Web Mining and Recommender Systems

Personalized Models of Visual Data
Learning Goals

• How can we do recommendation in "visual" settings (mostly fashion)
• Why is visual data different from any other sort of feature or side-information?
• What are some different tasks for visual/fashion recommendation?
Visual recommendation

What are some tasks in visual recommendation?

• Recommending sets of compatible items
What are some tasks in visual recommendation?

- Identifying recommendations based on a user image
What are some tasks in visual recommendation?

- Regular old recommendation with visual data
What are some tasks in visual recommendation?

- Other related tasks, e.g. fit prediction
Visual recommendation

What are some tasks in visual recommendation?

- Personalized design
Why are these tasks any different from other recommendation tasks?

- Cold-start issues: sparse, long-tailed datasets
- Visual data is high-dimensional, can't easily be "plugged in" to feature-based frameworks
- Complex combination of temporal dynamics etc. in fashion
- Tasks with unusual semantics (e.g. fit prediction) for which standard models don't work
Web Mining and Recommender Systems

Estimating compatibility among items
Visual compatibility estimation

Goal is to implement a feature like "people who bought X also bought Y". What makes this different from "traditional" recommendation problems?

- How can we establish "groundtruth"? Previously when implementing "people who bought X also bought Y"-style features we used co-purchases, but do co-purchases really indicate visual compatibility?
- Cold-start problems (may be even worse in fashion scenarios)
- Features that make items compatible could be incredibly subtle (and are some combination of visual and non-visual features)
- Compatibility is quite different from visual similarity
Initial attempts...

- Collect a bunch of co-purchase links from Amazon
- Collect product images of each product
- Estimate a compatibility function of the form:

\[p(i \text{ co-purchased with } j) = \sigma(c - d(i, j)). \]

Ref.: Image-based recommendations on styles and substitutes
Initial attempts...

- This is accomplished with a simple projection matrix:

Ref.: Image-based recommendations on styles and substitutes
Initial attempts...

- This is accomplished with a simple projection matrix:

\[d(i, j) = \| s_i - s_j \|^2_2; \quad \text{where} \quad s_i = E \times f_i. \]

Ref.: Image-based recommendations on styles and substitutes
A little fancier... (Veit et al. 2015)

• Can do the same thing end-to-end (Siamese network):

Learning visual clothing style with heterogeneous dyadic co-occurrences
A little fancier...

• Above models are not personalized, but can be personalized by learning user-specific embeddings:

\[d_u(i, j) = \sum_k (\gamma_{u,k} s_{ik} - \gamma_{u,k} s_{jk})^2 \]

• (of course, this is data hungry and requires several training samples per user)
• Both work okay (can estimate compatibility accurately)

• Experiments can verify (somewhat) that compatibility learned from (e.g.) Amazon co-purchases matches compatible items "in the wild"
Improvements: non-metric relationships

- Non-metric relationships (Wang et al. 2018, and others)

\[
\sum_{(i, j) \in C} \log \sigma(\gamma_i \cdot \gamma'_j) + \sum_{(i, j) \in C^-} \log \sigma(\gamma_i \cdot \gamma'_j).
\]

(or just \(d(i, j) = ||\gamma_i - \gamma'_j||^2\)).

e.g. a path-constrained framework for discriminating substitutable and complementary products in e-commerce
Improvements: "wild" datasets

- Compatibility estimates can also be harvested from "wild" or from curated images

Complete the Look: Scene-based complementary product recommendation
• How can we construct better groundtruth?
 • What are the problems with "harvested" groundtruth from Amazon?
 • Is groundtruth harvested from (e.g.) curated images of models ("wild" data) really "better"?
Further thoughts

• To what extent are compatibility functions explainable from images? What other data would be useful?
• Does personalization actually matter in this scenario?
• Are pairwise compatibility functions "enough"?
Further thoughts

• Does personalization actually matter in this scenario?
• Are pairwise compatibility functions "enough"?
Web Mining and Recommender Systems

Visually-aware recommendation
Goal is to extend "traditional" recommender systems to incorporate information from product images

- Fashion choices are guided by visual signals, so fashion recommendation should consider visual information
- Visual data could help in "long-tail" or cold-start scenarios
- Could also make recommender systems more interpretable
- Other dynamics are at play, e.g. how does fashion change over time?
Initial attempts...

- Visual data is treated much like any other feature (VBPR)

- Main challenge is how to deal with high-dimensional image data, how to handle cold-start, etc.
• Image embeddings are incorporated into a latent-factor model:

\[x_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u \cdot (E f_i) \]
Extensions: Incorporating temporal dynamics

- How can we handle the dynamics of fashion over time?
- One solution is essentially to learn a sequence of temporal "bins" describing different periods (see also e.g. temporal models on Netflix)

$$\hat{x}_{u,i}(t) = \alpha + \beta_u + \beta_i(t) + \beta_{c_i}(t) + \langle \beta(t), f_i \rangle + \langle \gamma_u, \gamma_i \rangle + \langle \theta_u(t), \theta_i(t) \rangle$$

Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering
Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering

Which style components are "hot" during a particular year
Visually-Aware Fashion Recommendation and Design with Generative Image Models
Further thoughts...

• Such models are mostly useful for cold-start settings; unclear whether "real" datasets are as "cool" as academic data
• Image-based models mainly learn fine-grained product categories (i.e., they classify the image). Do they really learn "fashion" dimensions or just categories? Could we do the same with high-quality category data?
• Likewise, temporal models mostly learn sales volumes rather than the subtleties of what's really "fashionable"
Web Mining and Recommender Systems

Fit prediction
Fit prediction – some Qs

• What do fit compatibility functions really look like? Inner product spaces? Metric spaces? Something else?
• How to deal with the fact that items don't have consistent sizes, but even that *instances of the same item* may not be the same size?
• Users also share accounts, have dynamic sizes, and may want different sizes in different contexts
Recommending Product Sizes to Customers

Vivek Sembium
Amazon Development Center India
viveksem@amazon.com

Atul Saroop
Amazon Development Center India
asaroop@amazon.com

Rajeev Rastogi
Amazon Development Center India
rastogi@amazon.com

Srujana Merugu
srujana@gmail.com

ABSTRACT

We propose a novel latent factor model for recommending product size fits {Small, Regular, Large} to customers. Latent factors for customers and products in our model correspond to their physical true size, and are learnt from past product purchase and returns data. The outcome for a customer-product pair is predicted based on the difference between customer and product true sizes, and efficient algorithms are proposed for computing customer and product true size values that minimize two loss function variants. In experiments with Amazon shoe datasets, we show that our latent factor models incorporating personas and leveraging return codes show a 17-21% AUC improvement compared to baselines. In an online A/B test, our algorithms show an improvement of 6.4% in percentage of Fit transactions over control.

DATA SPARSITY

Typically, a small fraction of customers and products account for the bulk of purchases. A majority of customers and products have very few purchases.

Cold start

The environment is highly dynamic with new customers and products (that have no past purchases) for which recommendations are required.
Goal: Build a recommender system that predicts whether an item will “fit”:

\[(u, i) \rightarrow \{\text{small, fit, large}\}\]
Challenges:

- **Data sparsity**: people have very few purchases from which to estimate size

- **Cold-start**: How to handle new customers and products with no past purchases?

- **Multiple personas**: Several customers may use the same account
Recommending product sizes to customers

Data:

• Shoe transactions from Amazon.com

• For each shoe \(j \), we have a reported size \(c_j \) (from the manufacturer), but this may not be correct!

• Need to estimate the customer’s size \(s_i \), as well as the product’s true size \(t_j \)
Recommending product sizes to customers

Loss function:

\[f_w(s_i, t_j) + b \]

\[f_w(s_i, t_j) = w \cdot (s_i - t_j) \]
Recommending product sizes to customers

Loss function:

- If $y_{ij} = \text{Small}$
 - $L(y_{ij}, f_w(s_i, t_j)) = L^{\text{bin}}(+1, f_w(s_i, t_j) - b_2)$
- If $y_{ij} = \text{Fit}$
 - $L(y_{ij}, f_w(s_i, t_j)) = L^{\text{bin}}(-1, f_w(s_i, t_j) - b_2) + L^{\text{bin}}(+1, f_w(s_i, t_j) - b_1))$
- If $y_{ij} = \text{Large}$
 - $L(y_{ij}, f_w(s_i, t_j)) = L^{\text{bin}}(-1, f_w(s_i, t_j) - b_1)$

- If $y_{ij} = \text{Small}$
 - $L(y_{ij}, f_w(s_i, t_j)) = \log\left(\frac{1}{1 + e^{-f_w(s_i, t_j) + b_2}}\right)$
- If $y_{ij} = \text{Fit}$
 - $L(y_{ij}, f_w(s_i, t_j)) = \log\left(\frac{1}{1 + e^{-f_w(s_i, t_j) + b_2}}\right) + \log\left(\frac{1}{1 + e^{-f_w(s_i, t_j) - b_1}}\right)$
- If $y_{ij} = \text{Large}$
 - $L(y_{ij}, f_w(s_i, t_j)) = \log\left(\frac{1}{1 + e^{-f_w(s_i, t_j) - b_1}}\right)$
Loss function:

\[
L(y_{ij}, f_w(s_i, t_j)) = \begin{cases}
\max\{0, 1 - f_w(s_i, t_j) + b_2\} & \text{if } y_{ij} = \text{Small} \\
(\max\{0, 1 + f_w(s_i, t_j) - b_2\}) \\
+ \max\{0, 1 - f_w(s_i, t_j) + b_1\} & \text{if } y_{ij} = \text{Fit} \\
\max\{0, 1 + f_w(s_i, t_j) - b_1\} & \text{if } y_{ij} = \text{Large}
\end{cases}
\]
Recommending product sizes to customers

Figure 1: Hinge loss value for a fit transaction vs s_t.

Figure 2: Hinge loss value for a small transaction vs s_t.

Figure 3: Hinge loss value for a large transaction vs s_t.

Figure 4: Illustrative overall hinge loss vs s_t.
Recommending product sizes to customers

Loss function:

\[
L_i = \sum_{(i,j,y_{ij}) \in \mathcal{D} \land y_{ij}=\text{Small}} \max\{0, 1 - f_w(s_i, t_j) + b_2\} + \sum_{(i,j,y_{ij}) \in \mathcal{D} \land y_{ij}=\text{Fit}} \max\{0, 1 + f_w(s_i, t_j) - b_2\} + \max\{0, 1 - f_w(s_i, t_j) + b_1\} + \sum_{(i,j,y_{ij}) \in \mathcal{D} \land y_{ij}=\text{Large}} \max\{0, 1 + f_w(s_i, t_j) - b_1\}
\]
Recommending product sizes to customers

Extensions:

- **Multi-dimensional sizes**
 \[w_1(s_{i1} - t_{j1}) + w_2(s_{i2} - t_{j2}) \]

- **Customer and product features**
 \[w(s_i - t_j) + \phi(x, i)w' \]

- **User personas**
Morals of the story:

- Very simple model that actually works well in production
- Only a single parameter per user and per item!
User embeddings should be close to items that fit, and far from items that don't.
Web Mining and Recommender Systems

Other fashion recommendation tasks
Creating Capsule Wardrobes from Fashion Images

Wardrobes and sets

Generate a set of items

That can be combined in various ways to generate many compatible outfits
Wardrobes and sets – further thoughts

• Do complex, high-order functions really add anything beyond what pairwise compatibility can do? Is all that complexity really worth it?
• Pairwise compatibility data (in spite of its problems) is easy to harvest. Can enough outfit (or set) data be harvested for this to be worthwhile?
Visually-Aware Fashion Recommendation and Design with Generative Image Models

Generated items that are highly compatible with some user
Recommender systems can be used in the context of image generation, though this is a long way from actually being able to build wearable products.

Ethics of *fast fashion* etc.
• Fairness questions in fashion (and recommendation in general) are quite different from traditional problems in fair ML

• In what other ways may "long-tail" users be underserved by recommendation (size, skin-tone, income, etc.)
• Many unique tasks (and plenty of open ones!) in fashion recommendation
• Datasets are a bottleneck (more so than models?) in terms of getting useful results. Extremely difficult to harvest data that corresponds to "real" fashion preferences
• Do visually-aware models really capture "fashion" or just high-level object characteristics?
• Are complex models really necessary?