Neural Networks

ComputeVision |
CSE252A
Lecture 15

CSE252A Fall 2021 ComputeiVision |

Announcements

A Assignment 3 is due today, 11:59 PM

A Assignment 4 will be released today
| Due Dec 1, 11:59 PM
A Reading
I Szeliski
A Section 5.3

CSE252A Fall 2021 ComputeiVision |

NEW NAVY DEVIGE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704"” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen.,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|sig'ner of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers. -

Without Human Controls
. The Navy said the perceptron

would be the- first non-living!
mechanism ‘“capable of receiv-

ing, recognizing and identifying
its surroundings without -any
human training or control.” !

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . [

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to’
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-'
scious of their existence.

!

1958 New York
Times...

In today's demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a *“Q"” for the left
squares and “O"” for the right

squares. .
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

Mark | Perceptron machine

A The Mark | Perceptron machine
was the first implementation of
the perceptron algorithm. The
machine was connected to a
camera that used 20 %20
cadmium sulfide photocells
to produce a 400 - pixel
Image . The main visible feature
IS a patchboard that allowed
experimentation with different
combinations of input features.
To the right of that are arrays of
potentiometers that
iImplemented the adaptive
weights

[From Wikipedia]

Perceptron

ou tp ut
[O(x) 4
1 1
_gpl lfmr:‘:-ﬂ
[Ilothemlse'
0)

g

Note: Forx=(x;,e , X,), X can
be binary or a real number

1 it wo+wiz1+-+wpz, >0

0 otherwise.

Questions

For a Network, even as simple as a single
perceptron, we an ask questions:

1. What can be represented with it?
2. How do we evaluate it?

3. How do we train it?

How powerful Is a perceptron?

Inverter Boolean AND

Concept Space & Linear Separability

Linear Separability

it

Increasing Expressiveness:
Multi-Layer Neural Networks

Boolean XOR X0

| 0 |—|._.|:I

input | input
m/ \

2-layer Perceptron Net

Any Boolean function can be represented by
a two layernetwork!

But where did those weights come
from?

Stay tuned

The nodes of multilayered network

y(X; W) = awTx+wp)
X: Input vector
w: welights
Wo: bias term
a. activation function

y(X; w) = awTx)
X: Input vector padded
with 1
w: weights including bias
a. activation function

Activation Function: Tanh

() 1&!111‘!) —

A Asx goesfrom-D t o D, godsfamii {ox)
A lt has a Adikeisitppeoi do o
A tanh(0) = 0

Activation Func
Rectified Linear Un

g(z) = max(0, 2)

tion

it RelLU

Two Layer Network

Y1 Yo

Wj

Q | ® hidden

®
A & & & a nput
X

w(eh:) = 0000(000 0) 0 h

A Two sets of weightsw, and W,
A Two activation functionsa, and a,

Feedforward Networks

* These networks are composed of functions represented
as “layers™

yx)=a(aaxw),w),w)

with weights w; associated with layer | and aj is the
activation function for layer 1.

* Vy(x)can be a scalar or a vector function.

I+

I+

I+

I+

I+

Classification Networks andSoftmax

To classify the inputx into one ofc classes, we havec
outputs.

Output i can be viewed as p(; | x). That is the posterior
probability of the class, given the input. Recognition
decision isarg max p(l ; | x).

If the network were certain about the class, one output
would be 1 and the rest would be zero.

More generally , the outputs must sum to 1.

This can be implemented with asoftmaxlayer

Feedforward Networks

+ The functions defining the layers have been
Influenced by neuroscience

+ Our training dictates the values to be produced
output layer and the weights are chosen
accordingly

+ The weights for intermediate on h | d dlayer
are learned and not specified directly

+ You can think of the network as mapping the raw
Input space x to some transformed feature spacey(x)
where the samples are ideally linearly separable

Universal Approximation Theorem

A Universal Approximation Theorem : A feedforward
neural network with a linear output layer and one or
more hidden layerswithReLY Les hno ebr al
sigmoid or some other squa
| Horni k et al . dca8dpproxi@atedanyn k o
continuous function on a closed and bounded subset oR™
This holds for functions mapping finite dimensional
discrete spaces as well.

+ If we have enough hidden units we can approximate
~any°® function! w© but we ma

I+

I+

I+

Universal Approximation Theorem: Caveats

Optimization may fail to find the parameters needetb
represent the desired function.

Training might choose the wrong function due to
overfitting.

The network required to approximate this function might
be so large as to be infeasible.

Universal Approximation Theorem: Caveats

+S0o even though any° function <c
network as described with single hidden layer, the network may
fail to train, fail to generalize, or require so many hidden units as
to be infeasible.

+

+ This is both encouraging and discouraging!

+ However,[Montufar et al. 2014] showed thatdeeper networks
are more efficient in that a deep rectified net can represent
functions that would require an exponential number of hidden
units in a shallow one hidden layer network.

+

+ Deep networks composed on many rectified hidden layers are
good at approximating functions that can be composed from
simpler functions. And lots of tasks such as image classification
may fit nicely into this space.

High level view of evaluation and training

+ Training data:{ < x® y? >: 1 <ij<n}

-i
Lloss — L, R

>

X—
y

+ Total Loss: TL(w) = Z L(f(xV; w), y®)
i=1
+ Training: Findw that minimizes the total loss.

+

The loss function

* The loss function is really important. It's how we compare
the network output to the training labels.

e« Common loss functions:
* Regression problems:
» Distance : L(y, ¥)=|ly—Y¥|lp,usually p=1or2

« (Classification: Softmax + cross entropy

e’

o Softmax: ¥/(z) =—

2., €l

] e n 1 n
» Cross entropy between y and ¥ is Ho.9) =) vlog— == 3" yiogs,
i=1

! i=1

* where: y is a vector with one 1 and the rest O's.

y is a vector with positive floats that sum to 1

Training Feed Forward Networks

e Given a training set {<x(1), y(U>, <x@), y@>, ... <xm), y">} estimate

(learn) w by making TL(W) = Z L(f(x; w), y) small.
i=1

e Back propagation using Stochastic Gradient Descent
e Adagrad, RMSprop, ADAM
e Regularization: Dropout, Batch/Group/Instance Normalization

e Early Stopping

