Feature Extraction
(Part 2)

Image Processing
CSE 166
Lecture 17
Announcements

• Assignment 7 is due today, 11:59 PM
• Final exam is Dec 11, 7:00 PM-9:59 PM
• Please complete TA and course evaluations
• Reading
 – Chapter 12: Feature extraction
 • Sections 12.7
Feature extraction

• Feature extraction is comprised of
 – Feature detection
 – Feature description
 • A feature descriptor is
 – **Invariant** with respect to a set of transformations if its value remains unchanged after the application of any transformation from the family
 – **Covariant** with respect to a set of transformations if applying any transformation from the set produces the same result in the descriptor
Features

• Features
 – Local (a member of a set)
 – Global (the entire set)

• Categories
 – Boundaries (not covered in CSE 166)
 – Regions
 – Whole images
Scale invariant feature transform (SIFT)

• SIFT features are called *keypoints*

• Keypoints are invariant to
 – Scale
 – Rotation

• Keypoints are robust to
 – Changes in viewpoint
 – Changes in illumination
 – Noise
Scale invariant feature transform (SIFT)

• SIFT feature descriptors are n-dimensional feature vectors
 – Elements are invariant feature descriptors
Scale invariant feature transform (SIFT)

• Steps
 1. Construct the scale space
 2. Obtain the initial keypoints
 3. Improve the accuracy of the location of the keypoints
 4. Delete unsuitable keypoints
 5. Compute keypoint orientations
 6. Compute keypoint descriptors
SIFT, construct the scale space

• Search for stable features across all possible scales
 – Use a function of scale known as *scale space*

• Achieves scale invariance
Scale space

• Scale space theory is a formal theory for image structures at different scales
 – Image is represented by a one-parameter family of Gaussian low pass filtered images
 – A Gaussian filter meets all scale space axioms
 • Linearity, shift invariance, semi-group structure, non-creation of local extrema (zero-crossings), non-enhancement of local extrema, rotational symmetry, and scale invariance

• The scale parameter is the variance of the Gaussian filter
 – Note: use border mirror padding on input image when applying filter

• Image details significantly smaller than (two times) the standard deviation (square root of variance) are removed from the image at that scale parameter
SIFT, construct the scale space

- Each octave corresponds to doubling the standard deviation
 - First image at each new octave is downsampled third image (octave image) from previous octave
SIFT, construct the scale space

FIGURE 12.57
Illustration using images of the first three octaves of scale space in SIFT. The entries in the table are values of standard deviation used at each scale of each octave. For example, the standard deviation used in scale 2 of octave 1 is $k\sigma_1$, which is equal to 1.0. (The images of octave 1 are shown slightly overlapped to fit in the figure space.)

$$\sigma_1 = \sqrt{2}/2 = 0.707 \quad k = \sqrt{2} = 1.414$$

<table>
<thead>
<tr>
<th>Octave</th>
<th>Scale</th>
<th>Octave 1</th>
<th>Octave 2</th>
<th>Octave 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>0.707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.000</td>
<td>1.414</td>
<td>1.000</td>
<td>0.707</td>
</tr>
<tr>
<td>3</td>
<td>4.000</td>
<td>2.828</td>
<td>2.000</td>
<td>2.000</td>
</tr>
</tbody>
</table>
SIFT, obtain the initial keypoints

- First, difference two adjacent scale-space images in an octave

Figure 12.58 How Eq. (12-69) is implemented in scale space. There are $s+3$ $L(x, y, \sigma)$ images and $s+2$ corresponding $D(x, y, \sigma)$ images in each octave.
SIFT, obtain the initial keypoints

- Second, detect extrema in the differences

The point (in black) is selected as an extremum point if its value is **larger** than the values of **all** its neighbors (in blue) or **smaller** than the values of **all** its neighbors (in blue).
SIFT, obtain the initial keypoints

Figure 12.58 How Eq. (12-69) is implemented in scale space. There are $s + 3$ $L(x, y, \sigma)$ images and $s + 2$ corresponding $D(x, y, \sigma)$ images in each octave.
SIFT, improve the accuracy of the location of the keypoints

• Interpolate the values of the difference images about extrema
• Determine subpixel coordinates of extrema using interpolated values
SIFT, delete unsuitable keypoints

- Determine difference at subpixel keypoints
- Eliminate keypoints with low contrast and/or are poorly localized
- Additionally, delete keypoints associated with edges
 - Only keep corner-like features
 - Equivalent to thresholding the minor eigenvalue
Scale invariant feature transform (SIFT)

• Steps
 1. Construct the scale space
 2. Obtain the initial keypoints
 3. Improve the accuracy of the location of the keypoints
 4. Delete unsuitable keypoints
 – So far, we have computed the location of each keypoint in scale space (i.e., location and scale of each keypoint)
 • Scale invariance
 – Next is rotation invariance
 5. Compute keypoint orientations
 6. Compute keypoint descriptors
SIFT, compute keypoint orientations

- For each keypoint
 - At its scale, compute the gradient magnitude and orientation of points in region about keypoint
 - Form a **histogram of orientations** from points in region about keypoint
 - 36 bins (10 degrees each)
 - Weight an orientation by its associated magnitude and a Gaussian, when adding it to an orientation bin
 - Initial orientation is largest bin
 - Create an additional keypoint for other bins within 80% the size of the largest bin
 - Improve orientation estimate using interpolation
 - Fit a parabola to values of the largest bin and its two neighboring bins
SIFT, compute keypoint orientations

• Keypoints
 – Location and scale (scale invariant)
 – Orientation (rotation invariant)
 • Length of arrow is histogram of orientations interpolated bin value
 • (Useful in matching keypoints across images)
Local regions

• The local region about each **oriented** keypoint is invariant to
 – Scale, orientation, illumination, and image viewpoint
SIFT, compute keypoint descriptors

• Feature descriptor
 – 16x16 region about keypoint
 • Gradient magnitude (Gaussian weighted) and direction at each point in region
 • Quantize gradient directions in each 4x4 subregion to 45 degree increments
 – Interpolate each of the 16 gradients directions to distribute it over all 8 bins (8 * 45 degrees = 360 degrees)
 • Concatenate the 16 8-directional histograms bins to form a 128-dimensional feature vector

FIGURE 12.42
Approach used to compute a keypoint descriptor.
SIFT, compute keypoint descriptors

• Rotation invariance
 – Rotate the 8-directional histograms relative to the keypoint orientation

• Robustness to changes in illumination
 – Unitize the 128-dimensional feature vector
 – Threshold to reduce the influence of large gradient magnitudes
 – Unitize again
Matching keypoints across images

- First image is whole image
- Second image is darker version of red rectangle
Matching keypoints across images using SIFT features and feature descriptors
Application: panorama

• How do we align these two images?
Application: panorama

- How do we align these two images?

 Step 1: extract features in each image
 Step 2: match features across images
Application: panorama

• How do we align these two images?

Step 1: extract features in each image
Step 2: match features across images
Step 3: estimate and apply a 2D transformation
Review
Midterm exam topics

• Geometric transformations
• Intensity transformations
• Spatial filtering
• Fourier transform and filtering in the frequency domain
Image acquisition

Sampling and quantization
Geometric transformations

Euclidean transformation

\[
x' = x \cos \theta - y \sin \theta + t_x \\
y' = x \sin \theta + y \cos \theta + t_y
\]

\[
\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

Similarity transformation

\[
x' = sx \cos \theta - sy \sin \theta + t_x \\
y' = sx \sin \theta + sy \cos \theta + t_y
\]

\[
\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s \cos \theta & -s \sin \theta & t_x \\ s \sin \theta & s \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

Affine transformation

\[
x' = a_{11}x + a_{12}y + a_{13} \\
y' = a_{21}x + a_{22}y + a_{23}
\]

\[
\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]
Image filtering and enhancement

- Intensity transformations
- Spatial filtering

Low-pass filter

Gamma correction
Image filtering and enhancement

• Filtering in the frequency domain
Final exam topics

- Image restoration
- Color image processing
- Basis vector and matrix-based transforms
- Multiscale image representations and the wavelet transform
- Image compression and watermarking
- Morphological image processing
- Image segmentation
- Feature extraction
Image restoration

- Noise models
- Noise reduction
Model of image degradation

• Spatial domain

\[g(x, y) = h(x, y) \ast f(x, y) + \eta(x, y) \]
- Degraded image
- Degradation function
- Original image
- Noise image

• Frequency domain

\[G(u, v) = H(u, v)F(u, v) + N(u, v) \]
- Degraded image
- Degradation function
- Original image
- Noise image
Image restoration

• Inverse filtering

\[G(u, v) = H(u, v) \hat{F}(u, v) \]

\[\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)} \]

– Mitigate divide by zero
 • Threshold \(H(u, v) \)
 • Ideal lowpass filter \(H(u, v) \)

\[\hat{F}(u, v) = \begin{cases}
\frac{G(u,v)}{H(u,v)} & \text{if } |H(u,v)| \geq t \\
0 & \text{otherwise}
\end{cases} \]
Color image processing

• Color models
• Color transformations
Matrix-based transforms

• Transform pair

\[T(u) = \sum_{x=0}^{N-1} f(x)r(x, u) \]
\[f(x) = \sum_{u=0}^{N-1} T(u)s(x, u) \]

where

- \(x \) is a spatial variable
- \(u \) is a transform variable
- \(T(u) \) is the transform of \(f(x) \)
- \(f(x) \) is the inverse transform of \(T(u) \)
- \(r(x, u) \) is a forward transformation kernel
- \(s(x, u) \) is an inverse transformation kernel

Note the transformation kernels \(r(x, u) \) and \(s(x, u) \) depend only on \(x \) and \(u \), not values of \(f(x) \) and \(T(u) \)
Matrix-based transforms using orthonormal basis vectors

\[
\langle s(x, u), f(x) \rangle = T(0)\langle s(x, u), s(x, 0) \rangle + T(1)\langle s(x, u), s(x, 1) \rangle + \cdots + T(u)\langle s(x, u), s(x, u) \rangle + \cdots \\
\langle s(x, u), f(x) \rangle = T(u)\langle s(x, u), s(x, u) \rangle \\
\frac{\langle s(x, u), f(x) \rangle}{\langle s(x, u), s(x, u) \rangle} = T(u)
\]

If \(s(x, 0), s(x, 1), s(x, 2), \ldots \) are orthonormal basis vectors, then

\[
\langle s(x, u), f(x) \rangle = T(u)
\]

• In vector form

\[
T(u) = \langle s(x, u), f(x) \rangle \\
T(u) = \langle s_u, f \rangle \\
\begin{bmatrix}
 s(0, u) \\
 s(1, u) \\
 \vdots \\
 s(N-1, u)
\end{bmatrix}
\]

where \(s_u = \)

\[
T(u) = s_u^H f \text{ for complex vectors} \\
T(u) = s_u^T f \text{ for real vectors}
\]
Matrix-based transforms using orthonormal basis vectors

• In matrix form

$$
\begin{align*}
T(0) & \quad T(1) \\
& \quad \vdots \\
T(N - 1) \\
\end{align*}
\begin{bmatrix}
T(0) \\
T(1) \\
\vdots \\
T(N - 1)
\end{bmatrix}
= \begin{bmatrix}
\mathbf{s}_0^H \\
\mathbf{s}_1^H \\
\vdots \\
\mathbf{s}_{N-1}^H
\end{bmatrix}
\begin{bmatrix}
x(0) \\
x(1) \\
\vdots \\
x(N - 1)
\end{bmatrix}
\quad \text{for complex vectors}
$$

$$
\begin{align*}
T(0) & \quad T(1) \\
& \quad \vdots \\
T(N - 1) \\
\end{align*}
\begin{bmatrix}
T(0) \\
T(1) \\
\vdots \\
T(N - 1)
\end{bmatrix}
= \begin{bmatrix}
\mathbf{s}_0^T \\
\mathbf{s}_1^T \\
\vdots \\
\mathbf{s}_{N-1}^T
\end{bmatrix}
\begin{bmatrix}
f(0) \\
f(1) \\
\vdots \\
f(N - 1)
\end{bmatrix}
\quad \text{for real vectors}
$$

$$
t = \mathbf{A} \mathbf{f}
$$

where transformation matrix

$$
\mathbf{A} = \begin{bmatrix}
\mathbf{s}_0^H \\
\mathbf{s}_1^H \\
\vdots \\
\mathbf{s}_{N-1}^H
\end{bmatrix}
\quad \text{for complex vectors} \quad N \times N
$$

$$
\mathbf{A} = \begin{bmatrix}
\mathbf{s}_0^T \\
\mathbf{s}_1^T \\
\vdots \\
\mathbf{s}_{N-1}^T
\end{bmatrix}
\quad \text{for real vectors} \quad N \times N
$$
Matrix-based transforms using orthonormal basis vectors

- **Inverse transformation**

 \[t = Af \]
 \[A^{-1}t = f \]

 \[A^Ht = f \] for complex A

 \[A^Tt = f \] for real A

 Note forward transformation kernel \(r(x, u) \) is not needed

- **Properties**

 Unitary matrix \(A \)

 \[A^HA = AA^H = A^*A^T = A^TA^* = I \]

 \[A^{-1} = A^H \]

 Orthogonal matrix \(A \)

 \[A^TA = AA^T = I \]

 \[A^{-1} = A^T \]
Matrix-based transforms in two dimensions

\[
T(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) r(x, y, u, v) \quad \text{Forward transform}
\]

\[
f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) s(x, y, u, v) \quad \text{Inverse transform}
\]

where

- \(x, y\) are spatial variables
- \(u, v\) are transform variables
- \(T(u, v)\) is the transform of \(f(x, y)\)
- \(f(x, y)\) is the inverse transform of \(T(u, v)\)
- \(r(x, y, u, v)\) is a forward transformation kernel
- \(s(x, y, u, v)\) is an inverse transformation kernel
Matrix-based transforms in two dimensions

If \(s(x, y, u, v) = s_1(x, u)s_2(y, v) \), then \(s \) is called separable.
If \(s(x, y, u, v) = s_1(x, u)s_1(y, v) \), then \(s \) is called symmetric.
If \(r \) and \(s \) are separable and symmetric, then

\[
T = A_M F A_N^T \\
F = A_M^* T A_N^* \quad \text{for complex vectors} \\
F = A_M^T T A_N \quad \text{for real vectors}
\]

where

\[
T = \begin{bmatrix}
T(0, 0) & T(0, 1) & \cdots & T(0, N - 1) \\
T(1, 0) & T(1, 1) & \cdots & T(1, N - 1) \\
\vdots & \vdots & \ddots & \vdots \\
T(M - 1, 0) & T(M - 1, 1) & \cdots & T(M - 1, N - 1)
\end{bmatrix}, \quad M \times N
\]

\[
A_M = \begin{bmatrix}
s_1(0, 0) & s_1(1, 0) & \cdots & s_1(M - 1, 0) \\
s_1(0, 1) & s_1(1, 1) & \cdots & s_1(M - 1, 1) \\
\vdots & \vdots & \ddots & \vdots \\
s_1(0, M - 1) & s_1(1, M - 1) & \cdots & s_1(M - 1, M - 1)
\end{bmatrix}, \quad M \times M
\]

\[
A_N = \begin{bmatrix}
s_1(0, 0) & s_1(1, 0) & \cdots & s_1(N - 1, 0) \\
s_1(0, 1) & s_1(1, 1) & \cdots & s_1(N - 1, 1) \\
\vdots & \vdots & \ddots & \vdots \\
s_1(0, N - 1) & s_1(1, N - 1) & \cdots & s_1(N - 1, N - 1)
\end{bmatrix}, \quad N \times N
\]
Matrix-based transforms in two dimensions

• If \(r \) and \(s \) are separable and symmetric, and \(M = N \), then

 – For orthonormal basis vectors

 \[
 T = AFA^T \\
 F = A^T A \quad \text{for real vectors} \\
 F = A^T A^* \quad \text{for complex vectors}
 \]

 – For biorthonormal basis vectors

 \[
 T = \tilde{A}F\tilde{A}^T \\
 F = A^T A^* \quad \text{for complex vectors} \\
 F = A^T A \quad \text{for real vectors}
 \]
Matrix-based transforms in two dimensions

- **Inverse transform**

\[f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) s(x, y, u, v) \quad \text{Using transformation kernel} \]

\[F = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) S_{u,v} \quad \text{Using basis images} \]

where

\[
\begin{bmatrix}
 f(0,0) & f(0,1) & \cdots & f(0,N-1) \\
 f(1,0) & f(1,1) & \cdots & f(1,N-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 f(N-1,0) & f(N-1,1) & \cdots & f(N-1,N-1)
\end{bmatrix}
\]

\[
\begin{bmatrix}
 s(0,0,u,v) & s(0,1,u,v) & \cdots & s(0,N-1,u,v) \\
 s(1,0,u,v) & s(1,1,u,v) & \cdots & s(1,N-1,u,v) \\
 \vdots & \vdots & \ddots & \vdots \\
 s(N-1,0,u,v) & s(N-1,1,u,v) & \cdots & s(N-1,N-1,u,v)
\end{bmatrix}
\]

Each $S_{u,v}$ is a basis image.
Matrix-based transforms in two dimensions using basis images

• Inverse transform

Each $S_{u,v}$ is a basis image

$$S_{u,v} = \begin{bmatrix}
s(0, 0, u, v) & s(0, 1, u, v) & \cdots & s(0, N-1, u, v) \\
s(1, 0, u, v) & s(1, 1, u, v) & \cdots & s(1, N-1, u, v) \\
\vdots & \vdots & \ddots & \vdots \\
s(N-1, 0, u, v) & s(N-1, 1, u, v) & \cdots & s(N-1, N-1, u, v)
\end{bmatrix}$$

If $s(x, y, u, v)$ is separable and symmetric, then

$$S_{u,v} = s_u s_v^H$$ for complex vectors

$$S_{u,v} = s_u s_v^T$$ for real vectors

where

$$s_u = \begin{bmatrix} s(0, u) \\ s(1, u) \\ \vdots \\ s(N-1, u) \end{bmatrix}$$ and

$$s_v = \begin{bmatrix} s(0, v) \\ s(1, v) \\ \vdots \\ s(N-1, v) \end{bmatrix}$$

Each basis image is an outer product of two basis vectors
Multiscale image representations

• Image pyramids
 – Gaussian pyramid (approximation pyramid)
 – Laplacian pyramid (prediction residual pyramid)
• Scale space
• Wavelet decomposition
Image pyramids

- Gaussian pyramid (approximation pyramid)
Laplacian pyramid

- Full name is Laplacian of Gaussian (LoG)
 - Apply Gaussian (low pass) filter, then apply Laplacian (second derivative) filter
 - Approximates second derivative
 - Approximate with difference of Gaussians (DoG)
Image pyramids

- Original image can be reconstructed from smallest Gaussian approximation and Laplacian pyramid
Scale space

• Pyramid representation is a predecessor to scale space representation
• Scale space theory is a formal theory for image structures at different scales
 – Image is represented by a one-parameter family of Gaussian low pass filtered images
 – A Gaussian filter meets all scale space axioms
 • Linearity, shift invariance, semi-group structure, non-creation of local extrema (zero-crossings), non-enhancement of local extrema, rotational symmetry, and scale invariance
• The scale parameter is the variance of the Gaussian filter
 – Note: use border mirror padding on input image when applying filter
• Image details significantly smaller than (two times) the standard deviation (square root of variance) are removed from the image at that scale parameter
Scale space vs Gaussian pyramid

• Note that Gaussian pyramid (of rate 2) decomposition levels corresponds to Gaussian kernel with standard deviations of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
 – Rate of Gaussian pyramid dictates standard deviations of decomposition levels
 – Scale space does not have this imposition; all standard deviations available

• In scale space, since all images are the same size, features are precisely located in the coordinates of the original image
 – Points in levels of Gaussian pyramid must be scaled up to coordinates of the original image, which is imprecise
Wavelet transforms

• A **scaling function** is used to create a series of approximations of a function or image, each differing by a factor of 2 in resolution from its nearest neighboring approximations.

• **Wavelet functions (wavelets)** are then used to encode the differences between adjacent approximations.

• The **discrete wavelet transform (DWT)** uses those wavelets, together with a single scaling function, to represent a function or image as a linear combination of the wavelets and scaling function.
Relationship between scaling and wavelet function spaces

\[V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1 \]

\(V \) is basis of the function space spanned by scaling function

\(W_j \) is orthogonal complement of \(V_j \) in \(V_{j+1} \)
Wavelet decomposition

Lowpass and highpass filters are orthogonal basis vectors
Wavelets in image processing

1. Wavelet transform
2. Alter transform
3. Inverse wavelet transform
Image compression

- Lossless vs lossy compression
Data compression

• Data redundancy

\[R = 1 - \frac{1}{C} \]

where compression (ratio)

\[C = \frac{b}{b'} \]

where

\(b \) and \(b' \) are the number of bits in two different representations of the same information
Image information

• Entropy

\[\tilde{H} = - \sum_{k=0}^{L-1} p_r(r_k) \log_2(p_r(r_k)) \]

Average information (in bits) per pixel

where

- \(L \) is the number of intensity or gray levels
- \(r_k \) is input image intensity or gray level value \(k \)
- \(p_r(r_k) \) is normalized histogram of input image

- It is not possible to encode input image with fewer than \(\tilde{H} \) bits/pixel
Visible watermark

Watermarked image

Original image minus watermark

Alpha blending

\[f_w = (1 - \alpha) f + \alpha w \]
Invisible watermark

Example: DCT-based watermarking

Watermarked images (different watermarks) Extracted robust invisible watermark
Morphological image processing

• Dilation and erosion
• Opening and closing

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company’s software may recognize a date using "00" as 1900 rather than the year 2000.
Image segmentation

• General approach
 1. Spatial filtering
 2. Additional processing
 3. Thresholding
Image segmentation

- **Input**
- **Edges**
- **Segmentation**

Edge-based

Region-based
Image derivatives
Noise and image derivatives

Input

First derivative

Second derivative

Noise
Edge detection

• Clearly, noise must be reduced
• Approach (simple)
 1. Image smoothing for noise reduction
 2. Detection of image points (edge point candidates)
 3. Edge localization (select from candidates, set of edge points)
Edge detection

1. Smooth the input image
2. Compute the gradient magnitude image
3. Apply nonmaximal suppression to the gradient magnitude image
4. Threshold the resulting image
Nonmaxima suppression

Specify a number of discrete orientations d_1, d_2, \ldots

1. Determine the direction d_k closest to $\alpha(x, y)$

2. Let K denote the value of $\|\nabla f\|$ at (x, y). If K is less than the value of $\|\nabla f\|$ at one or both of the neighbors of point (x, y) along d_k, let $g_N(x, y) = 0$ (suppression); otherwise, let $g_N(x, y) = K$.

Every edge has two possible orientations
Optimum global thresholding

Input

Histogram

Basic global thresholding

Optimum global thresholding using Otsu’s method
Segmentation by region growing

Difference image

Difference image thresholded using dual thresholds

Difference image thresholded with the smallest of the dual thresholds

Segmentation by region growing
Segmentation using k-means clustering

Input

Segmentation using k-means, $k = 3$
Superpixels

• Group pixels into primitive regions that are more perceptually meaningful than individual pixels. Results in less “pixels” to process.

Input image of 480,000 pixels Image of 4,000 superpixels with boundaries Image of 4,000 superpixels
Superpixels for image segmentation

Input image of 301,678 pixels

Segmentation using k-means, $k = 3$

Superpixel image
(100 superpixels)

Segmentation using k-means, $k = 3$
Graph cuts for image segmentation

Input
Smoothed input
Graph cut segmentation
Feature extraction

• Feature detection
Feature extraction

• Feature description
 – A feature descriptor is
 • **Invariant** with respect to a set of transformations if its value remains unchanged after the application of any transformation from the family
 • **Covariant** with respect to a set of transformations if applying any transformation from the set produces the same result in the descriptor
Features

• Features
 – Local (a member of a set)
 – Global (the entire set)

• Categories
 – Boundaries (not covered in CSE 166)
 – Regions
 – Whole images
CSE 166

- Image acquisition
- Geometric transformations and image interpolation
- Intensity transformations
- Spatial filtering
- Fourier transform and filtering in the frequency domain
- Image restoration
- Color image processing
- Basis vectors and matrix-based transforms
- Multiscale image representations and the wavelet transform
- Image compression
- Image watermarking
- Morphological image processing
- Edge detection
- Image segmentation
- Feature extraction