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Abstract—This paper proposes the utilization of factored forms
in logic synthesis formemristivematerial implication stateful logic.
Factored forms have not been explored by previous works due to
expected increasing on device count. We present an algorithm to
obtain factored forms computable with minimum number of mem-
ristors. Comparison to previous works shows an average reduction
of 12% in the number of operations to compute 4-input Boolean
functions.
Index Terms—Digital circuit, implication logic, logic synthesis,

memristor, stateful logic.

I. INTRODUCTION

M EMRISTORS are two-terminal passive device firstly
theorized in 1971 as a basic circuit element [1], [2].

Even though memristive behavior has been observed for a long
time [3], the relationship between theory and experimental re-
sults was only demonstrated in 2008, with the fabrication of
the first nanoscale memristor device [4]. Moreover, memristors
had already been implemented using transistors and capacitors,
but such implementations were not compact enough [5]. The
nanoscale memristor renewed the interest in using such a device
on VLSI design. Recently, several works have studied the dy-
namic behavior of memristors [6]–[9] as well as the utilization
of this device to design memories [10]–[13], neuromorphic sys-
tems [14]–[18], analog [19]–[21] and digital circuits [22]–[34].
There are different manners to exploit memristors in digital

circuit design. They can be used together with MOS transis-
tors to implement threshold logic gates [22]–[25] and as re-
configurable switches [26]–[28]. In both cases, Boolean values
are represented by voltage levels. Alternatively, the logic in-
formation can also be represented through the memristor re-
sistance value. Such a strategy allows the implementation of
stateful logic, i.e., logic elements are also used for storaging
[15], [29]–[34].
The material implication (IMPLY) based architecture, de-

scribed in [30], is the most adopted approach to perform
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stateful logic. Using this architecture, any -input Boolean
function, expressed in a recursive form, can be computed with

memristors [35]. On the other hand, computation based
on this architecture is typically sequential. Consequently, the
computation time is directly related to the number of operations
performed. In this sense, methods to improve performance of
memristive IMPLY stateful logic are of great interest. However,
these methods may increase the number of devices required
to perform logic computation. For instance, memristors
blocks can be used in parallel, where each block computes a
subfunction of the target function [36].
Performance improvement can also be obtained by reducing

the number of operators in IMPLY expressions. In this sense, a
multi-input implication operation performs a logical disjunction
among several inputs in a single step [37], [38]. Logic synthesis
methods have exploited such an operation to improve quality
of IMPLY expressions [39], [40]. These methods only synthe-
size recursive forms to ensure that the resulting expressions are
computable with memristors.
This paper proposes the utilization of factored forms for

memristive IMPLY stateful logic. These forms are more gen-
eral than the recursive forms presented in [35], leading to
shorter IMPLY expressions. However, most factored forms
are not computable with memristors. In this work, we
present an algorithm to obtain factored forms computable with

memristors. Experimental results considering all 4-input
Boolean functions show significant reduction on the average
number of IMPLY operations. To achieve such result, two
other contributions are also presented: 1) we demonstrate that
a simple logic simplification applied in previous works should
be avoided, and 2) the concept of multi-input implication is
generalized to multi-memristor implication.
The rest of the paper is organized as follows. Section II briefly

discusses the electrical behavior of memristors. Section III re-
views the memristive IMPLY stateful logic. Section IV shows
that a simple logic simplification adopted by previous algo-
rithms is not effective. Section V presents the multi-memristor
implication concept. Section VI evaluates the computation
of factored forms. Section VII describes a new algorithm to
synthesize Boolean functions, considering different types of
expressions. Section VIII presents experimental results and
Section IX outlines the conclusions.

II. MEMRISTOR

The memristor is a two terminal passive device that behaves
as programmable resistor (memristor is short for memory re-
sistor) [1]. The device resistance can be modified by applying a
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Fig. 1. Memristor electrical symbol. Output terminal is marked by a thick black
line. A positive (negative) bias reduces (increases) the resistance value.

Fig. 2. Current-voltage memristor behavior: (a) linear and (b) nonlinear.

voltage difference between its terminals. If a positive voltage
bias is applied, then the device resistance value tends to de-
crease. In opposite, when a negative voltage bias is applied,
the resistance value increases. The resistance remains unaltered
without a voltage biasing. Fig. 1 illustrates the memristor elec-
trical symbol.
The memristor electrical behavior is highly dependent on

the device material and fabrication process. [41]. Therefore,
different types of memristor devices have been proposed. One
possible classification regards the dependence of the dopant
drift velocity with respect to the applied electrical field, which
can be either linear or nonlinear [42]. Linear drift devices
present a smooth transition between high and low resistance
states, whereas nonlinear drift devices present abrupt transitions
between the states, being possible the identification of threshold
voltages (one positive and one negative). Fig. 2 illustrates the
current-voltage behavior for linear and nonlinear memristors.
Nonlinear devices are preferred to implement stateful logic
because of nondestructive reads [42]. Hereafter, only nonlinear
devices are taken into account.

III. MEMRISTIVE IMPLY STATEFUL LOGIC

A. Notation

An -input Boolean function defined over the variable
set is a function , where

. The constant functions zero and one are denoted
by 0 and 1, respectively. In this work, we use to represent
a Boolean expression for over the basis , where

denote logical conjunction, disjunction and comple-
mentation, respectively. Alternatively, the notations

and are also adopted. Finally, denotes an
IMPLY based expression for .

Fig. 3. Basic memristive IMPLY stateful logic structure [30].

TABLE I
MATERIAL IMPLICATION TRUTH

B. Single Memristor
Consider a single memristor, as depicted in Fig. 1, where

the output terminal is connected to ground reference and the
input terminal voltage can assume three different values: Vset,
Vclear orVcond. Vset (Vclear) is a voltage greater (smaller) than
the memristor positive (negative) threshold, forcing the device
into the low (high) resistance state. Vcond is a positive voltage
smaller than the positive threshold, having negligible influence
on the device state.

C. Basic Structure
The basic structure for memristive IMPLY stateful logic is

depicted in Fig. 3 [30]. Two memristors P and Q, controlled by
voltages Vp and Vq, interact through a common node connected
to a load resistor Rg. Each memristor is a bipolar device with
memristance . When , the mem-
ristor is in the low (high) resistance state and stores the logic
one (zero). The binary states of P and Q are given by and ,
respectively.
The common node makes the voltage difference between the

terminals of memristor P (Q) dependent on Vq (Vp). Consider
that Vcond is applied to Vp while Vset is applied to Vq. If P is in
high resistance state , then Vp has negligible influence
on the circuit, and Vset is able to set Q to the low resistance state

. On the other hand, if P is in the low resistance state
, then Vp increases the voltage across Rg, resulting in a

voltage drop in Q insufficient to modify the value of . Hence,
remains with the previous value. Table I shows the final values
of (next q column) as function of the initial values and .
The logic behavior shown in Table I corresponds to the material
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Fig. 4. Memristor based stateful logic gate.

implication function . Every time an operation is
performed, the resulting value is stored in Q, overwriting the
initial value .
The correct functioning of this circuit depends on the values

chosen for control voltages (Vp and Vq) and the load resistance
(Rg). Such electrical challenges are extensively discussed in the
literature [43], [44]. In this work, we focus on the logic behavior
of the circuit.

D. General Structure

The general circuit to compute an -input Boolean function
is shown in Fig. 4, where devices to are input memris-
tors and devices and are work memristors. Each input
memristor stores the value of an input variable, and the work
memristors are used to keep intermediate computation values.
For each memristor , its control voltage is denoted by

and its state is denoted by , representing a
Boolean variable. Logic computation is performed in the same
way as in the circuit shown in Fig. 3. To perform a IMPLY
operation , Vcond is applied to while Vset is ap-
plied to . Input nodes of remaining memristors are set to
high-impedance, preventing undesirable changes of memristors
states.
A reset operation programs a work memristor to the high

resistance state by applying Vclear to the target device. This
operation is denoted by . Usually, a reset operation is
performed before a complementation operation on a variable

to ensure that the target memristor stores the logic
zero. Notice that reset operations do not explicitly appear on
IMPLY expressions.
1) Example 1: Consider a Boolean function with input

variables and , which are stored in memristors and
, respectively. and are the work memristors. Let

be represented by

(1)

An IMPLY expression for is the following:

(2)

Equation (2) can be compute in the four following steps.
Step 1: This step performs . To ensure that the state

of is zero, a reset operation is performed on .
Then, Vcond is applied to memristor and Vset to

TABLE II
WORK MEMRISTORS STATES AT EACH STEP WHEN COMPUTING (2)

. stores the complementary value of .
The operations performed are: and .

Step 2: This step writes into work memristor . Reset
. Apply Vcond to , and Vset to . The opera-

tions performed are: , .
Step 3: This step performs a material implication from to

. Apply Vcond to and Vset to . The opera-
tion performed is .

Step 4: This step performs the complementation operation
on . This result must be kept on , which keeps
the value from Step 1. Hence, the state must
be reset. After the reset operation, applyVcond to
and Vset to . stores the resulting value of (2).
The performed operations are: and .
Table II presents the states of work memristors at the
end of each step when computing (2).

E. Multi-Input Implication
Computation using the architecture shown in Fig. 4 is natu-

rally sequential, because, in many cases, operations cannot be
performed in parallel. For instance, it is not possible to com-
pute in parallel to . Consider an attempt to
calculate these operations simultaneously. In this case, Vcond is
applied to both and , while Vset is applied to both and

. Consequently, and are also computed.
Thus, also impacts the final value of .
Some parallelism can be obtained using multi-input implica-

tion [37], [38]. This operations is performed by applying Vcond
to input memristors , , , , , while Vset is
applied to a work memristor . A multi-input implication can
be written as

(3)

An interesting characteristic of multi-input implications is
that the number of disjunction operations has no impact on the
computation time, i.e., (3) is always computed in a single step.

F. Positive Product Term
Let be the power set of . For each

, a positive product term (PPT) , is a conjunction of
variables [40]

(4)

There are possible orders for and, consequently, of
PPT.We order PPT for and 4 as depicted in Tables III and
IV, respectively.
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TABLE III
POSITIVE PRODUCT TERMS FOR

TABLE IV
POSITIVE PRODUCT TERMS FOR

IMPLY expressions are usually written using PPT instead of
input variables. If the input memristors are programmed to store
the complemented value of input variables (i.e., stores ),
a multi-input implication calculates the complemented value of
a PPT . In this sense, a multi-input implication takes the
form

(5)

Since equals a , (5) can be written as

(6)

G. Recursive Forms
The number of work memristors to compute an IMPLY

expression is usually a concern in memristive IMPLY stateful
logic. In [35], it was shown that recursive forms are always

computable with two work memristors. A recursive form is
given by

(7)
where and each is given by

(8)

where denotes the exclusive disjunction operation and each
is a binary -tuple satisfying

(9)

Equation (7) is valid for any Boolean function iff the ordering
chosen for the PPT satisfies a partial order [40]

(10)

In other words, if two PPT share variables, these terms must
be ordered according to the number of variables present in the
terms. Apart from this constraint, any order can be chosen.
The main drawbacks regarding (7) are that all PPT appear in

the equation and have a fixed ordering. Removing these con-
straints, a recursive form is given by

(11a)
(11b)
(11c)

where is given by (11). Notice that, in (11), a is not
itself a recursive form. This restriction is useful to force the
computation of a using two IMPLY operations, storing the
resulting value into a work memristor. Even though a could
be considered a recursive form, in memristive IMPLY logic,
the use of a at the right side of an IMPLY operation can
overwrite input values, as discussed in Section IV.
Intuitively, in a recursive form, the result of the last operation

is always used in the succeeding operation. Moreover, only one
expression can appear in a recursive form.
1) Example 2: Consider a Boolean function given by

(12)

A recursive IMPLY expression for is

(13)

which is in the form of (11b), being

(14a)
(14b)

IV. CORRECTION OF BOOLEAN EXPRESSIONS
Different methods to minimize IMPLY expressions have

been presented [39], [40]. In [39], it is proposed an iterative
algorithm similar to the Quine-McCluskey method [45].
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At each step, the algorithm adds a PPT to the expression
aiming to cover a target function. The selection of the PPT uses
a greedy strategy, which often leads to suboptimal results. The
approach presented in [40], in turn, creates a directed graph in
which each vertex is a PPT. There is an edge
. Each vertex is colored accordingly to the Boolean func-

tion value for the minterm related to this vertex (e.g., mintern
is associated to PPT ). The graph is

partitioned in such a way that all vertexes in a given partition
are connected and have the same color. In each partition, there
is at least one leaf node (vertices without outgoing edges). Only
such nodes are used in the final IMPLY expression.
Both algorithms presented in [39] and in [40] consider that

reducing the following expression:

(15)

to the logically equivalent expression

(16)

improves the solution quality because (16) is written with two
less operations than (15). However, an attempt to compute (16)
directly implies that input memristors are used at the right side
of the IMPLY operation, leading to loss of input values. Hence,
(15) may be considered as the correct solution. Hereafter, ex-
pressions containing (16) are named unsafe. Otherwise, they are
safe expressions.
An unsafe expression can always be converted to a safe ex-

pression by adding two IMPLY operations, for each subexpres-
sion in the form of (16). However, the number of operations can
increase more than the necessary. For instance, the 2-input ex-
clusive disjunction (XOR2) has optimal unsafe form given by

(17)

where the PPT for are , , ,
and . The direct correction yields an expression with
eight operators, as follows:

(18)
However, a safe form for the XOR2 function can be obtained

with five operators, as follows:

(19)

Comparing (18) and (19), the trivial correction leads to an
overhead of three IMPLY operations. A better evaluation of the
impact of such a correction is presented in Section VIII.

V. MULTI-MEMRISTOR IMPLICATION

Multi-memristor implication is a generalization of
multi-input implication, which allows the use of a work mem-
ristor in a multi-input implication operation. The basic principle
is to apply Vcond to a work memristor and to a set of input
memristors, while Vset is applied to the other work memristor.
This generalization enables operations in the following form to
be computed in a single step:

(20)

Alternatively, (21) can be rewritten as follows:

(21)

In (20) and (21) the states of work memristors are explicit.
However, memristors states are usually implicit in equations.
Thus, a multi-memristor implication operation appears as

(22)

where and are IMPLY expressions. If is the logic
0, (22) becomes a multi-input implication operation. Hence,
expressions using only multi-input implication do not explic-
itly contain an auxiliary operator ‘ ’. Given a Boolean expres-
sion, the utilization of multi-memristor implication can be iden-
tified by the existence of a sub-expression in the form of (22).
The definition of recursive form is generalized to include multi-
memristor implication operations. Hereafter, a recursive form is
given by

(23a)
(23b)
(23c)

where is in the form of (23). Notice that (23c) becomes (11c)
when . Also, (23c) corresponds to (22) with .
Allowing may lead to forms that are not recursive. Such
forms are considered in Section VI.
Multi-memristor implication reduces the number of IMPLY

operations for any Boolean function that can be expressed in
the following form:

(24)

where both and are conjunctions of literals given by

(25)

and

(26)

where and are the number of elements of and ,
respectively. Since any conjunction of positive literals corre-
sponds to a PPT, equals a PPT . In turn, can be
written as function of PPT as ,
where . Notice that
conjunctions of complemented literals are not PPT. To obtain a
multi-input implication expression for is rewritten as fol-
lows:

(27)

An IMPLY expression is obtained as follows:

(28)
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which requires operations. Each PPT in adds an
IMPLY operation. The term contributes with two implica-
tions and the final complementation operation adds another im-
plication. The number of operations does not depend on be-
cause any PPT is computed in a single step. If multi-memristor
implication is used, becomes

(29)

which requires operations. Thus, two less operations are
needed when multi-memristor implication is applied. Expres-
sion (29) is in the form of (23c) being

(30)

1) Example 3: As example of the application of multi-mem-
ristor implication, consider the synthesis of a function described
by

(31)

Expression (31) is in the form of (24), with
and . From (28), (31) is

implemented using multi-input implication as

(32)

Expression (32) requires five IMPLY operations. A Boolean
expression using the proposed multi-memristor implication can
be found from (29), as follows:

(33)

which can be computed with three IMPLY operations. The com-
putation of (33) can be performed as follows.
Step 1: . .
Step 2: .
Step 3: . . To perform the last op-

eration, apply Vcond to and to all input mem-
ristors in ( and ), while applying Vset
to , which will keep the value of . Since both
input memristors and a work memristor appear at
the left side of IMPLY operation, this step performs
a multi-memristor implication.

VI. FACTORED FORMS

Existing algorithms for reducing the number of IMPLY op-
erations in Boolean expressions guarantee that the resulting ex-
pression is computable with two work memristors [39], [40] .
These methods consider only recursive forms because any re-
cursive form can be computed with two work memristors [35].
A contribution of this work is the utilization of factored forms

to reduce the number of IMPLY operations. A material impli-
cation based factored form can be defined as

(34a)
(34b)
(34c)
(34d)

where both and are given by (34). Notice that (34b) and
(34c) are reduced to (23b) and (23c), respectively, when .
Hence, any recursive form is a factored form though not all fac-
tored form is a recursive one. Since factored forms are more
general than recursive ones, it may be possible to obtain smaller
IMPLY expressions. However, not all factored forms can be
computed with two work memristors. Therefore, the number of
work memristors necessary to compute a Boolean function be-
comes a concern.
In the following, we discuss which factored forms can be

computed with two work memristors. Moreover, a simple
method to determine the number of work memristor necessary
to compute an IMPLY expression is presented. We use to
denote the number of work memristors required to compute an
IMPLY expression .
The number of work memristors to compute (34b) equals to

the maximum between one and . Expressions given by
(34c) or (34d) can be computed using two work memristors if

is smaller or equal than two and is
at most one (i.e., . In this case, the function
requiring more work memristors must be computed first. The
reasoning for this argument is as follows. Let and

. Compute using both work memristors available.
Once is evaluated, one work memristor must store the re-
sulting value. However, the other work memristor, can be used
to calculate . After is computed, each work memristor
stores either or and the last IMPLY can be performed.
On the other hand, if is evaluated before , a third work
memristor must be added because there is only one work mem-
ristor available to compute . If , three
work memristors are required regardless of the order chosen to
compute and .
The minimal number of work memristors to compute a

factored form given by (34c) or (34d) is determined from the
number of work memristors to compute and as follows:

(35)

If and are different, the greater value between
them is chosen. In this case, the function that requires more
work memristors must be calculated before the other one. When

and are equal, a work memristor must be added,
regardless the ordering chosen to compute and .
1) Example 4: Consider the computation of a Boolean func-

tion represented by

(36)

where , , , and are arbitrary PPT. Expression (36) is
in the form of (34c), being

(37a)
(37b)

The last IMPLY operation can only be performed
after the computation of (37a) and (37b). The steps required
to compute are shown in the following. Notice the need to

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 28,2023 at 00:00:38 UTC from IEEE Xplore.  Restrictions apply. 



MARRANGHELLO et al.: FACTORED FORMS FOR MEMRISTIVE MATERIAL IMPLICATION STATEFUL LOGIC 273

TABLE V
STATES OF WORK MEMRISTORS AT EACH STEP WHEN COMPUTING (36)

TABLE VI
STATES OF WORK MEMRISTORS AT EACH STEP WHEN COMPUTING (38)

include a third work memristor in Step 5 (similar analysis holds
when is computed before ).
Step 1: , . stores .
Step 2: . stores .
Step 3: . stores . This step concludes

the computation of .
Step 4: , . stores . Since Step 4 does

not use the result from Step 3, (36) is not a recursive
form.

Step 5: . In this step, a complementation
operation on must be performed. However,
stores the value of and cannot be used to keep
the resulting value. The solution is to add a work
memristor .

Step 6: . This step concludes the computation of
, which is stored on .

Step 7: . This step performs the last IMPLY
. The final result is stored on .

The states of work memristors at the end of each step are
shown in Table V. A ‘ ’ sign indicates that the state of the work
memristor is not important at that stage. Notice that both and

require two work memristors. Expression uses and
whereas uses and . As expected from (35), three work
memristors are required to compute .
2) Example 5: An example of factored form computable with

two work memristors is the following:

(38)

where is given by (37a) and is given by

(39)

To compute (38), steps 1 to 4 are the same from example 4.
The remaining steps are the following.
Step 5: . This step concludes the computation of ,

which is stored in . In contrast to Example 4, no work
memristor must be added at this step.

Step 6: . This step performs the last IMPLY
. keeps the final result.

Since and , two work memristors suf-
fice to compute (38). Table VI presents the state of work mem-
ristors at the end of each step.
3) Example 6: The optimal equation for the XOR2 func-

tion, computable with two work memristors, uses both a fac-
tored form and multi-memristor implication:

(40)

Equation (40) is in the form of (34d), being

(41a)
(41b)

Since and , (40) can be computed with
two work memristors. Equation (40) is evaluated with one less
IMPLY operation than the recursive form given by (19).

VII. SYNTHESIS OF IMPLY EXPRESSIONS
This section presents an algorithm to synthesize IMPLY ex-

pressions with minimized number of operations. The main con-
tribution of the proposed method in comparison to previous
works [39], [40] is the possibility to take into account different
expression forms, improving the solution quality. We propose
a bottom-up approach to perform synthesis of Boolean expres-
sions, based on the factoring algorithm presented in [46]. The
method obtains expressions (also named implementations) for
complex functions by combining simpler expressions.
The algorithm proposed herein aims to reduce the number of

IMPLY operations, so an optimal implementation comprises the
minimum number of such operators. Hereafter, the term -cost
function is adopted to refer to a function with implementation
cost , i.e., the implementation of the target function requires
IMPLY operations. The set of -cost functions is denoted by .
An implementation with cost is denoted by .
The algorithm starts from the set of 0-cost functions, which

are all complemented PPT , including the constant value
0. This choice is made because Boolean expressions are written
in terms of . Consequently, PPT comprise 1-cost functions
because one IMPLY is needed to implement these functions

. Notice that the constant 1 is not used since
and .

When implementations are combined, each resulting expres-
sion has a known cost. Keeping the optimal implementation of
each function, the best solutions for more complex functions
are also obtained. Notice that if a function has optimal imple-
mentations as , implementations and must also
be optimal. When all possible -cost functions are generated,
the algorithm proceeds to generate the set of -cost func-
tions, until a solution is found. Therefore, the first implementa-
tion found for a given function is also optimal. We assume that
the resulting value of an expression is always stored in a work
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TABLE VII
RECURSIVE MULTI-INPUT IMPLICATION EXPRESSIONS FOR NON-CONSTANT

BOOLEAN FUNCTIONS UP TO TWO INPUTS, CLASSIFIED BY COST

memristor. Hence, the implementation cost for a non-constant
0-cost function equals two . In the following
we consider the synthesis of -cost functions with .

A. Recursive Multi-Input Implication Synthesis

Rules to combine expressions, considering only multi-input
implication, are in the form of (11). For a given value of , the
possible functions are restricted to those leading to the correct
cost. Expressions for a -cost function can be generated as

(42a)
(42b)

Hence, if is a recursive form, applying (42a) or (42b) to
creates an expression which is also recursive. Since

functions are recursive, (42) generates recursive expressions.
1) Example 7: Consider the synthesis of all nonconstant

Boolean functions with at most 2-inputs.
The sets of basic functions and are

, and ,
respectively. These sets contain implementations to 3 of the
14 target functions. Expressions , and in ,
are not considered valid implementations. Since there are still
functions without known solution, must be computed.
Rules to obtain 2-cost functions are attained by replacing
in (42), as follows (rules for higher costs are obtained in similar
manner):

(43a)
(43b)

When generating the set of functions, all combinations of
and functions are applied. However, the resulting expres-

sion is only stored if it is the first implementation for the re-
sulting function.
The implementations for all nonconstant Boolean functions

with at most two inputs are shown in Table VII, where each set
is given in a line. The subsets and refer to equations

in the form of (42a) and (42b), respectively.
The same approach can be used to find the implementation

of a single function. In this case, functions sets are created until
the target function is found.

TABLE VIII
RECURSIVE MULTI-MEMRISTOR IMPLICATION EXPRESSIONS FOR
NONCONSTANT BOOLEAN FUNCTIONS UP TO TWO INPUTS,

CLASSIFIED BY COST

2) Example 8: Consider a function described by

(44)

After is created, the algorithm checks if an implementa-
tion for exists. Since no expression in represents (44), set

must be calculated. An implementation for (44) is found in
set , as follows:

(45)

Hence the algorithm stops without creating sets and .
Equation (45) is obtained by applying (42b) to the 1-cost func-
tion , followed by (42a), with , to the
resulting expression.

B. Recursive Multi-Memristor Implication Synthesis
To synthesize recursive forms using multi-memristor impli-

cation, (42) is generalized to obtain expressions in the form of
(23). A -cost function can be obtained by

(46a)
(46b)

Notice that (46b) is reduced to (42b), when . Such
behavior is consistent with the fact that multi-memristor impli-
cation is a generalization of multi-input implication.
1) Example 9: Consider the synthesis of all Boolean func-

tions with at most two inputs. Optimal implementations are
given in Table VIII. Sets and are the same as in Example
7. Subsets and contain -cost functions in the form of
(46a) and (46b), respectively.
Comparing Tables VII and VIII, the implementations of two

functions are improved. These functions are represented by

(47a)
(47b)

Such a reduction is expected since both (47a) and (47b) are
in the form of (24). The expressions for (47a) obtained from
Tables VII and VIII are, respectively, and [similar ex-
pressions are obtained for (47b)]

(48a)
(48b)
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C. Factored Multi-Input Implication Synthesis
Synthesis of factored forms should consider the number of

work memristors required to compute the resulting expression.
Factored forms, computable with 2 workmemristors, using only
multi-input implication, can be obtained from (34). However,
the possibility to perform a multi-memristor operation is re-
moved from (34c). The resulting set of equations is given as
follows:

(49a)
(49b)
(49c)

where is an integer and . The condition in (49c)
ensures that resulting expressions are computable with 2 work
memristors, as discussed in Section VI. The number of work
memristors to compute (49a) or (49b) is determined by .
1) Example 10: Consider a target function given by

(50)

Following the same procedure described in previous exam-
ples, a multi-input implication factored form for appears
in , as follows:

(51)

where , , , .
Equation (51) is in the form of (49c), being

(52a)
(52b)

Equation (52a) is in the form of (49a) with

(53a)
(53b)

In turn, (52b) is given by (49b), being

(54)

The optimal recursive form for has eight operations

(55a)
(55b)

where and . Hence
the utilization of a factored form, computable with two work
memristors, leads to a reduction of one operation.

D. Factored Multi-Memristor Implication Synthesis
Synthesis of factored forms using multi-memristor implica-

tions must also consider the required number of work memris-
tors. The possible combinations to synthesize a -cost function
are taken directly from (34), as follows:

(56a)
(56b)
(56c)

One example of the application of factored forms usingmulti-
memristor implication is the XOR2 function [see (40)].
1) Example 11: Consider the synthesis of the following

three-input Boolean function:

(57)

By setting , 3, and 4 in (56), rules to generate and
functions are found. For each value of , all possible values

for , , are considered. The resulting set of rules is
given by

(58a)
(58b)

(59a)
(59b)
(59c)

(60a)
(60b)
(60c)
(60d)

Notice that when , there is no valid value for and (56c)
is not used. Consequently, there are only two rules in (58). For

can only assume the value 2. Finally, for can
be either 2 or 3.
After generating sets , and , the best implementation

for is found with 4 material implications, as follows:

(61)

Equation (61) is in the form of (60d), being

(62a)
(62b)
(62c)

In turn, (62c) is in the form of (58b), being

(63a)
(63b)

The best recursive IMPLY expression for has five
operators

(64)

VIII. EXPERIMENTAL RESULTS
As presented in [39] and in [40], we also consider implemen-

tations of all functions with at most four inputs. Moreover, the
metric applied is the number of IMPLY operations, neglecting
eventual reset operations.
The first comparison takes into account only recursive ex-

pressions using multi-input memristor implication and allowing
unsafe expressions. This way, a direct comparison to previous
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TABLE IX
AVERAGE NUMBER OF MATERIAL IMPLICATION OPERATIONS TAKING
INTO ACCOUNT RECURSIVE FORMS USING UNSAFE MULTI-INPUT

IMPLICATION EXPRESSIONS

TABLE X
AVERAGE NUMBER OF MATERIAL IMPLICATION OPERATIONS TO SYNTHESIZE

SAFE EXPRESSIONS TAKING INTO ACCOUNT DIFFERENT APPROACHES

works presented in [39] and in [40] is possible. Table IX presents
the average number of operations obtained from each algorithm.
Notice that results presented in Table IX cannot be considered
as the actual number of IMPLY operations since corrections are
still needed. Hereafter, only the synthesis of safe expressions is
discussed.
The second experiment carried out evaluated the overhead

resulted from correcting unsafe Boolean expressions. When the
trivial correction is applied, the average number of IMPLY op-
erations grows from 8.83 to 9.45 (7% increase). The correction
impact on results obtained from [38] is similar to the one ob-
served herein. Therefore, the corrected number of 9.45 can also
be considered as the effective average number of operations
using the method proposed in [40].
When our method synthesizes safe expressions directly, the

average number of operations grows from 8.83 to 9.26. Still, this
represents a small reduction of 2% compared to the correction
approach (9.45). Hereafter, all Boolean expressions are synthe-
sized direct to safe forms.
The third experiment evaluated both recursive and factored

forms using multi-input implication and multi-memristor im-
plication (four combinations). As shown in Table X, the uti-
lization of multi-memristor implication together with factored
forms leads to a reduction of 12% in comparison to the tradi-
tional recursive forms. Interestingly, if only multi-input impli-
cation is adopted, the reduction obtained by applying factored
forms is small.
Fig. 5 shows the distribution regarding the number of

IMPLY operations to compute four-input Boolean functions,
considering different forms. For all approaches the worst case
is the four-input exclusive-disjunction (XOR4) function which
requires 19 IMPLY operations.
From the evaluated functions, the recursive

multi-memristor implication reduced the number of operations
in cases, i.e., around 25% when compared to the con-
ventional recursive multi-input implication. From this set of
functions, in cases the reduction was of two operations,
in 6240 one less operation was required, and in the remaining
96 cases the reduction was of four operations. The utilization

Fig. 5. Number of material implication operations when synthesizing all four
variable functions considering different approaches.

TABLE XI
REDUCTION IN THE NUMBER OF OPERATIONS USING MULTI-MEMRISTOR

IMPLICATION IN CONJUNCTION WITH RECURSIVE OR FACTORED EXPRESSIONS
COMPARED TO THE TRADITIONAL RECURSIVE MULTI-INPUT IMPLICATION

OPERATIONS

of factored forms reduced the number of operations of addi-
tional functions, totalizing functions. That is,
around 67% of the functions presented better implementations.
Table XI shows the gain in the number of implications when
multi-memristor implication in both recursive and factored
forms is compared to traditional multi-input implication.

IX. CONCLUSION
This paper proposed the utilization of factored forms together

with the novel concept of multi-memristor implication in the
logic synthesis for memristive IMPLY stateful logic. As a re-
sult, the average number of IMPLY operations to perform a
function with at most four inputs was reduced by 12%, when
compared to previous works, without requiring additional de-
vices. Moreover, implementations of approximately 67% of the
Boolean functions considered have been improved.
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