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Abstract— Transistor network optimization represents an
effective way of improving VLSI circuits. This paper proposes a
novel method to automatically generate networks with minimal
transistor count, starting from an irredundant sum-of-products
expression as the input. The method is able to deliver both
series—parallel (SP) and non-SP switch arrangements, improving
speed, power dissipation, and area of CMOS gates. Experimental
results demonstrate expected gains in comparison with related
approaches.

Index Terms— Automated synthesis, CMOS gates, digital
circuit, switching theory, transistor network.

I. INTRODUCTION

N VLSI digital design, the signal delay propagation, power

dissipation, and area of circuits are strongly related to
the number of transistors (switches) [1]-[3]. Hence, transistor
arrangement optimization is of special interest when designing
standard cell libraries and custom gates [4], [5]. Switch-
based technologies, such as CMOS, FinFET [6], and carbon
nanotubes [7], can take advantage of such an improvement.
Therefore, efficient algorithms to automatically generate opti-
mized transistor networks are quite useful for designing digital
integrated circuits (ICs).

Several methods have been presented in the literature for
generating and optimizing transistor networks. Most traditional
solutions are based on factoring Boolean expressions, in
which only series—parallel (SP) associations of transistors
can be obtained from factored forms [8]-[11]. On the other
hand, graph-based methods are able to find SP and also
non-SP (NSP) arrangements with potential reduction in
transistor count [12]-[15].

Despite the efforts of previous works, there is still a
room for improving the generation of transistor networks.
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Fig. 1.  Transistor networks corresponding to (1). (a) SP solution from

factored form. (b) NSP from existing graph-based generation methods.
(c) Optimum NSP solution.

For instance, consider a given function represented by the
following equation:

F=a-b+a-c+a-d+b-c-d. (1)

For this function, factorization methods are able to deliver
the SP network shown in Fig. 1(a), comprising seven
transistors. Existing graph-based methods, in turn, are able to
provide the NSP solution shown in Fig. 1(b), also with seven
transistors. However, the optimal arrangement composed of
only five transistors, as shown in Fig. 1(c), is not found by
any of these methods [8]-[15].

The proposed method starts from a  sum-of-
products (SOP) form F and produces a reduced transistor
network. It comprises two main modules: 1) kernel
identification and 2) network composition. The former
aims to find efficient SP and NSP switch networks through
graph structures called kernels. The latter receives the partial
networks obtained from the first module and performs switch
sharing, resulting in a single network representing F. Results
have shown a significant reduction in transistor count when
compared with other approaches [10]—[14]. Experiments have
also demonstrated an improvement in performance, power
dissipation, and area of CMOS gates as a consequence of
such a device saving.

This paper is organized as follows. Section II reviews some
fundamentals and definitions. Section III describes the novel
method for transistor network generation. Section IV presents
different execution modes of the proposed method considering
the restriction of devices in series. Section V demonstrates the
efficiency of the proposed approach by providing experimental
results regarding transistor count, area estimation, gate perfor-
mance, and power dissipation. Finally, the conclusion is drawn
in Section VI.
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Fig. 2. Representation of (a) switch element (ideal MOS transistor), where
x controls the connection between 7 and 7; terminals, and associations.
(b) Series. (c) Parallel. (d) SP. (e) NSP.

II. DEFINITION AND PRELIMINARIES

A Boolean function f(X) defined over the variable set
X ={xg,...,x,—1} is a function defined as f(X) : B" — B,
where B = {0, 1} and n = |X|, i.e., the number of variables
in X. The AND, OR, and NOT operations are denoted by -, +,
and !, respectively. A literal is a variable or its complement
(e.g., x; or !x;), whereas a cube is a product of literals.
An irredundant SOP (ISOP) is a SOP where neither a literal
nor a cube can be removed without changing the represented
function. Let f be a Boolean function given in ISOP form
F =c¢| +-- -+ ¢, where m denotes the number of cubes in F.
Considering that i, j < m, the union of the cubes ¢; and c;j,
denoted by ¢; U c;j, returns the literals that belong to cube c;
or cube c;. For instance, a - bUa - ¢ = {a, b, c}. Notice
that both positive and negative literals of the same variable
can be returned, for example a - b U a - ¢ = {a,la, b, c}.
An intersection of cubes ¢; and cj, denoted by ¢; N ¢}, returns
literals that belong to both cubes, for examplea -bNa - c = a.
Notice that an empty cube can also be returned, e.g.,
a-bNd-e=01[16].

A switch is a device composed by one control terminal
and two contact terminals. The control terminal determines
if there is a connection between the contact terminals, as
shown in Fig. 2(a). In this sense, an ideal MOS transistor
device acts as a switch. For this reason, the terms transistor
and switch are used as synonymous in this paper. Moreover,
series association of switches, as shown in Fig. 2(b),
represents an AND operation, whereas parallel association,
as seen in Fig. 2(c), corresponds to an OR operation.
An SP switch network is obtained by iteratively connecting
contact terminals in series and/or in parallel. An example of
SP network is shown in Fig. 2(d). An NSP switch network is
an arrangement that cannot be achieved by connecting terminal
contacts in series and/or in parallel, as observed in Fig. 2(e).
Notice that the function represented by a given switch network
corresponds to the sum of all cubes associated to the paths
between the contact terminals [17].

III. SWITCH NETWORK SYNTHESIS METHOD

The proposed method comprises two main modules: 1) the
kernel identification and 2) the switch network composition.
The former receives an ISOP F and identifies individual
NSP and SP switch networks, representing subfunctions of f.
The latter composes those networks into a single network by
performing logic sharing. The provided output is an optimized
switch network representing the target function f. The
execution flow of the method is presented in Fig. 3.
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Execution flow of the proposed method.

Algorithm 1 Pseudocode of the Kernel Identification Module

1: kernelldentification ( F')

2: S0

3: S« SUNSPKernelFinder( F')

4:  F) < removelmplementedCubes( F, S')
5: S« SU SPKemelFinder( F; )

6: F, < removelmplementedCubes( £}, S')
7: S« S U redundantCubelnsertion( F; )

8: F; « removelmplementedCubes( F, S)
9: S« SU branchedNetworkGeneration( £ )
11:  return S

12: end

A. Kernel Identification

During the kernel identification module, an intermediate
data structure called kernel is used to search for possible
SP and NSP networks. A kernel of an ISOP F with m cubes
is an undirected graph G = (V, E), where vertices in
V = {vi,va,..., vy} represent distinct cubes of F. An edge
e = (vi,vj) € E, i # j, exists if and only if v; Nv; # 0.
Such edge e is labeled v; Nv;. Using the kernel structure, it
is possible to determine the relationship among cubes of F
in order to perform logic sharing. This way, each step of the
kernel identification module aims to extract kernels from F
that leads to optimized switch count.

The kernel identification module is divided in four steps,
as presented in Fig. 3 (left) and in Algorithm 1. Each
step is responsible for finding switch networks representing
subfunctions of the target function f. The NSP kernel
finder step aims to obtain optimized NSP networks from an
input ISOP F. When a switch network is found, the cubes used
to achieve such network are removed from F. Such removal
may lead to a simpler ISOP Fj.

The SP kernel finder step, in turn, searches for SP networks
using as the input Fj. Similarly to the first step, the
cubes of the found SP networks are removed from Fi,
resulting F>. Since the remaining cubes of F> were not useful
to produce NSP or SP networks, redundant cubes are added
into the kernels in order to find NSP arrangements with
redundant paths. Therefore, the cubes leading to NSP networks
with redundant paths are removed from F>, resulting F3.
The last step produces branched switch networks, which
comprises parallel paths corresponding to cubes from F3 [18].
Finally, a list of switch networks is produced as output of the
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(b)

Fig. 4. (a) NSP kernel template. (b) Resulting switch network.

kernel identification module. Each step of this first module is
detailed presented below.

1) Nonseries—Parallel Kernel Finder: Let f be a Boolean
function given in ISOP form F = c¢; + --- + ¢, where
m denotes the number of cubes in F. In order to identify
NSP kernels, the combination of m cubes are taken four at a
time, i.e., four-combination of cubes. The sum of such four
cubes results in an ISOP H, which represents i that is a
subfunction of f. A Kkernel with four vertices is obtained
from H. To ensure that the generated kernel results in a
NSP switch network, two rules must be checked.

Rule 1: Let E, be the set of edges connected to the
vertex v € V. For each cube (vertex) v € V, all literals
from v must be shared through the edges e € E,. This rule
is satisfied if and only if the following equation results the
value 1:

Il

veV

Ue]=»]. @)

eck,

Rule 2: The kernel obtained from H must be isomorphic to
the graph shown in Fig. 4(a). Such a graph template is referred
as NSP kernel.

An NSP kernel is mapped to a switch network by applying
an edge swapping over three edges of the kernel. For instance,
let us consider the generic NSP kernel shown in Fig. 4(a).
To map this kernel to a network, the edge e> is moved to the
place of e4, e4 is moved to the place of e3, and e3 is moved to
the place of e;. By applying such a reordering, it is possible
to achieve the network shown in Fig. 4(b). The reordering
procedure is necessary to ensure that each path of the switch
network represents a cube from the subfunction 4.

Example 1: Consider the following ISOP as the input to the
NSP kernel finder step:

F=a-b+a-c-et+d-e+b-c-d. 3)

The resulting kernel K; shown in Fig. 5(a), satisfies
Rule 1 and Rule 2, and can be mapped by edge reordering
to the switch network S, shown in Fig. 5(b). [ |
Example 2: By combining cubes four at a time, the

NSP kernel finder procedure can find more than one kernel
per ISOP. For instance, consider the following equation:

F=a-b+a-c+c-e+a-d+b-c-d+a-g+b-c-g.
(4)

For this ISOP, only two combinations of four cubes sat-
isfy both Rule 1 and Rule 2, resulting in the NSP kernels

a-| Fd
b Fe
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(@) (b)

Fig. 5. (a) NSP kernel K1, derived from (3). (b) Resulting switch network S7.

Fig. 6. NSP kernels (a) K7 and (c) K3, obtained from (4). Corresponding
switch networks (b) S> and (d) S3.

Algorithm 2 Pseudocode of the NSP Kernel Finder Step

1: NSPKernelFinder( F')
2:  C « getCubeCombinations( F, 4 )
3 S0
4:  for each combination ¢ € C do
5 K « obtainKernel( ¢ )
6: if ( K satisfies Rule 1 and Rule 2 ) then
7: S «— S U edgeReordering( K )
8 end if
9: end for
10:  return S
11: end
K> and K3 shown in Fig. 6(a) and (c), respectively.

By applying the edge reordering procedure, these kernels
are mapped to the switch networks S» and S3 shown
in Fig. 6(b) and (d), respectively. [ |

The pseudocode of the NSP kernel finder step is presented
in Algorithm 2. Let C be the set of all possible four-
combinations of cubes, generated by getCubeCombinations
(line 2) procedure. Considering an ISOP F with m cubes,
the getCubeCombinations has a time complexity of O(m*).
Then, for each possible combination of four cubes, a kernel
is obtained (line 5). The time complexity of the obtain
kernel subroutine is O(mzn), where n is the number of
variables in F. Since only four cubes are considered at a time
(m = 4), the time complexity can be simplified to O(n).
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Fig. 7. (a) SP kernel template. (b) Auxiliary template graph. (c) Resulting

switch network.
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Fig. 8. (a) SP kernel K4 derived from (5). (b) Auxiliary template graph A.
(c) Switch network S4 obtained after applying the edge reordering routine.
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The time complexity to test Rule 1 is the same of the obtained
kernel subroutine. A kernel satisfies Rule 2 if and only if
the graph contains five edges. This test is done in constant
time O(1). In this sense, the time complexity to check both
rules is bounded by O(n). If the kernel satisfies both Rule 1
and Rule 2, the edge reordering subroutine is executed. Such a
reordering is done in constant time. The resulting NSP switch
network is then added to the found switch networks. This way,
the time complexity of the NSP kernel finder procedure is
bounded by O(m*).

2) Series—Parallel Kernel Finder: Let Fy; be an ISOP form
that represents all the cubes of F that were not used to build
switch networks in the NSP kernel finder step. To identify
SP kernels, combination of m cubes from Fj are taken four at
a time. A kernel with four vertices is then obtained. To ensure
that the obtained kernel results in a valid SP network, Rule 1
and the following Rule 3 must be checked.

Rule 3: The obtained kernel must be isomorphic to the
graph shown in Fig. 7(a). Such a graph template is referred
as SP kernel.

Similarly to previous step, the SP kernel finder step must
apply some transformations over the kernel in order to achieve
a switch network. First, the kernel edges shown in Fig. 7(a) are
mapped to an auxiliary template graph, as shown in Fig. 7(b).
Afterward, a switch network is obtained by applying the edge
reordering subroutine over the auxiliary template graph, as
shown in Fig. 7(c).

Example 3: Consider the kernel K4 shown in Fig. 8(a),
obtained from the following equation:

F=a-c+b-c+b-d+a-d. 5)

The edge labels are mapped from the kernel K4 to the auxiliary
graph A4 shown in Fig. 8(b). Consequently, by applying the
edge reordering over the graph A4, the kernel K4 is mapped
to the switch network S4 shown in Fig. 8(c).
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Fig. 9. SP kernels (a) K5 and (c) K¢, obtained from (6). Corresponding
switch networks (b) S5 and (d) Se.

Algorithm 3 Pseudocode of the SP Kernel Finder Step

1: SPKernelFinder( F; )

2:  C « getCubeCombinations( F;, 4 )
3 S0

4:  for each combination ¢ € C do

5: K « obtainKernel( ¢ )

6: if ( K satisfies Rule 1 and Rule 3 ) then
7.

8

9

0

1

S «— S U edgeReordering( K )
end if
end for
return S
: end

Example 4: To demonstrate that multiple kernels can also
be found during the SP kernel finder step, let us consider the
following equation:

F=la-Wb-!'c-d+!la-b-c-'d+'!a-b-!c-d
+la-b-c-d4+a-b-lc-ld+a-b-c-d
4+a-b-lc-d+a-b-c-\d. (6)

For this function, the SP kernel finder procedure is able to
find two SP kernels K5 and Kg, shown in Fig. 9(a) and (c),
respectively. Such kernels are remapped to the corresponding
switch networks S5 and Sg, as shown in Fig. 9(b) and (d),
respectively.

The pseudocode of the SP kernel finder step is described
in Algorithm 3. This pseudocode is quite similar to the
NSP kernel finder one, presented in Algorithm 2. The main
difference is that, in the line 6 of Algorithm 3, Rule 3 is
checked instead of Rule 2. Basically, Rule 3 verifies if all
vertices of the kernel have degree equals to two, as shown
in Fig. 7(a). This test is done in constant time. This way, it is
easy to see that the worst case time complexity of the SP kernel
finder procedure is bounded by the cost of combining m cubes
from Fi, i.e., O((m1)*).

3) Redundant Cube Insertion: In some cases, it is useful to
build NSP arrangements with redundant cubes instead of using
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Fig. 10. (a) Graph Gp obtained from (8). (b) Used to determine
a NSP kernel K7 with a redundant cube. (c) Resulting switch network S7.

SP associations. Thus, when there still cubes not represented
through NSP and SP networks, the redundant cube insertion
step tries to build NSP kernels by combining remaining cubes
with redundant cubes.

Let F be an ISOP representing the Boolean function f.
A cube c is redundant if F + ¢ = f. Consider a switch
network representing an ISOP f. An implementation of a
redundant cube c in such a network leads to a redundant logic
path, i.e., the path does not contribute to the logic behavior
of the network. Even though, redundant paths allow efficient
logic sharing in NSP networks.

The redundant cube insertion step works over an ISOP
F> representing the cubes that were not implemented by
NSP and SP kernel finder steps. To obtain NSP kernels with
redundant cubes, combinations of m, cubes are taken three at
a time, where m» is the number of cubes in F». A kernel with
three vertices is then obtained for each combination. Thus, a
fourth cube (vertex) v, is inserted into the kernel according to
the following rule.

Rule 4: Let E, be the set of edges connected to the
vertex v € V. For each cube (vertex) v € V, the literals from v
that were not shared through the edges ¢ € E, are inserted
in v;. Hence, the literals of the new vertex v, are obtained by

VZ:H U—Ue 7

veV ecE,

where minus signal (—) denotes relative complement.
Therefore, after building the redundant cube v,
Rule 1 and Rule 2 are applied over the resulting kernel
in order to check if the cubes share all their literals through
the edges.

Example 5: To demonstrate an NSP kernel with a redundant
cube, let us consider the following equation:

F=la-d+la-b-c+1b-lc-\d. (8)

The graph G obtained from (8) is shown in Fig. 10(a).
This graph contains three edges, representing common literals
between the cubes. Notice that the literals circled by dashed
lines are not shared through any edge. In this sense, by
applying Rule 4, these literals can be merged into a single

Algorithm 4 Pseudocode of the Redundant Cube
Insertion Step
1: redundantCubelnsertion( F, )
2:  C « getCubeCombinations( /3, 3 )
3: S0
4:  for each combination ¢ € C do
S: K « obtainKernel( ¢ )
6: K « insertRedundantCube( K )
7 if ( K satisfies Rule 1 and Rule 2 ) then
8: S« S U edgeReordering( X )
9: end if
10:  end for
11:  returnS
12: end
vertex v, = /¢ - ¢. By adding the vertex v, into the graph,

a valid NSP kernel K7 is obtained, as presented in Fig. 10(b).
As can be seen, v, represents a redundant cube, i.e.,
F 4+ !c -¢ = f. Hence, by applying the edge reordering
routine over K7, the method provides the optimized network
S7 comprising five switches, as shown in Fig. 10(c). Notice
that the exact factoring for (8) comprises six literals, as shown
in the following equation, resulting in a SP network with six
switches:

F=(d+c-b) - (la+ lc- b). )

Algorithm 4 presents the procedure to determine an
NSP kernel with a redundant cube. There are two differences
between this algorithm and the Algorithm 2 of the
NSP kernel finder step. The first one is that, instead
of generating four-combinations, Algorithm 4 generates
three-combinations of cubes (line 2). The second difference
is that, after obtaining the kernel from the selected cubes, the
procedure inserts a redundant cube v, into the kernel (line 6).
Since only three cubes are considered at a time, the time
complexity to build the redundant cube is O(ny), where n»
is the number of variables in F,. The time complexity of
the redundant cube insertion step is bounded by the cost to
perform cube combinations, i.e., O((m2)?).

4) Branched Network Generation: Cubes from ISOP F are
removed when a network implementation representing it is
found. Even though previous steps are very efficient in finding
logic sharing, there may still cubes not represented through any
of the found networks. In this sense, the remaining cubes in F3
are implemented as a single switch network. Therefore, the
branched network generation step translates each remaining
cube in F3 to a branch of switches associate in series.

Example 6: To demonstrate how a branched network is
obtained, consider the following equation:

F=a-b-c-ld+!la-b-lc+a-b-d. (10)

In this case, there are three remaining cubes to be
implemented. The obtained network is demonstrated
in Fig. 11, where each literal in a cube was directly translated
to a switch in the network.

Algorithm 5 presents the pseudocode of the branched
network generation step. Basically, a switch network N starts
empty and each cube is placed into the network. After placing
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Fig. 11. Branched switch network obtained from (10).

Algorithm 5 Pseudocode of the Branched Network

Generation Step

1: branchedNetworkGeneration( F; )
2: N<O

3:  for each cube € F; do

4: N « placeCube( N, cube )

5

6

7

end for
return N
: end

Algorithm 6 Pseudocode of the Network Composition Module

1: networkComposition( F, S')

2:  network — @

3: for eachs € Sdo

4 network < makeParallelAssociation( network, s )
5: network < simpleSwitchSharing( F, network )

6 network < complexSwitchSharing( F, network )

7:  end for
8:  return network
9: end

all cubes, the network is returned. The branched generation
is a quite simple process with time complexity of O(m3n3),
where m3 is the number of the remaining cubes and n3 is the
number of variables in F3.

B. Network Composition

The network composition module receives the function F
and a list of partial switch networks S, generated during
the kernel identification module. This module composes the
networks from § in an iterative process by performing logic
sharing among such networks. The target network starts empty
and, for each network s € § a parallel association is per-
formed together with simple and complex sharing strategies.
The simple and the complex switch sharing are applied in
order to remove redundant switches in the target network.
The pseudocode of the network composition is presented
in Algorithm 6. The makeParallelAssociation subroutine, in
line 4, just places two networks in parallel. This way, this
subroutine runs in constant time O(1). The simple and the
complex switch sharing steps are presented in the following
sections 1) Simple Sharing and 2) Complex Sharing together
with their respective time complexities.

1) Simple Sharing: The simple sharing step implements
the edge sharing technique presented in [13]. Basically, the
method traverses the switch network searching for equivalent
switches, i.e., switches that are controlled by the
same literal. The network is then restructured in such a

697

Algorithm 7 Pseudocode of the Simple Sharing Step

: simpleSharing( F, network )
do
initialSwitchCount = getSwitchCount( network )
E « findEquivalentSwitches( network )
if (E#Q ) then
network «— switchSwapping( network, E')
network < switchSharing( network, E')
network < logicalEquivalenceChecking( F, network )
9: end if
10: finalSwitchCount = getSwitchCount( network )
11:  while ( initialSwitchCount > finalSwitchCount )
12:  return network

PRDIL B LD

13: end
a_| I—!a b_| l—!a
b b b
c Fre
4 e d Hld
(@) (b)

Fig. 12. Networks obtained from (11). (a) SP network Sg. (b) NSP network
S10 with a redundant cube !a-!b-a-c-d.

way that one common node between equivalent switches
is available. In some cases, the equivalent switches must
be swapped in the networks in order to share a common
node. When a common node between equivalent switches is
available, only one switch is necessary, leading to a reduction
in the number of switches.

After performing a switch sharing, the logic behavior of the
network must be checked to ensure an accurate implementa-
tion of the target function. The switch sharing is accepted
only if the logic behavior of the network is maintained. This
optimization and validation process is applied iteratively over
the network until there is no more feasible switch sharing to
be applied.

A high level description of the simple sharing step
is presented in Algorithm 7. Among all operations and
subroutines needed to perform simple switch sharing, the
highest time complexity is given by the logicalEquivalence
Checking subroutine, in line 8. This procedure verify all logic
paths of the network, requiring a time complexity of 0(2¢/?),
where e is the number of switches (edges) in the network.
Thus, the simple sharing step is bounded by 0(2¢/?).

Example 7: As an example of simple switch sharing,
consider the following input ISOP:

F=la-b-lc-d+la-
+a-b-c+a-b-

b-d+'a-b-c+a-'b-d
le-ldd+b-c-d. (11

In this case, the SP kernel finder step was able to find the
SP network S9 shown in Fig. 12(a). Moreover, the redundant
cube insertion step was able to find the NSP network
S10 shown in Fig. 12(b). In order to compose a network
corresponding to the given function described in (11),
these partial switch networks S9 and Sjo are associated in
parallel, as shown in Fig. 13(a).
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Fig. 13. (a) Parallel association of networks S9 and Syg. (b) Intermediate
network. (c) Final network to implement (11).

N
(a) (b)

Fig. 14. Networks obtained from (4). (a) NSP network Spj.
(b) NSP network S7>. (c) Branched network S13 implementing the remaining
cube e - c.

©

Notice that the network shown in Fig. 13(a) has some
redundant switches, circled by dashed. Therefore, the simple
sharing step is applied to remove such redundancies, resulting
in the network shown in Fig. 13(b). The arrows in Fig. 13
indicate a swap between two switches. The optimization
process is repeated until there are no more redundant switches
in the network. Finally, the network shown in Fig. 13(c)
represents the target function from (11). ]

Example 8: Let us reconsider Example 2, where the
NSP kernel finder step was able to generate the networks
S11 and S12 shown in Fig. 14(a) and (b), respectively. Observe
that the cube e-¢ was not implemented in S1; and S12. Hence,
this cube was implemented as an independent branch S;3 in
the branched network generation step, as shown in Fig. 14(c).
When the network composition starts, the first two networks,
S11 and Sp7, are associated in parallel as shown in Fig. 15(a).
Then, by applying the simple switch sharing over S and Si2,

aif £ ke aqf £ re “*H’
b Fa b Fa c4lw
(@) (b)
= b H "
e

Fig. 15. (a) Parallel association of networks Si; and Sjp obtained from
Example 2. (b) Merged networks. (c) Parallel association of the branched
network S13. (d) Resulting switch network.
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Fb b )

Fe leH Fe

Fd ld- Fd
(@ (b)

Networks obtained from (6). SP networks (a) S14 and (b) S5.

la
b
le
d-

L1t

Fig. 16.

the equivalent switches are shared, as shown in Fig. 15(b).
Thus, the branded network Si3 of the cube e-c is inserted into
the network, as shown in Fig. 15(c). Finally, by reapplying the
switch sharing procedure, the final solution is found, as shown
in Fig. 15(d). [ |

Example 9: In order to demonstrate the potential of the
simple sharing procedure even when applied over SP networks,
let us revisit Example 4. In this case, the SP kernel finder
step was able to generate two optimized switch networks
S14 and Sis5 shown in Fig. 16(a) and (b), respectively.
By arranging Si4 and S5 in parallel, the switch network shown
in Fig. 17(a) is obtained. Then, the simple sharing technique
is applied to remove redundant switches from the network,
resulting in the NSP solution shown in Fig. 17(b). Notice that
the method is able to start from SP arrangements and achieve
more optimized networks. [ ]

2) Complex Sharing: The complex sharing step receives
a preprocessed network provided by the previous step and
tries to perform additional optimizations. As mentioned in
the simple sharing step, after finding equivalent switches, the
procedure checks if the candidate switches have a common
node that enables sharing. However, there are some cases
where a common node is not directly found due to the position
of the switches in the network. Hence, in order to improve the
switch sharing, straightforward SP switch compressions are
performed, as shown in Fig. 18(a) and (b), respectively. Then,
simple switch sharing is applied over the compressed network.

Algorithm 8 presents the pseudocode of the complex sharing
step. The main idea of the method is to execute the
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Fig. 17.  (a) Parallel association of the switch networks Si4 and S;s.
(b) Optimized NSP switch network obtained by applying simple sharing.
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Fig. 18. (a) Series switch compression. (b) Parallel switch compression.

Algorithm 8 Pseudocode of the Complex Sharing Step

1: complexSharing( F, network)

2: do

3 SPCompression( network )

4 initialSwitchCount = getSwitchCount( network )
5 simpleSharing( F, network )

6: finalSwitchCount = getSwitchCount( network )
7:  while (initialSwitchCount > finalSwitchCount )

8:  SPExpansion( network )

9:  return network

0

10: end

SP compression and the simple sharing procedure in an
iterative way, as presented in lines 3 and 5. One level of
SP compression is applied in each step, allowing that multiple
switches can be simultaneously swapped in the network.
Consequently, it allows the sharing of multiple switches at the
same time. At the end of this iterative process, the optimized
network is expanded, as presented in line 8 of Algorithm 8.
This is necessary to normalize the network, i.e., expand
SP compressions in such a way that each switch is
controlled by a single literal. Both the SP compression and
SP expansion subroutines traverse the graph finding switches
for compressing and expanding, respectively. The time
complexity to traverse a switch network with ¢ contact nodes
and s switches is O(c + s). In this sense, the time complexity
of the complex sharing is bounded by the complexity of the
simple sharing step, which is 0(2¢/?).

Fig. 19. (a) Switch network received as the input to the complex sharing
step when processing the function described in (12). (b) Resulting network
after performing series compressions.

Example 11: Consider the following ISOP:

F=la-le+ld -le-li+la-\d+'b-1d- lg-'h
+W-lc-lg-th+Wb-lc-let!d-li- -lg-h
+lc-li-lg-th+le-le-li+1b-1d-le. (12)

After running the kernel identification module and performing
the simple sharing step, the network shown in Fig. 19(a)
is obtained. As can be seen, there are still some redundant
switches in this network. The simple sharing step cannot
remove such redundancies due to the position of switches.
In this case, a common node between the redundant switches
is not available. Moreover, none of these switches can be
moved to other node without changing the logic behavior of
the network. In this sense, a succession of SP compressions are
performed. For instance, a series compression is applied over
the switches /g and /A, resulting in a single switchw = 'g - /h,
as shown in Fig. 19(b).

Afterward, a parallel switch compression is applied over the
switches /e and w resulting in a single switchx = e + /g - 'h.
The parallel compression is also applied over the switches
Ib and /i, resulting in y = !b + i, and over switches
Ic and !d, resulting in z = Jc 4+ !d. The obtained network
is shown in Fig. 20(a). A swap operation is applied over
the compressed switches, resulting in the arrangement shown
in Fig. 20(b). As can be seen, there is at least one common
node between redundant switches. Hence, running the simple
sharing procedure once more, it is possible to achieve the
network shown in Fig. 20(c). Finally, an SP expansion is
performed over the network, as shown in Fig. 20(d). [ ]
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Fig. 20. Obtained networks. (a) Performing parallel compressions.
(b) Swapping x and y. (c) After sharing the equivalent switches x and y.
(d) Final network after applying the SP expansion.

y=Ib+li

IV. TRANSISTOR STACK BOUNDING

Switch networks can be exploited by switch-based
technologies, which present some restrictions or guidelines
to be followed by designers. For example, in the conven-
tional CMOS design technology, the maximum number of
stacked transistors is usually limited to four. Such restriction is
done in order to avoid performance degradation. Notice that
there is a lower bound on the stacked transistors in switch
networks. This lower bound corresponds to the minimum
decision chain (MDC) property of the represented Boolean
functions [19]. In this sense, an interesting feature to control
(or to limit) the number of stacked transistors was included in
our method. The method can operate in two execution modes,
bounded and unbounded, as described below.

A. Bounded Mode

In this execution mode, a bound variable is used as
reference to control the maximum number of transistors in
series. The bound value must be equal or greater than the
number of literals of the smallest cube from F, i.e., the
maximum number of literals in a single cube. When
the method is running in the bounded mode, the kernel
identification module accepts only switch networks in which
maximum stacked transistors do not exceed the bound value.
Hence, the networks satisfying such a bound are added to
the list S of found networks. This control is also performed
during the network composition module when applying
switch sharing, since it can increase the transistor stack.

B. Unbounded Mode

When running in the unbounded mode, there is no restric-
tion of transistor stacking, i.e., the bound variable is not
considered. Basically, just the total transistor count of the
network is taken as metric cost. Hence, there are cases that the

Fa te rd
ld
!
la td4L  le 1
(@) (b)
Fig. 21. Two possible transistor networks generated by the proposed method

to implement the function described in (13), considering both execution
modes. (a) Unbounded. (b) Bounded.

networks generated through the unbounded mode result fewer
transistors when compared with bounded solutions. Moreover,
these different modes are quite useful to explore the tradeoff
between circuit area and performance.

Example 12: In order to demonstrate these two execution
modes, consider the following equation:

F=la-b-d+la-lc-d+ - !c-\d. (13)

The network shown in Fig. 21(a) is obtained when running the
method in the unbounded mode. Notice that, in this network,
the size of the transistor stack /a -d - !b -d is >3, which
is the number of literals of the smallest cube from (13).
When running the method in the bounded mode, it is possible
to ensure transistor stacks with at most three devices, as
shown in Fig. 21(b). On one hand, the bounded network
presents an overhead of one transistor in comparison with
the unbounded solution. On the other hand, the bounded
solution has smallest transistor stacks. In this sense, one can
consider the bounded solution when targeting performance or
the unbounded solution for smaller area. |

V. EXPERIMENTAL RESULTS

For evaluation and validation, the proposed method was
applied over different sets of representative functions in
order to provide a fair comparison with other available
solutions [10]-[14]. Four different set of functions were
considered: 1) the set of 4-input P-class of functions;
2) a set of handcrafted networks that do not present transistors
in SP associations [20]; 3) a given function with 11 variables as
a more complex case study; and 4) the functions and transistor
networks described in the Ninomiya’s catalog [21].

A. Transistor Count Evaluation

The first experiment was carried out over Boolean functions
up to four variables, representing 65536 functions. These
functions were grouped into a set of equivalent classes by
considering input permutation called, herein, 4-input P-class.
This set comprises 3982 representative functions. The cor-
responding CMOS gate for each function of this set was
built, by generating both the pull-up and pull-down networks
through the methods in evaluation. Table I shows the results
obtained considering the total transistor count used to build
all gates, including required input inverters. Notice that, only
input inverters are allowed.

The second experiment was carried out over a set of
53 functions obtained from handmade networks where there
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TABLE I
TRANSISTOR COUNT FOR THE 4-INPUT P-CLASS FUNCTIONS

[11] [12] [13]  [14] Bounded Unbounded

Transistor

102,668
count

103,049 96,804 97,174 96,824 95,595

TABLE 11
TRANSISTOR COUNT FOR THE 53 HANDMADE NETWORKS [20]

[20]

(optimum) [11] [12] [13] [14] Bounded Unbounded
Transistor 350 497 503 516 543 383 359
count
45

m[11] =m[12] m[13] m[14] = Bounded
@ 40
[+]
g 35
=
< 30
&
g 25
3
S 20
% 15
}
2 10
E I
2 | |
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4 o 1 2 3 4 5 6 7 8

Increasing of switch count

Fig. 22. Histogram comparing the proposed method (unbounded) with other
approaches.

are neither series nor parallel associations [20]. These
networks have at most four transistors in series, being suitable
for CMOS gate implementation. It represents a worthy
benchmark set taken as reference to evaluate the proposed
approach and other related methods [11]-[14]. The results are
summarized in Table II.

Fig. 22 shows the distribution of gains and losses when
synthesizing transistor networks for the set of 53 handmade
functions. In this histogram, horizontal axis corresponds to the
transistor count overhead in respect to the proposed method
(unbounded), used herein as reference. The vertical axis relates
the number of functions for each increase on transistor count.
As can be seen, our unbounded method was able to reduce
up to eight transistors in some cases. In general, the gains
are around two to three transistors per network. Although
there is an increasing in transistor count, the proposed method
(bounded) is near to the optimum transistor count [20].

A more complex case study is presented using an 11-input
function, comprising 99 literals as follows:

F=a-i+c-k+b-d-i+b-m-k+a-g-j+b-e-j
+c-h-j+c-m-d-i+b-e-g-i+c-h-g-i
+a-d-m-k+a-g-h-k+b-e-h-k+b-d-g-j
+a-d-e-j+c-m-e-j+b-m-h-j

+c-h-e-d-i+c-m-e-g-i+b-m-h-g-i

+a-g-em-k+b-d-g-h-k+a-d-e-h-k
m

+c-m-d-g-j+a-d-m-h-j. (14)
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Fig. 23. Transistor network related to (14), provided by our method.

TABLE III
TRANSISTOR COUNT USED TO IMPLEMENT (14)

[111 [12] [13] [14] Bounded Unbounded

Transistor

31 31 25 22 11 11
count

S

(@ (b)

Fig. 24. Network related to (15). (a) Solution provided in the Ninomiya’s
catalog—function N12’ [21]. (b) Arrangement delivered by our method.

In this case, the proposed method provides the transistor
network presented in Fig. 23. This is the optimum solution
with only 11 transistors. Table III presents the transistor count
obtained from other methods, showing that our approach is
able to deliver a network with at least 50% of reduction.

Finally, we have evaluated the proposed method using the
set of 402 functions/networks presented in the Ninomiya’s
catalog [21], also adopted as benchmarking in other works.
Kagaris and Haniotakis [14] and Tanaka and Kambayashi [22]
claim that their methods have obtained networks with the same
number of transistors as presented in this catalog, excepting
for function N58 where they achieved a reduction of one
transistor. Our method is not capable to achieve the best
solution for all functions provided in the catalog. However, in
this experiment, our contribution was to achieve a reduction of
one transistor for the function N12’, represented in the catalog
by the following equation:

F=w-x4+'w-ly+!w-1z+!y - z+x -y -z (15)

The Ninomiya’s network for this function is shown
in Fig. 24(a), whereas our solution with one transistor saving
is shown in Fig. 24(b).

Moreover, we observed that the function N54 from this
catalog presents an inconsistency between the given Boolean
expression

F=w -x-Yy+w-x-z4+w-x-y-z

+lw-lx-y-z (16)
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IxH
Iw- F»
r Fx

(b)

Fig. 25. (a) Network provided in the Ninomiya’s catalog [21] for
function N54, which is not logically equivalent to the catalog expression
represented in (16). (b) Arrangement delivered by our method for this
expression.

and the transistor network presented, shown in Fig. 25(a), said
to be logically equivalent. The right solution, delivered by our
method, is presented in Fig. 25(b).

B. Performance and Area Evaluation

In terms of electrical and physical characteristics of
CMOS gates, the reduction in the number of transistors may
lead to improvements on speed, power dissipation, and area.
However, there are other parameters that impact circuit quality
such as transistor sizing, layout compaction, and waveform of
input stimuli.

The experiments were carried out over the 4-inputs P-class
set of functions. Then, three libraries were built, being the
gates generated by applying the exact factorization method
Functional Composition (FC)-MDC [10], as well as the kernel
finder, bounded, and unbounded modes, proposed in this paper.
Each library comprises 3982 gates. Notice that the network can
be built considering the lower bound of transistors in stack for
a given Boolean function [19]. In this sense, the FC-MDC and
the bounded cell libraries were generated considering such
lower bound. It is known that the longest transistor path is
the main responsible for the worst case of delay propagation
through the gate.

Electrical characterization of the libraries were carried
out using the Cadence Encounter Library Characterizer tool,
considering the 32-nm CMOS predictive technology model
typical parameters [23] and the nominal power supply voltage
of 1 V. First, transistors were sized according to the logical
effort method [24] that considers the transistor stacking in
the network. The channel length of transistors is 32 nm. The
nMOS transistor width is 64 nm while the pMOS transistor
width is defined using the PN ratio equals to two, in the
inverter gate used as reference for the logical effort method.
The input slopes and output load applied in the characteriza-
tion process were defined considering the usual fan-out four.

Gate delay is mainly affected by the maximum stacked
transistors in a network. Considering two networks with the
same transistor stack, the network comprising fewer transistors
usually has a better performance. In this sense, performance
improvements can be observed in the comparative analysis
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Fig. 26. Delay evaluation of networks, comparing the bounded execution
mode to (a) exact factorization generation (FC-MDC) [10] and (b) unbounded
mode generation.

presented in Fig. 26. When comparing the bounded and
the FC-MDC methods, only the cases where the proposed
method reduced transistor count were considered. This analy-
sis corresponds to 1680 gates, as shown in Fig. 26(a). The
comparison between bounded and unbounded modes is shown
in Fig. 26(b), where 2922 gates present the same topology and,
consequently, the same behavior.

A decrease in device count tends to present a significant
reduction in gate power dissipation. Fewer transistors in the
gate represent less capacitance to be charged during the
signals switching. The power reduction analysis comparing
the bounded and the FC-MDC methods is shown in Fig. 27(a).
Only the cases where the proposed method reduced the number
of transistors is considered. The results confirmed that reduc-
ing transistor count leads to a power dissipation reduction.

A power-delay analysis was performed comparing bounded
and unbounded execution modes. The power-delay product
evaluation is shown in Fig. 27(b). This analysis corresponds to
the dynamic power component. The short-circuit component
was not considered, since it usually represents <10% of the
total power dissipation in well-designed circuits.

In terms of physical area evaluation, it is intuitive to expect
area saving when the number of devices is reduced. One could
think in building carefully the layout of a set of networks.
However, such a task is impractical and may result even in
an inconclusive analysis due to many other factors involved.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 27,2023 at 23:59:09 UTC from IEEE Xplore. Restrictions apply.



POSSANI et al.: GRAPH-BASED TRANSISTOR NETWORK GENERATION METHOD

0,006

0,005

0,004

0,003

0,002 -

Power (pW) - FC-MDC

0,001

0

0 0,001 0,002 0,003 0,004 0,005

Power (pW) - Kernel Finder (bounded mode)
(a)

0,0014

0,0012

0,001

0,0008

0,0006

(unbounded mode)

0,0004

0,0002

Power x Delay (zJ) - Kernel Finder

0 ¥ T r T T T r )
0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012 0,0014

Power x Delay (zJ) - Kernel Finder (bounded mode)
(b

Fig. 27. (a) Power dissipation analysis of the networks provided by bounded
mode and exact factorization methods (FC-MDC) [10]. (b) Power-delay
product of networks generated by bounded and unbounded modes.

The network layout dimensions can be estimated considering
the usual standard cell template, where pMOS transistors
of the pull-up network are placed over nMOS transistors of the
pull-down plane. Such a transistor placement is made side-by-
side, in line, exploring layout techniques like Euler paths [25].
The Euler path analysis gives a good idea of layout length,
whereas the layout height can be estimated considering the
power lines, the P and N active areas, and the signals wire
congesting. Notice that the layout compaction is a very hard
and handmade time consuming task not explored in this paper.
The Euler path (and eventual active area breaks) and the signal
routing were extracted for each generated network. An area
estimative evaluation, considering only cases that the proposed
method reduced transistor count, is shown in Fig. 28. Such
cases comprise 1680 gates. For 254 gates, an area increase was
observed due to breaks insertion in order to match Euler paths.
For 1186 gates, an area reduction was observed, demonstrating
the tendency of the circuit area saving as a result of transistor
count reduction.

C. Execution Time

The total execution time of the proposed method to generate
the networks described on all the experiments presented in this
paper was 1.2 s. The platform was an Intel Core i5 processor at
2.8 GHz with 4 GB of RAM. It demonstrates the feasibility of
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Fig. 28. Comparison between the networks provided by the bounded mode

and the exact factorization generation (FC-MDC) [10] methods in terms of
area estimation.

the proposed method to generate optimized transistor network,
increasing design quality.

VI. CONCLUSION

This paper described an efficient graph-based method
to generate optimized transistor (switch) networks. Our
approach generates more general arrangements than the usual
SP associations. Experimental results demonstrated a signifi-
cant reduction in the number of transistor needed to implement
logic networks, when compared with the ones generated by
existing related approaches. It is known that the transistor
count minimization in CMOS gates may improve the per-
formance, power dissipation, and area of digital ICs. In a
general point-of-view, the proposed method produces efficient
switch arrangements quite useful to be explored by different
IC technologies based on switch theory.
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