
Introduction to Java and Programs,
and Elementary Programming

Introduction to Programming and
Computational Problem Solving - 2

CSE 8B

Lecture 2

Announcements

• Assignment 1 will be released today

– Due Oct 6, 11:59 PM

• Reading:

– Liang

• Chapters 1 and 2

CSE 8B, Fall 2021 2

Programs

• Computer programs (i.e., software) are
instructions to the computer

• You tell a computer what to do through
programs

• Computers do not understand human
languages, so you need to use computer
languages to communicate with them

• Programs are written using programming
languages

CSE 8B, Fall 2021 3

Programming languages

• Machine language

• Assembly language

• High-level language

CSE 8B, Fall 2021 4

Programming languages

• Machine language
– Machine language is a set of primitive instructions

built into every computer

– The instructions are in the form of binary code, so you
must enter binary codes for various instructions

– Programming with native machine language is a
tedious process, and the programs are highly difficult
to read and modify

– For example, to add two numbers, you might write an
instruction in binary like this:
1101101010011010

CSE 8B, Fall 2021 5

Programming languages

• Assembly language
– Assembly languages were developed to make

programming easy (CSE 30 and ECE 30 are “easy”)

– Since the computer cannot understand assembly
language, a program called assembler is used to
convert assembly language programs into
machine code

– For example, to add two numbers, you might
write an instruction in assembly code like this:
ADDF3 R1, R2, R3

CSE 8B, Fall 2021 6

Programming languages

• High-level language

– High-level languages are English-like and easy to
learn and program

• For example, the following is a high-level language
statement that computes the area of a circle with
radius 5:
area = 5 * 5 * 3.1415;

CSE 8B, Fall 2021 7

Interpreting/Compiling source code

• A program written in a high-level language is
called a source program or source code

• Because a computer cannot understand a
source program, a source program must be
translated into machine code for execution

• The translation can be done using another
programming tool called an interpreter or a
compiler

CSE 8B, Fall 2021 8

Interpreting source code

• An interpreter reads one statement from the
source code, translates it to the machine code or
virtual machine code, and then executes it right
away

• A statement from the source code may be
translated into several machine instructions

CSE 8B, Fall 2021 9

Compiling source code

• A compiler translates the entire source code
into a machine-code file, and the machine-
code file is then executed

CSE 8B, Fall 2021 10

Java

• Java is a high-level language

• Java is a general purpose programming
language

• Java can be used to develop standalone
applications

• Java can be used to develop applications for
web servers

CSE 8B, Fall 2021 11

Java

• The compiler of Java is called javac
– Java source code is compiled into the Java Virtual

Machine (JVM) code called bytecode

• The interpreter of Java is called java
– The bytecode is machine-independent and can run on

any machine that has a Java interpreter, which is part
of the JVM (write once, run anywhere)

CSE 8B, Fall 2021 12

Compile source code, interpret bytecode

Developing, compiling, and running Java programs

CSE 8B, Fall 2021 13

Programming errors

• Syntax errors

– Detected by the compiler

• Runtime errors

– Causes the program to abort

• Logic errors

– Produces incorrect result

CSE 8B, Fall 2021 14

Anatomy of a Java program

• Class name

• Main method

• Statements

• Statement terminator

• Reserved words

• Comments

• Blocks

CSE 8B, Fall 2021 15

Class name

• Every Java program must have at least one class
• Each class has a name
• Naming convention: capitalize the first letter of each

word in the name class (e.g., ComputeArea)
• This class name is Welcome

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Fall 2021 16

Main method

• This line defines the main method

• In order to run a class, the class must contain a
method named main

• The program is executed from the main method

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Fall 2021 17

Statement

• A statement represents an action or a
sequence of actions

• This is a statement to display the greeting
“Welcome to Java!”

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Fall 2021 18

Statement terminator

• Every statement in Java ends with a semicolon

CSE 8B, Fall 2021 19

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

Reserved words

• Reserved words or keywords are words that have a specific
meaning to the compiler and cannot be used for other
purposes in the program

• For example, when the compiler sees the word class, it
understands that the word after class is the name for the
class

// This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

CSE 8B, Fall 2021 20

Blocks

• A pair of braces in a program forms a block
that groups components of a program

public class Test {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class block

Method block

CSE 8B, Fall 2021 21

Blocks

• Two different block styles

CSE 8B, Fall 2021 22

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

End-of-line

style

Next-line

style

Special symbols

Character Name Description

{}

()

[]

//

" "

;

Opening and closing

braces

Opening and closing

parentheses

Opening and closing

brackets

Double slashes

Opening and closing

quotation marks

Semicolon

Denotes a block to enclose statements.

Used with methods.

Denotes an array.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Marks the end of a statement.

CSE 8B, Fall 2021 23

Identifiers

• Identifiers are the names that identify the elements such as classes,
methods, and variables in a program

• An identifier is a sequence of characters that consist of letters,
digits, underscores (_), and dollar signs ($)

• An identifier must start with a letter, an underscore (_), or a dollar
sign ($)

• An identifier cannot start with a digit
• An identifier cannot be a reserved word

– List of reserved words
• Liang, Appendix A
• https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
• https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.9

• An identifier cannot be true, false, or null
• An identifier can be of any length

CSE 8B, Fall 2021 24

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.9

Variables

• Variables are used to represent values that
may be changed in the program

CSE 8B, Fall 2021 25

// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is " + area + " for radius " +

radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is " + area + " for radius " +

radius);

Declaring variables

CSE 8B, Fall 2021 26

int x; // Declare x to be an

// integer variable

double radius; // Declare radius to

// be a double variable

char a; // Declare a to be a

// character variable

Assignment statements

CSE 8B, Fall 2021 27

x = 1; // Assign 1 to x

radius = 1.0; // Assign 1.0 to radius

a = 'A'; // Assign 'A' to a

Declaring and initializing in one step

CSE 8B, Fall 2021 28

int x = 1;

double radius = 1.0;

char a = 'A';

Named constants

• Naming convention: capitalize all letters in
constants, and use underscores to connect
words

CSE 8B, Fall 2021 29

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int MAX_VALUE = 3;

Variable and method names

• Naming convention: Use lowercase. If the
name consists of several words, concatenate
all in one, use lowercase for the first word,
and capitalize the first letter of each
subsequent word in the name

– For example, the variables radius and area, and
the method computeArea.

CSE 8B, Fall 2021 30

Numerical data types

CSE 8B, Fall 2021 31

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed

 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

Number literals

• A literal is a constant value that appears
directly in the program

CSE 8B, Fall 2021 32

int i = 34;
long x = 1000000;
double d = 5.0 + 1.0;

34, 100000, 5.0,
and 1.0 are
literals

Integer literals

• An integer literal can be assigned to an integer variable as long as it
can fit into the variable

• A compilation error would occur if the literal were too large for the
variable to hold

– For example, the statement byte b = 1000 would cause a
compilation error, because 1000 cannot be stored in a variable
of the byte type

• An integer literal is assumed to be of the int type, whose value is
between -231 (equals -2147483648) to 231–1 (equals 2147483647)

• To denote an integer literal of the long type, append it with the
letter L or l

– L is preferred because l (lowercase L) can easily be confused
with 1 (the digit one)

CSE 8B, Fall 2021 33

Floating-point literals

• Floating-point literals are written with a decimal point

• By default, a floating-point literal is treated as a
double type value
– For example, 5.0 is considered a double value, not a
float value

• You can make a number a float by appending the
letter f or F, and make a number a double by
appending the letter d or D
– For example, you can use 100.2f or 100.2F for a float

number, and 100.2d or 100.2D for a double number

CSE 8B, Fall 2021 34

Scientific notation

• Floating-point literals can also be specified in
scientific notation

– For example, 1.23456e+2 (same as 1.23456e2)
is equivalent to 123.456, and 1.23456e-2 is
equivalent to 0.0123456

• E or e represents an exponent

CSE 8B, Fall 2021 35

Numeric operations

CSE 8B, Fall 2021 36

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

double vs float

• The double type values are more accurate
than the float type values

– For example,

CSE 8B, Fall 2021 37

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

7 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Floating-point accuracy

• Calculations involving floating-point numbers are
approximated because these numbers are not
stored with complete accuracy

• For example,
System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and
System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1

• Integers are stored precisely
– Calculations with integers yield a precise integer result

CSE 8B, Fall 2021 38

Integer division

• Warning: resulting fractional part (i.e., values
after the decimal point) are truncated, not
rounded

– For example 5 / 2 yields an integer 2

CSE 8B, Fall 2021 39

Remainder operator

• Example: an even number % 2 is always 0 and an
odd number % 2 is always 1
– You can use this property to determine whether a

number is even or odd

• Example: If today is Saturday and you and your
friends are going to meet in 10 days. What day is
in 10 days? You can find that day is Tuesday using
the following expression.

CSE 8B, Fall 2021 40

 Saturday is the 6th day in a week

A week has 7 days

After 10 days

The 2nd day in a week is Tuesday
(6 + 10) % 7 is 2

Augmented assignment operators

CSE 8B, Fall 2021 41

Increment and decrement operators

CSE 8B, Fall 2021 42

Conversion rules

• When performing a binary operation involving
two operands of different types, Java
automatically converts the operand based on the
following rules
1. If one of the operands is double, the other is

converted into double
2. Otherwise, if one of the operands is float, the

other is converted into float
3. Otherwise, if one of the operands is long, the other

is converted into long
4. Otherwise, both operands are converted into int

CSE 8B, Fall 2021 43

Type casting

Implicit casting
double d = 3; (type widening)

Explicit casting
int i = (int)3.0; (type narrowing)
int i = (int)3.9; (fraction part is truncated, not rounded!)

CSE 8B, Fall 2021 44

byte, short, int, long, float, double

range increases

Reading numbers from the console

CSE 8B, Fall 2021 45

1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double
value. For example,

System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Reading numbers from the console

CSE 8B, Fall 2021 46

Scanner input = new Scanner(System.in);
int value = input.nextInt();

Explicit import and implicit Import

• At top of source file

CSE 8B, Fall 2021 47

import java.util.Scanner; // Explicit Import

import java.util.* ; // Implicit import

Next Lecture

• Selections

• Mathematical functions, characters, and
strings

• Reading:

– Liang

• Chapters 3 and 4

CSE 8B, Fall 2021 48

