CSE 234
Data Systems for Machine Learning

Arun Kumar

Topic 6: ML Deployment (Optional; not included for Final)

Chapter 8.5 of MLSys book
ML Deployment in the Lifecycle

- Data acquisition
- Data preparation

Source → Build → Deploy

ML/AI + Data Systems Infrastructure

Feature Engineering
Training & Inference
Model Selection

Serving
Monitoring
Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.
Outline

❖ Offline ML Deployment
❖ Online Prediction Serving
❖ ML Monitoring and Versioning
❖ Federated ML
Historically, “offline” was the most common scenario
- Still is among most enterprises, sciences, healthcare
- Typically once a quarter / month / week / day
- Aka “model scoring”

Given: A trained ML prediction function f; a set of (unlabeled) data examples

Goal: Apply f to all examples *efficiently*
- Key metrics: *Throughput*, cost, latency
Offline ML Deployment: Systems

- Not particularly challenging in most applications
- Typically all ML systems support it by default

In-memory:
- MLflow
- R

Disk-based files:
- SAS
- DASK

Layered on RDBMS/Spark:
- MADlib
- Apache Spark
- MLlib

Cloud-native:
- Azure Machine Learning
- Amazon SageMaker

“AutoML” platforms:
- DataRobot
- H2O.ai

Decision tree-oriented:
- dmlc
- XGBoost
- Microsoft LightGBM

Deep learning-oriented:
- TensorFlow
- PyTorch
Q: What systems-level optimizations are possible here?

- **Parallelism:**
 - Inference is *embarrassingly parallel* across examples

- **Factorized ML (e.g., in Morpheus):**
 - Push ML computations down through joins
 - Pre-computes some FLOPS and reuses across examples

Example: GLM inference:

\[
x_i = \left[x_{i,R} ; x_{i,U} ; x_{i,M} \right]
\]

\[
w^T x_i = w^T_{R} x_{i,R} + w^T_{U} x_{i,U} + w^T_{M} x_{i,M}
\]
Q: What systems-level optimizations are possible here?

- More general pre-computation / caching / batching:
 - Factorized ML is a specific form of sharing/caching
 - Other forms of “multi-query optimization” possible

Example: Bulk inference for separate GLMs:

\[
X_{n \times d} (w_1)_{d \times 1} \rightarrow X[w_1; w_2; w_3]_{d \times 3}
\]

- Reduces memory stalls for X; raises hardware efficiency
Hummingbird: Classical ML on DL Tools

- An optimizing compiler to convert classical ML inference computations, especially *tree-based methods*, to tensor ops to exploit DL runtimes, GPU/TPU, etc.
- Branch-heavy instructions -> dense tensor arithmetic
Interestingly, it pays off to embed “useless” calculations in tensor (beyond what is exactly needed for tree) due to massive parallelism of tensor backends!

Figure 3: Compiling an example decision tree using the GEMM strategy (algorithm 1).

- Slower on 1 or few examples; faster on larger batches
- 2x-3x faster than SKLearn/ONNX on CPU; 10x on GPU
Outline

❖ Offline ML Deployment
❖ Online Prediction Serving
❖ ML Monitoring and Versioning
❖ Federated ML
Online Prediction Serving

- Very common among Web companies
 - Usually need to be *realtime*; < 100s of milliseconds!
 - Aka “model serving”
- **Given**: A trained ML prediction function f; a *stream* of (unlabeled) data example(s)
- **Goal**: Apply f to all/each example *efficiently*
 - Key metrics: *Latency*, *memory footprint*, cost, throughput
Online Prediction Serving

❖ Surprisingly challenging to do well in ML systems practice!
 ❖ Still an immature area; lot of R&D; many startups

❖ Key Challenges:
 ❖ **Heterogeneity** of environments: webpages, cloud-based apps, mobile apps, vehicles, IoT, etc.
 ❖ **Unpredictability** of load: need to elastically upscale or downscale resources
 ❖ **Function’s complexity**: model, featurization and data prep code, output thresholds, etc.
 ❖ May straddle libraries, dependencies, even PLs!
 ❖ Hard to optimize end to end in general
The Rise of Serverless Infra.

- Prediction serving is now a “killer app” Function-as-a-service (FaaS) aka serverless cloud infra.
 - Extreme pay-as-you-go; can rent at millisecond level!

- Still, many open efficiency issues for ML deployment:
 - Memory footprints, input access restrictions, logging / output persistence restrictions, latency
A variety of ML serving systems have sprung up recently.

General-purpose (supports multiple ML tools):

- Amazon SageMaker
- Azure Machine Learning
- Clipper
- Verta

ML system-specific:

- TensorFlow
- TorchServe
- PyTorch
- TensorFlow Extended
Clipper

- A pioneering general-purpose ML serving system
Generality and modularity:
- One of the first to use *containers* for ML serving
- Supports multiple ML tools in unified layered API

Efficiency:
- Some basic optimizations: *batching* to raise throughput; *caching* of frequently access models/vectors

Multi-model deployment and flexibility:
- A heuristic “model selection” layer to dynamically pick among multiple deployed models; ensembling
Discussion on Clipper paper
Uber’s PyML

https://eng.uber.com/michelangelo-pyml/
Uber’s PyML

- Older approach had coupled models with Java-based online prediction service, reducing flexibility

Michelangelo
- Trained by Michelangelo via Apache Spark
- Fixed set of supported algorithms
- Supports consistent training/serving preprocessing via fixed DSL
- No dependency isolation

Michelangelo PyML
- Trained by user
- Supports any custom Python model
- Supports custom Python-based preprocessing at serving time
- Full dependency isolation

Replicate high-QPS online models in Michelangelo prior to full-scale rollout

https://eng.uber.com/michelangelo-pyml/
TF Serving is a mature ML serving system, also pioneering
- Optimized for TF model formats; also supports batching
- Dynamic reloading of weights; multiple data sources

TF Lite and TF.JS optimized for more niche backends/runtime environments
Advantages of **general-purpose** vs system-specific:

- Tool heterogeneity is a reality for many orgs
- More nimble to customize accuracy post-deployment with different kinds of models/tools
- Flexibility to swap ML tools; no “lock-in”

Advantages of **ML system-specific** vs general-purpose:

- Generality may not be needed (e.g., Google); lower complexity of MLOps
- Likely more amenable to code/pipeline optimizations
- Likely better hardware utilization, serverless costs
Outline

❖ Offline ML Deployment
❖ Online Prediction Serving
❖ ML Monitoring and Versioning
❖ Federated ML
Software Development + IT Operations (DevOps) is a long standing subarea of *software engineering*

No uniform definition but loosely, the science+eng. of administering software in “production”

- Fuses many historically separate job roles
- Cloud and “Agile” s/w eng. have revolutionized DevOps
Background: DevOps

https://medium.com/swlh/how-to-become-an-devops-engineer-in-2020-80b8740d5a52
Key Parts of DevOps Stack/Practice

- Monitoring & Logging
- Continuous Integration (CI) & Continuous Delivery (CD)
- Building & Testing
- Version Control
- Infrastructure-as-Code (IaC), including Config. & Policy
- Microservices / Containerization & Orchestration

Content Credit: Manasi Vartak, Verta.AI
https://aws.amazon.com/devops/what-is-devops/
The Rise of “MLOps”

- MLOps = DevOps for ML prediction code
 - Much harder than for deterministic software!
- Things that matter beyond just ML model code:
 - Training dataset
 - Data prep/featurization pipelines
 - Hyperparameters
 - Post-inference config. thresholds? Ensembling?
 - Software versions/config.?
 - Training hardware/config.?

Content Credit: Manasi Vartak, Verta.AI
The Rise of “MLOps”

❖ Need to extend DevOps to ML semantics
❖ Monitoring & Logging:
 ❖ Prediction failures? Concept drift? Feature deprecation?
❖ Version Control:
 ❖ Anything can change: ML code + data + config. + … !
❖ Build & Test; CI & CD:
 ❖ Disciplined train-val-test splits? Insidious overfitting?
❖ New space with a lot of R&D; no consensus on standards

Content Credit: Manasi Vartak, Verta.AI
TFX’s “Model Analysis” lets user specify metrics, track over time automatically, alert on-call

Can specify metrics for feature-based data “slices” too

Example for ML Monitoring: TFX

https://www.tensorflow.org/tfx/guide/tfma
Example for ML Monitoring: Overton

- Envisions “code-free” ML monitoring for appl. engineers
- Decouples prediction appl. “task schema” and data
- Emphasizes monitoring of critical training subsets, specifiable using “tags” and “slices”

[Diagram of Overton process]

Example for ML Versioning: Verta

- Started with ModelDB for storing and tracking ML artifacts
 - ML code; data; configuration; environment
- APIs as hooks into ML dev code; SDK and web app./GUI
- Registry for versions and workflows

https://blog.verta.ai/blog/the-third-wave-of-operationalization-is-here-mlops
Open Research Questions in MLOps

- Efficient and consistent version control for ML datasets and featurization pipelines
- Detect concept drift in an actionable manner; prescribe fixes
- Automate ML prediction failure recovery
- Velocity and complexity of streaming ML applications
- Seamless CI & CD for mass-produced models without insidious overfitting
- …
Outline

❖ Offline ML Deployment
❖ Online Prediction Serving
❖ ML Monitoring and Versioning
❖ Federated ML
Federated ML

- Pioneered by Google for ML appl. on smartphones
- Key benefit is more **privacy**:
 - User’s (labeled) data does not leave their device
 - Decentralizes ML model training/finetuning to user data

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
Federated ML

❖ **Key challenge**: Decentralize SGD to intermittent updates
❖ They proposed a simple “federated averaging” algorithm

\[
\min_{w \in \mathbb{R}^d} f(w) \quad \text{where} \quad f(w) \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} f_i(w). \\

f(w) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(w) \quad \text{where} \quad F_k(w) = \frac{1}{n_k} \sum_{i \in \mathcal{P}_k} f_i(w).
\]

❖ User-partitioned updates breaks IID assumption; skews arise
❖ Turns out SGD is still pretty robust (recall async. PS); open theoretical questions still being studied

Federated ML

- Privacy/security-focused improvements:
 - New SGD variants; integration with differential privacy
 - Cryptography to anonymize update aggregations
 - Apart from strong user privacy, communication and energy efficiency also major concerns on battery-powered devices

- Systems+ML optimizations:
 - Communicate only “high quality” model updates
 - Compression and quantization to save upload bandwidth
 - New federation-aware ML algorithms

Federated ML protocol has become quite sophisticated to ensure better stability/reliability, accuracy, and manageability.

Figure 1: Federated Learning Protocol

Google has neatly abstracted the client-side (embedded in mobile app.) and server-side functionality with actor design.

Figure 3: Actors in the FL Server Architecture

Notion of “FL Plan” and simulation-based tooling for data scientists to tailor ML for this deployment regime

(Users’) Training data is out of reach!

Model is updated asynchronously automatically

Debugging and versioning became even more difficult

Review Questions

- Briefly explain 2 reasons why online prediction serving is typically more challenging in practice than offline deployment.
- Briefly describe 2 systems optimizations performed by Clipper for prediction serving.
- Briefly discuss one systems-level optimization amenable to both offline ML deployment and online prediction serving.
- Name 3 things that must be versioned for rigorous version control in MLOps.
- Briefly explain 2 reasons why ML monitoring is needed.
- Briefly explain 2 reasons why federated ML is more challenging for data scientists to reason about.