CSE 207B: Applied Cryptography

Nadia Heninger
UCSD

Fall 2022 Lecture 12
Announcements

1. HW 5 is due next lecture.

2. HW 6 is due in one week.
Last time:
 • Attacks on RSA

This time:
 • Digital signatures
An active man-in-the-middle attacker can modify Diffie-Hellman key exchange messages in transit, and Alice and Bob will never know.
Public Key Idea #3: Digital Signatures
Solving the authentication problem.

\[g^a \]
\[g^b \]
\[s = \text{Sign}(g^a, g^b) \]

\[\text{AuthenticatedEncryption}_k(m) \]

\[k = \text{KDF}(g^{ab}) \]

Verify(s)

\[k = \text{KDF}(g^{ab}) \]

* Still a toy protocol; not secure.
Digital Signatures

- Key generation: Generate key pair \((pk, sk)\)
- Sign: \(\text{sign}_{sk}(m) = \sigma\)
- Verify:

\[
\text{verify}_{pk}(m, \sigma) = \begin{cases}
\text{accept} & \text{if valid} \\
\text{reject} & \text{otherwise}
\end{cases}
\]

Correctness: \(\Pr[\text{verify}_{pk}(m, \text{sign}_{sk}(m)) = \text{accept}] = 1.\)
Digital Signatures

- Key generation: Generate key pair \((pk, sk)\)
- Sign: \(\text{sign}_{sk}(m) = \sigma\)
- Verify:

\[
\text{verify}_{pk}(m, \sigma) = \begin{cases}
\text{accept} & \text{if valid} \\
\text{reject} & \text{otherwise}
\end{cases}
\]

Correctness: \(\Pr[\text{verify}_{pk}(m, \text{sign}_{sk}(m)) = \text{accept}] = 1\).

Differences between handwritten signatures and cryptographic signatures:
- Only person with secret key can generate signature.
- Anyone with public key can verify signature.
- Cryptographic signature is a function of the signed message.
Definition
A signature scheme is existentially unforgeable under a chosen-message attack if \(\Pr[A \text{ wins}] \) is negligible.
Differences between signatures and MACs

- Signatures are publicly verifiable
- MACs are non-binding: either Alice or Bob could have generated
- Signatures are usually non-repudiable
- Signatures might allow an adversary to create a new valid pair \((m, \sigma')\) from \((m, \sigma)\), which isn’t allowed for a MAC
- Signer may not know what \(m\) is
Digital signature applications

- Authenticated key exchange
- Software signing
- Digital certificates and public key infrastructure
- Email spam prevention (DKIM)
- Cryptocurrencies
Textbook RSA Signatures
[Rivest Shamir Adleman 1977]

Public Key
\[N = pq \text{ modulus} \]
\[e \text{ verifying exponent} \]

Private Key
\[p, q \text{ primes} \]
\[d \text{ signing exponent} \]
\[(d = e^{-1} \mod (p - 1)(q - 1)) \]

public key = \((N, e)\)

signature = \(\text{message}^d \mod N\)

message = \(\text{signature}^e \mod N\)
Textbook RSA signatures are insecure

Forgery from public key:

1. Choose arbitrary value σ.
2. Output $(m = \sigma^e \mod N, \sigma)$.
Textbook RSA signatures are insecure

Arbitrary forgery for any m:
1. Pick r. Compute $m' = r^e m \mod N$
2. Query signature for m': $\sigma' = (r^e m)^d \mod N = rm^d$
3. Output $(m, \sigma' r^{-1} \mod N)$.

Signature blinding: Allows signer to sign without seeing message.
“Hash-and-sign” paradigm

- Allows signing of arbitrary length messages.
- Protects against signature forgery

Use a secure signature scheme (sign, verify) and a collision-resistant hash function H.

- Key generation: Generate key pair (pk, sk)
- Sign’: $\sigma = \text{sign}_{sk}(H(m))$
- Verify’:

$$\text{verify'}_{pk}(m, \sigma) = \begin{cases}
\text{accept} & \text{if } \text{verify}_{pk}(H(m), \sigma) \\
\text{reject} & \text{otherwise}
\end{cases}$$

Theorem

If the signature scheme is existentially unforgeable under adaptive chosen-message attack and the hash function is collision resistant, then this construction is existentially unforgeable under an adaptive chosen-message attack.
PKCS #1 v.1.5 padding for RSA signatures

SHA256 has output length 256, but we would like to use it with 2048-bit RSA keys.

PKCS#1 v. 1.5 padding is commonly used.

\[m = 00 \ 01 \ [FF \ FF \ ...FF] \ 00 \ [DI] \ [H(m)] \]

DI specifies the hash function that was used, and \(H(m) \) is the hash of the message to be signed.
Bleichenbacher RSA signature forgery attack

PKCS#1 v. 1.5 padding:
\[m = 00\ 01\ \text{[FF FF ...FF]}\ 00\ [\text{DI}]\ [\text{H(m)}] \]

Bleichenbacher noticed that implementations that:
1. Use small public exponent \(e \)
2. Do not check length of \text{FF FF FF...} padding

Would be vulnerable to signature forgery.

Attack: Generate value \(r \) such that
\[r^e = 00\ 01\ \text{FF 00 DI } \text{H(m)}||\text{garbage over } \mathbb{Z}. \]

Padding length is wrong, but verifier doesn’t notice.

More secure approach: “full-domain hashing”:
\(H : \{0,1\}^* \rightarrow \mathbb{Z}/N\mathbb{Z} \) for e.g. 2048-bit \(N \). Needs new hash constructions.
FIPS PUB 186-3

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY
DSA (Digital Signature Algorithm)

Public Key
- p prime
- q prime, divides $(p - 1)$
- g generator of subgroup of order $q \mod p$
- $y = g^x \mod p$

Verify
- $u_1 = H(m)s^{-1} \mod q$
- $u_2 = rs^{-1} \mod q$
- $r = g^{u_1}y^{u_2} \mod p \mod q$

Private Key
- x private key

Sign
- Generate random k.
- $r = g^k \mod p \mod q$
- $s = k^{-1}(H(m) + xr) \mod q$
Theorem (Pointcheval, Vaudenay 96)

Breaking DSA is equivalent to computing discrete logs in the random oracle model.

Prime-field DSA is much less common than RSA for most applications.

Elliptic curve DSA is becoming much more common.
DSA Nonce Vulnerability

Public Key
- **p** prime
- **q** prime, divides \((p - 1)\)
- **g** generator of subgroup of order \(q\) mod \(p\)
- \(y = g^x \mod p\)

Private Key
- **x** private key

Sign
- Generate random \(k\).
- \(r = g^k \mod p \mod q\)
- \(s = k^{-1}(H(m) + xr) \mod q\)

The nonce \(k\) must remain secret, or else the secret key \(x\) is revealed.

\[x = (sk - H(m))r^{-1} \mod q \]
DSA Repeated Nonce Vulnerability

Public Key

\[p \text{ prime} \]
\[q \text{ prime, divides } (p - 1) \]
\[g \text{ generator of subgroup of order } q \text{ mod } p \]
\[y = g^x \text{ mod } p \]

Private Key

\[x \text{ private key} \]

Sign

Generate random \(k \).
\[r = g^k \text{ mod } p \text{ mod } q \]
\[s = k^{-1}(H(m) + xr) \text{ mod } q \]

If \(k \) is ever reused to sign distinct message hashes \(H(m_1), H(m_2) \), it is easy to compute:

\[k = (H(m_1) - H(m_2))(s_1 - s_2)^{-1} \text{ mod } q \]

Then the secret key can be computed as before:

\[x = (s_1k - H(m_1))r_1^{-1} \text{ mod } q \]
• 1% of SSH DSA host keys compromised by poor RNGs in 2012.
• 2013 Android RNG issue caused Bitcoin thefts due to ECDSA repeated nonce vulnerability.
• Sony PS3 code signing key computed in 2011 due to fixed nonce used to sign ECDSA

Countermeasure: Use “deterministic” nonce generation:

\[k = H(m||x) \]

(As standardized, \(H \) is HMAC\(_0\))