
Web Mining and Recommender Systems

Personalized Models of Visual Data



Learning Goals

• How can we do recommendation in 

"visual" settings (mostly fashion)

• Why is visual data different from any 

other sort of feature or side-

information?

• What are some different tasks for 

visual/fashion recommendation?



Visual recommendation

What are some tasks in visual recommendation?

• Recommending sets of compatible items



Visual recommendation

What are some tasks in visual recommendation?

• Identifying recommendations based on a user image



Visual recommendation

What are some tasks in visual recommendation?

• Regular old recommendation with visual data



Visual recommendation

What are some tasks in visual recommendation?

• Other related tasks, e.g. fit prediction



Visual recommendation

What are some tasks in visual recommendation?

• Personalized design



Visual recommendation

Why are these tasks any different from other 

recommendation tasks?

• Cold-start issues: sparse, long-tailed datasets

• Visual data is high-dimensional, can't easily be 

"plugged in" to feature-based frameworks

• Complex combination of temporal dynamics etc. in 

fashion

• Tasks with unusual semantics (e.g. fit prediction) for 

which standard models don't work



Web Mining and Recommender Systems

Estimating compatibility among items



Visual compatibility estimation

Goal is to implement a feature like "people who bought 

X also bought Y". What makes this different from 

"traditional" recommendation problems?

• How can we establish "groundtruth"? Previously when implementing 

"people who bought X also bought Y"-style features we used co-

purchases, but do co-purchases really indicate visual compatibility?

• Cold-start problems (may be even worse in fashion scenarios)

• Features that make items compatible could be incredibly subtle (and 

are some combination of visual and non-visual features)

• Compatibility is quite different from visual similarity



Initial attempts...

• Collect a bunch of co-purchase links from Amazon

• Collect product images of each product

• Estimate a compatibility function of the form:

Ref.: Image-based recommendations on styles and substitutes



Initial attempts...

• This is accomplished with a simple projection matrix:

Ref.: Image-based recommendations on styles and substitutes



Initial attempts...

• This is accomplished with a simple projection matrix:

Ref.: Image-based recommendations on styles and substitutes

"Style-space" 

embedding of i



A little fancier... (Veit et al. 2015)

• Can do the same thing end-to-end (Siamese network):

Learning visual clothing style with heterogeneous dyadic co-occurrences

"Style-space" 

embedding of y

Difference 

between style 

vectors



A little fancier...

• Above models are not personalized, but can be personalized 

by learning user-specific embeddings:

• (of course, this is data hungry and requires several training 

samples per user)

Weighting of style 

components by user u



(example recommendations)

• Both work okay (can estimate compatibility accurately)

• Experiments can verify (somewhat) that compatibility learned 

from (e.g.) Amazon co-purchases matches compatible items 

"in the wild"

query



Improvements: non-metric relationships

• Non-metric relationships (Wang et al. 2018, and others)

e.g. a path-constrained framework for 

discriminating substitutable and 

complementary products in e-commerce

(or just )

"Source" and 

"target" style 

spaces



Improvements: "wild" datasets

• Compatibility estimates can also be harvested from 

"wild" or from curated images

Complete the Look: Scene-based complementary product recommendation



Further thoughts

• How can we construct better groundtruth?

• What are the problems with "harvested" groundtruth

from Amazon?

• Is groundtruth harvested from (e.g.) curated images 

of models ("wild" data) really "better"?



Further thoughts

• To what extent are compatibility functions explainable 

from images? What other data would be useful?

• Does personalization actually matter in this scenario?

• Are pairwise compatibility functions "enough"?



Further thoughts

• Does personalization actually matter in this scenario?

• Are pairwise compatibility functions "enough"?



Web Mining and Recommender Systems

Visually-aware recommendation



Visual recommendation

Goal is to extend "traditional" recommender systems to 

incorporate information from product images

• Fashion choices are guided by visual signals, so fashion 

recommendation should consider visual information

• Visual data could help in "long-tail" or cold-start scenarios

• Could also make recommender systems more interpretable

• Other dynamics are at play, e.g. how does fashion change over time?



Initial attempts...

• Visual data is treated much like any other feature (VBPR)

• Main challenge is how to deal with high-dimensional image 

data, how to handle cold-start, etc.

Visual Bayesian Personalized Ranking



Initial attempts...

• Image embeddings are incorporated into a latent-factor 

model:

Visual Bayesian Personalized Ranking



Extensions: Incorporating temporal dynamics

• How can we handle the dynamics of fashion over time?

• One solution is essentially to learn a sequence of temporal 

"bins" describing different periods (see also e.g. temporal 

models on Netflix)

Ups and Downs: Modeling the Visual Evolution of 

Fashion Trends with One-Class Collaborative Filtering



Extensions: Incorporating temporal dynamics

Ups and Downs: Modeling the Visual Evolution of 

Fashion Trends with One-Class Collaborative Filtering

Which style 

components are 

"hot" during a 

particular year



End-to-end ("deep" models)

Visually-Aware Fashion Recommendation 

and Design with Generative Image Models

User's 

compatibility 

with item



Further thoughts...

• Such models are mostly useful for cold-start settings; unclear 

whether "real" datasets are as "cool" as academic data

• Image-based models mainly learn fine-grained product 

categories (i.e., they classify the image). Do they really learn 

"fashion" dimensions or just categories? Could we do the same 

with high-quality category data?

• Likewise, temporal models mostly learn sales volumes rather than 

the subtleties of what's really "fashionable"



Web Mining and Recommender Systems

Fit prediction



Fit prediction – some Qs

• What do fit compatibility functions really look like? 

Inner product spaces? Metric spaces? Something else?

• How to deal with the fact that items don't have 

consistent sizes, but even that instances of the same 

item may not be the same size?

• Users also share accounts, have dynamic sizes, and may 

want different sizes in different contexts



Recommending product sizes to customers



Recommending product sizes to customers

Goal: Build a recommender system 

that predicts whether an item will “fit”:



Recommending product sizes to customers

Challenges:

• Data sparsity: people have very few 

purchases from which to estimate size

• Cold-start: How to handle new 

customers and products with no past 

purchases?

• Multiple personas: Several customers 

may use the same account



Recommending product sizes to customers

Data:

• Shoe transactions from Amazon.com

• For each shoe j, we have a reported size c_j

(from the manufacturer), but this may not 

be correct!

• Need to estimate the customer’s size (s_i), 

as well as the product’s true size (t_j)



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers



Recommending product sizes to customers

Loss function:



Recommending product sizes to customers

Extensions:

• Multi-dimensional sizes

• Customer and product features

• User personas



Recommending product sizes to customers

Morals of the story:

• Very simple model that actually works well in 

production

• Only a single parameter per user and per item!



Fit prediction – more complex

Decomposing Fit Semantics for Product Size Recommendation in Metric Spaces

User embeddings 

should be close to 

items that fit, and 

far from items that 

don't
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Other fashion recommendation tasks



Wardrobes and sets

Creating Capsule Wardrobes 

from Fashion Images

Generate a set of 

items

That can be 

combined in various 

ways to generate 

many compatible 

outfits



Wardrobes and sets – further thoughts

• Do complex, high-order functions really add anything 

beyond what pairwise compatibility can do? Is all that 

complexity really worth it?

• Pairwise compatibility data (in spite of its problems) is 

easy to harvest. Can enough outfit (or set) data be 

harvested for this to be worthwhile?



Generation & design

Visually-Aware Fashion 

Recommendation and Design 

with Generative Image Models

Generated items 

that are highly 

compatible with 

some user



Generation & design – further thoughts

• Recommender systems can be used in the context of 

image generation, though this is a long way from 

actually being able to build wearable products

• Ethics of fast fashion etc.



Fairness (see next week!)

Addressing marketing bias in 

product recommendations

• Fairness questions in fashion (and recommendation in general) 

are quite different from traditional problems in fair ML

• In what other ways may "long-tail" users be underserved by 

recommendation (size, skin-tone, income, etc.)

Body type of 

model in 

marketing image

Gender of model 

in marketing 

image



Summary

• Many unique tasks (and plenty of open ones!) in fashion 

recommendation

• Datasets are a bottleneck (more so than models?) in 

terms of getting useful results. Extremely difficult to 

harvest data that corresponds to "real" fashion 

preferences

• Do visually-aware models really capture "fashion" or just 

high-level object characteristics?

• Are complex models really necessary?


