IND-CPA security

Recall that a public key encryption scheme with message space \mathcal{M} is a triple of (probabilistic polynomial time) algorithms $(\text{Gen}, \text{Enc}, \text{Dec})$ such that

$$\text{Dec}(\text{sk}, \text{Enc}(\text{pk}, m)) = m$$

for all messages $m \in \mathcal{M}$ and keys $(\text{sk}, \text{pk}) \leftarrow \text{Gen}(\kappa)$, where $\kappa \in \mathbb{N}$ is the security parameter. The standard notion of security (under passive attacks) for a public key encryption scheme is that of INDistinguishability under Chosen Plaintext Attack (IND-CPA), which is defined as follows.

**Definition 1 (IND-CPA security) An encryption scheme $\text{PKE} = (\text{Gen}, \text{Enc}, \text{Dec})$ is (t, ϵ) IND-CPA secure if any (probabilistic, stateful) adversary A running in time at most t, has advantage $\text{Adv}(A) = |\Pr\{\mathcal{D}_1(A) = 1\} - \Pr\{\mathcal{D}_0(A) = 1\}|$ at most ϵ in the following game \mathcal{D}_b parametrized by a bit $b \in \{0, 1\}$:

1. $(\text{sk}, \text{pk}) \leftarrow \text{Gen}(\kappa)$ are chosen at random
2. $(m_0, m_1) \leftarrow A(\text{pk})$ selects a pair of (equal length) messages $m_0, m_1 \in \{0, 1\}^\ell$
3. The adversary is given a ciphertext $c \leftarrow \text{Enc}(\text{pk}, m_b)$ and outputs a bit $b' \leftarrow A(c)$. The output of the game is $\mathcal{D}_b(A) = b'$.

Consider the following variant of the IND-CPA security definition, where the adversary outputs only one message m, and it is given either the encryption of m or the encryption of a random string.

**Definition 2 (IND-CPA’ security) An encryption scheme $\text{PKE} = (\text{Gen}, \text{Enc}, \text{Dec})$ is (t, ϵ) IND-CPA’ secure if any (probabilistic, stateful) adversary A' running in time at most t, has advantage $\text{Adv}'(A') = |\Pr\{\mathcal{D}'_1(A') = 1\} - \Pr\{\mathcal{D}'_0(A') = 1\}|$ at most ϵ in the following game \mathcal{D}'_b parametrized by a bit $b \in \{0, 1\}$:
1. \((sk, pk) \leftarrow \text{Gen}(\kappa)\) are chosen at random

2. \(m_1 \leftarrow A'(pk)\) selects a message \(m_1 \in \{0,1\}^\ell\), and \(m_0 \leftarrow \{0,1\}^\ell\) is chosen uniformly at random among all messages of the same length \(\ell\).

3. The adversary is given a ciphertext \(c \leftarrow \text{Enc}(pk, m_b)\) and outputs a bit \(b' \leftarrow A'(c)\). The output of the game is \(\mathcal{E}'(A') = b'\).

Notice that IND-CPA’ is different from the RND-CPA security definition presented in class: in RND-CPA security, the adversary is given either the encryption of the \(c_1 \leftarrow \text{Enc}(pk, m)\) of its chosen message \(m \leftarrow A'(pk)\), or a ciphertext \(c_0 \leftarrow \{0,1\}^m\) chosen uniformly at random from all strings of the same length \(m = |c_1|\).

In this assignment, you are asked to prove that IND-CPA and IND-CPA’ are equivalent security definitions.

(a) Prove that any scheme \(PKE\) that satisfies IND-CPA security is also IND-CPA’ secure. More specifically, assume that \(PKE\) is \((t, \epsilon)\) IND-CPA secure for some given \(t\) and \(\epsilon\). Prove that the same scheme \(PKE\) is also \((t', \epsilon')\) IND-CPA’ secure, for some \(t' \approx t\) and \(\epsilon' \approx \epsilon\) related to the original parameters. (Determining appropriate \(t', \epsilon'\) is part of the assignment.)

As you should recall, this is done by showing that any adversary \(A'\) running in time \(t'\) and achieving advantage \(\text{Adv}'(A') \geq \epsilon'\) in the IND-CPA’ game \(\mathcal{E}'\), can be transformed into an adversary \(A\) against the IND-CPA game \(\mathcal{E}\) with similar running time \(t \approx t'\) and achieving advantage \(\epsilon\).

(b) Similar to part (a), but in the opposite direction. Prove that any scheme \(PKE\) that satisfies IND-CPA’ security is also IND-CPA secure.

This time you will have to show that any adversary \(A\) against IND-CPA, can be transformed into a similarly effective adversary against IND-CPA’. The relation between \((t, \epsilon)\) and \((t', \epsilon')\) may be different from the previous part.