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Announcements

ÅAssignment 3 is due today, 11:59 PM

ÅAssignment 4 will be released today

ïDue Dec 1, 11:59 PM

ÅReading

ïSzeliski

ÅSection 5.3





Mark I Perceptron machine 

Å The Mark I Perceptron machine 
was the first implementation of 
the perceptron algorithm. The 
machine was connected to a 
camera that used 20 ×20 
cadmium sulfide photocells 
to produce a 400 - pixel 
image . The main visible feature 
is a patchboard that allowed 
experimentation with different 
combinations of input features. 
To the right of that are arrays of 
potentiometers that 
implemented the adaptive 
weights

[From Wikipedia]
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Perceptron
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Note: For x=(x1,é , x2), xi can 

be binary or a real number



Questions

For a Network, even as simple as a single 

perceptron, we an ask questions:

1. What can be represented with it?

2. How do we evaluate it?

3. How do we train it?
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How powerful is a perceptron?
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Concept Space & Linear Separability



Increasing Expressiveness:

Multi-Layer Neural Networks

2-layer Perceptron Net



Any Boolean function can be represented by 

a two layernetwork!



But where did those weights come 

from?

Stay tuned



Two Layer Network
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Å Fully connected network

Å Nodes are nonlinear function of weighted sum 

inputs:

f(x; w) = S(wTx+w0)

The nodes of multilayered network

a

x: input vector 

w: weights 

w0: bias term 

a: activation function

y(x; w) = a(wTx+w0)

w0

x: input vector padded 

    with 1 

w: weights including bias 

a: activation function

y(x; w) = a(wTx)

y



Activation Function: Tanh

Å As x goes from-Ð to Ð, tanh(x)goes from -1 to 1

Å It has a ñsigmoidò or S-like shape

Å tanh(0) = 0



Sigmoid FunctionActivation Function: Tanh

Å As x  goes from  -Ð to Ð, tanh(x)  goes from -1 to 1 
ÅIt has a ñsigmoidò or S-like shape 
Å tanh(0) = 0



Two Layer Network
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Å Two sets of weights W1 and W2

Å Two activation functions a1 and a2

x

y1 y2



Feedforward Networks

±Let                    be some function we are trying to 
approximate

±This function could be assignment of an input to a 
category as in a classifier

±This function could be one or more real numbers 
(regression)

±Let a feedforward network approximate this 
mapping y=f(x; w) by learning parametersw



Classification Networks and Softmax

± To classify the input x into one of c classes, we have c
outputs.

± Output i can be viewed as p(ǀi | x). That is the posterior 
probability of the class, given the input. Recognition 
decision is arg max p(ǀi | x).

± If the network were certain about the class, one output 
would be 1 and the rest would be zero.

± More generally                  , the c outputs must sum to 1.

± This can be implemented with a softmax layer
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Feedforward Networks
±The functions defining the layers have been 

influenced by neuroscience 

±Our training dictates the values to be produced 
output layer and the weights are chosen 
accordingly

±The weights for intermediate or ñhiddenòlayers 
are learned and not specified directly 

±You can think of the network as mapping the raw 
input space x to some transformed feature space         
where the samples are ideally linearly separable 



Universal Approximation Theorem

Å Universal Approximation Theorem : A feedforward 

neural network with a linear output layer and one or 

more hidden layers with ReLU [Leshno et al. ô93], or 

sigmoid or some other ¯squashing° activation  function 

[Hornik et al. ô89, Cybenko ô89]can approximate any 

continuous function on a closed and bounded subset of        

This holds for functions mapping finite dimensional 

discrete spaces as well.

± If we have enough hidden units we can approximate 

¯any° function! ¤ but we may not be able to train it.



Universal Approximation Theorem:  Caveats

± Optimization may fail to find the parameters needed to 

represent the desired function.

± Training might choose the wrong function due to 

overfitting.

± The network required to approximate this function might 

be so large as to be infeasible. 



Universal Approximation Theorem:  Caveats

±So even though ¯any° function can be approximated with a 

network as described with single hidden layer, the network may 

fail to train, fail to generalize, or require so many hidden units as 

to be infeasible.

±This is both encouraging and discouraging!

±However, [Montufar et al. 2014] showed that deeper networks 

are more efficient in that a deep rectified net can represent 

functions that would require an exponential number of hidden 

units in a shallow one hidden layer network. 

±Deep networks composed on many rectified hidden layers are 

good at approximating functions that can be composed from 

simpler functions. And lots of tasks such as image classification 

may fit nicely into this space.



High level view of evaluation and training

± Training data:

± Total Loss: 

± Training: Find w that minimizes the total loss.

Network

f(x,w)
Loss

x

y

L(y, Ȓ)

Ȓ






