Lecture 1:
Course Introduction

CSE 123: Computer Networks
Alex C. Snoeren
Lecture 1 Overview

- Class overview
 - Expected outcomes
 - Structure of the course
 - Policies and procedures

- A brief overview of Computer Networking
 - High-level concepts
 - An end-to-end example
Personnel

- Instructor: Alex C. Snoeren
 - Office hours Mondays 3:30-4:30pm (CSE3114/Zoom) or by appointment
- Project 1 TA: Jamshed Ashurov
 - Office hours Mondays 11:00am-1:00pm; Thursdays 5-7pm (CSE270A)
- Project 2 TA Adyanth Hosavalike
 - Office hours Tuesdays 3:00-5:00pm (Zoom)
- Tutor: Fucheng Shang
 - Standing office hours Mon 1-3pm, Tue/Thu 2-4pm, Fri 11-1pm
 - In person in the basement
Prereqs

- CSE30, CSE101, and CSE110
 - Undergrads can’t enroll without them
 - We expect it (or equivalent) even for grad students

- Programming experience
 - We will be assigning programming projects in C/C++
 - This course will not teach you C. The TA/Tutors will help, but you need to learn it on your own if you don’t already know it.
Expected Outcomes

- This course will teach you the *fundamentals* of computer networks:
 - Layering, signaling, framing, MAC, switching, routing, naming, Internetworking, congestion control, router design, etc.
 - At the end of this course you should completely understand what’s actually happening when you view a Web page or fire up Zoom

- This course *will not* teach you signals and coding
 - Take an EE course to learn about modulation, encoding, etc. on different hardware technologies

- Similarly, we will not cover Internet apps/services
 - CSE124 covers application layer protocols, Web, etc.
CSE 123 Class Overview

- Course material taught through class lectures, textbook readings, and discussion sections
- Course assignments are
 - Homework questions (based on lecture)
 - Two substantial programming projects (in four parts)
- Discussion section (Wed 5-5:50pm CSB002)
 - Help you get started on the projects
 - Lecture material and homework
 - Additional networking topics
- Discussion board (Piazza)
 - The place to ask questions about lecture, HW, projects, etc.
Textbook

Homeworks

- There will be 4 homeworks throughout the quarter
 - Reinforce lecture material…no better practice
 - Assigned and collected on GradeScope
 - Grading is completion only; solutions available after deadline

- Collaboration vs. cheating
 - You should discuss homework problems with others
 » You can learn a lot from each other
 - But there is a distinction between collaboration and cheating
 » Rule of thumb: Discuss together in library, over Zoom, walk home, hang up, and only afterwards write up answers independently
 - They’re not graded for correctness, so you’re only cheating yourself by not trying to solve independently!
Projects

- There will be four programming projects (really two, each split in half)
 - You will have approximately two weeks to complete each
 - The first is assigned MONDAY, discussed WEDNESDAY

- The projects must be completed in C/C++
 - We will prove skeleton code for you to use
 - Your job is to fill in the interesting/hard parts
 - The TA and tutors will be available to help with coding

- The projects are INDIVIDUAL assignments
 - All code must be your own (not copied from GitHub or generated by CoPilot/LLMs!)
 - OK to discuss design ideas, NOT OK to share/look at code
 - Projects assigned AND SUBMITTED via private GitHub repo
Development environment

- We expect you to use your own machine
 - The project source will work on Linux/Windows/OS X
 - Windows users need Windows Subsystem for Linux (WSL)
 - Code executes in Containers/VMs, just like on GradeScope
 - TAs will address discrepancies between GradeScope and provided execution environments

- You can also use lab machines/Cloud VM
 - There may be some differences in getting Containers/VMs setup
 - Start early and ask for help immediately if you go this route
Assessments

- Quiz 1
 - Friday, October 27th
 - Covers first third of class

- Quiz 2
 - Friday, November 17th
 - Covers second third of class

- Quiz 3 (aka Final)
 - Friday, December 15th (8:00-11:00am)
 - Covers last third of class + selected material from earlier parts
 » I will be explicit about the material covered

- All exams are in person; No makeup exams
 - Unless dire circumstances; contact me NOW if you have a conflict or OSD
Grading

- Homeworks: 5% *completion only*
- Quizzes: 20% each
- Final: 25%
- Projects: 30%
 - Divided evenly among the four projects
A Few Class Policies

- Regardless of modality, this class is “live”
 - In-person lectures podcast, but intended for review
 - May be one or two Zoom lectures due to instructor travel; details later

- Discussion attendance is strongly encouraged
 - The projects are involved; the TAs will use the time to get you going

- Zoom Office hours are NOT RECORDED
 - Please turn your camera on when interacting with TAs/Tutors

- No late assignments
 - HWs submitted via GradeScope, Projects via GitHub
How *Not* To Pass CSE 123

- Do not attend lecture / discussion
 - Podcast is available, and the material is in the book anyway
 - Lecture material is the basis for exams and directly relates to the projects
 - Besides, the professor thinks he’s funny

- Do not do the homework
 - It’s only 5% of the grade, and you can just submit random answers
 - Excellent practice for the exams, and some homework problems are exercises for helping with the project
How Not To Pass (2)

- Do not ask questions in lecture, office hours, or Piazza
 - Professor is scary, I don’t want to embarrass myself
 - Asking questions is the best way to clarify lecture material at the time it is being presented
 - Office hours and Piazza will be invaluable for homeworks, projects

- Wait until the last couple of days to start a project
 - We’ll have to do the crunch anyways, why do it early?
 - The projects cannot be done in the last couple of days
 - Repeat: The projects cannot be done in the last couple of days
How Not To Pass (3)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>43</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30 %</td>
<td>44 %</td>
<td>11 %</td>
<td>7 %</td>
<td>6 %</td>
<td>1 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>29</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29 %</td>
<td>42 %</td>
<td>14 %</td>
<td>1 %</td>
<td>10 %</td>
<td>1 %</td>
<td>1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>34</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>42 %</td>
<td>41 %</td>
<td>14 %</td>
<td>0 %</td>
<td>1 %</td>
<td>1 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>17</td>
<td>18</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>38 %</td>
<td>22 %</td>
<td>23 %</td>
<td>6 %</td>
<td>9 %</td>
<td>0 %</td>
<td>1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>36</td>
<td>9</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>27 %</td>
<td>36 %</td>
<td>9 %</td>
<td>2 %</td>
<td>25 %</td>
<td>0 %</td>
<td>1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>P</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36 %</td>
<td>26 %</td>
<td>20 %</td>
<td>7 %</td>
<td>11 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>
Class Web Page

- Everything on the Web (wrapped in Canvas)

 - Course syllabus and schedule (updated as quarter progresses)
 - Announcements
 - Homework handouts
 - Project information

- Class will be podcast

 - Lecture slides posted to website immediately after class
 - Podcast is for review, not intended as a substitute for lecture
Questions

- Before we start the material, any questions about the class structure, contents, etc.?
This Class in One Slide

- **Protocols & Layering**
 - Manage complexity by decomposing the tasks
 - Standardizing syntax and semantics to support interoperability

- **Naming**
 - Agreeing on how to describe a host, application, network, etc.

- **Switching & Routing**
 - Deciding how to get from here to there
 - Forwarding messages across multiple physical components

- **Resource Allocation**
 - Figuring out how to share finite bandwidth, memory, etc.
A “Simple” Task

- Send information from one computer to another

- Endpoints are called **hosts**
 - Could be computer, iPhone, laptop, etc.
- The plumbing is called a **link**
 - We don’t care what the physical technology is: Ethernet, wireless, cellular, etc.
Actually Quite Complicated

- ROUGHLY, what happens when I click on a Web page from UCSD?

My device \[\text{www.google.com}\]

CSE 123 – Lecture 1: Course Introduction
Web request (HTTP)

- Turn click into HTTP request

GET http://www.google.com/ HTTP/1.1
Host: www.google.com
Connection:keep-alive
...
Name resolution (DNS)

- Where is www.google.com?

My device (132.239.9.64)

Local DNS server (132.239.51.18)

What’s the address for www.google.com

Oh, you can find it at 66.102.7.104
Data transport (TCP)

- Break message into packets (TCP segments)
- Should be delivered reliably & in-order

GET http://www.google.com HTTP/1.1
Host: www.google.com
Connection: keep-alive
...

"and let me know when they got there"
Global Network Addressing

- Address each packet so it can traverse network and arrive at host

CSE 123 – Lecture 1: Course Introduction
Network Routing

- Each router forwards packet towards destination
Link management (WiFi)

- Break message into frames
- Media Access Control (MAC)
 - Can I send now? Can I send now?
- Send frame
Physical layer

802.11ac Wireless Access Point

- 5.8 Ghz Radio
- OFDM/MIMO 4x4
- 1 - 1,300 Mbps

Cat 6 Cable (4 pairs)

- NBase-T Ethernet
- 10 Gbps

Ethernet switch/router

To campus backbone

100 Gbps Ethernet

CSE 123 – Lecture 1: Course Introduction
For Next Class…

- Browse the course website (also on Canvas)
 - http://www.cs.ucsd.edu/classes/fa23/cse123-a/

- Read Chapter 1.3 and 2.3

- Monday: Layers and Framing

- Drop now or plan to stick it out!