Web Mining and Recommender Systems

Recommender Systems: Introduction

Why recommendation?

The goal of recommender systems is...
* To help people discover new content

Recommendations for You in Amazon Instant Video see more

Why recommendation?

The goal of recommender systems is...
* To help us find the content we were
already Iookmg for

Harry Potter and the Sorcerer's Stone 2001 Fess

Ft{ﬂ \é ”i\ i

Are these
recommendations
good or bad?

y recommendation?

The goal of recommender systems is...
» To discover which things go together

Calvin Klein Men's Relaxed Straight Leg Jean In Cove
KAAKN ~ 20 customer reviews

Price: $48.16 - $69.99 & FREE Retums. Details

Size:

Select v Sizinginfo | Fit: As expected (55%) ~

Color: Cove

+ 98% Cotton/2% Elastane
+ Imported

« Button closure

+ Machine Wash

Relaxed straight-leg jean in light-tone denim featuring whiskering and five-pocket styling
« Zip fly with button

+ 10.25-inch front rise, 19-inch knee, 17.5-inch leg opening

Frequently Bought Together

7|

Nt

Pagg 4

Calvin Klein Jeans
$57.94 - $69.50

Calvin Klein Jeans

Calvin Klein Jeans
$49.92

Levis
$50.67 - $69.99

$23.99 - $68.00

Customers Who Bought This Item Also Bought

Page :

Why recommendation?

The goal of recommender systems is...
» To personalize user experiences In
response to user feedback

JUICY FRUIT
GUM WITH I@&\¢
STARBURST
FLAVORS

CLICK FOR SWEET VIDEO >

Why recommendation?

The goal of recommender systems is...
* To recommend incredible products
that are relevant to our interests

. ¥ | NEW
3 JUICY FRUIT
o] U

GUM WITH R@&\¢

STARBURST |'\S 7 oy
FLAYORS

Why recommendation?

The goal of recommender systems is...
» To identify things that we like

Results for ‘mad max [RLELRLEVS
1979 [R| 93 minutes

1 In a postapocalyptic future, jaded motorcycle cop Max
 Rockatansky is ready to retire. But his world is
. shattered when a malicious gang murders his family
as an act of retaliation, forcing a devastated Max to hit
the open road seeking vengeance.

Starring: Mel Gibson, Hugh Keays-Byrne

Director: George Miller
Genre: Sci-Fi & Fantasy
Format: DVD tral

Our best guess for Jeremy

Why recommendation?

The goal of recommender systems is...
* To help people dlscover new content
¢ To hgtempafiesttlaa—cantantve yere

To model people’s
preferences, opinions, Jelgtal=l
and behavior ces In

» To identify things that we like

Recommending things to people

Suppose we want to build a movie
recommender

e.qg. Whlch of these films will I rate hlghest7

nlnnlcx '.‘:('DD'CK 2\ .

UNRATED

BASYL.ON AL,

ecommending things to people

Pitch Black - Unrated Director's Cut =
:]I 7.1/10

L 8.0 0 6

ATCHBLACK

Watch Trailer

We already have
a few tools in our
“supervised
learning” toolbox
that may help us

UNRATED

A. Phillips

Reviewsr ranking: #17 230,554

90% helpful

voles received on reviews
(151 0f 167)

ABOUT ME
Enjoy the reviews...

ACTIVITIES
Reviews (16)
Public Wish List (2)
Listmania Lists (2)
Tagged Items (1)

When their ship crash-lands on 2remote planet, the marooned passengers soon leam that
escaped convict Riddick (Vin Diefiel) isn't the only thing they have to fear. Deadly creatures
lurk in the shadows, waiting to att&k in the dark, and the planet is rapidly plunging into the

Starring:

Product Details

Genres

Director

ions and subtitles
Rental rights
Purchase rights

Format

Science Fictio\ Action, Horror
David Twohy
Vin Diesel, Radh@Mitchell

Cole Hauser, KeitffDavid, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr
Angela Moore, Peté Chiang, Ken Twohy

NBC Universal

R {Restricted)

English Details ~

24 hour viewing peried. Djtails =

Stream instantly and dowr{bad to 2 locations Details =

Amazen Instant Video (stre ning enline video and digital downlead)

: ? :
user features, movie features) — star rating

Recommending things to people

. ? .
f (user features, movie features) — star rating

User features: age, gender, Movie features: genre,
location, etc. actors, rating, length, etc.
Product Details
A. Phillips
Genres Science Fiction, Action, Horror
Reviewer ranking: #17,230,554
Director David Twohy
90% helpful _ s _
votes received on reviews Starring Win Diesel, Radha Mitchell
(151 01167) Supporting actors Cole Hauser, Keith David, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr
Angela Moore, Peter Chiang, Ken Twohy
ABOUT ME Studio NBC Universal
Enjoy the reviews... .)
MPAA rating R (Restricted)
ACTIVITIES Captions and subtitles English Details -
Reviews (16} Rental rights 24 hour viewing period. Details ~
Public Wish List (2)
Purchase rights Stream instantly and download to 2 locations Details =

Listmania Lists (2)
Tagged Items (1) Format Amazon Instant Video (streaming online video and digital download)

Recommending things to people

. ? .
f(user features, movie features) — star rating

With the models we've seen so far, we
can build predictors that account for...

Do women give higher ratings than men?

Do Americans give higher ratings than Australians?

Do people give higher ratings to action movies?

Are ratings higher in the summer or winter?

Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?

Recommending things to people

. ? .
f (user features, movie features) — star rating

Consider the following linear predictor
(e.g. from week 1):

f(user features, movie features) =

(¢p(user features); ¢(movie features), 0)

Recommending things to people

. ? .
f (user features, movie features) — star rating

Consider the following linear predictor
(e.g. from week 1):

f(user features, movie features) =

(¢p(user features); ¢(movie features), 0)

= (¢(user features), Oyser) + (¢(movie features), Omovie)

Recommending things to people

But this Is essentially just two separate
predictors!

f(user features, movie features) =

= (¢(user features), Oyser) + (P(movie features), Omovie)

\. 7 \. 7
v v

user predictor movie predictor

That Is, we're treating user and movie
features as though they're independent!

Recommending things to people

But these predictors should (obviously?)
not be independent

f(user features, movie features) = f(user) + f(movie)

do | tend to give high ratings? /

does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give
high ratings to this genre of movie"?

Recommending things to people

Recommender Systems go beyond the methods we've seen so
far by trying to model the relationships between people and
the items they're evaluating

preference i< th :
Toward IS t € movie
“action” action-
heavy?

Compatibility

preference toward

. are the special effects good?
"special effects” P J

This section

Recommender Systems
1. (next) Collaborative filtering

(performs recommendation in terms of user/user and item/item
similarity)

2. (later) Latent-factor models

(performs recommendation by projecting users and items into
some low-dimensional space)

3. The Netflix Prize
4. Recommender Systems Evaluation

Recommender Systems — more
advanced topics
* Incoroporating complex side-
information into recommender systems
 Recommendation in other contexts, e.qg.
social networks, online dating, etc.
* Online advertising
* (even later) temporal factors, ethics,
text, etc.

Web Mining and Recommender Systems

Similarity-based Recommender Systems

Defining similarity between users & items

Q: How can we measure the similarity
between two users?
A: In terms of the items they
purchased!

Q: How can we measure the similarity
between two items?
A: In terms of the users who purchased
them!

Defining similarity between users & items

Calvin Klein Men's Relaxed Straight Leg Jean In Cove
KRAN ~ 20 customer reviews

Price: $48.16 - $69.99 & FREE Retums. Details

Size:

Select v | Sizinginfo | Fit: As expected (55%) ~

Color: Cove

+ 98% Cotton/2% Elastane
« Imported

« Button closure

+ Machine Wash

e.qg.:
Amazon

Relaxed straight-leg jean in light-tone denim featuring whiskering and five-pocket styling
« Zip fly with button

= 10.25-inch front rise, 19-inch knee, 17.5-inch leg opening

Frequently Bought Together

g &

Calvin Klein Jeans
$57.94 - $69.50

Calvin Klein Jeans

Calvin Klein Jeans
$49.92

$50.67 - $69.99

Customers Who Viewed This Item Also Viewed

" | w L"!

Customers Who Bought This Item Also Bought

i

Levi's
$23.99 - $68.00

Definitions

Definitions

1, = set of items purchased by user u

U, = set of users who purchased item i

Definitions

Or equivalently... rl 0 1\
0 0 1
R = , ' . > users
1 0 --- 1/

Ru = binary representation of items purchased by u
R,,i = binary representation of users who purchased (

I, = U; —

0. Euclidean distance

Euclidean distance:

e.g. between two items i,j (similarly defined between two users)

Ui \U;| +|U; \U;| = |R; — R

0. Euclidean distance

Euclidean distance:

e.g..U_1={14,8911,23,25,34}
U_2=1{14,6,8911,23,25,34,35,38}
U_3 = {4}
U_4 = {5}

Ui \ Us| + |Us \ Uy| =
Us \ Uy| 4+ |Us \ Uy| =

Problem: favors small sets, even if they
have few elements in common

1. Jaccard similarity

Jaccard(A, B)

Jaccard(U;,U;) =

- Maximum of 1 if the two
users purchased exactly the

same set of items
(or if two items were purchased by the
same set of users)

> Minimum of 0 if the two users
purchased completely

disjoint sets of items
(or if the two items were purchased by
completely disjoint sets of users)

2. Cosine similarity

cos(f) =1
(theta = 0) > A and B point in
exactly the same direction

cos(f) = —1
(theta = 180) - A and B point
in opposite directions (won't
actually happen for 0/1 vectors)

cos(0) =0
(theta = 90) > A and B are
orthogonal

Uharry potter

(vector representation of
users who purchased
harry potter)

2. Cosine similarity

Why cosine?
 Unlike Jaccard, works for arbitrary vectors
« E.g. what if we have opinions in addition to purchases?

1 0 - 1) -1 0 - 1
0 O 1 0 O —1
R = , . —
1 0 --- 1)
bought and liked /
didn't buy

bought and hated

2. Cosine similarity

E.g. our previous example, now with
“thumbs-up/thumbs-down” ratings

cos(f) =1
(theta = 0) -> Rated by the
same users, and they all agree

cos(f) = —1
(theta = 180) -> Rated by the
same users, but they
completely disagree about it

cos(f) =0
(theta = 90) -> Rated by
different sets of users

Uharry potter

(vector representation of
users’ ratings of Harry
Potter)

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

1 4 0 --- 2

—1 0 O 3
—

1 5 0 .- 1

bought and liked /
didn’t buy

bought and hated

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

« We wouldn’t want 1-star ratings to be parallel to 5-
star ratings
» SO0 we can subtract the average — values are then
negative for below-average ratings and positive
for above-average ratings

items rated by both users average rating by user v

’ \/ZiEIUOIU (R’u,’i_RU)2 Zie[umf,v (R'v,’i_R’v)z

4. Pearson correlation

Compare to the cosine similarity:

Pearson similarity (between users):
items rated by both users average rating by user v

ZieI}mIU (Ru,i_R_u)(Rv,i_R_vJ)

Sim(u,v) = = _
()) \/Zz‘EIuﬂIfu (Ru,i_Ru)2 ZiEIuﬂIv (Rv,i_RU)Q
Cosine similarity (between users):
. i Ru,inu,i
Sim(u,v) = itk

o 2 2

/

Note: slightly different from previous definition. Here similarity is
determined only based on items both users have consumed

4. Pearson correlation

ZzeIumLU Ry, i Ry
2 2

Cosine(A, B) = ||Af|l| |FB||

Sim(u,v) =

[—

Consider all items in the denominator, or just shared items?

Just shared: two users should be considered maximally similar if they've rated
shared items the same way. If only one user has rated an item, we have no
evidence that the other user is different.

All: Two users who've rated items the same way and only rated the same items
should be more similar than two users who've rated some different items.

Ultimately, these are heuristics, and either definition could be used depending
on the situation

Collaborative filtering in practice

How does amazon generate their recommendations?

Let U, be the set of users

Given a product:
P who viewed it

, |U@ ﬂUj |
Rank products according to:
" U0

ANERAREIR

.86 .84 .82
Linden, Smith, & York (2003)

(or cosine/pearson)

Collaborative filtering in practice

* Amazon uses the cosine similarity

 Similarity is defind between users: the goal is to
recommend items that have previously been purchased
by similar customers (e.g. "customers who bought items
In your shopping cart also bought")

* Main challenges involve scalability: how to cluster users
so that we can quickly identify similar users

Linden, Smith, & York (2003)

Collaborative filtering in practice

Note: (surprisingly) that we built
something pretty useful out of
nothing but interaction data — we
didn't look at any features of the
products (or users!) whatsoever

Collaborative filtering in practice

But: we still have
a few problems left to address...

1. This is actually kind of slow given a huge
enough dataset — if one user purchases one
item, this will change the rankings of every
other item that was purchased by at least

one user in common
2. Of no use for new users and new items (“cold-
start” problems
3. Won't necessarily encourage diverse results

Web Mining and Recommender Systems

Similarity based recommender — implementation

Code on course webpage

Uses Amazon "Musical Instrument” data from
https.//s3.amazonaws.com/amazon-reviews-
pds/tsv/index.txt

https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt

Code: Reading the data

Read the data:;

In [1]: dimport gzip
from collections import defaultdict
import random
import numpy
import scipy.optimize

In [2]: path = “/home/jmcauley/datasets/mooc/amazon/amazon_reviews_u!:ﬁggical_Instruments:wl_ee.tsv.gz“

In [3]: f = gzip.open(path, 'rt', encoding="utf8")

In [4]: header
header

f.readline()
header.strip().split("\t")

Code: Reading the data

Our goal is to make recommendations of products
based on users’ purchase histories. The only
information needed to do so is user and item IDs

In [5]: dataset = []

In [6]: for line in f:
fields = line.strip().split('\t")
d = dict(zip(header, fields))
d['star_rating'] = int(d['star_rating'])
d["helpful_votes'] = int(d['helpful_votes'])
d['total_votes'] = int(d['total_votes'])
dataset.append(d)

In [7]: dataset[@]
Out[7]: {'marketplace': '

‘customer_id': 45610553

‘review_id': '

'product_id"': QBOOHH62VBE)D,
'‘product_parent': 3218723",

'‘product_title': 'AGPtek® 1@ Isolated Output 9V 12V 18V Guitar Pedal Board Power Supply Effect Pedals
with Isolated Short Cricuit / Overcurrent Protection’,

Code: Useful data structures

Build data structures representing the set of
items for each user and users for each item:

In [8]: # Useful data structures

/I Ui
In [9] p”UsersPerIte defaultdict(set)
itemsPerUsep~s defaultdict(set){—@

In [10]: itemNames = {}

In [11]: for d in dataset:
user,item = d['customer_id'], d['product_id"]
usersPerItem[item].add(user)
itemsPerUser[user].add(item)
itemNames[item] = d['product title']

Code: Jaccard similarity

The Jaccard similarity implementation follows the
definition directly:

Jaccard(A, B) = %

In [12]: | def Jaccard(sl, s2):
numer = len(sl.intersection(s2))
denom = len(sl.union(s2))
return numer / denom

Recommendation

We want a recommendation function that return items
similar to a candidate item i. Our strategy will be as
follows:

* Find the set of users who purchased (
* [terate over all other items other than (
 For all other items, compute their similarity with (
(and store (t)
» Sort all other items by (Jaccard) similarity
« Return the most similar

Code: Recommendation

Now we can implement the recommendation function
itself:

In [13]: def mostSimilar(i):
similarities = [] , _
users = usersPerItem[i] Ja,ccard(Uz-, UJ) = Ig”—sg%
for i2 in usersPerItem: / v
if i2 == i: continue
sim = Jaccard(users, usersPerItem[i2])
similarities.append((sim,i2))
similarities.sort(reverse=True)
return similarities[:10]

Code: Recommendation

Next, let's use the code to make a recommendation.
The query is just a product ID:

In [14]: dataset[2]

Out[14]: {'marketplace': 'US’,
'customer_id': '6111003',
'review_id': 'RIZR67JKUDBI®',
‘product_id': 'B@@@6VMBHI',

‘product_parent': '6© .
"product_title': udioQuest LP record clean brush >
'product_category': "Music

‘star_rating': 3,
'helpful_votes': ©,
'total_votes': 1,

'vine': 'N',

'verified_purchase': 'Y',

'review_headline': 'Three Stars’,
'review_body': 'removes dust. does not clean’,

'review_date': '2015-08-31'}

In [15]: query = dataset[2]['product_id']

Code: Recommendation

Next, let's use the code to make a recommendation.
The query is just a product ID:

In [16]: mostSimilar(query)

Out[16]: [(©.028446389496717725, 'BOGOO6I5SD'),
(©.01694915254237288, 'BOORO6ISSB'),
(©.015065913370998116, 'BOROAIR482'),
(©.014204545454545454, 'BORE7MVP3S'),
(©.008955223880597015, 'B@@1255YL2"),
(©.008849557522123894, 'BO@3EIRVO8'),
(©.008333333333333333, 'BOQ15VEZ22'),
(©.00821917808219178, 'BOORO6ISUH'),
(©.008021390374331552, 'BOQOO8BWM7'),
(©.007656967840735069, 'BOOOH2BC4E')]

Code: Recommendation

ltems that were recommended:

In [17]: itemNames[query]

Out[17]: 'AudioQuest LP record clean brush'

In [18]: [itemNames[x[1]] for x in mostSimilar(query)]

Out[18]: ['Shure SFG-2 Stylus Tracking Force Gauge’,
'Shure M97xE High-Performance Magnetic Phono Cartridge’,
'ART Pro Audio DJPRE II Phono Turntable Preamplifier’,
'Signstek Blue LCD Backlight Digital Long-Playing LP Turntable Stylus Force Scale Gauge Tester',
'Audio Technica AT120E/T Standard Mount Phono Cartridge’,
'Technics: 45 Adaptor for Technics 1200 (SFWE@1e)',
'GruvGlide GRUVGLIDE DJ Package',
'STANTON MAGNETICS Record Cleaner Kit',
'Shure M97xE High-Performance Magnetic Phono Cartridge’,
‘Behringer PP400 Ultra Compact Phono Preamplifier']

Recommending more efficiently

Our implementation was not very efficient. The slowest
component is the iteration over all other items:

 Find the set of users who purchased i
* Iterate over all other items other than i
 For all other items, compute their similarity with (
(and store (t)
« Sort all other items by (Jaccard) similarity
* Return the most similar

This can be done more efficiently as most items will
have no overlap

Recommending more efficiently

In fact it is sufficient to iterate over those items
purchased by one of the users who purchased i

* Find the set of users who purchased i
* Iterate over all users who purchased i
 Build a candidate set from all items those users
consumed
* For items in this set, compute their similarity with (
(and store (t)
» Sort all other items by (Jaccard) similarity
* Return the most similar

Code: Faster implementation

Our more efficient implementation works as follows:

In [19]: def mostSimilarFast(i):
similarities = []
users Ttem[i]
for u 1n users:
candidateItems = candidateItems.union(itemsPerUser[u])
for i2 in candidateItems:
if i2 == i: continue
sim = Jaccard(users, usersPerItem[i2])
similarities.append((sim,i2))
similarities.sort(reverse=True)
return similarities[:10]

Code: Faster recommendation

Which ought to recommend the same set of items, but
much more quickly:

In [20]: mostSimilarFast(query)

Out[20]: [(©.028446389496717725, 'BOOLO6I5SD"),
(0.01694915254237288, 'BOLOB6ISSB'),
(0.015065913370998116, 'BOGGAIR482"),
(©.014204545454545454, 'BOOE7MVP3S'),
(©.0089552238808597015, 'B@O1255YL2"),
(©.008849557522123894, 'BOO3EIRVO8'),
(©.008333333333333333, 'BOO15VEZ22'),
(0.00821917808219178, 'BOROB6ISUH'),
(0.008021390374331552, 'BOOGOSBWM7"'),
(©.807656967840735069, 'BOOGH2BCAE")]

Web Mining and Recommender Systems

Similarity-based rating prediction

Collaborative filtering for rating prediction

In the previous section we provided
code to make recommendations
based on the Jaccard similarity

How can the same ideas be used for
rating prediction?

Collaborative filtering for rating prediction

A simple heuristic for rating prediction
works as follows:

* The user (u)'s rating foran item (is a

weighted combination of all of their
previous ratings for items j

« The weight for each rating is given by

the Jaccard similarity between (and j

Collaborative filtering for rating prediction

This can be written as:

Collaborative filtering for rating prediction

This can be written as:
T(U, ’L) — % ZjGIu\{i} Fu,j - sun(z,g)

All items the user has

Normalization rated other than (

constant

Z =2 jer iy sim(i, j)

Collaborative filtering for rating prediction

Other rating prediction functions...

Code: CF for rating prediction

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

out[26]:

Now we can adapt our previous
recommendation code to predict ratings

More utility data structures

List of reviews per
defaultdict(list) user and per item

defaultdict(list)

reviewsPerUser
reviewsPerItem

for d in dataset:
user,item = d['customer_id'], d['product_id']
reviewsPerUser[user].append(d)
reviewsPerItem[item].append(d)

ratingMean = sum([d['star_rating'] for d in dataset]) / len(dataset)

ratingMean ‘/‘ We’'ll use the mean rating as
4.251102772543146 a baseline for comparison

Code: CF for rating prediction

Our rating prediction code works as follows:

In [27]: def predictRating(user,item):
ratings = [] —
. s _ ZZJEIM\{}TUJ Slmlj

similarities = []

for d in reviewsPerUser[user]:
i2 = d['product_id']
if i2 == item: continue
ratings.append(d['star_rating'])

similarities.append(Jaccard(usersPerItem[item],usersPerItem[i2]))
if (sum(similarities) > 0):
weightedRatings = [(x*y) for x,y in zip(ratings,similarities)]
return sum(weightedRatings) / sum(similarities)
else:
User hasn't rated any similar items
return ratingMean

Code: CF for rating prediction

As an example, select a rating for prediction:

In [28]: dataset[1]

Out[28]: {'marketplace': 'US"',
‘customer_id': '14640079',
'review_id': 'RZSL@BALIYUNU',
‘product_id': 'B@O3LRN53I’,
'product_parent': '986692292',
'product_title': 'Sennheiser HD263 Closed-Back DJ Headphones',
'product_category': 'Musical Instruments’,
'star_rating': 5,
‘helpful votes': @,
‘total_votes': @,

‘vine': 'N',

‘verified_purchase': 'Y',

'review_headline': 'Five Stars’',

'review_body': 'Nice headphones at a reasonable price.’,

'review_date': '2015-08-31'}
In [29]: u,i = dataset[1]['customer_id'], dataset[1]['product_id']

In [3@]: predictRating(u, i)

Out[3@]: 5.8

Code: CF for rating prediction

Similarly, we can evaluate accuracy across the entire corpus:

In [31]: def MSE(predictions, labels):
differences = [(x-y)**2 for x,y in zip(predictions,labels)]
return sum(differences) / len(differences)

In [32]: alwaysPredictMean = [ratingMean for d in dataset]
In [33]: cfPredictions = [predictRating(d['customer_id'], d['product _id']) for d in dataset]
In [34]: labels = [d['star_rating'] for d in dataset]

In [35]: MSE(alwaysPredictMean, labels)

Out[35]: 1.4796142779564334

In [36]: MSE(cfPredictions, labels)

Out[36]: 1.6146130004291683

Collaborative filtering for rating prediction

Note that this is just a heuristic for rating
prediction

* |n fact in this case it did worse (in terms of
the MSE) than always predicting the mean
« We could adapt this to use:
1. A different similarity function (e.g. cosine)
2. Similarity based on users rather than items
3. A different weighting scheme

Better heuristics?

Web Mining and Recommender Systems

| atent-factor models

Summary so far

Recap

1. Measuring similarity between users/items for
binary prediction
Jaccard similarity
2. Measuring similarity between users/items for
real-valued prediction
cosine/Pearson similarity

Now: Machine learning-based models for real-
valued prediction latent-factor models

L atent factor models

So far we've looked at approaches that
try to define some definition of user/user
and item/item similarity

Recommendation then consists of
« Finding an item (that a user likes (gives a high rating)
 Recommending items that are similar to it (i.e., items j
with a similar rating profile to i)

L atent factor models

What we've seen so far are
unsupervised approaches and whether
the work depends highly on whether we

chose a “good” notion of similarity

So, can we perform recommendations
via supervised learning?

L atent factor models

e.g. If we can model

f(user features, movie features) — star rating

Then recommendation
will consist of identifying

recommendation(u) = arg Max;cunseen items J (U, 1)

The Netflix prize

In 2006, Netflix created a dataset of 100,000,000 movie ratings
Data looked like:

(userID, itemID, time, rating)

The goal was to reduce the (R)MSE at predicting ratings:

RMSE(f) — \/% Zu,z’,tetest set(f(u7 , t) o Tuaiat)z

model’s prediction ground-truth

Whoever first manages to reduce the RMSE by 10% versus
Netflix's solution wins $1,000,000

The Netflix prize

This led to a lot of research on rating
prediction by minimizing the Mean-
Squared Error

NETFLIX

(it also led to a lawsuit against Netflix, once somebody
managed to de-anonymize their data)

We'll look at a few of the main
approaches

Rating prediction

Let's start with the
simplest possible model:

f;u,%') =«

user item

Rating prediction

What about the 2" simplest model?

TR

how much does

this user tend to

rate things above
the mean?

PITGHB[AGI(black = —0.1
-
5 > Biulian = —0-2

does this item tend
to receive higher
ratings than others

Rating prediction

The optimization problem becomes:

arg ming g Zu,z‘ (04 + Bu + Bi — Ru;i)z + A [Zu Bzz:, + Zz Bf]

J

Y Y

error reqularizer

Jointly convex in \beta_i, \beta_u. Can
be solved by iteratively removing the
mean and solving for beta

Jointly convex?

Rating prediction

Differentiate:

arg mina,,@ qu,,z’ (a + By + Bi — Ru,fi)Q + A [Zu /83, + Zq, /612]

Rating prediction

Differentiate:

%%ij — Z’iEIU 2(0& + ﬁu + /8?, - Ru,z) + 2)\/8u
Two ways to solve:

1. "Reqgular" gradient descent

2.Solve 3521 =0 (sim. for beta_i, alpha)

Rating prediction

Differentiate:

Sk =3 cr, 2(a + Bu+ Bi — Rui) + 278y

Jdobj __ .
Solve 37! =0:

Rating prediction

Iterative procedure — repeat the
following updates until convergence:

Zu,ietrain(Ruai_(Bu_l_ﬁ’i))

O =

Ntrain
/8 L Z’iEIu Ru,i_(a‘l_/@i)
v A+ 1|
/8- L ZUEUi Ru,i_(a+/8u)
A 1

(exercise: write down derivatives and convince yourself of
these update equations!)

Rating prediction

Looks good (and actually works
surprisingly well), but doesn’t solve the
basic issue that we started with

f(user features, movie features) =

(p(user features), Oyser) + (P(movie features), Opovie)

\. 7 \. 7

user predictor movie predictor

That is, we're still fitting a function that
treats users and items independently

Web Mining and Recommender Systems

Latent-factor models (part 2)

Recommending things to people

How about an approach based on
dimensionality reduction?

.e., let's come up with low-dimensional representations of the
users and the items so as to best explain the data

Dimensionality reduction

We already have some tools that ought to
help us, e.g. from dimensionality reduction:

¥

— N W

TN — DN W

L
1

DO =~ O

What is the best low-
rank approximation of
R in terms of the mean-
squared error?

Dimensionality reduction

We can borrow some existing tools, e.g. the
singular value decomposition, PCA (etc.):

(5 3 ... 1 (o
4 2 square roots o

1 eigenvalues of R{%T
Singular Value R ://ZVT
R = D o
ecomposition
. . eigenvectors of RR’ \
\ 1 2 - 1)

The “best” rank-K approximation (in terms of the MSE) consists
of taking the eigenvectors with the highest eigenvalues

eigenvectors of RT R

Dimensionality reduction

But! Our matrix of ratings is only partially
observed; and it's really big!

5 3
(4 2 1 \
3 . 3
P .9 4
1 5 T Missing ratings

SVD is not defined for partially observed matrices, and it is not
practical for matrices with TMx1M+ dimensions

| atent-factor models

Instead, let's solve approximately using
gradient descent

K-di ional
(53 -\ representation
4 2 1 of each item
3 3 \
R = -2 4 > users R ~U VT

;

K-dimensional
representation
of each user

_—
—
DO

\\

|

| atent-factor models

Instead, let's solve approximately using
gradient descent

53... .
(42 1\
3 - 3
np_| - 2 4
1 5
(12

L atent-factor models

Let's write this as:

f(ua Z) — /Bu /82 Yu * Vi

| atent-factor models

Let's write this as:

Our optimization problem is then

arg Ming g Y., ; (@+ButBitvuyi—Ru) X [2o, B + 22, 87 + 22 1ill3 + 22, ull3]
“ J J

Y Y

error regularizer

| atent-factor models

Problem: this is certainly not convex

| atent-factor models

Oh well. We'll just solve it approximately
Again, two ways to solve:

1."Regular" gradient descent
2.Solve %‘;{bi — 0 (sim. For beta_i, alpha,
etc.)

(Solution 1 is much easier to implement,
though Solution 2 might converge more
quickly/easily)

| atent-factor models (Solution 1)

argming g, ., (O ButBitvuvi—Rui)>+A [, B+ 2 B2+ 2 1ill3 + 20 1vull3]

L atent-factor models (Solution 2)

Observation: if we know either the user
or the item parameters, the problem
becomes "easy"

f(uai):a+/6u+/6i‘|‘7u'7i

e.g. fix gamma_i — pretend we're fitting parameters for features

| atent-factor models

(Harder solution): iteratively solve the
following subproblems

objective:

arg Ming g Y, ;(@+ButBitvuyi—Rui)*+X 2o, B + 2287 + 2 1ills + 22, 1ull3)

- J
n'd

= arg min, g - objective(a, 3, 7)

1) fix vi. Solve argmin, g, objective(c, 3, 7)
2) fix Vu. Solve arg min, s -, objective(a, 3, 7)
3,4,5...) repeat until convergence

Each of these subproblems is “easy” — just reqularized least-
squares, like we've been doing since we studied regression.
This procedure is called alternating least squares.

| atent-factor models

later we'll see how to do this using:

* High-level recommender systems libraries
e Tensorflow (next week?)

| atent-factor models

Observation: we went from a method
which uses only features:

f (U.SGI;‘ features, movie features) — star rating

User features: Movie features: genre,
age, gender, _actors, rating, length, etc.
location, etc. i

A. Phillips

111111111111111

mmmmmmmmmmmmmm
EEEEEEE

to one which completely ignores them:

Aarg Mina, gy Dy (0 ButBitYuYi—Rui) 2 [, B2 + 32, B2+ 3 illd + 22, I1vll3]

| atent-factor models

Should we use features or not?
1) Argument against features:

In principle, the addition of features adds no expressive
power to the model. We could have a feature like “is this an
action movie?”, but if this feature were useful, the model
would “discover” a latent dimension corresponding to action
movies, and we wouldn’t need the feature anyway

In the limit, this argument is valid: as we add more ratings
per user, and more ratings per item, the latent-factor model
should automatically discover any useful dimensions of
variation, so the influence of observed features will disappear

| atent-factor models

Should we use features or not?
2) Argument for features:

But! Sometimes we don’t have many ratings per user/item

Latent-factor models are next-to-useless if either the user or
the item was never observed before

reverts to zero if we've never seen the user before
(because of the regularizer)

| atent-factor models

Should we use features or not?
2) Argument for features:

This is known as the cold-start problem in recommender
systems. Features are not useful if we have many
observations about users/items, but are useful for new users
and items.

We also need some way to handle users who are active, but

don't necessarily rate anything, e.g. through implicit
feedback

Dimensionality reduction

Note that this is really a form of dimensionality reduction

« What are the dimensions that explain the most variance in the data?
 For connections to other dimensionality reduction techniques (mostly
SVD), see textbook

Overview & recap

Recently we've followed the
programme below:

1. Measuring similarity between users/items for
binary prediction (e.g. Jaccard similarity)
2. Measuring similarity between users/items for real-
valued prediction (e.g. cosine/Pearson similarity)
3. Dimensionality reduction for real-valued
prediction (latent-factor models)
4. Finally — dimensionality reduction for binary
prediction

Web Mining and Recommender Systems

Implicit feedback models

One-class recommendation

Suppose we have binary (0/1) observations
(e.g. purchases) or pos./neg. feedback
(thumbs-up/down)

1 0 --- 1 -1 ? - 1

0 O 1 77 —1
R = . . . or

1 0 - 1 1 7 - =1

/ \ /1

purchased didn't purchase liked didn't evaluate didn't like

One-class recommendation

How can we use dimensionality
reduction (latent factors) to predict
binary outcomes?

* Previously we saw regression and logistic regression.
These two approaches use the same type of linear
function to predict real-valued and binary outputs

* We can apply an analogous approach to binary
recommendation tasks

This is referred to as “one-class”
recommendation

Why can't we just apply logistic regression?

Why do we need a special approach? Compare to
“traditional” approach of replacing “missing values” by O:

D+ ||+

O+ [0+ ||
«———user———

CcC C C C C
o - L]] -
ORISR I I S IO,)

+ |+ [+

—item —

Why can't we just apply logistic regression?

Why can't we just apply logistic regression?

Why can't we just apply logistic regression?

Why do we need a special approach? Compare to
“traditional” approach of replacing “missing values” by O:

« At test time, the model should assign positive scores to
items that the user consumed
« But at training time, the model was penalized for not
predicting zero!
 (Put differently, the "negative" items are exactly the ones
we should be recommending!)

One-class recommendation

Two broad classes of strategy to
dealing with one-class data:

1. Instance reweighting: try to figure
out which negative (or positive)
Instances are "Important”
2. Optimize relative scores rather than
positive versus negative

Why can't we just apply logistic regression?

We need a special way to handle "negative" items (since
they're not really "negative")

1. Try to figure out which negatives are "real" negatives,
and weight instances differently (instance reweighting)

2. Try to use a ranking-based objective (personalized
ranking)

Instance reweighting

1. Instance reweighting: try to figure out which
negative (or positive) instances are "Important”

Fit a function of the form:

Instance reweighting

1. Instance reweighting: try to figure out which
negative (or positive) instances are "Important”

Fit a function of the form:

argmin) Cui(pui = Yu - ¥ + AQY)
Y (uh)eT

Instance reweighting

How to choose c (i.e., the importance of each sample)? A
couple of heuristics:

1. (Hu et al. 2008): applied to positive instances
cui =1+ ar,; cui =1 +alog(l +r,;/€)

Instance reweighting

How to choose c (i.e., the importance of each sample)? A
couple of heuristics:

2. (Pan et al. 2008): applied to negative instances

Cui = a X |Iu‘ Cui = a’(m - ‘UED

(negative instances should be weighted higher if the user has interacted with many items, etc.)

Instance reweighting

2. Bayesian Personalized Ranking

Idea: Rather than predicting that negative items are disliked,
can we just predict that they're less liked than positive items?

U.

Bayesian Personalized Ranking

Goal: Estimate a personalized ranking
function for each user

« Compare pairs of items (and j together

* [is an item u consumed ("positive")

* Jis an item u didn't consume

* Train such that (should have a higher score
than j (for u)

Bayesian Personalized Ranking

Basic scheme:

* Qur original dataset consists of positives (u,i),
e.g. purchased items for each user
* Augment this dataset by constructing many
triples (u,1,)) where (u,i) is positive and (u,)) Is
negative
* The model now has to make binary predictions
as to whether i or j is the postive item

Bayesian Personalized Ranking

Goal: Estimate a personalized ranking
function for each user

i >

Bayesian Personalized Ranking

What form should x(u,ij) take?

Bayesian Personalized Ranking

Goal is to count how many times we identified i as 5(Fuis > 0)
being "more preferable" than j for a user u utj

Bayesian Personalized Ranking

We can think of this as maximizing the
probability of correctly predicting pairwise
preferences, i.e.,

p(¢ is preferred over j) = (Vo Vi — Yo * V5)

 As with logistic regression, we can now maximize the
likelihood associated with such a model by gradient ascent
 In practice it isn't feasible to consider all pairs of
positive/negative items, so we proceed by stochastic gradient
ascent — I.e., randomly sample a (positive, negative) pair and
update the model according to the gradient w.r.t. that pair

Bayesian Personalized Ranking

maXan_(qu "Yi T Yu f)/j)

Summary

Recap

1. Measuring similarity between users/items for
binary prediction
Jaccard similarity
2. Measuring similarity between users/items for real-
valued prediction
costne/Pearson similarity
3. Dimensionality reduction for real-valued prediction
latent-factor models
4. Dimensionality reduction for binary prediction
one-class recommender systems

References

Further reading:

One-class recommendation:

Amazon'’s solution to collaborative filtering at scale:

An (expensive) textbook about recommender systems:

Cold-start recommendation (e.g.):

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf

Web Mining and Recommender Systems

Recommender Systems Libraries

Latent Factor Models (Surprise)

Fairly simple interface that implements the type of (rating
prediction) model we've described

Reads data in .tsv format (various others are supported):

reader = Reader(line format='user item rating', sep='\t')
data = Dataset.load from file(dataDir + "goodreads fantasy.tsv", reader=reader)

code from: https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html

Latent Factor Models (Surprise)

Create a model instance, train/test splits, and fit the model:

model = SVD()

Inbuilt functions to split into training and test fractions

trainset, testset = train test split(data, test size=.25)
Fit the model and extract predictions

model.fit(trainset)
predictions = model.test(testset)

Latent Factor Models (Surprise)

Make predictions and compute MSE from the fitted model

predictions[@].est

3.6334479463688463
MSE for model predictions (test set)

sse = 0
for p in predictions:
sse += (p.r ul - p.est)**2

print(sse / len(predictions))

1.1883531641648757

Web Mining and Recommender Systems

Bayesian Personalized Ranking (Implicit)

Bayesian Personalized Ranking (Implicit)

A little more work to put the data in the right format. Start by
reading the data in our usual formats:

data = list(parseData(dataDir + "goodreads reviews fantasy paranormal.json.gz"))

random.shuffle(data)

Example from the dataset

data[0]

{'book id': '13451182',
‘date added': 'Sun Sep 09 18:58:45 -0700 2012',

"date updated': 'Sun Oct 07 15:13:32 -0700 2012°', de f :
'n_comments': 1, code trom:

'n votes': O, https://cseweb.ucsd.edu/~jm
‘rating': 1, cauley/pml/code/chap5.html

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html

Bayesian Personalized Ranking (Implicit)

Build some utility data structures:

userIDs,itemIDs = {},{}

for d in data:
u,i = d['user _id'],d['book id']
if not u in userIDs: userIDs[u]
if not i in itemIDs: itemIDs[i]

len(userIDs)
len(itemIDs)

nUsers,nItems = len(userIDs),len(itemIDs)

nUsers,nlItems

(256088, 258212)

Bayesian Personalized Ranking (Implicit)

Build some sparse matrix data structures. Here we essentially
build the (massive!) user-item interaction matrix describing
which items users have interacted with:

Xiu = scipy.sparse.lil matrix((nItems, nUsers))
for d in data:
Xiu[itemIDs[d['book id']],userIDs[d['user id']]] =1

Xul = scipy.sparse.csr_matrix(Xiu.T)
Bayesian Personalized Ranking model with 5 latent factors

model = bpr.BayesianPersonalizedRanking(factors = 5)

Bayesian Personalized Ranking (Implicit)

Fit the model, and get some recommendations from it:

model.fit(Xiu)

Get recommendations for a particular user (the first one) and to get items related to (similar latent factors) to a particular item

recommended = model.recommend(®, Xuil)
related = model.similar items(0)

related

[(B, 1.0),

(42098, 0.9885355),
(142964, 0©.9845209),
(150861, ©.98274595),
(231639, 0.9826295),
(182330, ©.9813926),

o e e e am e L o [

Bayesian Personalized Ranking (Implicit)

Can also extract latent factors (e.g. for visualization):

itemFactors = model.item factors
userFactors = model.user factors
ltemFactors[0]

array([-0.74582803, -0.10878776, 0.32922822, 0.16516064, 0.38874012,
0.7460656], dtype=float32)

Web Mining and Recommender Systems

Recommender Systems in Tensorflow

Recommender Systems in Tensorflow

(will come back to Tensorflow later, but code is
in: https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html)

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html

Web Mining and Recommender Systems

More on recommender systems evaluation

Challenges in evaluating recommender systems

So far, we've mostly considered the Mean Squared Error
when evaluating recommender systems; we haven't thought
too hard about this since introducing linear regression

What might be some problems with this choice?

Challenges in evaluating recommender systems

What might be some problems with the MSE?
Consider e.g.

Label:

VS.

Prediction:

Which has a higher penalty? Which should have?

Challenges in evaluating recommender systems

What might be some problems with the MSE?
Consider e.g.

Label: * *
Model 1:
Model 2:

Which has a higher penalty? Which should have?

Challenges in evaluating recommender systems

What might be some problems with the MSE?
Consider e.g.

MSE assumed errors were
normally distributed; what if
Ela(a:nadsgvgggl?rﬁggﬁgm gi_?gn&nac::h L»:e;nms; : 8K Gold Rolex Yachtmaster 11 Model # 116688 t h eyl re m O re b i m O d a | ?

$34,880.00
Show anly Rolex items

ftems i drvleyy v o4

.7 out of 5 stars “ Now when I take him for a walk I know I am impressing

people even more than I EVER did when I merely walked my
monkey while wearing this wonderful watch. * a S O u e C O r re C

Dr. Space | 11 reviewers made a similar statement

. . . °
g #“ You also placed a review on a watch you don't own in order ?
ospe. predaiction pe In tnis case:

See all 94 reviews » A Wright | 3 reviewers made a similar statement

% The Yachtmaster II for sale here is solid 18k gold and it
houses the first and as far as I know the only programmable,
mechanical watch in the history of horology. *
e GradyPhilpott | 4 reviewers made a similar statement

RULEA SR I-UVVELLER VWHITE GULL VAT GH BLAGK

Challenges in evaluating recommender systems

More thoughts:

* The most popular items (or most active users) will
dominate our MSE calculation; will less popular items (or
users) receive "fair" consideration?

* A small change in the MSE can drastically change the
ordering of the most relevant items; alternately a better
MSE does not necessarily mean a better recommender

Ranking-based evaluation of recommender systems

Just as we saw (e.qg.) precision and recall when evaluating
classifiers, we can consider ranking-based metrics for
evaluation of recommender systems. A few we'll look at:

* Precision and Recall @ K (again)
 AUC (Area Under ROC Curve)
* Mean Reciprocal Rank
e Cumulative Gain and NDCG (in textbook)
* Beyond accuracy

Precision and Recall @ K

Much as we considered Precision and Recall (@K) when
evaluating classifiers, they can also be used to evaluated
ranked recommendation lists

First, rank recommended items for each user by relevance:

Lower rank = Relevance score (e.g.

more relevant \ / click probability)
rank,(i) < rank,(j) < f(u,1) > f(u, j)

rank,(i) = rank,(j) © i =].

Precision and Recall @ K

Next, count how many of the (withheld/test) interactions for
a user are among the top K recommendations:

Precision and Recall @ K

Next, count how many of the (withheld/test) interactions for
a user are among the top K recommendations:

i €I, | rank,(i) < K}
K

precision@ K (u) =

Test interactions

Can then be defined for all users (likewise for recall@K):

o 1 o 1 {i € 1, | rank, (i) < K}|
recision@K = — recision@ K (u recal@K = —
P 01 27) U 7

uclU v uel

Mean Reciprocal Rank

How high is the rank of the relevant item?
* An ideal algorithm should rank it first
* An algorithm that ranks it 10th is somewhat worse
* An algorithm that ranks it 100th is much worse
* The further down the ranking we go the less difference it
makes

(assuming only a single withheld "test" item i_u for each user)

Mean Reciprocal Rank

1.0 = ideal algorithm; withheld item always ranked first
1/n = relevant item tends to be ranked in the n”~th position

AUC

Does a ranker tend to give positive (e.g. purchased) items
higher ranks than negative (e.qg. not-purchased) items:

AUC

The AUC:
« Counts the fraction of times the algorithm gives a higher
score to a positive than to a negative interaction
* (1.0 = always correct; 0.5 = random)
* Across all users:

1
AUC = —AUC(u)
U]

Why the AUC?

Why the AUC?

» Doesn't force negative items to be rated as "negative" -
just less positive than positive — this is desirable in implicit
feedback settings
« Rewards the algorithm for ordering things correctly, which
may be more important to users than (e.qg.) predicting
ratings correctly
* |s easy (compared to some other metrics) to optimize

Web Mining and Recommender Systems

"User-free" models of recommendation

User-free recommenders

So far we've studied (arguably) the simplest
approaches for a variety of tasks:

1. Simarity-based models for binary data
2. Similarity-based models for real-valued data
3. Dimensionality reduction (latent factors) for real-valued data
4. Dimensionality reduction for binary data

Next we'll discuss a few alternate approaches to
similar problems

User-free recommenders

Main goal in this section is to avoid having an

explicit model of a user gamma_u
Why?

User-free recommenders

Main goal in this section Is to avoid having an

explicit model of a user gamma_u
Why?

* Previous models had K parameters per user — very
expensive in settings with many users!
* Poor performance for users with few interactions
* Requires continuous retraining as users continue
to Interact

User-free recommenders

Can we design algorithms that take a set of
(tems as input, and generate recommended items
as output?

As users provide more interactions, we just change
the input to the algorithm — no need to retrain!

1. Sparse Linear Methods (SLIM)
2. Factored Item Similarity Models (FISM)

1. Sparse Linear Methods (SLIM) (Ning and Karypis,

2011)

Adapts ideas from regression; model interactions as

f(uai):Ru'Wi

N\

Vector of (linear!)
interactions parmeter
for user u vector

1. Sparse Linear Methods (SLIM) (Ning and Karypis,

2011)

Can be expanded as:

Challenge: W is a (dense!) |I| x [l| matrix

1. Sparse Linear Methods (SLIM) (Ning and Karypis,

2011)

Solution: assume W is sparse, which i1s achieve
through a regularizer:

arg min ||[R — RW'||; + AQ(W) + 1’ Q(W)
w

S.t. Wi,j >0; W;;=0.

1. Sparse Linear Methods (SLIM) (Ning and Karypis,

2011)

Sparse linear methods:
« Rapid inference time (compared to traditional
methods, not compared to latent factor models)
» Better long-tail performance, i.e., works well for
rarely-occurring items

2. Factored Item Similarity Models (FISM) (Kabbur et al.

2013)

Idea: a user Is just the average over items they
consume

Replace the user representation with an average of
item representations

2. Factored Item Similarity Models (FISM) (Kabbur et al.

2013)

Replace

with

2. Factored Item Similarity Models (FISM) (Kabbur et al.

2013)

Replace

with

_ 1
fu,i) =a+ B, +p L\ (3] Z 7’}'%?

JeL\{i}

2. Factored Item Similarity Models (FISM) (Kabbur et al.

2013)

Note that we have two item representations
(instead of an item and a user representation)

gamma’'_j and gamma_i

These are essentially a "query"” and a "target”
representation

References

Further reading:
« Sparse Linear Methods (SLIM) (Ning
and Karypis, 2011)
e Factored Iltem Similarity Models (FISM)
(Kabbur et al. 2013)

Web Mining and Recommender Systems

Deep learning for recommendation

Deep learning for recommendation

Won't spend a tonne of time teaching deep
learning, but obviously it's made some headway
iInto recommendation (just like everywhere else...)

Here will just give a basic sense of some of the
main ideas

See textbook for details!

Why not deep learning for recommendation?

Why should we need deep learning to improve
recommender systems?

f(uai):a+/8u‘|‘5i‘|‘7u°7i

Deep Learning is normally used to uncover non-linear
relationships/transforms among features, but this model doesn't
have any features!

If [atent factors can uncover any properties about users/items,
what can a "deep" model learn?

~v.[1] (e.g. comedy)

Maximum inne

r product

,),u.[o] ie.g. action)

~v.[1] (e.g. comedy)

Nearest ne

ighbors

fyu.[()] ie.g. action)

Why not deep learning for recommendation?

Idea: there's nothing sacred about the inner
product in this function, and other choices might
be better in some contexts

f(ua Z) — /Bu /87, Yu * Vi

Maybe we can automatically learn what types of relationship
would be most effective

1. Neural Collaborative Filtering (He et al. 2017)

Idea: use a multilayer perceptron to learn the ideal
relationship between gamma_u and gamma_i

hidden layer hidden layer

1. Neural Collaborative Filtering (He et al. 2017)

Idea: use a multilayer perceptron to learn the ideal
relationship between gamma_u and gamma_i

* Arguably, this will help us to learn more complex
Interactions between users and items
* Some counterargument (e.g. Dacrema et al.
2019): it's actually hard for an MLP to learn an
inner product function!

2. AutoRec (Sedhain et al. 2015)

Idea: Autoencoders are a technique to learn low-
dimensional latent representations of feature
vectors; can they be used for recommendation?

input decoded

encoded

2. AutoRec (Sedhain et al. 2015)

Autoencoder-based recommendation:

* Inputis a vector of items a user has consumed
(or a set of users who have consumed an item)
 Model is trained to encode these vectors

e At test time, find un-consumed items that have

the highest score acording to the decoder
* Note: this is a user-free model! The
input/output is just a vector of items!

3. Convolutional and Recurrent Models

Plenty of other approaches based on Convolutional
and Recurrent Neural Networks:

* CNNs often used as a way to incorporate rich
content into recommender systems (e.g. Images)
« RNNSs (and Transformers, etc.) are often used as a
way to incorporate sequential dynamics

We'll come back to these a little (but not much) later

Are deep-learning models "worth it"?

Some doubts as to whether deep learning-based
recommenders are really "worth it":

« Some evidence that simpler models will work just
as well if carefully tuned (Dacrema et al. 2019)
» Potentially adding a lot of parameters / training
complexity for modest performance improvements
» Also challenges re. efficient retrieval etc.

References

Further reading:

* He et al. (2017): Neural Collaborative Filtering
 He and Chua (2017): Neural Factorization Machines
* Cheng et al. (2016): Wide and Deep Learning for

Recommendation
* Guo et al. (2017): Deep Factorization Machines
* Sedhain et al. (2015): AutoRec

Web Mining and Recommender Systems

What's still coming up?

Extensions of latent-factor models

So far we have a model that looks like:
f(u,z) :a+/6u+5i‘|")/u"7i

How might we extend this to:

* Incorporate features about users and items
« Handle implicit feedback
* Change over time

See Yehuda Koren (+Bell & Volinsky)'s magazine article:

“Matrix Factorization Techniques for Recommender Systems”
IEEE Computer, 2009

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to
describe users or items

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u \\

e.g.is female is male is between 18-24yo

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to
describe users or items
» Associate a parameter vector with each attribute
« Each vector encodes how much a particular feature
“offsets” the given latent dimensions

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g.y_0 =[-0.2,0.3,0.1,-0.4,0.8]
~ "how does being male impact gamma_u”

Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to
describe users or items
« Associate a parameter vector with each attribute
 Each vector encodes how much a particular feature
“offsets” the given latent dimensions
* Model looks like:

f(u,z) =+ [y + i + (’Yu + zaeA(u) pa) © Vi

* Fit as usual:
arg Mig, g ,,p Zu,iEtrain (z(uv 1) — T’usiJ)2 + A5, fYJ)

.
v v

error regularizer

Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may
still interact with the system, e.g. through the movies they
view, or the products they purchase (but never rate)

« Adopt a similar approach — introduce a binary vector
describing a user's actions

N(u) = [1,0,0,0,1,0,....,0,1]

implicit feedback vector for user u

e.g.y_0 =1[-0.1,0.2,0.3,-0.1,0.5]
Clicked on “Love Actually” but didn't watch

Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may
still interact with the system, e.g. through the movies they
view, or the products they purchase (but never rate)

« Adopt a similar approach — introduce a binary vector
describing a user's actions
* Model looks like:

f(uy9) = o+ Bu + Bi + (Yu + TN 2oaen () Pa) Vi

normalize by the number of actions the user performed

Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be
subject to temporal effects...

Extensions of latent-factor models

mean score

3.9

3.8

3.6

3.2

3) Change over time

Rating by date

Netflix ratings
over time

Neécflix charélged ;

thgeir interféace!

time (days)

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

2500

Extensions of latent-factor models

3) Change over time

Rating by movie age

movie age wYi

§ .. .
TAERY "7 .ot M D D _
R e Peopletendtoglve _____ h igher

: ratings to older movies

P E— T A i

> ; i i ;
0 500 1000 1500 2000 2500

movie age (days)

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Extensions of latent-factor models

3) Change over time

nal tren hort-term tren Fati
3835 Seasonal trends 2.84 S 1|:1ttel telds 300 atlgue |
3830 3.83 1
3‘82 | 3.85‘
3.825
o o 3.81 o
= = = 580
T 3.820 @ 380} ©
S) S
i @ 3.79 b @
5 3.815 5 5 375
< < 378} <

'E..\:I

=]

=1
I

370
376 F

3.800 3.7 ! . ! 3.65 ' ! '
JFMAMJJASONDJ Sli}ﬂ 6:00 12:00 18:00 24:00 5 10 15 20

Time of year Time of day Beers consumed per day

A few temporal effects from beer reviews

Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be
subject to temporal effects...

evathizgf;;:tg’yenfa"rffc'gg Changes in the interface
Koren, 2009 People give higher ratings to older movies (or, people

e.g. "Sequential & temporal who watch older movies are a biased sample)
R PRI The community's preferences gradually change over time

Y My girlfriend starts using my Netflix account one day
recommendation on graphs | binge watch all 144 episodes of buffy one week and

via :)orz?e-r:rrfesfzzir;:frm then revert to my normal behavior
Xiang et al,, 2010 | become a “connoisseur” of a certain type of movie

e.g. "Modeling the evolution Anchoring, public perception, seasonal effects, etc.

of user expertise through
online reviews"
McAuley & Leskovec, 2013

Extensions of latent-factor models

3) Change over time

Each definition of temporal evolution demands a slightly
different model assumption (we'll see some in more detail
later tonight!) but the basic idea is the following:

1) Start with our original model:

f(u,z) :a+6u+/6i‘|"7u"7i
2) And define some of the parameters as a function of time:
f(u’v Z, t) =+ /B’LL(t) T /B'L(t) + ’Y’uj(t) " Ve

3) Add a reqularizer to constrain the time-varying terms:

ArgMiNa, 5y Dy i reprain(f (U85 t) = Tuie)? + MQUB,Y) + Aally(t) — (L +9)]|

Y

parameters should change smoothly

Moral(s) of the story

How much do these extension help?

091
s P30
ﬂms gq ... With biaSES
xb| as terms == \Nith implicit feedback
N INA 09 b PR, === With temporal dynamics (v.1) | __
09
M O ra I . n C rea S I n g === With temporal dynamics (v.2)

implicit feedback

CompleXIty helps d 0.895 - e e 2R R e e

bit, but changing £
the model can s
help a lot 0885

0.88

0875
10 100 1,000 10,000 100,000

@ms of param@

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Moral(s) of the story

So what actually happened with Netflix?

« The AT&T team “BellKor”, consisting of Yehuda Koren, Robert Bell, and Chris
Volinsky were early leaders. Their main insight was how to effectively
incorporate temporal dynamics into recommendation on Netflix.

» Before long, it was clear that no one team would build the winning solution,

and Frankenstein efforts started to merge. Two frontrunners emerged, “BellKor's
Pragmatic Chaos”, and “The Ensemble”.

« The BellKor team was the first to achieve a 10% improvement in RMSE, putting
the competition in “last call” mode. The winner would be decided after 30 days.

« After 30 days, performance was evaluated on the hidden part of the test set.
« Both of the frontrunning teams had the same RMSE (up to some precision) but
BellKor's team submitted their solution 20 minutes earlier and won $1,000,000

For a less rough summary, see the Wikipedia page about the Netflix prize,

and the nytimes article about the competition:

http://goo.gl/WNpy7o

Moral(s) of the story

Afterword

» Netflix had a class-action lawsuit filed against them after somebody de-
anonymized the competition data
« $1,000,000 seems to be incredibly cheap for a company the size of Netflix in
terms of the amount of research that was devoted to the task, and the potential
benefit to Netflix of having their recommendation algorithm improved by 10%
» Other similar competitions have emerged, such as the Heritage Health Prize
($3,000,000 to predict the length of future hospital visits)

« But... the winning solution never made it into production at Netflix — it's a
monolithic algorithm that is very expensive to update as new data comes in*

*source: a friend of mine told me and | have no actual evidence of this claim

Moral(s) of the story

Finally...

Q: Is the RMSE really the right approach? Will improving rating prediction by 10%
actually improve the user experience by a significant amount?
A: Not clear. Even a solution that only changes the RMSE slightly could drastically
change which items are top-ranked and ultimately suggested to the user.
Q: But... are the following recommendations actually any good?
A1: Yes, these are my favorite movies!
or A2: No! There's no diversity, so how will | discover new content?

.:. | ‘; “ «. A
a , V a Y 1 .'7: .'”“ ';\‘ 4 E » : .
: y ["— - N : ‘:e | g
/u-' : 173) N 7 : ;
b B .2 ; SERT RIS
ey ' ‘ 0077 =

5.0 stars .O stars 5.0 stars 5.0 stars 4.9 stars 4.9 stars 4.8 stars 4.8 stars

predicted rating

Summary

Various extensions of latent factor models:

* Incorporating features
e.g. for cold-start recommendation
* Implicit feedback
e.g. when ratings aren't available, but other actions are
* Incorporating temporal information into latent factor models
seasonal effects, short-term “bursts”, long-term trends, etc.
* Missing-not-at-random
(ncorporating priors about items that were not bought or rated

« The Netflix prize

References

Further reading:

Yehuda Koren's, Robert Bell, and Chris Volinsky's IEEE computer article:

Paper about the “Missing-at-Random” assumption, and how to address it:
Collaborative filtering with temporal dynamics:

Recommender systems and sales diversity:

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

