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Optimal Layout of CMOS Functional Arrays
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Abstract-Designers of MOS L1S circuits can take advantage of
complex functional cells in order to achieve better performance. This
paper discusses the implementation of a random logic function on an
array of CMOS transistors. A graph-theoretical algorithm which
minimizes the size of an array is presented. This method is useful for
the design of cells used in conventional design automation systems.

Index Terms-CMOS circuit design, CMOS functional arrays,
computer-aided design, design automation, LSI design automation,
LSI layout.

I. INTRODUCTION

IN integrated circuit design it is possible to implement a logic
function by means of a circuit consisting of one or more

elementary cells, such as NAND or NOR gates, or by means of
a single functional cell.
The basic advantages of functional cells, such as smaller size

and better performance, are well known to designers of MOS
LSI [1]. Theoretical results about network synthesis with
complex functional cells have been reported in [2]-[4]. Some
commercial products also take advantage of these properties
[5]. However, most designers still use a limited library of cells.
For example, NAND gates are often used as the only primitive
cell. More details on the physical implementation of complex
functional cells have been reported in [6]-[10].

Designers often have no confidence in the performance and
merit of more complex cells. In order to overcome these
problems, systematic enumeration, layout, and verification of
all possible functional cells are required. The useful functional
cells are enumerated in [ 1 3]. Their number is so large that a
systematic layout method is necessary. An array of CMOS
FET's is used as the basic implementation strategy and a
graph-theoretical algorithm which minimizes the size of the
array is presented. This type of array is very useful as a basic
building block for conventional design automation systems
[1 1], [12] because it has a rectangular shape with the same
height as the other cells. Several examples show the significant
merit of functional cells in reducing the space required.

Manuscript received August 14, 1978; revised June 13, 1980. This work
was supported by the Joint Services Electronics Program. This paper was
presented at the 16th Design Automation Conference, San Diego, CA, June
1979.

T. Uehara was with the Computer Systems ILaboratory, Departments of
Electrical Engineering and Computer Science, Stanford University, Stanford,
CA. He is now with the Computer Science Laboratory, Fujitsu Laboratories,
Ltd., Kawasaki, Japan.
W. M. vanCleemput is with the Computer Systems Laboratory, Depart-

ments of Electrical Engineering and Computer Science, Stanford
Stanford, CA 94305. LI11 RARY

I1. CMOS FUNCTIONAL CELLS

In CMOS it is possible to implement complex Boolean
functions by means of n-MOS and p-MOS transistors, rather
than by conventional logic elements such as AND, OR, NOT,
NAND, and NOR.
An implementation of the EXCLUSIVE-OR function XY +

XY is shown in Fig. 1, where the designer was required to use
NAND gates throughout. An alternative implementation of the
same function is shown in Fig. 2 [1], where the designer took
advantage of the functional cell which realizes the function XY
+ Z. This approach results in better performance and smaller
size than the design of Fig. 1.

It is often difficult for a designer to synthesize such an ef-
ficient implementation in the most general case of a network
of n-MOS and p-MOS transistors.

III. ENUMERATION

In this paper we will limit ourselves to AND-OR networks
realized in CMOS by means of series/parallel connections of
transistors. Furthermore, we will require that the topology of
the p-MOS and n-MOS sides of the circuit are each other's
dual. This restriction in topology is commonly used by de-
signers of CMOS circuits.
The number of functional cells which has series/parallel

topology is shown in Table 1, where the maximum number of
series FET's between the power and the output is designated
as the level of a cell. The details of the enumeration are shown
in [13].
The delay of a cell mainly depends on the number of levels

since it corresponds to the longest path to charge the capaci-
tance. Generally, cells with less than four levels are desirable.
To use all of the cells with three levels and some with four levels
seems to be a reasonable compromise, although the decision
about the usefulness of cells is beyond the scope of this paper.
In any case, a systematic design procedure is required to
generate a minimal-area CMOS layout for a given Boolean
function. The remainder of this paper will discuss a synthesis
procedure for Boolean functions in the restricted CMOS
technological environment.

IV. BASIC LAYOUT STRATEGY

The basic layout scheme for an arbitrary logic function is
given in this section, starting from the corresponding AND/OR
(sum of products) specification.
A cell is an arraV ofCMOS transistors, as shown in Fig. 3.
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Fig. 1. Implementation of an EXCLUSIVE-OR function. (a) Logic
diagram. (b) Circuit. (c) Layout.

transistors corresponding to the p-MOS and n-MOS sides of
the circuit, respectively. Because of the requirement that the
p-MOS and n-MOS sides are each other's dual, the number
of transistors is the same in both rows. We will further assume
that the transistors are aligned vertically. AND/OR gates in
the logic diagram correspond to the series/parallel connections
in the circuit diagram. It is quite clear that for every AND/OR
specification of a Boolean function, one can obtain a series-
parallel implementation in CMOS technology, in which the
p-MOS side and n-MOS sides are each others dual. The
number of series/parallel transistors for every AND/OR ele-
ment is equal to the number of inputs to that element. The dual
topology of the p-MOS side and of the n-MOS side are as

shown in Fig. 3(c).
A more general topology other than series/parallel can be

used in a MOS circuit as in the case of a relay network. The
topology of thep-MOS side and the n-MOS side need not be
dual in the strict sense. However, the series-parallel connection
and the duality are assumed here in order to simplify the
problem.

In addition to functional correctness, a designer needs to be
concerned with maximizing circuit performance and laydut
efficiency. Given a Boolean function to be implemented in the
restricted CMOS technology under consideration, how can

one obtain an optimal layout? In the next section it will become
clear that for a given n-MOS/p-MOS transistor network
many layout possibilities exist.
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Fig. 2. An alternative implementation of the EXCLUSIVE-OR function.
(a) Logic diagram. (b) Circuit. (c) Layout.

TABLE I

NUMBER OF CELLS WITH A GIVEN LEVEL

I Number I Number I
of I off

levels I cells I

1 1 1 1 1
1 2 1 621

3 I 80 I
1 4 1 3434 1

V. OPTIMAL LAYOUT

A graph theoretical algorithm for minimizing the size of a
functional array is developed in this section.

A. Preliminary Considerations

Physically adjacent gates can be connected by a diffusion
area, although designers should be careful of its performance
in the case of high-speed logic. The aluminum connections
between neighbors, as in Fig. 3(d), are replaced by diffusion
areas, as shown in Fig. 4(a), but the size of the array was not
changed. Even in a more sophisticated layout arrangement,
the alignment between p-MOS side and n-MOS side is re-
quired. The layout can be further improved, as shown in Fig.
4(b), by judicious pairing of sources and drains.

However, the best result is obtained from the alternative
circuit of Fig. 5(b), which is logically equivalent to the circuit
in Fig. 3(b).
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Fig. 3. Basic layout of the functional cell. (a) Logic diagram. (b) Circuit.
(c) Graph model. (d) Layout.

Finally, the layout of the functional cell can be optimized,
as shown in Fig. 5(d), and the size of this array is almost one
half that of the basic layout shown in Fig. 3(d).

In general, the area of a functional cell is calculated as fol-
lows: area = width * height, where: height = constant width
= basic grid size * (number of inputs + number of separations
+ 1).
A separation is required when there is no connection be-

tween physically adjacent transistors, as illustrated in Fig. 4(b).
Since both the cell height and the basic grid size are a function
of the technology employed, an optimal layout is obtained by
minimizing the number of separations.

B. Graph-Theoretical Algorithm
The graph model of a circuit is defined as follows. A p-side

graph and an n-side graph are models of the p-MOS side and
the n-MOS side of a circuit, respectively. The p-MOS side
graph is defined as follows:

1) every gate/drain potential is represented by a vertex;
2) every transistor is represented by an edge, connecting

the vertices representing the source and drain.
The n-side graph can be defined in a similar way. An ex-

ample of such a graph is shown in Fig. 5.
Because of the restriction on the CMOS circuits under

consideration, both the n-side and p-side graphs are series-
parallel graphs.
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Optimization of layout. (a) Simple transformation of Fig. 3(c).
(b) Optimal arrangement for the circuit in Fig. 3(b).
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Fig. 5. An alternative circuit and optimal layout. (a) Logic diagram. (b)
Circuit. (c) Graph model. (d) Layout.
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Edges correspond to transistors in both graphs and they are
connected in a series/parallel manner according to the se-
ries/parallel connections of transistors in the circuit. The
names of input signals are used to label those edges. The p-side
graph and the n-side graph are dual by the assumption of
Section III and each corresponding pair of edges has a common
label.
The following property of the graph model is of interest for

the optimal layout of CMOS circuits.
If two edges x and y are adjacent in the graph model, then

it is possible to place the corresponding gates in a physically
adjacent position of an array and hence, connect them by a
diffusion area. In order to minimize the number of separation
areas, it is necessary to find a set of minimum-size paths which
correspond to chains of transistors in the array. As indicated
in Section V-A, such a set will result in a minimal area
layout.

If there exists an Euler path [ 14], i.e., a sequence of edges
that contains all the edges of the graph model, then all gates
can be chained by diffusion areas. If there is no Euler path,
then the graph can be decomposed into several subgraphs
which have Euler paths. In the latter case, each Euler path
corresponds to a chain of transistors that is separated from
another such chains by a separation area.

In order to reduce the size of an array, it is necessary to find
a pair of paths on the dual graph models with the same se-
quence of labels because p-type and n-type gates corresponding
to the same input signal have the same horizontal position in
the CMOS array. For example, the path (1, 3, 2, 4, 5) of the
n-side graph in Fig. 3(c) produces a chain of gates on the
n-MOS side, as shown in Fig. 4(b). There is, however, no
corresponding Euler path in the p-side graph. Therefore, the
gates on the p-MOS side are separated between gate 2 and
gate 4, as shown in Fig. 4(b).
On the other hand, path (2, 3, 1, 4, 5) is an Euler path in

both the p-side and the n-side graph of Fig. 5(c). Therefore,
all gates can be chained together by diffusion areas without
any separation areas, as shown in Fig. 5(d).
The general algorithm is shown below:
1) enumerate all possible decompositions of the graph

model to find the minimum number of Euler paths that cover
the graph;

2) chain the gates by means of a diffusion area according
to the order of the edges in each Euler path; and

3) if more than two Euler paths are necessary to cover the
graph model, then provide a separation area between each pair
of chains.
The problem of finding an optimal layout of a Boolean

function using the restricted CMOS design style is then re-
duced to decomposing the corresponding graph model into a
minimum number of Euler paths that cover the graph
model.

VI. REDUCTION OF THE PROBLEM

In order to find the minimum number of Euler paths, it is
possible to take advantage of the reduction method which is
illustrated in Fig. 6: an odd number of series or parallel edges
can be reduced to a single edge.

A- X- -x ( x--9--x-x --l--x

Fig. 6. Reduction of odd number of edges.

Definition: The reduced graph is obtained by replacing an
odd number of series (parallel) edges by a single edge, until
no further reduction is possible.

Theorem 1: If there is an Euler path in the reduced graph,
then there exists an Euler path in the original graph.

Proof: It is possible to reconstruct an Euler path in the
original graph by replacing each edge of the Euler path in the
reduced graph by a sequence of the original odd number of
edges.

Sometimes this reduction makes the problem trivial. For
example, the graph model of Fig. 8 is reduced to a single edge
and the existence of an Euler path in the graph model is ob-
vious.

Theorem 2: If the number of inputs to every AND/OR ele-
ment is odd, then

1) the corresponding graph model has a single Euler
path;

2) there exists a graph model such that the sequence of
edges on an Euler path corresponds to the vertical order of
inputs on a planar representation of the logic diagram.

Proof:
1) The CMOS implementation of an AND/OR function has

a number of series/parallel transistors that is equal to the
number of variables of that function (see Section IV). Since
the number of edges in series or in parallel is always odd, the
graph model can be reduced to a single edge which is an Euler
path itself. So there exists an Euler path on the original path
according to Theorem 1.

2) It is possible to construct the graph as follows [see the
example in Fig. 7(c)].

a) Start with an edge corresponding to the circuit's
output.

b) Select an edge corresponding to the output of a gate
and replace it by the series-parallel graph for that gate.

c) Reorganize the sequence of new edges on the Euler
path being constructed such that it corresponds to the vertical
order of the inputs on the planar representation of the logic
diagram. Such a rearrangement of edges in the Euler path is
always possible when the number of inputs to an AND/OR el-
ement and hence, the number of edges in series or in parallel
is odd.

It should be noted that this algorithm assumes that every
gate has an odd number of inputs. This is obviously not the case
for most AND-OR networks in actual practice.

VII. HEURISTIC ALGORITHM

Since the graph-theoretical algorithm of Section V is ex-
haustive in nature, a heuristic algorithm which takes advantage
of Theorem 2 is proposed. Additional inputs called "pseudo"
inputs are introduced and the original problem is modified so
that every gate in a logic diagram has an odd number of inputs.
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Fig. 7. Application of reduction rule. (a) Logic diagram. (b) Graph
model and its reduction. (c) Rcconstruction of an Euler path.

It is guaranteed by Theorem 2 that there exists an Euler path
for this modified problem. This Euler path contains edges
corresponding to the original inputs and also edges corre-
sponding to the new "pseudo" inputs, which are possible sep-
aration areas. The topology of the circuit should be selected
such that the number of separation areas is minimized.
The heuristic algorithm consists of the following steps.
1) To every gate with an even number of inputs a "pseudo"

input is added.
2) Add this new input to the gate such that the planar

representation of the logic diagram shows a minimal interlace
of "pseudo" and real inputs. It should be noted that a "pseudo"
input at the top or at the bottom of the logic diagram does not
contribute to the separation areas, as illustrated in Fig. 7(b)
and (c).

3) Construct the graph model such that the sequence of
edges corresponds to the vertical order of inputs on the planar
logic diagram.

4) Chain together the gates by means of diffusion areas,
as indicated by the sequence of edges on the Euler path.
"Pseudo" edges indicate separation areas.

5) The final circuit topology can be derived by deleting
"pseudo" edges in parallel with other edges and by contracting
"pseudo" edges in series with other edges.
The minimization of the separation areas can be performed

on a logic diagram which nicely shows the structure of the
series/parallel graph.

Fig. 8 shows the application of this heuristic algorithm to
the problem of Fig. 3. The same result as in Fig. 5 is found
easily. In general, new additional inputs correspond to sepa-
ration areas, but in this case they do not actually separate the
chain of gates because they are on both ends. An algorithm to
construct the minimal interlace is shown in the Appendix.
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Fig. 8. Application of the heuristic algorithm. (a) New inputs p I and p2
are added. (b) Optimal sequencc of inputs without the interlace ofp I or
p2. (c) Circuit with the dual path lP 1, 2, 3, 1, 4, 5, p2j.

6

7

8

9

5

4

3

2

Fig. 9. Carry look-ahead circuit (from Hewlett-Packard Journal, April
1977).

This heuristic algorithm does not necessarily give the opti-
mal layout. However, if the resulting sequence has no sepa-
ration areas, it is the real optimal solution.

Fig. 9 is a 4-bit carry look-ahead circuit from Hewlett-
Packard's processor MC2 [5]. The circuit has no Euler path.
But the alternative circuit in Fig. I O(c) has an Euler path on
the dual graphs. This optimal solution is found easily by the
heuristic algorithm, as shown in Fig. 10. Fig. I I shows that the
space for the functional cell is less than one-third of the con-
ventional gate realization.

Vill. OVERALL LAYOUT SCHEME

The layout of a complete integrated.circuit involves a col-
lection of functional cells and the optimal bussing of power and
logic signals. Several design automation systems have been
developed to solve these problems [ 11], [ 12].
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Fig. 10. Alternative topology of the carry look-ahead circuit. (a) The optimal
sequence of variables. (b) Graph with an Euler path on the dual graphs.
(c) Circuit diagrams.

The functional cells proposed in this paper are potentially
useful as the basic primitives to be used in these design auto-
mation systems. Because the cells have the same height, the
same power connections, and standardized connection points,
they can be readily incorporated into existing automated layout
systems.

7 8(b) .
Fig. I 1. Comparison of space. (a) Functional cell realization. (b)

Conventional NAND realization.

Fig. 12 shows an example of the overall layout scheme using
the cells proposed in this paper.

IX. CONCLUSIONS
A systematic survey of CMOS functional cells and the en-

umeration of random logic functions made it clear that there
are thousands of useful cells. A systematic method to imple-
ment a function on an array of CMOS transistors has been
shown and a graph-theoretical algorithm which minimizes the
size of the array has been presented. An example shows that
the functional cell approach can reduce the space of a con-
ventional NAND gate realization considerably. In general, a
significant space reduction can be expected.
The CMOS functional array is also useful as a basic cell for

a conventional design automation system. Implementing
functional arrays into a MOS LSI design automation system
will be considered after further studies of logic synthesis and
performance validation.
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Fig. 13. Minimal interlace algorithm.

APPENDIX
ALGORITHM FOR CALCULATING MINIMAL INTERLACE

The algorithm is outlined in Fig. 13. Fig. 14(b) shows the
model for the logic diagram of Fig. 14(a). The black and white
triangles correspond to real and pseudoinputs, respectively.

Triangles 1, 2, and p I in subtree TI are rearranged by the
algorithm. The result is represented by a single triangle with
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Example of applying the minimal interlace algorithm.

a white top and a black bottom because the color of the top
triangle p I is white and the color of the bottom triangle 2 is
black. T2, T3, and T4 are similarly represented by new tri-
angles in Fig. 14(c). The subtrees TI, T2, T3, and T4 in Fig.
14(b) are replaced by these new triangles in Fig. 14(c) and a

new model is obtained as illustrated in Fig. 1 4(d.). The rear-

rangement of T5 is shown in Fig. 14(e). Note that T5 is rep-
resented by a white triangle because the color of the top
triangle p4 is white and so is the color of the bottom of triangle
T3 in Fig. 14(e). The final rearrangement of the three is shown
in Fig. 14(f). The sequence of the inputs can then be obtained
by backtracking. The logic diagram in Fig. 14(g) shows one

of the sequences with minimal interlace.
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On Classes of Positive, Negative, and Imaginary
Radix Number Systems

ISRAEL KOREN, MEMBER, IEEE, AND YORAM MALINIAK

Abstract-A unified approach to a broad class of finite number
representation systems is proposed. This class contains aDl positive and
negative radix systems and other well-known number systems. In ad-
dition, it can be extended to include imaginary radix number systems.
The proposed approach enables us to develop a single set of algoritims
for arithmetic operations.

Index Terms-Arithmetic operations, frinte number representation
systems, imaginary radix, negative radix, positive radix, radix-com-
plement.
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I. INTRODUCTION

THE positive-radix and radix-complement number systems
are the most commonly used finite number representation

systems and numerous algorithms for arithmetic operations
in these systems have been developed and implemented in
digital computers. Other fixed-radix systems have received a
great amount of attention in recent years [1]- [6], [11], [12].
Various algorithms for arithmetic operations in these systems
have been developed and new applications facilitated by their
use have been presented, e.g., digital filters [7].
A unified approach to these finite number systems is clearly

in order [1]-[3]. Such an approach is proposed here and it is
shown that the above mentioned systems are members of a
broad class of finite number representation systems. We fitst
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