CSE190 Winter 2023
Lecture 19
Wireless

Wireless Embedded Systems
Aaron Schulman
Wireless communication is ubiquitous

- Bluetooth/WiFi/Cellular
- Device-to-Device (Bluetooth-Low-Energy) Device-to-infrastructure (LTE or WiFi)
- Bluetooth Low Energy the most popular wireless protocol.
Outline

• **What are radios**
 o How do they work?

• **Fundamental characteristics**
 o Design tradeoffs

• **Common radio standards/protocols for indoor applications**
 o Where characteristics fall under (above)

• **Emerging radio standards/protocols for outdoor Internet-of-Things applications**
 o Why the design requirement of IoT radios is different
What are Radios?

• A device that enables wireless transmission of signals
 o Electromagnetic wave
 o Transmitter encodes signal and receiver decodes it
How Radios Work - Transmitting

- **Modulation**
 - Converts digital bits to an analog signal
 - Encodes bits as changes in a **carrier frequency**:
 - Frequency, Amplitude, Phase, etc.

![Diagram showing AM and FM modulation](image-url)
Example of modulating digital data onto an analog signal

Data

Carrier

Modulated Signal
How Radios Work - Receiving

• Transmitted signals must be demodulated
• Simplest is Envelope Detection
 o Detect changes in carrier freq. amplitude
 o Most complex receivers require synchronization
• All require filtering
How Radios Work – Receiving (AM Radio Example)

- Antenna picks up modulated radio waves
- Tuner filters out specific frequency ranges
- Amplitude variations detected with demodulation
- Amplifier strengthens the clipped signal and sends it through the speaker
Wireless Protocol Characteristics

• Why so many protocols for indoor and outdoor applications?

• All radios have to make tradeoffs
 o Short vs. long distance
 o High vs. low power/energy
 o High vs. low speeds
 o Large vs. small number of devices
 o Device-to-device, device-to-infrastructure
 o Indoor vs. outdoor usages
Common Radio Protocols

Radios for indoor IoT applications

- **Design requirements**
 - Short range
 - High data rate
 - Small number of devices
- **Common protocols**
 - Bluetooth/Low Energy
 - ZigBee
 - Ant
 - WiFi

Radios for outdoor IoT applications

- **Design requirements**
 - Long range
 - Low data rate
 - Large number of devices
 - Low energy consumption
- **Common protocols**
 - GSM/GPRS
 - LTE
- **Emerging protocols**
 - Sigfox/LoRA
 - Narrow band LTE
 - Backscatter
Bluetooth

• Radio band: 2.4-2.48 GHz
• Average 1 Mbps - Up to 3 Mbps
• Supports point-to-point and point-to-multipoint
 o Creates personal area networks (PANs/Piconets)
 o Connects up to 8 devices simultaneously
• Minimal interference between devices
 o Devices alter frequencies arbitrarily after packet exchanges - up to 1600 times/second - frequency hopping
• 3 classes of Bluetooth transmit power
• Frequency hopping communication

![Diagram of Bluetooth connections](image)

<table>
<thead>
<tr>
<th>Class</th>
<th>Maximum Power</th>
<th>Operating Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>100mW (20dBm)</td>
<td>100 meters</td>
</tr>
<tr>
<td>Class 2</td>
<td>2.5mW (4dBm)</td>
<td>10 meters</td>
</tr>
<tr>
<td>Class 3</td>
<td>1mW (0dBm)</td>
<td>1 meter</td>
</tr>
</tbody>
</table>

Figure 1.2: Piconets with a single slave operation (a), a multi-slave operation (b) and a scatternet operation (c)
Frequency hopping communication was invented by actress Hedy Lamar

UNITED STATES PATENT OFFICE

2,292,387

SECRET COMMUNICATION SYSTEM

Hedy Kiesler Markey, Los Angeles, and George Antheil, Manhattan Beach, Calif.

Application June 10, 1941, Serial No. 397,412

6 Claims. (Cl. 250—2)

This invention relates broadly to secret communication systems involving the use of carrier waves of different frequencies, and is especially useful in the remote control of dirigible craft.

Fig. 2 is a schematic diagram of the apparatus at a receiving station;

Fig. 3 is a schematic diagram illustrating a starting circuit for starting the motors at the
Bluetooth Applications

• Wireless communication between devices
 o Mobile phones, laptops, cameras, gaming controllers, computer peripherals, etc
• Short range sensor transmission
• Share multimedia - pictures, video, music
• A2DP - Advanced Audio Distribution Profile
 o Stream audio wirelessly
Bluetooth Low Energy

From 2001 – 2006 Nokia asked:

How do we design a radio that can transmit short bursts of data for months or years only being powered by a coin cell battery?

The answer is: Keep the radio asleep mode most of the time!

1. Advertise on only one of three channels (less freq. hopping)
2. Transmit quickly at 1 Mbit/s
3. Make the minimum time to send data only 3 msec
4. Make a very predictable time when the device accepts connections
5. Limit the max transmit power to 10 mW
6. However, don’t sacrifice security: AES 128-bit
What tradeoffs were made?

The protocol is designed for transmitting tiny data

- 4 operations: Read, Write, Notify, Indicate
- Maximum of 20 bytes of data per packet

(Plots are power over time)

From: How Low Energy is Bluetooth Low Energy - Siekkinen et al.
Zigbee/802.15.4

- Zigbee is built on top of 802.15.4
- Radio bands: 868MHz in Europe, 915MHz in US and Australia. 2.4GHz else worldwide.
- Low data-rate - 250 kbps, low power - Up to 1000 days
- Transmits over longer distances through mesh networks
Zigbee is usually used in mesh networks

• A mesh network consists of a series of nodes.

• Each node must acquire and transmit its own data, as well as act as a relay for other nodes to propagate data.

• ZigBee devices often form Mesh Networks.

• Examples: Wireless light switching, Music school practice rooms.

Mesh Networking

• Advantages of Mesh Networking:
 • Allows devices to communicate to multiple other devices in the network.
 • Multiple paths to destination – greater flexibility against interference.
 • Allows overall network to grow to larger physical sizes than possible with point-to-point networks.

• Mesh Characteristics:
 • *Self-forming* – ZigBee devices can establish communication pathways when new devices appear.
 • *Self-healing* – If a node is removed from the network (either intentionally or not) the remaining network will look to establish alternate routes of communication.
Why ZigBee?

- Low Power, Cost, and Size
- Straightforward configuration
- Good support and documentation
 - Lots of products already on the market
- Mesh Networking
- Lends itself well to a variety of applications
- Very low wakeup time
 - 30mS (Zigbee) vs. up to 3S (Bluetooth)
Zigbee/802.15.4 Applications

- **Wireless environmental sensors**
 - Temperature, pressure, sound, luminous intensity
- **Medical devices**
 - Glucose meters, heart monitors
- **Household automation**
 - Security/temperature controllers
 - Smoke/motion detectors
Bluetooth, Zigbee, and WiFi contend

- Competes with Wi-Fi for bandwidth.
 - Only four usable bands in Wi-Fi intensive scenarios
WiFi

• Dual Bands: 2.4GHz and 5GHz
• 802.11a/b/g/n
 o Cost vs Speed vs Interference (2.4/5.8 GHz) tradeoff
• Roaming
• Global standard
• High speed
 o Up to 300 Mbps
• High power consumption
 o Concern for mobile devices
• Range
 o Up to 100m
WiFi adapts speed to signal (802.11g)

802.11g Data Rate vs. Path Loss

The "CLIFF"

Received Signal Strength - dBm

Path Loss in dB

Mbps
Protocol Comparisons

- ZigBee (802.15.4): Short range, high data rate.
- Wi-Fi (802.11): Medium range, lower data rate.
- Bluetooth: Medium range, high data rate.
- Proprietary ISM: Short range, low data rate.
Protocol Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Bluetooth</th>
<th>Zigbee/802.1 5.4</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Range</td>
<td>Moderate - High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Low - Moderate</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
Design requirement of outdoor radios for IoT applications

- Can we use WiFi/Bluetooth/ZigBee/Ant radios to support IoT applications deployed outdoor?
 - Can we achieve kilometer communication distance?
 - Can we support 3~5 years lifetime with a coin battery?
 - Can we support the communication with thousands of IoT devices with the coverage of a base station?
 - We only need to transmit 100 bits per second data compared to the mega bits per second case in WiFi

We are willing to trade data rate for range, lifetime, and the number of devices supported.
Design requirement of outdoor radios for IoT applications

- **Power**
 - Indoor radios
 - IoT radios

- **Range**
 - Indoor radios
 - IoT radios

- **Data rate**
 - Indoor radios
 - IoT radios

- **Number of devices**
 - Indoor radios
 - IoT radios

- **Life time**
 - Indoor radios
 - IoT radios
SIGFOX

• Deploy its own base stations to support IoT applications
 – Kilometer communication distance
 – Connect thousands of devices
 – 100 bits per second date rate
 – 5 years battery life time
SIGFOX is Extremely Reliable

• REPETITION OF THE MESSAGES
 – Each message sent 3 times
 – Repetition at 3 different time slot = time diversity
 – Repetition at 3 different frequencies = frequency diversity

• COLLABORATIVE NETWORK
 – Network deployed and operated to have 3 base stations coverage at all times = space diversity

• MINIMIZATION OF COLLISIONS
 – Probability of collisions are highly reduced
 – Ultra Narrow Band
 – 3 base stations at 3 different locations
Ultra Narrow Band

• Reduce the transmitted signal bandwidth
 – Reduced noise power
 – Therefore, we can reduce the transmission power
 – Therefore, we can reduce the power consumption of radio communication
Ultra Narrow Band

200 simultaneous messages within a 200kHz channel
NB-IoT LTE