CSE 200 - Winter 2020
Homework 4
Due Wednesday, Dec 1st, 11:59pm

Problem 1: finding a simple path
Let G=(V,E) be an undirected graph with |V|=n, and fix k>0. We saw in class an algorithm based on coloring coding, that checks if G has a simple path of length k. The runtime of the algorithm was \(\text{poly}(2^k, n) \).

Design a randomized algorithm that finds a simple path of length k whenever one exists. The runtime should still be \(\text{poly}(2^k, n) \), and the algorithm should succeed with probability at least 50%, say.

Problem 2: finding a bipartite matching
Let G=(U,V,E) be a bipartite graph with |U|=|V|=n. We saw in class an algorithm based on Polynomial Identity Testing (PIT) that decides in poly-time whether G contains a bipartite matching or not.

Design an algorithm that (with high probability) finds a bipartite matching whenever one exists. The runtime should still be poly(n), and the algorithm should succeed with probability at least 50%, say.

Problem 3: Reliably and Probably Useful (RPU) algorithms
We proved in class that ZPP = RP \(\cap \) co-RP. Here, we will define another model of randomization called RPU (Reliably and Probably Useful), which you will prove is also equivalent to ZPP.

An **RPU algorithm** is a randomized algorithm M, that, given an input \(x \in \{0,1\}^* \), outputs an answer \(M(x) \in \{0,1,?\} \). Here “?” means “I don’t know”. It computes a language \(L \subset \{0,1\}^* \) if:

1. **It is reliable:** when the algorithm makes a prediction (outputs 0 or 1) it has to be correct. Namely, if \(x \in L \) then \(\Pr [M(x) = 0] = 0 \) and if \(x \notin L \) then \(\Pr [M(x) = 1] = 0 \).
2. **It is useful:** it makes a prediction with some probability on each input. Concretely, for any input \(x \), \(\Pr [M(x) = ?] \leq 1/2 \).

Prove that the class of languages that can be computed by an RPU algorithm running in poly-time is the same as ZPP.
Problem 4: PSPACE does not have fixed polynomial size circuits

Recall that

- \(\text{PSPACE} = \bigcup_{k \geq 1} \text{SPACE}(n^k) \) is the class of languages computable in polynomial space
- \(\text{P/poly} = \bigcup_{k \geq 1} \text{SIZE}(n^k) \) is the class of languages computable by polynomial size circuits

We believe that PSPACE is not a subset of P/poly, but this is open. In this question you will prove a weaker statement: PSPACE is not a subset of \(\text{SIZE}(n^k) \) for any fixed \(k \).

Fix \(k \geq 1 \). Your goal is to construct a language \(L_k \subset \{0,1\}^* \) that satisfies two properties:

(a) \(L_k \) can be decided in PSPACE. In fact, it is decided in \(\text{SPACE}(n^l) \) for some \(l = l(k) \).

(b) There exists \(n_0 = n_0(k) \), such that for all \(n > n_0 \) the language \(L_k \cap \{0,1\}^n \) cannot be computed by boolean circuits of size \(n^k \).

Steps:

1. Fix an input length \(n \). Let \(F_n \) be the class of functions \(f: \{0,1\}^n \rightarrow \{0,1\} \) which can be computed by a circuit of size \(n^k \). Prove that \(|F_n| \leq 2^m \) for \(m = O(n^{k+1}) \).

2. Let \(t \geq 1 \) and fix distinct inputs \(x_1, \ldots, x_t \in \{0,1\}^n \). Prove that there exist values \(y_1, \ldots, y_t \in \{0,1\}^n \) such that the number of functions \(f \in F_n \) that satisfy \(f(x_i) = y_i \) is at most \(2^{m-t} \).

3. Argue that for \(t = m + 1 \), there are inputs \(x_1, \ldots, x_t \in \{0,1\}^n \) and values \(y_1, \ldots, y_t \in \{0,1\}^n \) such that any function \(f: \{0,1\}^n \rightarrow \{0,1\} \) which satisfies \(f(x_i) = y_i \) must be outside \(F_n \).

4. Prove that given an input length \(n \), you can find such inputs and outputs in space \(\text{poly}(m) \).

5. Complete the proof - describe \(L_k \) and prove its properties.