Announcements

1. HW 7 is due next week!
2. HW 8 will be available next week.
Last time:
 • Random number generation

This time:
 • Index calculus and the number field sieve
Factoring algorithms we’ve seen already

- Trial division
- Pollard rho
- Pollard p-1
- Elliptic curve method

Discrete log algorithms we’ve seen already

- Brute force
- Baby step giant step
- Pollard rho
- Pohlig-Hellman
Fermat factorization

Input: Integer N to be factored

Write $N = a^2 - b^2 = (a + b)(a - b)$.

Then if $N = uv = a^2 - b^2$ for $a = \frac{1}{2}(u + v)$ and $b = \frac{1}{2}(u - v)$.

Algorithm

For $\lceil \sqrt{N} \rceil \leq a \leq (N + a)/6$:

If $b = \sqrt{a^2 - N} \in \mathbb{Z}$:

return $a - b$
Fermat factorization

Input: Integer N to be factored

Write $N = a^2 - b^2 = (a + b)(a - b)$.

Then if $N = uv = a^2 - b^2$ for $a = \frac{1}{2}(u + v)$ and $b = \frac{1}{2}(u - v)$.

Algorithm

For $\lceil \sqrt{N} \rceil \leq a \leq (N + a)/6$:

If $b = \sqrt{a^2 - N} \in \mathbb{Z}$:

return $a - b$

Up to p steps to find a factor p.

This has $O(\sqrt{N})$ running time, not competitive with other factoring algorithms we’ve seen already.
Quadratic Sieve Intuition

Main insight: Try to construct two squares a^2 and b^2 such that

$$a^2 \equiv b^2 \mod N$$

Then

$$a^2 - b^2 = (a + b)(a - b) \equiv 0 \mod N$$

and hope that one of $a + b$ or $a - b$ shares a nontrivial common factor with N.
Quadratic Sieve Intuition

Main insight: Try to construct two squares a^2 and b^2 such that

$$a^2 \equiv b^2 \mod N$$

Then

$$a^2 - b^2 = (a + b)(a - b) \equiv 0 \mod N$$

and hope that one of $a + b$ or $a - b$ shares a nontrivial common factor with N.

Fermat factorization iterates through options for $\sqrt{a^2 - N}$ until it finds a perfect square.

With more cleverness, we can construct a square rather than searching for it.
Quadratic Sieve

Intuition
We might not find a square outright, but we can construct a square as a product of numbers we test.
Intuition
We might not find a square outright, but we can construct a square as a product of numbers we test.

1. **Relation-finding** Start at $c = \lceil \sqrt{N} \rceil$.
2. Try to factor each of $c^2 - N, (c + 1)^2 - N, \ldots$
3. Only save a $d_i = c_i^2 - N$ if all of its prime factors are less than some bound B. (If it is B-smooth.)
4. Store each d_i by its exponent vector

 \[d_i = 2^{e_2}3^{e_3} \ldots B^{e_B} \]

5. If $\prod_i d_i$ is a square, then its exponent vector contains only even entries.
Quadratic Sieve

1. **Relation-finding** Save B-smooth values $d_i = c_i^2 - N$.
2. Store each d_i by its exponent vector $d_i = 2^{e_2}3^{e_3} \ldots B^{e_B}$.
3. If $\prod_i d_i$ is a square, then its exponent vector contains only even entries.
Quadratic Sieve

1. **Relation-finding** Save B-smooth values $d_i = c_i^2 - N$.
2. Store each d_i by its exponent vector $d_i = 2^{e_2}3^{e_3} \ldots B^{e_B}$.
3. If $\prod_i d_i$ is a square, then its exponent vector contains only even entries.
 Let $p_B = \#\text{of primes } \leq B$.
4. **Linear Algebra** Once $> p_B$ factorizations have been collected, find a linear dependence mod2 in the exponent vectors, so

$$\prod_{i \in S} d_i \text{ is a square}$$
Quadratic Sieve

1. **Relation-finding** Save B-smooth values $d_i = c_i^2 - N$.
2. Store each d_i by its exponent vector $d_i = 2^{e_2}3^{e_3} \ldots B^{e_B}$.
3. If $\prod_i d_i$ is a square, then its exponent vector contains only even entries.
 Let $p_B = \#$ of primes $\leq B$.

4. **Linear Algebra** Once $> p_B$ factorizations have been collected, find a linear dependence mod 2 in the exponent vectors, so

 $$\prod_{i \in S} d_i \text{ is a square}$$

5. **Square roots** Compute square root $\sqrt{\prod_{i \in S} d_i}$ and hope for a nontrivial factorization of N.

6. Square product has 50% chance of factoring pq.
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

<table>
<thead>
<tr>
<th>i</th>
<th>$i^2 - N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>$50 = 2 \cdot 5^2$</td>
</tr>
<tr>
<td>54</td>
<td>157</td>
</tr>
<tr>
<td>55</td>
<td>266</td>
</tr>
<tr>
<td>56</td>
<td>377</td>
</tr>
<tr>
<td>57</td>
<td>$490 = 2 \cdot 5 \cdot 7^2$</td>
</tr>
<tr>
<td>58</td>
<td>$605 = 5 \cdot 11^2$</td>
</tr>
</tbody>
</table>

Linear Algebra: The product $50 \cdot 490 \cdot 605$ is a square: $2^2 \cdot 5^4 \cdot 7^2 \cdot 11^2$.

Recall idea: If $a^2 - N$ is a square b^2 then $N = (a-b)(a+b)$.

QS computes $\gcd\{2759, 53 \cdot 57 \cdot 58 - \sqrt{50 \cdot 490 \cdot 605}\} = 31$.

An example of the quadratic sieve

Let’s try to factor \(N = 2759 \).

Sieving values \((\lceil \sqrt{N} + i \rceil)^2 \mod N\):

\[
\begin{align*}
53^2 - 2759 &= 50 = 2^2 \cdot 5^2, \\
54^2 - 2759 &= 157, \\
55^2 - 2759 &= 266, \\
56^2 - 2759 &= 377, \\
57^2 - 2759 &= 490 = 2 \cdot 5 \cdot 7^2, \\
58^2 - 2759 &= 605 = 5 \cdot 11^2.
\end{align*}
\]

Linear Algebra: The product \(50 \cdot 490 \cdot 605 \) is a square:

\[
2^2 \cdot 5^4 \cdot 7^2 \cdot 11^2.
\]

Recall idea: If \(a^2 - N \) is a square \(b^2 \) then \(N = (a - b)(a + b) \).

QS computes \(\gcd \{ 2759, 53 \cdot 57 \cdot 58 - \sqrt{50 \cdot 490 \cdot 605} \} = 31 \).
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.
$54^2 - 2759 = 157$.
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.

$54^2 - 2759 = 157$.

$55^2 - 2759 = 266$.

Recall idea: If $a^2 - N$ is a square b^2 then $N = (a - b)(a + b)$.

QS computes $\gcd\{2759, 53 \cdot 57 \cdot 58 - \sqrt{50 \cdot 490 \cdot 605}\} = 31$.

An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $([\sqrt{N} + i])^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.
$54^2 - 2759 = 157$.
$55^2 - 2759 = 266$.
$56^2 - 2759 = 377$.

Linear Algebra:
The product $50 \cdot 490 \cdot 605$ is a square:

$2^2 \cdot 5^4 \cdot 7^2 \cdot 11^2$.

Recall idea: If $a^2 - N$ is a square b^2 then $N = (a - b)(a + b)$.

QS computes $\gcd\{2759, 53 \cdot 57 \cdot 58 - \sqrt{50 \cdot 490 \cdot 605}\} = 31$.

An example of the quadratic sieve

Let's try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.

$54^2 - 2759 = 157$.

$55^2 - 2759 = 266$.

$56^2 - 2759 = 377$.

$57^2 - 2759 = 490 = 2 \cdot 5 \cdot 7^2$.
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.
$54^2 - 2759 = 157$.
$55^2 - 2759 = 266$.
$56^2 - 2759 = 377$.
$57^2 - 2759 = 490 = 2 \cdot 5 \cdot 7^2$.
$58^2 - 2759 = 605 = 5 \cdot 11^2$.

Recall idea: If $a^2 - N$ is a square b^2 then $N = (a - b)(a + b)$.

QS computes $\gcd\{2759, 53 \cdot 57 \cdot 58 - \sqrt{50 \cdot 490 \cdot 605}\} = 31$.

Linear Algebra:

The product $50 \cdot 490 \cdot 605$ is a square:

$2^2 \cdot 5^4 \cdot 7^2 \cdot 11^2$.

Recall idea: If $a^2 - N$ is a square b^2 then $N = (a - b)(a + b)$.
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

- $53^2 - 2759 = 50 = 2 \cdot 5^2$.
- $54^2 - 2759 = 157$.
- $55^2 - 2759 = 266$.
- $56^2 - 2759 = 377$.
- $57^2 - 2759 = 490 = 2 \cdot 5 \cdot 7^2$.
- $58^2 - 2759 = 605 = 5 \cdot 11^2$.

Linear Algebra: The product $50 \cdot 490 \cdot 605$ is a square: $2^2 \cdot 5^4 \cdot 7^2 \cdot 11^2$.
An example of the quadratic sieve

Let’s try to factor $N = 2759$.

Sieving values $(\lceil \sqrt{N} + i \rceil)^2 \mod N$:

$53^2 - 2759 = 50 = 2 \cdot 5^2$.
$54^2 - 2759 = 157$.
$55^2 - 2759 = 266$.
$56^2 - 2759 = 377$.
$57^2 - 2759 = 490 = 2 \cdot 5 \cdot 7^2$.
$58^2 - 2759 = 605 = 5 \cdot 11^2$.

Linear Algebra: The *product* $50 \cdot 490 \cdot 605$ is a square:
$2^2 \cdot 5^4 \cdot 7^2 \cdot 11^2$.

Recall idea: If $a^2 - N$ is a square b^2 then $N = (a - b)(a + b)$.

QS computes $\gcd\{2759, 53 \cdot 57 \cdot 58 - \sqrt{50 \cdot 490 \cdot 605}\} = 31$.
Quadratic Sieve running time

• Let B be the maximum prime factor allowed: “smoothness bound”

• How do we choose B?

• How many numbers do we have to try to factor?

• Depends on (heuristic) probability that a randomly chosen number is B-smooth.

\[
\Pr(x \text{ is } B\text{-smooth}) \approx u^{-u} \quad u = \frac{\ln x}{\ln B}
\]
Quadratic Sieve running time

- Let B be the maximum prime factor allowed: "smoothness bound"
- How do we choose B?
- How many numbers do we have to try to factor?
- Depends on (heuristic) probability that a randomly chosen number is B-smooth.

$$\Pr(x \text{ is } B\text{-smooth}) \approx u^{-u} \quad u = \frac{\ln x}{\ln B}$$

- Sieving costs $\ln \ln B$ operations per number.
- Expected values to sieve per B-smooth relation: u^u.
- $\#$ primes $\leq B = \#$ of relations needed $= B / \ln B$
Quadratic Sieve running time

- Let B be the maximum prime factor allowed: “smoothness bound”
- How do we choose B?
- How many numbers do we have to try to factor?
- Depends on (heuristic) probability that a randomly chosen number is B-smooth.

$$\Pr(x \text{ is } B\text{-smooth}) \approx u^{-u} \quad u = \frac{\ln x}{\ln B}$$

- Sieving costs $\ln \ln B$ operations per number.
- Expected values to sieve per B-smooth relation: u^u.
- # primes $\leq B = \#$ of relations needed $= \frac{B}{\ln B}$

Running time: $L_N(1/2, 1) = e^{(1+o(1))\sqrt{\ln N \ln \ln N}}$.

L-notation:

$$L_n(\alpha, c) = e^{(c+o(1))(\ln n)^\alpha(\ln \ln n)^{1-\alpha}}$$
Number field sieve
Best running time for general purpose factoring

Insight
Instead of using homomorphism \(\mathbb{Z} \rightarrow \mathbb{Z}/N\mathbb{Z} \)
use ring homomorphism \(\mathbb{Z}/f(x) \rightarrow \mathbb{Z}/N\mathbb{Z} \)

Algorithm

1. **Polynomial selection** Find a good choice of number field \(K \).
2. **Relation finding** Factor elements over \(\mathcal{O}_K \) and over \(\mathbb{Z} \).
3. **Linear algebra** Find a square in \(\mathcal{O}_K \) and a square in \(\mathbb{Z} \).
4. **Square roots** Take square roots, map into \(\mathbb{Z} \), and hope we find a factor.
Polynomial selection details

Pick $m \in \mathbb{Z}$, $m \approx N^{1/6}$,

$$f(m) = n_0 + n_1 m + \cdots + n_5 m^5 + m^6 = f(m) = N.$$

For root $\alpha \in \mathbb{C}$, $f(\alpha) = 0$:

Defines homomorphism $\phi: \alpha \mapsto m$.

$$\phi(a_0 + a_1 \alpha + \cdots + a_5 \alpha^5) = a_0 + a_1 m + \cdots + a_5 m^5$$

Desirable properties:

- f has small coefficients.
- f has favorable heuristics for lots of evaluation points that are smooth
Relation finding details

We are aiming to find a square in \mathbb{Z} and a square in $\mathbb{Z}[\alpha]$.

Sieve over pairs $a, b \in \mathbb{Z}$ to find pairs where

$$a - bm \text{ B-smooth} \quad N(a - b\alpha) \text{ B-smooth}$$

$$N(a - b\alpha) = \prod_i (a - b\alpha_i) = b^d \prod_i (a/b - \alpha_i) = b^d f(a/b)$$

x is a square $\implies N(x)$ square. Not sufficient but you can work around this.

Traditionally implemented using sieving, hence the name.

Now state of the art uses sieving, ECM, and batch factorization methods to find relations.

Embarrassingly parallel. Occupies most of the computation time.
Linear algebra details

Use linear algebra to find vectors summing to 0 mod 2 on both sides.

Matrix is a sparse matrix mod 2.

Use specialized algorithms like block Wiedemann algorithm: $O(wM^2)$ for a $M \times M$ matrix with row weight w.

Sample parameters: 282M rows, weight 200.

Parallelizes, but not embarrassingly. Second most expensive phase after sieving.
Once a square is found, need to take square roots:

\[\prod_{s} (a - b\alpha) = \gamma^2 \in \mathbb{Z}[\alpha] \]

\[\prod_{s} (a - bm) = v^2 \in \mathbb{Z} \]

Try to factor \(N \) as \((\phi(\gamma) + v)(\phi(\gamma) - v)\).
How long does factoring take with the number field sieve?

Answer 1

\[L_N(1/3, \sqrt[3]{64/9}) = e^{(1.923 + o(1)) (\ln p)^{1/3} (\ln \ln p)^{2/3}} \]
How long does factoring take with the number field sieve?

Answer 2

512-bit RSA: < 1 core-year
768-bit RSA: < 1,000 core-years
1024-bit RSA: \(\approx 500,000 \) core-years
2048-bit RSA: Minimum recommended key size today.
How long does factoring take with the number field sieve?

Answer 3

512-bit RSA: 7 months; large academic effort [CBLLMMMtRZ 1999]
768-bit RSA: 3 years; large academic effort [KAFLTBGKMOtRTZ 2009]
795-bit RSA: 6 months; academic effort [BGGHTZ 2019]
829-bit RSA: 3 months; academic effort [BGGHTZ 2020]

512-bit RSA: 2.5 months — single machine [Moody 2009]
512-bit RSA: < 4 hours — Amazon EC2 cluster [VCLFBH 2016]
How long does factoring take with the number field sieve?

<table>
<thead>
<tr>
<th>795-bit RSA</th>
<th>polysel</th>
<th>sieving</th>
<th>linalg</th>
<th>sqrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>76 core-years</td>
<td>794 core-years</td>
<td>83 core-years</td>
<td>17 hours</td>
<td></td>
</tr>
</tbody>
</table>
512-bit RSA in the wild.
Category XIII--Auxiliary Military Equipment ...

(b) Information Security Systems and equipment, cryptographic devices, software, and components specifically designed or modified therefore, including:

(1) Cryptographic (including key management) systems, equipment, assemblies, modules, integrated circuits, components or software with the capability of maintaining secrecy or confidentiality of information or information systems, except cryptographic equipment and software as follows:

(i) Restricted to decryption functions specifically designed to allow the execution of copy protected software, provided the decryption functions are not user-accessible.

(ii) Specially designed, developed or modified for use in machines for banking or money transactions, and restricted to use only in such transactions. Machines for banking or money transactions include automatic teller machines, self-service statement printers, point of sale terminals or equipment for the encryption of interbanking transactions.
How do you selectively weaken a protocol based on RSA?
How do you selectively weaken a protocol based on RSA?

Export answer: Optionally use a small RSA key.
Timeline of US cryptography export control

- Pre-1994: Encryption software requires individual export license as a munition.
- 1994: US State Department amends ITAR regulations to allow export of approved software to approved countries without individual licenses. 40-bit symmetric cryptography was understood to be approved under this scheme.
- 1995: Netscape develops initial SSL protocol.
- 1996: Bernstein v. United States; California judge rules ITAR regulations are unconstitutional because “code is speech”
- 1996: Cryptography regulation moved to Department of Commerce.
- 1999: TLS 1.0 standardized.
- 2000: Department of Commerce loosens regulations on mass-market and open source software.
a.1.a. A symmetric algorithm employing a key length in excess of 56-bits; or

a.1.b. An asymmetric algorithm where the security of the algorithm is based on any of the following:

a.1.b.1. Factorization of integers in excess of 512 bits (e.g., RSA);

a.1.b.2. Computation of discrete logarithms in a multiplicative group of a finite field of size greater than 512 bits (e.g., Diffie-Hellman over $\mathbb{Z}/p\mathbb{Z}$); or

a.1.b.3. Discrete logarithms in a group other than mentioned in 5A002.a.1.b.2 in excess of 112 bits (e.g., Diffie-Hellman over an elliptic curve);

a.2. Designed or modified to perform cryptanalytic functions;
TLS RSA Export Key Exchange

client hello: client random
[...RSA_EXPORT ...]

server hello: server random, [RSA_EXPORT]

certificate = RSA pubkey $k_{2048} + CA$ signatures

server key exchange: RSA pubkey k_{512}

client key exchange: RSA$\text{enc}_{k_{512}}(pms)$

client finished: Auth$\text{enc}_{k_{mc}}$(dialog)

KDF(pms, randoms) $\rightarrow k_{mc}, k_{ms}, k_e$

server finished: Auth$\text{enc}_{k_{ms}}$(dialog)

Encenc_{k_e}(request)
RSA export cipher suites in TLS

In March 2015, export cipher suites supported by 36.7% of the 14 million sites serving browser-trusted certificates!

TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

Totally insecure, but no modern client should negotiate export ciphers.
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZ 2015]
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZ 2015]

client hello: random

[..RSA..] [RSA_EXPORT]
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZZ 2015]
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZ 2015]

\[
\text{client hello: random} \\
[\ldots\text{RSA}\ldots] \quad [\text{RSAEXPORT}] \\
\text{server hello: random, } \quad [\text{RSAEXPORT}] \quad [\text{RSA}] \\
\text{certificate} = \text{RSA pubkey} \ k_{2048} + \text{CA signatures} \\
\text{server key exchange: RSA pubkey } k_{512}
\]
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZ 2015]

\[
\begin{align*}
\text{client hello: random} & \quad \text{[...RSA...]} \quad \text{[RSA_EXPORT]} \\
\text{server hello: random, } & \text{[RSAEXPORT]} \quad \text{[RSA]} \\
\text{certificate = RSA pubkey } k_{2048} + \text{CA signatures} & \\
\text{server key exchange: RSA pubkey } k_{512} & \\
\text{client key exchange: RSA} & \text{enc}_{k_{512}}(pms) \\
\end{align*}
\]

\[
\text{KDF}(pms, \text{randoms}) \rightarrow k_{m_c}, k_{m_s}, k_e
\]

\[
\text{KDF}(pms, \text{randoms}) \rightarrow k_{m_c}, k_{m_s}, k_e
\]
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZ 2015]

```
client hello: random

[...RSA] [RSA_EXPORT]

server hello: random, [RSA_EXPORT] [RSA]

certificate = RSA pubkey $k_{2048}$ + CA signatures

server key exchange: RSA pubkey $k_{512}$

client key exchange: RSAenc$_{k_{512}}$(pms)

KDF(pms, randoms) → $k_{mc}, k_{ms}, k_e$

client finished: Auth$_{k_{mc}}$(dialog)

KDF(pms, randoms) → $k_{mc}, k_{ms}, k_e$
```
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZZ 2015]

```
client hello: random

[...RSA...] [RSA_EXPORT]

server hello: random, [RSA_EXPORT] [RSA]

certificate = RSA pubkey $k_{2048}$ + CA signatures

server key exchange: RSA pubkey $k_{512}$

certificate = RSA pubkey $k_{2048}$ + CA signatures

client key exchange: RSAenc$_{k_{512}}$(pms)

KDF(pms, randoms) → $k_m^c$, $k_m$, $k_e$

client finished: Auth$_{k_m^c}$(modified dialog)

KDF(pms, randoms) → $k_m^c$, $k_m$, $k_e$
```
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZZ 2015]

\[
\text{client hello: random} \\
\{\ldots \text{RSA} \ldots\} \quad [\text{RSA_EXPORT}] \\
\text{server hello: random, } [\text{RSA_EXPORT}] [\text{RSA}] \\
\text{certificate } = \text{ RSA pubkey } k_{2048} + \text{ CA signatures} \\
\text{server key exchange: RSA pubkey } k_{512} \\
\text{client key exchange: RSAenc}_{k_{512}}(pms) \\
\text{client finished: } \text{Auth}_{k_m}(\text{modified dialog}) \\
\text{server finished: } \text{Auth}_{k_m}(\text{dialog}) \\
\]

\[\text{KDF}(pms, \text{randoms}) \rightarrow k_m, k_s, k_e\]
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZ 2015]

client hello: random

[...RSA...] [RSA_EXPORT]

server hello: random, [RSA_EXPORT] [RSA]

certificate = RSA pubkey k_{2048} + CA signatures

server key exchange: RSA pubkey k_{512}

client key exchange: RSAenc_{512}(pms)

KDF(pms, randoms) \rightarrow k_m, k_m, k_e

client finished: Auth_{km_c}(modified dialog)

server finished: Auth_{km_s}(modified dialog)
FREAK: MITM downgrade attack to export RSA

Implementation flaw: Most major browsers accepted unexpected server key exchange messages. [BDFKPSZZZ 2015]

Client Hello:
- Random
- `[...RSA...]` [RSA_EXPORT]

Server Hello:
- Random, [RSA_EXPORT] [RSA]
- Certificate = RSA pubkey k_{2048} + CA signatures
- Server Key Exchange: RSA pubkey k_{512}
- Client Key Exchange: RSAenc_{512}(pms)
- Client Finished: Auth_{km_c}(modified dialog)

KDF:
- $(pms, \text{randoms}) \rightarrow k_{m_c}, k_{m_s}, k_e$

Server Finished:
- Auth_{km_s}(modified dialog)

Encryption:
- Enc_{k_e}(request)
FREAK vulnerability in practice

- Implementation flaw affected OpenSSL, Microsoft SChannel, IBM JSSE, Safari, Android, Chrome, BlackBerry, Opera, IE

- Attack outline:
 1. MITM attacker downgrades connection to export, learns server’s ephemeral 512-bit RSA export key.
 2. Attacker factors 512-bit modulus to obtain server private key.
 3. Attacker uses private key to forge client/server authentication for successful downgrade.

- Attacker challenge: Need to know 512-bit private key before connection times out

- Implementation shortcut: “Ephemeral” 512-bit RSA server keys generated only on application start; last for hours, days, weeks, months.
“Perfect Forward Secrecy”
Common incorrect beliefs in the security community in 2015

“Sites that use perfect forward secrecy can provide better security to users in cases where the encrypted data is being monitored and recorded by a third party.”

“With Perfect Forward Secrecy, anyone possessing the private key and a wiretap of Internet activity can decrypt nothing.”

“Ideally the DH group would match or exceed the RSA key size but 1024-bit DHE is arguably better than straight 2048-bit RSA so you can get away with that if you want to.”

“But in practical terms the risk of private key theft, for a non-ephemeral key, dwarfs out any cryptanalytic risk for any RSA or DH of 1024 bits or more; in that sense, PFS is a must-have and DHE with a 1024-bit DH key is much safer than RSA-based cipher suites, regardless of the RSA key size.”
Index calculus for discrete log

Want to solve $g^x = y \mod p$, ord(g) = q.

1. **Relation finding** Search for smooth elements

$$g^{x_i} = p_1^{r_1} \ldots p_B^{r_B} \mod p$$
Index calculus for discrete log

Want to solve $g^x = y \mod p$, ord$(g) = q$.

1. Relation finding Search for smooth elements

$$g^{x_i} = p_1^{r_{i1}} \cdots p_B^{r_{iB}} \mod p$$

2. Linear algebra Once we have $\geq B$ relations:

$$\begin{bmatrix}
 x_1 & \equiv & r_{11} \log_g p_1 + \cdots + r_{1B} \log_g p_B \mod q \\
 \vdots & \equiv & r_{k1} \log_g p_1 + \cdots + r_{kB} \log_g p_B \mod q \\
 x_k & \equiv & r_{k1} \log_g p_1 + \cdots + r_{kB} \log_g p_B \mod q
\end{bmatrix}$$

use linear algebra to solve for $\log_g p_i$ for small p_i:

$$\log_g p_i = s_i x_1 + \cdots + s_k x_k \mod q$$
Index calculus for discrete log

Want to solve \(g^x = y \mod p \), \(\text{ord}(g) = q \).

1. **Relation finding** Search for smooth elements

\[
g^{x_i} = p_1^{r_{i1}} \cdots p_B^{r_{iB}} \mod p
\]

2. **Linear algebra** Once we have \(\geq B \) relations:

\[
\begin{bmatrix}
x_1 & \equiv & r_{11} \log_g p_1 + \cdots + r_{1B} \log_g p_B \mod q \\
\vdots & & \\
x_k & \equiv & r_{k1} \log_g p_1 + \cdots + r_{kB} \log_g p_B \mod q
\end{bmatrix}
\]

use linear algebra to solve for \(\log_g p_i \) for small \(p_i \):

\[
\log_g p_i = s_{i1} x_1 + \cdots + s_{ik} x_k \mod q
\]

3. **Individual log** Search for \(g^R y \) smooth \(\mod p \):

\[
g^R y \equiv p_1^{t_1} \cdots p_B^{t_B} \mod p
\]

and solve: \(R + \log_g y = t_1 \log_g p_1 + \cdots + t_B \log_g p_B \mod q \)
Index calculus running time

Use same probability estimates as in factoring.

Optimize running time by balancing relation finding, linear algebra, and individual log phases.

\[L_p(1/2, \sqrt{2}) = e^{(\sqrt{2} + o(1))\sqrt{\ln p \ln \ln p}} \]
Number field sieve discrete log algorithm

[Gordon], [Joux, Lercier], [Semaev]

1. **Polynomial selection**: Choose polynomial/number field K.
2. **Relation collection**: Factor elements over \mathcal{O}_K and over \mathbb{Z}.
3. **Linear algebra** Once there are enough relations, solve for logs of small elements.
4. **Individual log** “Descent” Try to write target t as sum of logs in known database.
How long does it take to compute discrete logs?

Answer 1:

$$L(1/3, 1.923) = \exp(1.923(\log p)^{1/3}(\log \log p)^{2/3})$$
Answer 1:

\[L\left(\frac{1}{3}, 1.923\right) = \exp(1.923(\log p)^{1/3}(\log \log p)^{2/3}) \]
How long does it take to compute discrete logs?

Answer 1:

\[L(1/3, 1.232) \]

\[L(1/3, 1.923) = \exp(1.923(\log p)^{1/3}(\log \log p)^{2/3}) \]
How long does it take to compute discrete logs?

Answer 1:

\[L(1/3, 1.232) \]

\[L(1/3, 1.923) = \exp(1.923(\log p)^{1/3}(\log \log p)^{2/3}) \]

Answer 2:

In 2005, 431-bit discrete log in 3 weeks. [Joux, Lercier]
In 2007, 530-bit discrete log. [Kleinjung]
In 2014, 596-bit discrete log. [Bouvier et al.]
In 2017, 768-bit discrete log. [Kleinjung et al.]
In 2019, 795-bit discrete log. [Boudot et al.]
How long does it take to compute discrete logs?

Answer 3:

<table>
<thead>
<tr>
<th></th>
<th>polysel</th>
<th>sieving</th>
<th>linalg</th>
<th>descent</th>
</tr>
</thead>
<tbody>
<tr>
<td>795-bit DL</td>
<td>152 core-years</td>
<td>2400 core-years</td>
<td>625 core-years</td>
<td><1 core-year</td>
</tr>
</tbody>
</table>

Precomputation can be done once and reused for many individual logs!
How do you selectively weaken a protocol based on Diffie-Hellman?

Export answer: Optionally use a smaller prime.
TLS Diffie-Hellman Export Key Exchange

client hello: client random

[...DHE_EXPORT ...]

server hello: server random, [DHE_EXPORT]

certificate = public RSA key + CA signatures

server kex: \(p_{512}, g, g^a, \text{Sign}_{RSA_{key}}(p_{512}, g, g^a) \)

client kex: \(g^b \)

\[\text{KDF}(g^{ab}, \text{randoms}) \rightarrow k_m, k_s, k_e \]

client finished: \(\text{Auth}_{k_m}(\text{dialog}) \)

server finished: \(\text{Auth}_{k_s}(\text{dialog}) \)

Enc_{k_e}(\text{request})
Diffie-Hellman export cipher suites in TLS

- TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
- TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
- TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
- TLS_DH_Anon_EXPORT_WITH_RC4_40_MD5
- TLS_DH_Anon_EXPORT_WITH_DES40_CBC_SHA

April 2015: 8.4% of Alexa top 1M HTTPS support DHE_EXPORT.
Logjam: Active downgrade attack to export Diffie-Hellman
Protocol flaw: Server does not sign chosen cipher suite.

client hello: random

[...DHE ...] [DHE_EXPORT]

server hello: random, [DHE_EXPORT][DHE]

certificate = public RSA key + CA signatures

server kex: \(p_{512}, g, g^a, \text{Sign}_{\text{RSAkey}}(p_{512}, g, g^a) \)

client kex: \(g^b \)

KDF(\(g^{ab} \), randoms) → \(k_m, k_s, k_e \)

client finished: \(\text{Auth}_{k_{mc}} \) (modified dialog)

server finished: \(\text{Auth}_{k_{ms}} \) (modified dialog)

Enc_{k_e} (request)
Carrying out the Diffie-Hellman export downgrade attack

1. Attacker man-in-the-middles connection, changing messages as necessary.
2. Attacker computes discrete log of g^a or g^b to learn session keys.
3. Attacker uses session keys to forge client, server finished messages.
 - Attacker challenge: compute client or server ephemeral Diffie-Hellman secrets before connection times out
 - For export Diffie-Hellman, most servers actually generate per-connection secrets.
Implementing Logjam

Parameters hard-coded in implementations or built into standards.

97% of DHE_EXPORT hosts choose one of three 512-bit primes.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Source</th>
<th>Year</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>Apache 2.2</td>
<td>2005</td>
<td>512</td>
</tr>
<tr>
<td>13%</td>
<td>mod_ssl 2.3.0</td>
<td>1999</td>
<td>512</td>
</tr>
<tr>
<td>4%</td>
<td>JDK</td>
<td>2003</td>
<td>512</td>
</tr>
</tbody>
</table>

• Carried out precomputation for common primes.
• After 1 week precomputation, median individual log time 70s.
• Logjam and our precomputations can be used to break connections to 8% of the HTTPS top 1M sites!
Is breaking 1024-bit Diffie-Hellman within reach of governments?

<table>
<thead>
<tr>
<th></th>
<th>Sieving core-years</th>
<th>Linear Algebra core-years</th>
<th>Descent core-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA-512</td>
<td>0.5</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>DH-512</td>
<td>2.5</td>
<td>7.7</td>
<td>10 mins</td>
</tr>
<tr>
<td>RSA-795</td>
<td>800</td>
<td>100</td>
<td>≈ days</td>
</tr>
<tr>
<td>DH-795</td>
<td>2400</td>
<td>600</td>
<td>≈ days</td>
</tr>
<tr>
<td>RSA-1024</td>
<td>500,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1024</td>
<td>1,700,000</td>
<td></td>
<td>≈ days</td>
</tr>
</tbody>
</table>
Is breaking 1024-bit Diffie-Hellman within reach of governments?

<table>
<thead>
<tr>
<th></th>
<th>Sieving core-years</th>
<th>Linear Algebra core-years</th>
<th>Descent core-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA-512</td>
<td>0.5</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>DH-512</td>
<td>2.5</td>
<td>7.7</td>
<td>10 mins</td>
</tr>
<tr>
<td>RSA-795</td>
<td>800</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>DH-795</td>
<td>2400</td>
<td>600</td>
<td>≈ days</td>
</tr>
<tr>
<td>RSA-1024</td>
<td>500,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1024</td>
<td>1,700,000</td>
<td></td>
<td>≈ days</td>
</tr>
</tbody>
</table>

• Precomputation for 1024-bit p is feasible for large organizations/with special purpose hardware.

• Individual logs can be computed in close to real time
According to another top official also involved with the program, the NSA made an enormous breakthrough several years ago in its ability to cryptanalyze, or break, unfathomably complex encryption systems employed by not only governments around the world but also many average computer users in the US. The upshot, according to this official: “Everybody’s a target; everybody with communication is a target.”

The breakthrough was enormous, says the former official, and soon afterward the agency pulled the shade down tight on the project, even within the intelligence community and Congress. “Only the chairman and vice chairman and the two staff directors of each intelligence committee were told about it," he says. The reason? “They were thinking that this computing breakthrough was going to give them the ability to crack current public encryption."
2013 NSA “Black Budget”

“All, we are investing in groundbreaking cryptanalytic capabilities to defeat adversarial cryptography and exploit internet traffic.”

This Exhibit is SECRET//NOFORN

<table>
<thead>
<tr>
<th>Program</th>
<th>Expenditure Center</th>
<th>Project</th>
<th>FY 2011</th>
<th>FY 2012</th>
<th>FY 2013</th>
<th>FY 2012 - FY 2013 Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Network Operations</td>
<td></td>
<td>Data Acquisition and Cover Support</td>
<td>58,949</td>
<td>100,987</td>
<td>117,605</td>
<td>16,618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GENIE</td>
<td>615,177</td>
<td>636,175</td>
<td>651,743</td>
<td>15,568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIGINT Enabling</td>
<td>298,613</td>
<td>275,376</td>
<td>254,943</td>
<td>-20,433</td>
</tr>
<tr>
<td>Computer Network Operations Total</td>
<td></td>
<td></td>
<td>970,739</td>
<td>1,012,538</td>
<td>1,024,291</td>
<td>11,753</td>
</tr>
<tr>
<td>Cryptanalysis & Exploitation Services</td>
<td></td>
<td>Analysis of Target Systems</td>
<td>39,429</td>
<td>35,128</td>
<td>34,321</td>
<td>-807</td>
</tr>
<tr>
<td>Cryptanalytic IT Systems</td>
<td></td>
<td></td>
<td>130,012</td>
<td>136,797</td>
<td>247,121</td>
<td>110,324</td>
</tr>
<tr>
<td>Cyber Cryptanalysis</td>
<td></td>
<td></td>
<td>181,834</td>
<td>110,673</td>
<td>115,300</td>
<td>4,027</td>
</tr>
<tr>
<td>Exploitation Solutions</td>
<td></td>
<td></td>
<td>90,024</td>
<td>59,915</td>
<td>58,308</td>
<td>-1,607</td>
</tr>
<tr>
<td>Microelectronics</td>
<td></td>
<td></td>
<td>64,603</td>
<td>61,672</td>
<td>45,886</td>
<td>-15,786</td>
</tr>
</tbody>
</table>

*Numbers in thousands
Parameter reuse for 1024-bit Diffie-Hellman

- Precomputation for a single 1024-bit prime would have allowed passive decryption of connections to 66% of VPN servers and 26% of SSH servers in 2015.

(Oakley Group 2)

- Precomputation for a second common 1024-bit prime allowed passive decryption for 18% of top 1M HTTPS domains.

(Apache 2.2)
4. Communicate Results

Can we decrypt the VPN traffic?

- If the answer is “No” then explain how to turn it into a “YES!”

- If the answer is “YES!” then…
Happy Dance!!
IKE Key Exchange for IPsec VPNs

IKE chooses Diffie-Hellman parameters from standardized set.

cipher suite negotiation

IKE chooses Diffie-Hellman parameters from standardized set.
Turn that Frown Upside Down!
From “No” to “YES!”

- Depends on why we couldn’t decrypt it
- Find Pre-Shared Key
- Locate complete paired collect
- Locate both IKE and ESP traffic
- Have collection sites do surveys for the IP’s
- Find better quality collect with rich metadata
NSA VPN Attack Orchestration
NSA’s on-demand IKE decryption requires:

- Known pre-shared key.
- Both sides of IKE handshake.
- Both IKE handshake and ESP traffic.
- IKE+ESP data is sent to HPC resources.

Discrete log decryption would require:

- Known pre-shared key.
- Both sides of IKE handshake.
- Both IKE handshake and ESP traffic.
- IKE data sent to HPC resources.
Vulnerable servers, if attacker can precompute for

<table>
<thead>
<tr>
<th></th>
<th>all 512-bit (p)</th>
<th>one 1024-bit (p)</th>
<th>ten 1024-bit (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS Top 1M MITM</td>
<td>45K (8.4%)</td>
<td>205K (37.1%)</td>
<td>309K (56.1%)</td>
</tr>
<tr>
<td>HTTPS Top 1M</td>
<td>118 (0.0%)</td>
<td>98.5K (17.9%)</td>
<td>132K (24.0%)</td>
</tr>
<tr>
<td>HTTPS Trusted MITM</td>
<td>489K (3.4%)</td>
<td>1.84M (12.8%)</td>
<td>3.41M (23.8%)</td>
</tr>
<tr>
<td>HTTPS Trusted</td>
<td>1K (0.0%)</td>
<td>939K (6.56%)</td>
<td>1.43M (10.0%)</td>
</tr>
<tr>
<td>IKEv1 IPv4</td>
<td>–</td>
<td>1.69M (66.1%)</td>
<td>1.69M (66.1%)</td>
</tr>
<tr>
<td>IKEv2 IPv4</td>
<td>–</td>
<td>726K (63.9%)</td>
<td>726K (63.9%)</td>
</tr>
<tr>
<td>SSH IPv4</td>
<td>–</td>
<td>3.6M (25.7%)</td>
<td>3.6M (25.7%)</td>
</tr>
</tbody>
</table>
Diffie-Hellman Attacks and Mitigations

Logjam attack:

Mitigations:
• Major browsers raised minimum DH lengths.
• OpenSSH removed 1024-bit DH group.
• TLS 1.3 includes anti-downgrade mechanism.
• Recommendation: Don’t backdoor crypto!

Mass surveillance:

Mitigations:
• Elliptic curve cryptography is safer than factoring or prime-field discrete log.
• If ECC isn’t an option, use ≥ 2048-bit primes.