faulty devices. Finally, we note that the current state 
of quantum computing remains focused on relatively 
small scale devices. Future devices, or networks of 
devices, are likely to include quantum registers with 
millions of elements and sequences with millions of 
highly parallelized instructions. Those devices and 
circuits will require more sophisticated methods for 
design and testing. 
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