
CSE 252A, Fall 2021 Computer Vision I

Neural Networks

Computer Vision I

CSE 252A

Lecture 15

CSE 252A, Fall 2021 Computer Vision I

Announcements

ÅAssignment 3 is due today, 11:59 PM

ÅAssignment 4 will be released today

ïDue Dec 1, 11:59 PM

ÅReading

ïSzeliski

ÅSection 5.3

Mark I Perceptron machine

Å The Mark I Perceptron machine
was the first implementation of
the perceptron algorithm. The
machine was connected to a
camera that used 20 ×20
cadmium sulfide photocells
to produce a 400 - pixel
image . The main visible feature
is a patchboard that allowed
experimentation with different
combinations of input features.
To the right of that are arrays of
potentiometers that
implemented the adaptive
weights

[From Wikipedia]

5

Perceptron

w0

0

1

0

-w0
wTx

O(x)

Note: For x=(x1,é , x2), xi can

be binary or a real number

Questions

For a Network, even as simple as a single

perceptron, we an ask questions:

1. What can be represented with it?

2. How do we evaluate it?

3. How do we train it?

7

How powerful is a perceptron?

8

Concept Space & Linear Separability

Increasing Expressiveness:

Multi-Layer Neural Networks

2-layer Perceptron Net

Any Boolean function can be represented by

a two layernetwork!

But where did those weights come

from?

Stay tuned

Two Layer Network

wij

wjk

Å Fully connected network

Å Nodes are nonlinear function of weighted sum

inputs:

f(x; w) = S(wTx+w0)

The nodes of multilayered network

a

x: input vector

w: weights

w0: bias term

a: activation function

y(x; w) = a(wTx+w0)

w0

x: input vector padded

 with 1

w: weights including bias

a: activation function

y(x; w) = a(wTx)

y

Activation Function: Tanh

Å As x goes from-Ð to Ð, tanh(x)goes from -1 to 1

Å It has a ñsigmoidò or S-like shape

Å tanh(0) = 0

Sigmoid FunctionActivation Function: Tanh

Å As x goes from -Ð to Ð, tanh(x) goes from -1 to 1
ÅIt has a ñsigmoidò or S-like shape
Å tanh(0) = 0

Two Layer Network

ώ●ȟ◌ ╪ ὡὥ ὡ● ύȟ ύȟ

Å Two sets of weights W1 and W2

Å Two activation functions a1 and a2

x

y1 y2

Feedforward Networks

±Let be some function we are trying to
approximate

±This function could be assignment of an input to a
category as in a classifier

±This function could be one or more real numbers
(regression)

±Let a feedforward network approximate this
mapping y=f(x; w) by learning parametersw

Classification Networks and Softmax

± To classify the input x into one of c classes, we have c
outputs.

± Output i can be viewed as p(ǀi | x). That is the posterior
probability of the class, given the input. Recognition
decision is arg max p(ǀi | x).

± If the network were certain about the class, one output
would be 1 and the rest would be zero.

± More generally , the c outputs must sum to 1.

± This can be implemented with a softmax layer

p(w
i
|x) =1

i=1

c

å

O
i
=

e
z
i

e
z

j

j=1

c

å

Feedforward Networks
±The functions defining the layers have been

influenced by neuroscience

±Our training dictates the values to be produced
output layer and the weights are chosen
accordingly

±The weights for intermediate or ñhiddenòlayers
are learned and not specified directly

±You can think of the network as mapping the raw
input space x to some transformed feature space
where the samples are ideally linearly separable

Universal Approximation Theorem

Å Universal Approximation Theorem : A feedforward

neural network with a linear output layer and one or

more hidden layers with ReLU [Leshno et al. ô93], or

sigmoid or some other ¯squashing° activation function

[Hornik et al. ô89, Cybenko ô89]can approximate any

continuous function on a closed and bounded subset of

This holds for functions mapping finite dimensional

discrete spaces as well.

± If we have enough hidden units we can approximate

¯any° function! ¤ but we may not be able to train it.

Universal Approximation Theorem: Caveats

± Optimization may fail to find the parameters needed to

represent the desired function.

± Training might choose the wrong function due to

overfitting.

± The network required to approximate this function might

be so large as to be infeasible.

Universal Approximation Theorem: Caveats

±So even though ¯any° function can be approximated with a

network as described with single hidden layer, the network may

fail to train, fail to generalize, or require so many hidden units as

to be infeasible.

±This is both encouraging and discouraging!

±However, [Montufar et al. 2014] showed that deeper networks

are more efficient in that a deep rectified net can represent

functions that would require an exponential number of hidden

units in a shallow one hidden layer network.

±Deep networks composed on many rectified hidden layers are

good at approximating functions that can be composed from

simpler functions. And lots of tasks such as image classification

may fit nicely into this space.

High level view of evaluation and training

± Training data:

± Total Loss:

± Training: Find w that minimizes the total loss.

Network

f(x,w)
Loss

x

y

L(y, Ȓ)

Ȓ

