
Web Mining and Recommender Systems

Recommender Systems: Introduction



Why recommendation?

The goal of recommender systems is…

• To help people discover new content



Why recommendation?

The goal of recommender systems is…

• To help us find the content we were 

already looking for

Are these 

recommendations 

good or bad?



Why recommendation?

The goal of recommender systems is…

• To discover which things go together



Why recommendation?

The goal of recommender systems is…

• To personalize user experiences in 

response to user feedback



Why recommendation?

The goal of recommender systems is…

• To recommend incredible products 

that are relevant to our interests



Why recommendation?

The goal of recommender systems is…

• To identify things that we like



Why recommendation?

The goal of recommender systems is…

• To help people discover new content

• To help us find the content we were 

already looking for

• To discover which things go together

• To personalize user experiences in 

response to user feedback

• To identify things that we like

To model people’s 

preferences, opinions, 

and behavior



Recommending things to people

Suppose we want to build a movie 

recommender

e.g. which of these films will I rate highest?



Recommending things to people

We already have 

a few tools in our 

“supervised 

learning” toolbox 

that may help us



Recommending things to people

Movie features: genre, 

actors, rating, length, etc.

User features: age, gender, 

location, etc.



Recommending things to people

With the models we’ve seen so far, we 

can build predictors that account for…

• Do women give higher ratings than men?

• Do Americans give higher ratings than Australians?

• Do people give higher ratings to action movies?

• Are ratings higher in the summer or winter?

• Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?



Recommending things to people

Consider the following linear predictor 

(e.g. from week 1):



Recommending things to people

Consider the following linear predictor 

(e.g. from week 1):



Recommending things to people

But this is essentially just two separate 

predictors!

user predictor movie predictor

That is, we’re treating user and movie 

features as though they’re independent!



Recommending things to people

But these predictors should (obviously?) 

not be independent

do I tend to give high ratings?

does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give 

high ratings to this genre of movie”?



Recommending things to people

Recommender Systems go beyond the methods we’ve seen so 

far by trying to model the relationships between people and 

the items they’re evaluating

my (user’s)

“preferences”
HP’s (item) 

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie 

action-

heavy?

are the special effects good?

Compatibility



This section

Recommender Systems

1. (next) Collaborative filtering
(performs recommendation in terms of user/user and item/item 

similarity)

2. (later) Latent-factor models
(performs recommendation by projecting users and items into 

some low-dimensional space)

3. The Netflix Prize

4. Recommender Systems Evaluation



Later

Recommender Systems – more 

advanced topics

• Incoroporating complex side-

information into recommender systems

• Recommendation in other contexts, e.g.

social networks, online dating, etc.

• Online advertising

• (even later) temporal factors, ethics, 

text, etc.



Web Mining and Recommender Systems

Similarity-based Recommender Systems



Defining similarity between users & items

Q: How can we measure the similarity

between two users?

A: In terms of the items they 

purchased!

Q: How can we measure the similarity 

between two items?

A: In terms of the users who purchased 

them!



e.g.:

Amazon

Defining similarity between users & items



Definitions

Definitions

= set of items purchased by user u

= set of users who purchased item i



Definitions

Or equivalently…

users

items

= binary representation of items purchased by u

= binary representation of users who purchased i



0. Euclidean distance

Euclidean distance:
e.g. between two items i,j (similarly defined between two users)



0. Euclidean distance

Euclidean distance:

e.g.: U_1 = {1,4,8,9,11,23,25,34}

U_2 = {1,4,6,8,9,11,23,25,34,35,38}

U_3 = {4}

U_4 = {5}

Problem: favors small sets, even if they 

have few elements in common



1. Jaccard similarity

→ Maximum of 1 if the two 

users purchased exactly the 

same set of items
(or if two items were purchased by the 

same set of users)

→ Minimum of 0 if the two users 

purchased completely 

disjoint sets of items
(or if the two items were purchased by 

completely disjoint sets of users)



2. Cosine similarity

(vector representation of 

users who purchased 

harry potter)

(theta = 0) → A and B point in 

exactly the same direction

(theta = 180) → A and B point 

in opposite directions (won’t 

actually happen for 0/1 vectors)

(theta = 90) → A and B are 

orthogonal



2. Cosine similarity

Why cosine?
• Unlike Jaccard, works for arbitrary vectors

• E.g. what if we have opinions in addition to purchases?

bought and liked

didn’t buy

bought and hated



2. Cosine similarity

(vector representation of 

users’ ratings of Harry 

Potter)

(theta = 0) -> Rated by the 

same users, and they all agree

(theta = 180) -> Rated by the 

same users, but they 

completely disagree about it

(theta = 90) -> Rated by 

different sets of users

E.g. our previous example, now with 

“thumbs-up/thumbs-down” ratings 



4. Pearson correlation

What if we have numerical ratings 

(rather than just thumbs-up/down)?

bought and liked

didn’t buy

bought and hated



4. Pearson correlation

What if we have numerical ratings 

(rather than just thumbs-up/down)?



4. Pearson correlation

What if we have numerical ratings 

(rather than just thumbs-up/down)?
• We wouldn’t want 1-star ratings to be parallel to 5-

star ratings

• So we can subtract the average – values are then 

negative for below-average ratings and positive

for above-average ratings

items rated by both users average rating by user v



4. Pearson correlation

Compare to the cosine similarity:

Pearson similarity (between users):

Cosine similarity (between users):

items rated by both users average rating by user v

Note: slightly different from previous definition. Here similarity is 

determined only based on items both users have consumed



4. Pearson correlation

Consider all items in the denominator, or just shared items?

Just shared: two users should be considered maximally similar if they've rated 

shared items the same way. If only one user has rated an item, we have no 

evidence that the other user is different.

All: Two users who've rated items the same way and only rated the same items 

should be more similar than two users who've rated some different items.

Ultimately, these are heuristics, and either definition could be used depending 

on the situation



Collaborative filtering in practice

How does amazon generate their recommendations?

Given a product: Let      be the set of users

who viewed it 

Rank products according to:                      (or cosine/pearson)

.86 .84             .82             .79               …

Linden, Smith, & York (2003)



Collaborative filtering in practice

Linden, Smith, & York (2003)

• Amazon uses the cosine similarity

• Similarity is defind between users: the goal is to 

recommend items that have previously been purchased 

by similar customers (e.g. "customers who bought items 

in your shopping cart also bought")

• Main challenges involve scalability: how to cluster users 

so that we can quickly identify similar users



Collaborative filtering in practice

Note: (surprisingly) that we built 

something pretty useful out of 

nothing but interaction data – we 

didn’t look at any features of the 

products (or users!) whatsoever



Collaborative filtering in practice

But: we still have

a few problems left to address…

1. This is actually kind of slow given a huge 

enough dataset – if one user purchases one 

item, this will change the rankings of every 

other item that was purchased by at least 

one user in common

2. Of no use for new users and new items (“cold-

start” problems

3. Won’t necessarily encourage diverse results



Web Mining and Recommender Systems

Similarity based recommender – implementation



Code

Code on course webpage

Uses Amazon "Musical Instrument" data from

https://s3.amazonaws.com/amazon-reviews-

pds/tsv/index.txt

https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt


Code: Reading the data

Read the data:



Code: Reading the data

Our goal is to make recommendations of products 

based on users’ purchase histories. The only 

information needed to do so is user and item IDs



Code: Useful data structures

Build data structures representing the set of 

items for each user and users for each item:



Code: Jaccard similarity

The Jaccard similarity implementation follows the 

definition directly:



Recommendation

We want a recommendation function that return items 

similar to a candidate item i. Our strategy will be as 

follows:

• Find the set of users who purchased i

• Iterate over all other items other than i

• For all other items, compute their similarity with i

(and store it)

• Sort all other items by (Jaccard) similarity

• Return the most similar



Code: Recommendation

Now we can implement the recommendation function 

itself:



Code: Recommendation

Next, let’s use the code to make a recommendation. 

The query is just a product ID:



Code: Recommendation

Next, let’s use the code to make a recommendation. 

The query is just a product ID:



Code: Recommendation

Items that were recommended:



Recommending more efficiently

Our implementation was not very efficient. The slowest 

component is the iteration over all other items:

• Find the set of users who purchased i

• Iterate over all other items other than i

• For all other items, compute their similarity with i

(and store it)

• Sort all other items by (Jaccard) similarity

• Return the most similar

This can be done more efficiently as most items will 

have no overlap



Recommending more efficiently

In fact it is sufficient to iterate over those items 

purchased by one of the users who purchased i

• Find the set of users who purchased i

• Iterate over all users who purchased i

• Build a candidate set from all items those users 

consumed

• For items in this set, compute their similarity with i

(and store it)

• Sort all other items by (Jaccard) similarity

• Return the most similar



Code: Faster implementation

Our more efficient implementation works as follows:



Code: Faster recommendation

Which ought to recommend the same set of items, but 

much more quickly:



Web Mining and Recommender Systems

Similarity-based rating prediction



In the previous section we provided 

code to make recommendations 

based on the Jaccard similarity

How can the same ideas be used for 

rating prediction?

Collaborative filtering for rating prediction



A simple heuristic for rating prediction 

works as follows:

• The user (u)’s rating for an item i is a 

weighted combination of all of their 

previous ratings for items j

• The weight for each rating is given by 

the Jaccard similarity between i and j

Collaborative filtering for rating prediction



This can be written as:

Collaborative filtering for rating prediction



This can be written as:

All items the user has 

rated other than i
Normalization 

constant

Collaborative filtering for rating prediction



Other rating prediction functions...

Collaborative filtering for rating prediction



Code: CF for rating prediction

Now we can adapt our previous 

recommendation code to predict ratings

We’ll use the mean rating as 

a baseline for comparison

List of reviews per 

user and per item



Code: CF for rating prediction

Our rating prediction code works as follows:



Code: CF for rating prediction

As an example, select a rating for prediction:



Code: CF for rating prediction

Similarly, we can evaluate accuracy across the entire corpus:



Note that this is just a heuristic for rating 

prediction

• In fact in this case it did worse (in terms of 

the MSE) than always predicting the mean

• We could adapt this to use:

1. A different similarity function (e.g. cosine)

2. Similarity based on users rather than items

3. A different weighting scheme

Collaborative filtering for rating prediction



Better heuristics?



Web Mining and Recommender Systems

Latent-factor models



Summary so far

Recap

1. Measuring similarity between users/items for 

binary prediction

Jaccard similarity

2. Measuring similarity between users/items for 

real-valued prediction

cosine/Pearson similarity

Now: Machine learning-based models for real-

valued prediction latent-factor models



Latent factor models

So far we’ve looked at approaches that 

try to define some definition of user/user 

and item/item similarity

Recommendation then consists of
• Finding an item i that a user likes (gives a high rating)

• Recommending items that are similar to it (i.e., items j

with a similar rating profile to i)



Latent factor models

What we’ve seen so far are 

unsupervised approaches and whether 

the work depends highly on whether we 

chose a “good” notion of similarity

So, can we perform recommendations 

via supervised learning?



Latent factor models

e.g. if we can model

Then recommendation 

will consist of identifying



The Netflix prize

In 2006, Netflix created a dataset of 100,000,000 movie ratings

Data looked like:

The goal was to reduce the (R)MSE at predicting ratings:

Whoever first manages to reduce the RMSE by 10% versus 

Netflix’s solution wins $1,000,000

model’s prediction ground-truth



This led to a lot of research on rating 

prediction by minimizing the Mean-

Squared Error

(it also led to a lawsuit against Netflix, once somebody 

managed to de-anonymize their data)

We’ll look at a few of the main 

approaches

The Netflix prize



Rating prediction

Let’s start with the 

simplest possible model:

user item



Rating prediction

What about the 2nd simplest model?

user item

how much does 

this user tend to 

rate things above 

the mean?

does this item tend 

to receive higher 

ratings than others

e.g.



Rating prediction

The optimization problem becomes:

Jointly convex in \beta_i, \beta_u. Can 

be solved by iteratively removing the 

mean and solving for beta

error regularizer



Jointly convex?



Rating prediction

Differentiate:



Rating prediction

Differentiate:

Two ways to solve:

1. "Regular" gradient descent

2. Solve (sim. for beta_i, alpha)



Rating prediction

Differentiate:

Solve :



Rating prediction

Iterative procedure – repeat the 

following updates until convergence:

(exercise: write down derivatives and convince yourself of 

these update equations!)



Rating prediction

user predictor movie predictor

Looks good (and actually works 

surprisingly well), but doesn’t solve the 

basic issue that we started with

That is, we’re still fitting a function that 

treats users and items independently



Web Mining and Recommender Systems

Latent-factor models (part 2)



Recommending things to people

How about an approach based on 

dimensionality reduction?

my (user’s)

“preferences”
HP’s (item) 

“properties”

i.e., let’s come up with low-dimensional representations of the 

users and the items so as to best explain the data



Dimensionality reduction

We already have some tools that ought to 

help us, e.g. from dimensionality reduction:

What is the best low-

rank approximation of 

R in terms of the mean-

squared error?



Dimensionality reduction

eigenvectors of

eigenvectors of

(square roots of)

eigenvalues of

Singular Value 

Decomposition

The “best” rank-K approximation (in terms of the MSE) consists 

of taking the eigenvectors with the highest eigenvalues

We can borrow some existing tools, e.g. the 

singular value decomposition, PCA (etc.):



Dimensionality reduction

But! Our matrix of ratings is only partially 

observed; and it’s really big!

Missing ratings

SVD is not defined for partially observed matrices, and it is not 

practical for matrices with 1Mx1M+ dimensions

; and it’s really big!



Latent-factor models

Instead, let’s solve approximately using 

gradient descent

items

users

K-dimensional 

representation 

of each user

K-dimensional 

representation 

of each item



Latent-factor models

Instead, let’s solve approximately using 

gradient descent



Latent-factor models

my (user’s)

“preferences”
HP’s (item) 

“properties”

Let’s write this as:



Latent-factor models

Let’s write this as:

Our optimization problem is then

error regularizer



Latent-factor models

Problem: this is certainly not convex



Latent-factor models

Oh well. We’ll just solve it approximately

Again, two ways to solve:

1. "Regular" gradient descent

2. Solve (sim. For beta_i, alpha, 

etc.)

(Solution 1 is much easier to implement, 

though Solution 2 might converge more 

quickly/easily)



Latent-factor models (Solution 1)



Latent-factor models (Solution 2)

Observation: if we know either the user 

or the item parameters, the problem 

becomes "easy"

e.g. fix gamma_i – pretend we’re fitting parameters for features



Latent-factor models

(Harder solution): iteratively solve the 

following subproblems

1) fix    . Solve 

2) fix    . Solve

3,4,5…) repeat until convergence

objective:

Each of these subproblems is “easy” – just regularized least-

squares, like we’ve been doing since we studied regression. 

This procedure is called alternating least squares.



Latent-factor models

later we'll see how to do this using:

• High-level recommender systems libraries

• Tensorflow (next week?)



Latent-factor models

Movie features: genre, 

actors, rating, length, etc.

User features: 

age, gender, 

location, etc.

Observation: we went from a method 

which uses only features:

to one which completely ignores them:



Latent-factor models

Should we use features or not?

1) Argument against features:

In principle, the addition of features adds no expressive 

power to the model. We could have a feature like “is this an 

action movie?”, but if this feature were useful, the model 

would “discover” a latent dimension corresponding to action 

movies, and we wouldn’t need the feature anyway

In the limit, this argument is valid: as we add more ratings 

per user, and more ratings per item, the latent-factor model 

should automatically discover any useful dimensions of 

variation, so the influence of observed features will disappear



Latent-factor models

Should we use features or not?

2) Argument for features:

But! Sometimes we don’t have many ratings per user/item

Latent-factor models are next-to-useless if either the user or 

the item was never observed before

reverts to zero if we’ve never seen the user before

(because of the regularizer)



Latent-factor models

Should we use features or not?

2) Argument for features:

This is known as the cold-start problem in recommender 

systems. Features are not useful if we have many 

observations about users/items, but are useful for new users 

and items.

We also need some way to handle users who are active, but 

don’t necessarily rate anything, e.g. through implicit 

feedback



Dimensionality reduction

my (user’s)

“preferences”
HP’s (item) 

“properties”

Note that this is really a form of dimensionality reduction

• What are the dimensions that explain the most variance in the data?

• For connections to other dimensionality reduction techniques (mostly 

SVD), see textbook



Overview & recap

Recently we’ve followed the 

programme below:

1. Measuring similarity between users/items for 

binary prediction (e.g. Jaccard similarity)

2. Measuring similarity between users/items for real-

valued prediction (e.g. cosine/Pearson similarity)

3. Dimensionality reduction for real-valued

prediction (latent-factor models)

4. Finally – dimensionality reduction for binary 

prediction



Web Mining and Recommender Systems

Implicit feedback models



One-class recommendation

Suppose we have binary (0/1) observations 

(e.g. purchases) or pos./neg. feedback 

(thumbs-up/down)

or

purchased didn’t purchase liked didn’t evaluate didn’t like



One-class recommendation

How can we use dimensionality 

reduction (latent factors) to predict 

binary outcomes?

• Previously we saw regression and logistic regression.

These two approaches use the same type of linear 

function to predict real-valued and binary outputs

• We can apply an analogous approach to binary 

recommendation tasks

This is referred to as “one-class”

recommendation



Why can't we just apply logistic regression?

Why do we need a special approach? Compare to 

“traditional” approach of replacing “missing values” by 0:



Why can't we just apply logistic regression?



Why can't we just apply logistic regression?



Why can't we just apply logistic regression?

Why do we need a special approach? Compare to 

“traditional” approach of replacing “missing values” by 0:

• At test time, the model should assign positive scores to 

items that the user consumed

• But at training time, the model was penalized for not 

predicting zero!

• (Put differently, the "negative" items are exactly the ones 

we should be recommending!)



One-class recommendation

Two broad classes of strategy to 

dealing with one-class data:

1. Instance reweighting: try to figure 

out which negative (or positive) 

instances are "important"

2. Optimize relative scores rather than 

positive versus negative



Why can't we just apply logistic regression?

We need a special way to handle "negative" items (since 

they're not really "negative")

1. Try to figure out which negatives are "real" negatives, 

and weight instances differently (instance reweighting)

2. Try to use a ranking-based objective (personalized 

ranking)



Instance reweighting

1. Instance reweighting: try to figure out which 

negative (or positive) instances are "important"

Fit a function of the form:



Instance reweighting

1. Instance reweighting: try to figure out which 

negative (or positive) instances are "important"

Fit a function of the form:



Instance reweighting

How to choose c (i.e., the importance of each sample)? A 

couple of heuristics:

1. (Hu et al. 2008): applied to positive instances



Instance reweighting

How to choose c (i.e., the importance of each sample)? A 

couple of heuristics:

2. (Pan et al. 2008): applied to negative instances

(negative instances should be weighted higher if the user has interacted with many items, etc.)



Instance reweighting



2. Bayesian Personalized Ranking

Idea: Rather than predicting that negative items are disliked, 

can we just predict that they're less liked than positive items?



Bayesian Personalized Ranking

Goal: Estimate a personalized ranking 

function for each user

• Compare pairs of items i and j together

• i is an item u consumed ("positive")

• j is an item u didn't consume

• Train such that i should have a higher score 

than j (for u)



Bayesian Personalized Ranking

Basic scheme:

• Our original dataset consists of positives (u,i), 

e.g. purchased items for each user

• Augment this dataset by constructing many 

triples (u,i,j) where (u,i) is positive and (u,j) is 

negative

• The model now has to make binary predictions 

as to whether i or j is the postive item



Bayesian Personalized Ranking

Goal: Estimate a personalized ranking 

function for each user



Bayesian Personalized Ranking

What form should x(u,i,j) take?



Bayesian Personalized Ranking

Goal is to count how many times we identified i as 

being "more preferable" than j for a user u



Bayesian Personalized Ranking

We can think of this as maximizing the 

probability of correctly predicting pairwise 

preferences, i.e.,

• As with logistic regression, we can now maximize the 

likelihood associated with such a model by gradient ascent

• In practice it isn’t feasible to consider all pairs of 

positive/negative items, so we proceed by stochastic gradient 

ascent – i.e., randomly sample a (positive, negative) pair and 

update the model according to the gradient w.r.t. that pair



Bayesian Personalized Ranking



Summary

Recap

1. Measuring similarity between users/items for 

binary prediction

Jaccard similarity

2. Measuring similarity between users/items for real-

valued prediction 

cosine/Pearson similarity

3. Dimensionality reduction for real-valued prediction 

latent-factor models

4. Dimensionality reduction for binary prediction

one-class recommender systems



References

Further reading:
One-class recommendation:

http://goo.gl/08Rh59

Amazon’s solution to collaborative filtering at scale:

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
An (expensive) textbook about recommender systems:

http://www.springer.com/computer/ai/book/978-0-387-85819-7

Cold-start recommendation (e.g.):

http://wanlab.poly.edu/recsys12/recsys/p115.pdf

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf


Web Mining and Recommender Systems

Recommender Systems Libraries



Latent Factor Models (Surprise)

Fairly simple interface that implements the type of (rating 

prediction) model we've described

Reads data in .tsv format (various others are supported):

code from: https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html


Latent Factor Models (Surprise)

Create a model instance, train/test splits, and fit the model:



Latent Factor Models (Surprise)

Make predictions and compute MSE from the fitted model



Web Mining and Recommender Systems

Bayesian Personalized Ranking (Implicit)



Bayesian Personalized Ranking (Implicit)

A little more work to put the data in the right format. Start by 

reading the data in our usual formats:

code from: 

https://cseweb.ucsd.edu/~jm

cauley/pml/code/chap5.html

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html


Bayesian Personalized Ranking (Implicit)

Build some utility data structures:



Bayesian Personalized Ranking (Implicit)

Build some sparse matrix data structures. Here we essentially 

build the (massive!) user-item interaction matrix describing 

which items users have interacted with:



Bayesian Personalized Ranking (Implicit)

Fit the model, and get some recommendations from it:



Bayesian Personalized Ranking (Implicit)

Can also extract latent factors (e.g. for visualization):



Web Mining and Recommender Systems

Recommender Systems in Tensorflow



Recommender Systems in Tensorflow

(will come back to Tensorflow later, but code is 

in: https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html)

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap5.html


Web Mining and Recommender Systems

More on recommender systems evaluation



Challenges in evaluating recommender systems

So far, we've mostly considered the Mean Squared Error 

when evaluating recommender systems; we haven't thought 

too hard about this since introducing linear regression

What might be some problems with this choice?



Challenges in evaluating recommender systems

What might be some problems with the MSE?

Consider e.g.

Label:

Prediction:

vs.

Which has a higher penalty? Which should have?



Challenges in evaluating recommender systems

What might be some problems with the MSE?

Consider e.g.

Label:

Model 1:

vs.

Which has a higher penalty? Which should have?

Model 2:



Challenges in evaluating recommender systems

What might be some problems with the MSE?

Consider e.g.

MSE assumed errors were 

normally distributed; what if 

they're more bimodal?

What should the correct 

prediction be in this case?



Challenges in evaluating recommender systems

More thoughts:

• The most popular items (or most active users) will 

dominate our MSE calculation; will less popular items (or 

users) receive "fair" consideration?

• A small change in the MSE can drastically change the 

ordering of the most relevant items; alternately a better 

MSE does not necessarily mean a better recommender



Ranking-based evaluation of recommender systems

Just as we saw (e.g.) precision and recall when evaluating 

classifiers, we can consider ranking-based metrics for 

evaluation of recommender systems. A few we'll look at:

• Precision and Recall @ K (again)

• AUC (Area Under ROC Curve)

• Mean Reciprocal Rank

• Cumulative Gain and NDCG (in textbook)

• Beyond accuracy



Precision and Recall @ K

Much as we considered Precision and Recall (@K) when 

evaluating classifiers, they can also be used to evaluated 

ranked recommendation lists

First, rank recommended items for each user by relevance:

Lower rank = 

more relevant

Relevance score (e.g. 

click probability)



Precision and Recall @ K

Next, count how many of the (withheld/test) interactions for 

a user are among the top K recommendations:



Precision and Recall @ K

Next, count how many of the (withheld/test) interactions for 

a user are among the top K recommendations:

Test interactions

Can then be defined for all users (likewise for recall@K):



Mean Reciprocal Rank

How high is the rank of the relevant item?

• An ideal algorithm should rank it first

• An algorithm that ranks it 10th is somewhat worse

• An algorithm that ranks it 100th is much worse

• The further down the ranking we go the less difference it 

makes

(assuming only a single withheld "test" item i_u for each user)



Mean Reciprocal Rank

1.0 = ideal algorithm; withheld item always ranked first

1/n = relevant item tends to be ranked in the n^th position



AUC

Does a ranker tend to give positive (e.g. purchased) items 

higher ranks than negative (e.g. not-purchased) items:



AUC



AUC

The AUC:

• Counts the fraction of times the algorithm gives a higher 

score to a positive than to a negative interaction

• (1.0 = always correct; 0.5 = random)

• Across all users:



AUC

Why the AUC?



AUC

Why the AUC?

• Doesn't force negative items to be rated as "negative" –

just less positive than positive – this is desirable in implicit 

feedback settings

• Rewards the algorithm for ordering things correctly, which 

may be more important to users than (e.g.) predicting 

ratings correctly

• Is easy (compared to some other metrics) to optimize



Web Mining and Recommender Systems

"User-free" models of recommendation



User-free recommenders

So far we've studied (arguably) the simplest 

approaches for a variety of tasks:

1. Simarity-based models for binary data

2. Similarity-based models for real-valued data

3. Dimensionality reduction (latent factors) for real-valued data

4. Dimensionality reduction for binary data

Next we'll discuss a few alternate approaches to 

similar problems



User-free recommenders

Main goal in this section is to avoid having an 

explicit model of a user gamma_u

Why?



User-free recommenders

Main goal in this section is to avoid having an 

explicit model of a user gamma_u

Why?

• Previous models had K parameters per user – very 

expensive in settings with many users!

• Poor performance for users with few interactions

• Requires continuous retraining as users continue 

to interact



User-free recommenders

Can we design algorithms that take a set of 

items as input, and generate recommended items 

as output?

As users provide more interactions, we just change 

the input to the algorithm – no need to retrain!

1. Sparse Linear Methods (SLIM)

2. Factored Item Similarity Models (FISM)



1. Sparse Linear Methods (SLIM) (Ning and Karypis, 

2011)

Adapts ideas from regression; model interactions as

Vector of 

interactions 

for user u

(linear!) 

parmeter 

vector



1. Sparse Linear Methods (SLIM) (Ning and Karypis, 

2011)

Can be expanded as:

Challenge: W is a (dense!) |I| x |I| matrix



1. Sparse Linear Methods (SLIM) (Ning and Karypis, 

2011)

Solution: assume W is sparse, which is achieve 

through a regularizer:



1. Sparse Linear Methods (SLIM) (Ning and Karypis, 

2011)

Sparse linear methods:

• Rapid inference time (compared to traditional 

methods, not compared to latent factor models)

• Better long-tail performance, i.e., works well for 

rarely-occurring items



2. Factored Item Similarity Models (FISM) (Kabbur et al. 

2013)

Idea: a user is just the average over items they 

consume

Replace the user representation with an average of 

item representations



2. Factored Item Similarity Models (FISM) (Kabbur et al. 

2013)

Replace

with



2. Factored Item Similarity Models (FISM) (Kabbur et al. 

2013)

Replace

with



2. Factored Item Similarity Models (FISM) (Kabbur et al. 

2013)

Note that we have two item representations 

(instead of an item and a user representation)

gamma'_j and gamma_i

These are essentially a "query" and a "target" 

representation



References

Further reading:
• Sparse Linear Methods (SLIM) (Ning 

and Karypis, 2011)

• Factored Item Similarity Models (FISM) 

(Kabbur et al. 2013)



Web Mining and Recommender Systems

Deep learning for recommendation



Deep learning for recommendation

Won't spend a tonne of time teaching deep 

learning, but obviously it's made some headway 

into recommendation (just like everywhere else...)

Here will just give a basic sense of some of the 

main ideas

See textbook for details!



Why not deep learning for recommendation?

Why should we need deep learning to improve 

recommender systems?

Deep Learning is normally used to uncover non-linear 

relationships/transforms among features, but this model doesn't 

have any features!

If latent factors can uncover any properties about users/items, 

what can a "deep" model learn?





Why not deep learning for recommendation?

Idea: there's nothing sacred about the inner 

product in this function, and other choices might 

be better in some contexts

Maybe we can automatically learn what types of relationship 

would be most effective



1. Neural Collaborative Filtering (He et al. 2017)

Idea: use a multilayer perceptron to learn the ideal 

relationship between gamma_u and gamma_i



1. Neural Collaborative Filtering (He et al. 2017)

Idea: use a multilayer perceptron to learn the ideal 

relationship between gamma_u and gamma_i

• Arguably, this will help us to learn more complex 

interactions between users and items

• Some counterargument (e.g. Dacrema et al. 

2019): it's actually hard for an MLP to learn an 

inner product function!



2. AutoRec (Sedhain et al. 2015)

Idea: Autoencoders are a technique to learn low-

dimensional latent representations of feature 

vectors; can they be used for recommendation?



2. AutoRec (Sedhain et al. 2015)

Autoencoder-based recommendation:

• Input is a vector of items a user has consumed 

(or a set of users who have consumed an item)

• Model is trained to encode these vectors

• At test time, find un-consumed items that have 

the highest score acording to the decoder

• Note: this is a user-free model! The 

input/output is just a vector of items!



3. Convolutional and Recurrent Models

Plenty of other approaches based on Convolutional 

and Recurrent Neural Networks:

• CNNs often used as a way to incorporate rich 

content into recommender systems (e.g. images)

• RNNs (and Transformers, etc.) are often used as a 

way to incorporate sequential dynamics

We'll come back to these a little (but not much) later



Are deep-learning models "worth it"?

Some doubts as to whether deep learning-based 

recommenders are really "worth it":

• Some evidence that simpler models will work just 

as well if carefully tuned (Dacrema et al. 2019)

• Potentially adding a lot of parameters / training 

complexity for modest performance improvements

• Also challenges re. efficient retrieval etc.



References

Further reading:
• He et al. (2017): Neural Collaborative Filtering

• He and Chua (2017): Neural Factorization Machines

• Cheng et al. (2016): Wide and Deep Learning for 

Recommendation

• Guo et al. (2017): Deep Factorization Machines

• Sedhain et al. (2015): AutoRec



Web Mining and Recommender Systems

What's still coming up?



Extensions of latent-factor models

So far we have a model that looks like:

How might we extend this to:
• Incorporate features about users and items

• Handle implicit feedback

• Change over time

See Yehuda Koren (+Bell & Volinsky)’s magazine article:

“Matrix Factorization Techniques for Recommender Systems”

IEEE Computer, 2009



Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to 

describe users or items

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. is female is male is between 18-24yo



Extensions of latent-factor models

1) Features about users and/or items

(simplest case) Suppose we have binary attributes to 

describe users or items

• Associate a parameter vector with each attribute

• Each vector encodes how much a particular feature 

“offsets” the given latent dimensions

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. y_0 = [-0.2,0.3,0.1,-0.4,0.8]

~ “how does being male impact gamma_u”



Extensions of latent-factor models

(simplest case) Suppose we have binary attributes to 

describe users or items

• Associate a parameter vector with each attribute

• Each vector encodes how much a particular feature 

“offsets” the given latent dimensions

• Model looks like:

• Fit as usual:

error regularizer

1) Features about users and/or items



Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may 

still interact with the system, e.g. through the movies they 

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector 

describing a user’s actions

N(u) = [1,0,0,0,1,0,….,0,1]

implicit feedback vector for user u

e.g. y_0 = [-0.1,0.2,0.3,-0.1,0.5]

Clicked on “Love Actually” but didn’t watch



Extensions of latent-factor models

2) Implicit feedback

Perhaps many users will never actually rate things, but may 

still interact with the system, e.g. through the movies they 

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector 

describing a user’s actions

• Model looks like:

normalize by the number of actions the user performed



Extensions of latent-factor models

3) Change over time

There are a number of reasons why rating data might be 

subject to temporal effects…



Extensions of latent-factor models

3) Change over time

Netflix ratings 

over time

early 2004

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Netflix changed 

their interface!



Extensions of latent-factor models

3) Change over time

Netflix ratings by 

movie age

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

People tend to give higher 

ratings to older movies



Extensions of latent-factor models

A few temporal effects from beer reviews

3) Change over time



Extensions of latent-factor models

There are a number of reasons why rating data might be 

subject to temporal effects…

e.g. “Collaborative filtering 

with temporal dynamics”

Koren, 2009

• Changes in the interface

• People give higher ratings to older movies (or, people 

who watch older movies are a biased sample)

• The community’s preferences gradually change over time

• My girlfriend starts using my Netflix account one day

• I binge watch all 144 episodes of buffy one week and 

then revert to my normal behavior

• I become a “connoisseur” of a certain type of movie

• Anchoring, public perception, seasonal effects, etc.

e.g. “Sequential & temporal 

dynamics of online opinion”

Godes & Silva, 2012

e.g. “Temporal 

recommendation on graphs 

via long- and short-term 

preference fusion”

Xiang et al., 2010

e.g. “Modeling the evolution 

of user expertise through 

online reviews”

McAuley & Leskovec, 2013

3) Change over time



Extensions of latent-factor models

Each definition of temporal evolution demands a slightly 

different model assumption (we’ll see some in more detail 

later tonight!) but the basic idea is the following:

1) Start with our original model:

2) And define some of the parameters as a function of time:

3) Add a regularizer to constrain the time-varying terms:

parameters should change smoothly

3) Change over time



Moral(s) of the story

How much do these extension help?

bias terms

implicit feedback

temporal dynamics

Moral: increasing 

complexity helps a 

bit, but changing 

the model can 

help a lot

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)



Moral(s) of the story

So what actually happened with Netflix?

• The AT&T team “BellKor”, consisting of Yehuda Koren, Robert Bell, and Chris 

Volinsky were early leaders. Their main insight was how to effectively 

incorporate temporal dynamics into recommendation on Netflix.

• Before long, it was clear that no one team would build the winning solution, 

and Frankenstein efforts started to merge. Two frontrunners emerged, “BellKor’s

Pragmatic Chaos”, and “The Ensemble”.

• The BellKor team was the first to achieve a 10% improvement in RMSE, putting 

the competition in “last call” mode. The winner would be decided after 30 days.

• After 30 days, performance was evaluated on the hidden part of the test set.

• Both of the frontrunning teams had the same RMSE (up to some precision) but 

BellKor’s team submitted their solution 20 minutes earlier and won $1,000,000

For a less rough summary, see the Wikipedia page about the Netflix prize, 

and the nytimes article about the competition: http://goo.gl/WNpy7o

http://goo.gl/WNpy7o


Moral(s) of the story

Afterword

• Netflix had a class-action lawsuit filed against them after somebody de-

anonymized the competition data

• $1,000,000 seems to be incredibly cheap for a company the size of Netflix in 

terms of the amount of research that was devoted to the task, and the potential 

benefit to Netflix of having their recommendation algorithm improved by 10%

• Other similar competitions have emerged, such as the Heritage Health Prize 

($3,000,000 to predict the length of future hospital visits)

• But… the winning solution never made it into production at Netflix – it’s a 

monolithic algorithm that is very expensive to update as new data comes in*

*source: a friend of mine told me and I have no actual evidence of this claim



Moral(s) of the story

Finally…

Q: Is the RMSE really the right approach? Will improving rating prediction by 10% 

actually improve the user experience by a significant amount?

A: Not clear. Even a solution that only changes the RMSE slightly could drastically 

change which items are top-ranked and ultimately suggested to the user.

Q: But… are the following recommendations actually any good?

A1: Yes, these are my favorite movies!

or A2: No! There’s no diversity, so how will I discover new content?

5.0 stars 5.0 stars 5.0 stars 5.0 stars 4.9 stars 4.9 stars 4.8 stars 4.8 stars

predicted rating



Summary

Various extensions of latent factor models:
• Incorporating features

e.g. for cold-start recommendation

• Implicit feedback

e.g. when ratings aren’t available, but other actions are

• Incorporating temporal information into latent factor models

seasonal effects, short-term “bursts”, long-term trends, etc.

• Missing-not-at-random 

incorporating priors about items that were not bought or rated

• The Netflix prize



References

Further reading:
Yehuda Koren’s, Robert Bell, and Chris Volinsky’s IEEE computer article:

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf

Paper about the “Missing-at-Random” assumption, and how to address it:

http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf

Collaborative filtering with temporal dynamics:

http://research.yahoo.com/files/kdd-fp074-koren.pdf

Recommender systems and sales diversity:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

