CSE190 Fall 2022
Lecture 12
Serial Busses (cont)

Wireless Embedded Systems
Aaron Schulman
Let us design a UART transmitter

System Diagram

To host system

Send
Busy
ParitySelect
Din

UART Transmitter

Dout

To serial cable
UART Transmitter Block Diagram

Transmitter State Machine

Parity Generator

300 HZ Timer

Mod10 Counter

Shift Register

Send

Busy

ParitySelect

Din

To host system

NextBit

ResetTimer

Count10

Increment

ResetCounter

Shift

Load

ParityBit

Dout

To serial cable

Slides from BYU CS 224
Transmitter/Microcontroller Handshaking

- Microcontroller asserts Send flag and holds it high when it wants to send a byte
- UART asserts Busy flag in response
- When UART has finished transfer, UART de-asserts Busy flag
- (sometimes) system de-asserts Send flag
Discussion Questions

• How fast can we run a UART?
• What are the limitations?
• Why do we need start/stop bits?
• How many data bits can be sent?
 – 19200 baud rate, no parity, 8 data bits, 1 stop bit
Serial Peripheral Interconnect (SPI)

- Another kind of serial protocol in embedded systems (proposed by Motorola)
- Four-wire protocol
 - SCLK — Serial Clock
 - MOSI/SIMO — Master Output, Slave Input
 - MISO/SOMI — Master Input, Slave Output
 - SS — Slave Select
- Single master device and with one or more slave devices
- Higher throughput than I2C and can do “stream transfers”
- No arbitration required
- But
 - Requires more pins
 - Has no hardware flow control
 - No slave acknowledgment (master could be talking to thin air and not even know it)
What is SPI?

- Serial Peripheral Interface (SPI) protocol [1979]
- Fast (Mbps), easy to use (few wires), simple
- Nearly all microcontrollers support it
SPI Basics

• Uses 4 wires (compared to UART’s 2-wires)
 – Also known as a “4 wire” bus

• Used to communicate across short distances

• Multiple Secondaries, Single Primary

• Synchronized
SPI Capabilities

• Always Full Duplex
 – Communicating in two directions at the same time
 – Transmission need not be meaningful

• Multiple Mbps transmission speed

• Transfers data in 4 to 16 bit characters

• Multiple slaves
 – Daisy-chaining possible
SPI Protocol

• Wires:
 – Master Out Slave In (MOSI)
 – Master In Slave Out (MISO)
 – System Clock (SCLK)
 – Slave Select 1…N

• Master Set Slave Select low

• Master Generates Clock

• Shift registers shift in and out data
SPI Wires in Detail

- **MOSI** – Carries data out of Primary to Secondary
- **MISO** – Carries data from Secondary to Primary
 - Both signals happen for every transmission
- **SS_BAR** – Unique line to select a secondary
- **SCLK** – Primary-produced clock to synchronize data transfer
SPI is the quintessential “shift register” communication bus.

Primary shifts out data to Secondary, and shifts in data from Secondary.

http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png