Today’s lecture

• Mapping reductions for RE, coRE
• More examples of decidable/RE/coRE languages
• More examples of undecidable/unRE,unCoRE languages
Mapping reducibility

- Let $A, B \subseteq \Sigma^*$ be any two languages.
- Definition: A is map-reducible to B (written “$A <_m B$”) if there is a function f such that:
 1) The function f is computable (by a TM M).
 2) For all $w \in A$, we have $f(w) \in B$.
 3) For all w not in A, we have that $f(w)$ is not in B.
- Equivalently: $(w \in A) \iff (f(w) \in B)$.
Reductions and undecidability

What we proved:

• Theorem: if $A \lessdot_{m} B$, and A is undecidable, then B is undecidable.

• Equivalently, if $A \lessdot_{m} B$ (i.e., A map reduces to B), then
 - $(A$ is undecidable) \rightarrow $(B$ is undecidable)

• Equivalently, if $A \lessdot_{m} B$ (i.e., A map reduces to B), then
 - $\neg(B$ is undecidable) \rightarrow $\neg(A$ is undecidable)
 - $(B$ is decidable) \rightarrow $(A$ is decidable)
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B
- What we proved: if B is decidable, then A is decidable
 - Let M is a decider for B
 - Goal: build a decider M' for A
- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accepts, then accept w, otherwise reject w
Reductions and recognizability

- Let F be a TM computing a map reduction from A to B
- WTS: if B is in RE, then A is in RE
 - Let M be a TM such that $L(M)=B$
 - Goal: build a TM M' such that $L(M')=A$
- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accepts, then accept w, otherwise reject w
Reductions and undecidability

• Let F be a TM computing a map reduction from A to B
• WTS: if B is in RE, then A is in RE
 – Let M be a TM such that $L(M)=B$
 – Goal: build a TM M' such that $L(M')=A$

• $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accepts, then accept w, otherwise reject w

M' is a decider

A) Yes
B) No, because it may loop in step 1
C) No, because it may loop in step 2
D) It depends on w
E) I don’t know
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B.
- WTS: if B is in RE, then A is in RE.
 - Let M be a TM such that $L(M) = B$.
 - Goal: build a TM M' such that $L(M') = A$.

- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accepts, then accept w, otherwise reject w

What can you say about $L(M')$?

A) $L(M') = A$
B) $L(M') \subset A$
C) $L(M') \supset A$
D) None of the above
E) I don’t know
Proof of $A \subseteq L(M')$

- Let $F: A \leq_m B$, and $L(M) = B$

- $M'(w)$:

 1) Compute $w' = F(w)$

 2) Run $M(w')$, and accept iff $M(w')$ accept

- Assume $w \in A$, then

 - $F(w) \in B$ (by definition of reduction)

 - $M(w')$ accepts

 - $M'(w)$ accepts
Proof of $A \supseteq L(M')$

- Let $F: A \prec B$, and $L(M) = B$
- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$, and accept iff $M(w')$ accept
- Assume w is not in A, then
 - $F(w)$ is not in B (by definition of reduction)
 - $M(w')$ rejects or loops
 - $M'(w)$ rejects or loops
... therefore

- If $A \leq_m B$ and B is RE, then A is RE
- What about coRE?
- Claim: if F is a reduction from A to B, then F is also a reduction

A) From B to A
B) From B to A
C) From A to B
D) I don't know
... therefore

- If $A \leq_m B$ and B is RE, then A is RE
- What about coRE?
- Theorem: if F is a reduction from A to B, then F is also a reduction from A to B
 - $(w \in A) \leftrightarrow (F(w) \in B)$
 - $\neg(w \in A) \leftrightarrow \neg(F(w) \in B)$
 - $(w \in A) \leftrightarrow (F(w) \in B)$
- Corollary: if $A \leq_m B$ and B is coRE, then A is coRE
Mapping reducibility Summary

- Assume $A \leq_m B$, i.e., there is a map reduction from A to B
- Then, we have
 - If B is RE, then A is RE
 - If B is coRE, then A is coRE
 - If B is decidable, then A is decidable
 - If A is undecidable, then B is undecidable
 - If A is not in RE, then B is not in RE
 - If A is not in coRE, then B is not in coRE
More problems on CFG

- \(\text{EQ}_{\text{CFG}} = \{ <G_1, G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) = L(G_2) \} \)
- \(\text{SUB}_{\text{CFG}} = \{ <G_1, G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) \subseteq L(G_2) \} \)
- \(\text{SUP}_{\text{CFG}} = \{ <G_1, G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) \supseteq L(G_2) \} \)

- Can you give reductions between any two of these problems? In what direction?
 - \(\text{EQ}_{\text{CFG}} < \text{SUB}_{\text{CFG}} ? \)
 - \(\text{SUB}_{\text{CFG}} < \text{SUP}_{\text{CFG}} ? \)
 - \(\text{SUP}_{\text{CFG}} < \text{EQ}_{\text{CFG}} ? \)
Reduction: $\text{SUB}_{\text{CFG}} < \text{SUP}_{\text{CFG}}$

- $\text{SUB}_{\text{CFG}} = \{<G_1,G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) \subseteq L(G_2) \}$
- $\text{SUP}_{\text{CFG}} = \{<G_1,G_2> \mid G_1, G_2 \text{ CFG s.t. } L(G_1) \supseteq L(G_2) \}$
- $F(<G_1,G_2>) = <G_2,G_1>$

Which statement is true?

A) F is a computable function
B) $F(\text{SUB}_{\text{CFG}}) \subseteq \text{SUP}_{\text{CFG}}$
C) $F(\text{SUB}_{\text{CFG}}) \subseteq \text{SUP}_{\text{CFG}}$
D) all of the above
Reduction: $\text{SUP}_{\text{CFG}} < \text{EQ}_{\text{CFG}}$

- $\text{SUP}_{\text{CFG}} = \{ <G_1, G_2> | G_1, G_2 \text{ CFG s.t. } L(G_2) \subseteq L(G_1) \}$
- $\text{EQ}_{\text{CFG}} = \{ <G_1, G_2> | G_1, G_2 \text{ CFG s.t. } L(G_1) = L(G_2) \}$
- Observation: $A \subseteq B \leftrightarrow A \cup B = B$
- $F(<G_1, G_2>) = ???
Reduction: $\text{EQ}_{\text{CFG}} < \text{SUB}_{\text{CFG}}$

- $\text{SUB}_{\text{CFG}} = \{ <G_1, G_2> | G_1, G_2 \text{ CFG s.t. } L(G_1) \subseteq L(G_2) \}$
- $\text{EQ}_{\text{CFG}} = \{ <G_1, G_2> | G_1, G_2 \text{ CFG s.t. } L(G_1) = L(G_2) \}$
- $F(<G_1, G_2>) = ???$
Undecidable Problems

• $\text{ALL}_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$

• Sipser Theorem 5.13: ALL_{CFG} is undecidable

• What can you say about EQ_{CFG}?

• $\text{ALL}_{\text{CFG}} < \text{EQ}_{\text{CFG}}$

• $F(G) =$

 – Let $G' = "S \rightarrow aS \mid bS \mid \ldots \mid \epsilon"$

 – Output $<G,G'>$

• EQ_{CFG} is undecidable
Undecidable Problems

- \(\mathbf{ALL}_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \Sigma^* \} \)
- Sipser Theorem 5.13: \(\mathbf{ALL}_{\text{CFG}} \) is undecidable
- What can you say about \(\mathbf{EQ}_{\text{CFG}} \)?
- \(\mathbf{ALL}_{\text{CFG}} < \mathbf{EQ}_{\text{CFG}} \)
- \(\mathbf{F}(G) = \)
 - Let \(G' = "S \rightarrow aS | bS | \ldots | \varepsilon" \)
 - Output \(<G,G'> \)
- \(\mathbf{EQ}_{\text{CFG}} \) is undecidable

\(\mathbf{SUB}_{\text{CFG}} \) is also undecidable. Which of the following is a valid justification?

A) \(\mathbf{SUB}_{\text{CFG}} <_m \mathbf{EQ}_{\text{CFG}} \)
B) \(\mathbf{SUB}_{\text{CFG}} <_m \mathbf{SUP}_{\text{CFG}} \)
C) \(\mathbf{EQ}_{\text{CFG}} <_m \mathbf{SUB}_{\text{CFG}} \)
D) \(\mathbf{SUB}_{\text{CFG}} <_m \mathbf{ALL}_{\text{CFG}} \)
E_{TM} is undecidable

- $A_{TM} = \{ <M,w> \mid M \text{ is a TM and } M(w) \text{ accepts} \}$
- $E_{TM} = \{<M> \mid M \text{ is a TM and } L(M) \text{ is empty} \}$
- We already proved that A_{TM} is RE, but not coRE
- How can we prove that E_{TM} is coRE, not RE
 - E_{TM} is not RE: Reduce $A_{TM} <_m E_{TM}$
 - E_{TM} is coRE: Reduce $E_{TM} <_m A_{TM}$
E_{TM} is not RE

- $A_{TM} = \{ <M, w> | M \text{ is a TM and } M(w) \text{ accepts} \}$
- $E_{TM} = \{ <M> | M \text{ is a TM and } L(M) \text{ is empty} \}$

- $A_{TM} \prec_m E_{TM}$

- $F(<M, w>) =$
 1. If M not a valid TM, let $M'(x) = \text{reject}$
 2. Otherwise, build $M'(x) = \text{"if } (x == w) \text{ then } M(x) \text{ else reject"}$
 3. Output $<M'>$
E_{TM} is not RE

- $A_{TM} = \{<M,w> | M \text{ is a TM and } M(w) \text{ accepts}\}$
- $E_{TM} = \{<M> | M \text{ is a TM and } L(M) \text{ is empty}\}$

- $A_{TM} \not\preceq_m E_{TM}$

- $F(<M,w>) =$
 1. If M not a valid TM, let $M'(x) = \text{reject}$
 2. Otherwise, build $M'(x) = \text{"if } (x == w) \text{ then } M(x) \text{ else reject"}$
 3. Output $<M'>$

What can you say about $L(M')$?

A) $L(M') = L(M)$
B) $L(M') = \{x | x == w\}$
C) $L(M') \subseteq \{w\}$
D) $w \in L(M')$
E) None of the above
E_{TM} is not RE (alternative reduction)

- $A_{TM} = \{ <M,w> | M \text{ is a TM and } M(w) \text{ accepts} \}$
- $E_{TM} = \{ <M> | M \text{ is a TM and } L(M) \text{ is empty} \}$

- $A_{TM} \leq_m E_{TM}$

- $F(<M,w>) =$
 1. If M not a valid TM, let $M'(x) = \text{reject}$
 2. Otherwise, build $M'(x) = M(w)$
 3. Output $<M'>$
E_{TM} is in coRE

- $A_{TM} = \{ <M,w> \mid M$ is a TM and $M(w)$ accepts $\}$
- $E_{TM} = \{<M> \mid M$ is a TM and $L(M)$ is empty $\}$

- Method 1: give a TM M such that $L(M) = E_{TM}$
- Method 2: $E_{TM} \prec_m A_{TM}$

- Hint: given M can you build M' such that
 - if $L(M)$ is not empty, then M' always accepts
 - if $L(M)$ is empty, then M' always loops
For next Time

- Happy Thanksgiving
- HW7 out, due next week
- Reading: Sipser *Chapters 5*