Announcements

1. HW 8 is available!
Last time:
 • Authenticated key exchange

This time:
 • Lattice-based cryptanalysis
What is a lattice?

Definition

A **lattice** is a subset of \mathbb{R}^n generated by integer linear combinations of some linearly independent basis $\{b_1, \ldots, b_n\}$.

Can represent as Cartesian coordinates: origin $(0, 0, \ldots, 0)$ $b_i = (z_1, \ldots, z_n)$.

- Has algebraic properties (it’s a group under addition).
- Has geometric properties (it lives in \mathbb{R}^n so has dot product, distance).
What is a lattice?

Definition
A lattice is a discrete additive subgroup of \mathbb{R}^n.

- **Discrete**: $\exists \delta > 0$ s.t. $|v_i - v_j| > \delta$ for all $v_i, v_j \in L(B)$.
- **Additive subgroup**: closed under addition.
Properties of lattices: Bases

- In n dimensions a lattice has a basis of size at most n.

- The basis is not unique.

- Let $L(B)$ be the lattice generated by basis B. Deciding if $L(B) = L(B')$ for $B \neq B'$ is efficient. The Hermite Normal Form is unique and efficient to compute. Check if $\text{HNF}(B) = \text{HNF}(B')$.
Properties of lattices: Determinant

Definition
The determinant of a lattice with a basis matrix B is $|\det B|$.

- The determinant is invariant for a given lattice.
- Gives volume of fundamental parallelepiped.
Properties of lattices: Minima

Let $\lambda_1 > 0$ be the length of the shortest vector in the lattice.

Theorem (Minkowski)

$$\lambda_1(L) < \sqrt{n} \det L^{1/n}$$

Can define *successive minima* λ_i, the length of the shortest vector linearly independent to the vectors achieving the $i - 1$ successive minima.
Computational problems on lattices: SVP

Shortest Vector Problem (SVP)
Given an arbitrary basis for L, find the shortest vector in L.

• SVP is NP-hard.
Computational problems on lattices: CVP

Closest Vector Problem (CVP)
Given an arbitrary basis for L, and a point x find the vector in L closest to x.

- CVP is NP-hard.
Approximation results for SVP

Input: Lattice basis B.
Desired output: Vector of length $\gamma \lambda_1(L(B))$.

\[
\begin{align*}
&1 \quad \sqrt{n} \quad O(n \log n) \quad \gamma \quad n^{O(1)} \quad 2^{O(n \log \log n / \log n)} \\
\text{NP-hard} & \quad \text{cryptography} & \quad \text{not NP-hard} & \quad \text{polynomial time algorithm} & \quad \text{(NP} \cap \text{co-NP)} & \quad \text{worst case} \rightarrow \text{average case reduction}
\end{align*}
\]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)

Given a basis for a lattice can in polynomial time find a *reduced* basis \(\{b_i\} \) s.t.

\[
|b_i| \leq 2^{(n-1)/2} \lambda_i
\]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)
Given a basis for a lattice can in polynomial time find a *reduced* basis \(\{ b_i \} \) s.t.
\[
|b_i| \leq 2^{(n-1)/2} \lambda_i
\]

Theorem (LLL (Simplified Version))
We can find a vector of length
\[
|v| < 2^{\dim L} (\det L)^{1/\dim L}
\]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)
Given a basis for a lattice can in polynomial time find a reduced basis \{b_i\} s.t.

\[|b_i| \leq 2^{(n-1)/2} \lambda_i \]

Theorem (LLL (Simplified Version))
We can find a vector of length

\[|v| < 2^{\dim L}(\det L)^{1/\dim L} \]

- In practice on random lattices, LLL finds
 \(v = 1.02^n(\det L)^{1/\dim L} \). [Nguyen, Stehle]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)

Given a basis for a lattice can in polynomial time find a reduced basis \(\{b_i\} \) s.t.

\[
|b_i| \leq 2^{(n-1)/2} \lambda_i
\]

Theorem (LLL (Simplified Version))

We can find a vector of length

\[
|v| < 2^{\dim L} (\det L)^{1/\dim L}
\]

- In practice on random lattices, LLL finds
 \(v = 1.02^n (\det L)^{1/\dim L} \). [Nguyen, Stehle]

BKZ

Given a lattice basis, can in time \(2^{O(k)} \) find a reduced basis s.t.

\[
|b_i| \leq k^{O(n/k)} \lambda_i.
\]
The “two faces” of lattices in cryptography

• **Cryptanalysis:** Can use approximation algorithms for SVP in lattices to cryptanalyze a wide variety of classical cryptography:
 • Attacks on low public exponent RSA
 • Factoring with partial knowledge
 • (EC)DSA with partial information about nonces
 • Knapsack-based cryptosystems

• **Cryptographic constructions:**
 • Lattice problems appear to be hard to solve for quantum computers, so lattice-based cryptosystems among most promising candidates for post-quantum cryptography.
 • Algebraic structure of lattices leads to many interesting cryptographic constructions that may someday be practical, like fully homomorphic encryption, identity-based encryption, etc.
History: Lattices and cryptography

1910 Minkowski’s geometry of numbers
1973/1977 Public-key cryptography invented (GCHQ/RSA)
1978 Knapsack cryptography invented (Merkle-Hellmann)
1982 CVP NP-hard (van Emde Boas)
1982 LLL lattice basis reduction algorithm (Lenstra-Lenstra-Lovasz)
1983 LLL algorithm used against knapsack cryptosystems (Lagarias-Odlyzko)
1996 Lattice-based cryptosystems invented (Ajtai-Dwork)
1997 SVP NP-hard (Ajtai)
2005 LWE problem (Regev)
2009 Fully homomorphic encryption using ideal lattices (Gentry)
Historical Interlude: Subset Sum

Subset Sum Problem

Input: Integers a_1, \ldots, a_n, target integer T.

Goal: Find a subset $\sum_S a_i = T$.

- NP-hard
- First attempt to base cryptography off of NP-hardness.
- All schemes have a “trapdoor" that lets the decrypter solve the problem. (e.g. super-increasing sequence working modulo some number.)
Solving subset sum with lattices

Input: Integers a_1, \ldots, a_n, target integer T.

Generate lattice from rows of matrix

$$
\begin{bmatrix}
1 & a_1 \\
1 & a_2 \\
\vdots & \vdots \\
1 & -T
\end{bmatrix}
$$
Solving subset sum with lattices

Input: Integers a_1, \ldots, a_n, target integer T.

Generate lattice from rows of matrix

$$
\begin{bmatrix}
1 & a_1 \\
1 & a_2 \\
\vdots & \vdots \\
1 & -T
\end{bmatrix}
$$

A solution $\sum_i b_i a_i = T$ $b_i \in \{0, 1\}$ determines a vector

$$
v = (b_1, b_2, \ldots, 0) \quad |v|_2 \approx \sqrt{n/2}
$$
Solving subset sum with lattices

Input: Integers a_1, \ldots, a_n, target integer T.

Generate lattice from rows of matrix

$$
\begin{bmatrix}
1 & a_1 \\
1 & a_2 \\
\vdots & \vdots \\
-1 & T
\end{bmatrix}
$$

A solution $\sum_i b_i a_i = T$ $b_i \in \{0, 1\}$ determines a vector

$$
v = (b_1, b_2, \ldots, 0) \quad |v|_2 \approx \sqrt{n/2}
$$

- $\det L = T$, $\dim L = n + 1$; expect random non-solution vectors to have size $\sqrt{n} \det L^{1/\dim L}$; LLL has approximation factor 1.02^n.
- LLL or BKZ might find short v when $|v| = \sqrt{n/2} < T^{1/(n+1)}$
- Proposed knapsack cryptosystems contained “trapdoors” that made problem easier to solve.
What’s wrong with this RSA example?

```python
message = Integer('squeamishossifrage', base=35)
N = random_prime(2^512) * random_prime(2^512)
c = message^3 % N
```

The message is too small. This is why we use padding.
What’s wrong with this RSA example?

```python
message = Integer('squeamishossifrage', base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N

sage: Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
```

The message is too small. This is why we use padding.
What’s wrong with this RSA example?

```python
message = Integer('squeamishossifrage', base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N

sage: Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
```

The message is too small.

This is why we use padding.
\begin{verbatim}
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
\end{verbatim}
N = \text{random_prime}(2^{150}) \times \text{random_prime}(2^{150})
message = \text{Integer}('\text{thepasswordfortodayisswordfish}', \text{base}=35)
c = message^3 \mod N

sage: \text{int}(c^{(1/3)}) == message
False
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N

This is a stereotyped message. We might be able to guess the format.
\[
N = \text{random_prime}(2^{150}) \times \text{random_prime}(2^{150})
\]
\[
\text{message} = \text{Integer}('\text{thepasswordfortodayisswordfish}', \text{base}=35)
\]
\[
c = \text{message}^3 \mod N
\]
\[
a = \text{Integer}('\text{thepasswordfortodayis000000000}', \text{base}=35)
\]
\[
N = \text{random_prime}(2^{150}) \times \text{random_prime}(2^{150})
\]
\[
\text{message} = \text{Integer}'(\text{thepasswordfortodayisswordfish}', \text{base}=35)
\]
\[
c = \text{message}^3 \mod N
\]
\[
a = \text{Integer}'(\text{thepasswordfortodayis000000000}', \text{base}=35)
\]
\[
X = \text{Integer}'(\text{xxxxxxxxxxx}', \text{base}=35)
\]
\[
M = \text{matrix}([[X^3, 3 \times X^2 \times a, 3 \times X \times a^2, a^3-c],
[0, N \times X^2, 0, 0],
[0, 0, N \times X, 0],
[0, 0, 0, N]])
\]
\[
B = M.LLL()
\]
\[
Q = B[0][0] \times x^3 / X^3 + B[0][1] \times x^2 / X^2 + B[0][2] \times x / X + B[0][3]
\]
\[
\text{sage}: Q.\text{roots}()\text{[ring}=\text{ZZ}]\text{[0][0].str(base}=35]\text{'swordfish'}
\[
N = \text{random_prime}(2^{150}) \times \text{random_prime}(2^{150}) \\
\text{message} = \text{Integer}(\text{‘thepasswordfortodayisswordfish’}, \text{base}=35) \\
c = \text{message}^3 \mod N
\]

\[
a = \text{Integer}(\text{‘thepasswordfortodayis000000000’, base=35}) \\
X = \text{Integer}(\text{‘xxxxxxxxxxx’, base=35}) \\
M = \text{matrix}([[X^3, 3X^2a, 3Xa^2, a^3-c], \\
\qquad [0, NX^2, 0, 0], [0, 0, NX, 0], [0, 0, 0, N]])
\]

\[
B = M.\text{LLL}() \\
Q = B[0][0] \times X^3/X^3 + B[0][1] \times X^2/X^2 + B[0][2] \times X/X + B[0][3]
\]
\[
N = \text{random_prime}(2^{150}) \times \text{random_prime}(2^{150})
\]
\[
\text{message} = \text{Integer('thepasswordfortodayisswordfish',base=35)}
\]
\[
c = \text{message}^3 \mod N
\]
\[
a = \text{Integer('thepasswordfortodayis000000000',base=35)}
\]
\[
X = \text{Integer('xxxxxxxxxxx',base=35)}
\]
\[
M = \text{matrix}([[X^3, 3 \times X^2 \times a, 3 \times X \times a^2, a^3 - c],
\]
\[
[0, N \times X^2, 0, 0], [0, 0, N \times X, 0], [0, 0, 0, N]])
\]
\[
B = M.\text{LLL}()
\]
\[
Q = B[0][0] \times x^3 / X^3 + B[0][1] \times x^2 / X^2 + B[0][2] \times x / X + B[0][3]
\]
\[
\text{sage: } Q.\text{roots(ring=ZZ)}[0][0].\text{str(base=35)}
\]
\[
'swordfish'
\]
What’s going on here? Coppersmith’s method.

Theorem (Coppersmith)

We can efficiently compute up to $1/e$-fraction of the bits of an RSA-encrypted message with public exponent e if we know the rest of the plaintext.

sage: N.nbits()
296

sage: Integer('swordfish', base=35).nbits()
46
What’s going on here? Coppersmith’s method.

Theorem (Coppersmith)

Given a polynomial f of degree d and N, we can efficiently find all roots r_i satisfying

$$f(r_i) \equiv 0 \mod N$$

when $|r_i| < N^{1/d}$ in time polynomial in $\log N$ and d.

In our case, our input polynomial looks like

$$f(x) = (a + x)^3 - c \equiv 0 \mod N$$

We are looking for a root $r = \text{swordfish}$ satisfying

$$f(r) = (a + \text{swordfish})^3 - c \equiv 0 \mod N$$
Why is this an interesting theorem?

1. A general method to solve polynomials mod \(N \) would break RSA: If \(c \) is a ciphertext,

\[x^e - c \equiv 0 \mod N \]

has a root \(x = m \) for \(m \) our original message.

2. There is an efficient algorithm to solve equations mod primes.
 - For a composite, factor into primes, solve mod each prime, and use Chinese remainder theorem and Hensel lifting to lift solution mod \(N \).

3. By accepting a bound on solution size, Coppersmith’s method lets us solve equations \textit{without factoring} \(N \).
Coppersmith’s Algorithm Outline

Input: polynomial f, modulus N.

Output: a root r modulo N.

In our example, we have $f(x) = (x + a)^3 - c$.

We will construct a new polynomial $Q(x)$ so that

$$Q(r) = 0 \quad \text{over the integers}.$$

If we construct $Q(x)$ as

$$Q(x) = s(x)f(x) + t(x)N$$

with $s(x), t(x) \in \mathbb{Z}[x]$, then by construction

$$Q(r) \equiv 0 \mod N$$

(In other words, $Q(x) \in \langle f(x), N \rangle$ over $\mathbb{Z}[x]$.)
Manipulating polynomials

Input: \(f(x) = x^3 + f_2 x^2 + f_1 x + f_0, N \)

Output: \(Q(x) \in \langle f(x), N \rangle \) over \(\mathbb{Z}[x] \).

If we only care about polynomials \(Q \) of degree 3, then

\[
Q(x) = c_3 f(x) + c_2 N x^2 + c_1 N x + c_0 N
\]

with \(c_3, c_2, c_1, c_0 \in \mathbb{Z} \).
Manipulating polynomials as coefficient vectors

We can represent elements of $\mathbb{Z}[x]$ as coefficient vectors:

$$g_dx^d + g_{d-1}x^{d-1} + \cdots + g_0 \quad \leftrightarrow \quad (g_d, g_{d-1}, \ldots, g_0)$$

If we construct the matrix

$$\begin{pmatrix}
1 & f_2 & f_1 & f_0 \\
N & f_2 & f_1 & f_0 \\
N & N & f_1 & f_0 \\
N & N & N & f_0 \\
\end{pmatrix}$$

Then the coefficient vector representing our polynomial

$$Q(x) = c_3 f(x) + c_2 Nx^2 + c_1 Nx + c_0 N$$

is an integer combination of the rows of this matrix.
Polynomial coefficient vectors and lattices

The set of vectors generated by integer combinations of the rows of our matrix

\[
\begin{bmatrix}
1 & f_2 & f_1 & f_0 \\
N & & N & N
\end{bmatrix}
\]

is a *lattice*.
Coppersmith’s method outline

Input: \(f(x) \in \mathbb{Z}[x], \ N \in \mathbb{Z} \). **Output:** \(r \) s.t. \(f(r) \equiv 0 \mod N \).

Intermediate output: \(Q(x) \) such that \(Q(r) = 0 \) over \(\mathbb{Z} \).

1. \(Q(x) \in \langle f(x), N \rangle \) so \(Q(r) \equiv 0 \mod N \) by construction.

2. If \(|r| < R \), then we can bound

\[
|Q(r)| = |Q_3 r^3 + Q_2 r^2 + Q_1 r + Q_0| \\
\leq |Q_3| R^3 + |Q_2| R^2 + |Q_1| R + |Q_0|
\]

3. If \(|Q(r)| < N \) and \(Q(r) \equiv 0 \mod N \) then \(Q(r) = 0 \).

We want a \(Q \) in our lattice with short coefficient vector!
Coppersmith’s method outline

1. Construct a matrix of coefficient vectors of elements of $\langle f(x), N \rangle$.

2. Run a lattice basis reduction algorithm on this matrix.

3. Construct a polynomial Q from the shortest vector output.

4. Factor Q to find its roots.
Running Coppersmith’s method on our example

Input: \(f(x) = (x + a)^3 - c, \ N \)

Output: \(r < R \) such that \(f(r) \equiv 0 \mod N \).

1. Construct lattice basis

 \[
 \begin{bmatrix}
 R^3 & 3aR^2 & 3a^2R & a^3 - c \\
 NR^2 & NR & N & N \\
 \end{bmatrix}
 \]

 \[\text{dim } L = 4 \]
 \[\text{det } L = R^6 N^3 \]

 Factor of \(R \) is so that \(Q(r) \leq |v| \) for \(v \in L \).
Running Coppersmith’s method on our example

Input: \(f(x) = (x + a)^3 - c, \ N \)
Output: \(r < R \) such that \(f(r) \equiv 0 \mod N \).

1. Construct lattice basis

\[
\begin{bmatrix}
R^3 & 3aR^2 & 3a^2R & a^3 - c \\
NR^2 & N & a^3 - c & a^3 - c \\
NR & N & N & N \\
N & N & N & N
\end{bmatrix}
\]

\[\text{dim } L = 4\]
\[\text{det } L = R^6 N^3\]

Factor of \(R \) is so that \(Q(r) \leq |v| \) for \(v \in L \).

2. Ignoring approximation factor, we can solve when

\[|Q(r)| \leq |v_1| \leq \text{det } L^{1/\text{dim } L} < N\]
\[(R^6 N^3)^{1/4} < N\]

\[R < N^{1/6}\]

In my example I chose \(\lg N = 296, \ lg r = 46 \).
Achieving the Coppersmith bound $r < N^{1/d}$

1. Generate lattice from subset of $\langle f(x), N \rangle^k$.
2. Allow higher degree polynomials.

Theorem (CHHS 2016)

*It is not possible to solve for $r > N^{1/d}$ with any method that constructs auxiliary polynomial $Q(x)$.***
Countermeasures for real-world RSA

- Must use padding scheme with cryptographically secure randomized padding for RSA.
 - PKCS#1v1.5 widely used in practice, not CCA-secure.
 - OAEP is CCA-secure but not widely used.

- Current recommendation: Use RSA exponent $e \geq 65537$.